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Abstract

Recently, subgraph GNNs have emerged as an im-
portant direction for developing expressive graph
neural networks (GNNs). While numerous archi-
tectures have been proposed, so far there is still
a limited understanding of how various design
paradigms differ in terms of expressive power,
nor is it clear what design principle achieves max-
imal expressiveness with minimal architectural
complexity. To address these fundamental ques-
tions, this paper conducts a systematic study of
general node-based subgraph GNNs through the
lens of Subgraph Weisfeiler-Lehman Tests (SWL).
Our central result is to build a complete hierar-
chy of SWL with strictly growing expressivity.
Concretely, we prove that any node-based sub-
graph GNN falls into one of the six SWL equiv-
alence classes, among which SSWL achieves the
maximal expressive power. We also study how
these equivalence classes differ in terms of their
practical expressiveness such as encoding graph
distance and biconnectivity. In addition, we give
a tight expressivity upper bound of all SWL al-
gorithms by establishing a close relation with lo-
calized versions of WL and Folklore WL (FWL)
tests. Overall, our results provide insights into
the power of existing subgraph GNNs, guide the
design of new architectures, and point out their
limitations by revealing an inherent gap with the
2-FWL test. Finally, experiments demonstrate
that SSWL-inspired subgraph GNNs can signifi-
cantly outperform prior architectures on multiple
benchmarks despite great simplicity.
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1. Introduction
Graph neural networks (GNNs), especially equivariant
message-passing neural networks (MPNNs), have become
the dominant approach for learning on graph-structured data
(Gilmer et al., 2017; Hamilton et al., 2017; Kipf & Welling,
2017; Veličković et al., 2018). Despite their great simplic-
ity and scalability, one major drawback of MPNNs lies in
the limited expressiveness (Xu et al., 2019; Morris et al.,
2019). This motivated a variety of subsequent works to de-
velop provably more expressive architectures, among which
subgraph GNNs have emerged as a new trend (Cotta et al.,
2021; You et al., 2021; Zhang & Li, 2021; Bevilacqua et al.,
2022; Zhao et al., 2022a; Papp & Wattenhofer, 2022; Frasca
et al., 2022; Qian et al., 2022; Huang et al., 2022).

Broadly speaking, a general (node-based) subgraph GNN
first transforms an input graph G into a collection of sub-
graphs, each of which is associated with a unique node in
G. It then computes a feature representation for each node
of each subgraph through a series of equivariant message-
passing layers. Finally, it outputs a representation of graph
G by pooling all these subgraph node features. Subgraph
GNNs have received great attention partly due to their ele-
gant structure, enhanced expressiveness, message-passing-
based inductive bias, and superior empirical performance
(Frasca et al., 2022; Zhao et al., 2022a).

One central question in subgraph GNNs lies in how to de-
sign simple yet expressive equivariant layers. Starting from
the most basic design where each node only interacts with
its local neighbors in the own subgraph (Cotta et al., 2021;
Qian et al., 2022), recent works have developed a rich family
of (cross-graph) aggregation operations (Bevilacqua et al.,
2022; Zhao et al., 2022a; Frasca et al., 2022). In particular,
Frasca et al. (2022) gave a unified characterization of the de-
sign space of subgraph GNNs based on 2-IGN (Maron et al.,
2019b;a), which contains dozens of atomic aggregations.
However, it is generally unclear whether the added aggre-
gations can theoretically improve a model’s expressiveness
as it becomes increasingly complex. So far, a systematic in-
vestigation and comparison of various possible aggregation
schemes in terms of expressiveness is still lacking. More
fundamentally, for both theory and practice, is there a canon-
ical design principle of subgraph GNNs that achieves the
maximal expressiveness with the least model complexity?
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A complete hierarchy of subgraph GNNs. In this paper,
we comprehensively study the aforementioned questions
through the lens of Subgraph Weisfeiler-Lehman Tests
(SWL), a class of color refinement algorithms abstracted
from subgraph GNNs in distinguishing non-isomorphic
graphs. Each SWL consists of three ingredients: (a) graph
generation policy, (b) message-passing aggregation scheme,
and (c) final pooling scheme. Among commonly used graph
generation policies, we mainly focus on the canonical node
marking SWL as it theoretically achieves the best expressive
power despite simplicity (Proposition 4.2). Our central
result is to build a complete hierarchy for all node marking
SWL with various aggregation schemes and pooling
schemes. Concretely, we prove that any node-based sub-
graph GNN falls into one of the six SWL equivalence classes
and establish strict expressivity inclusion relationships
between different classes (see Corollary 4.7, Theorem 7.1,
and Figure 1). In particular, our result highlights that,
by including symmetrically two basic local aggregations,
the corresponding SWL (called SSWL) has theoretically
achieved the maximal expressive power. Our result thus
provides a clear picture of the power and limitation of exist-
ing architectures, settling a series of open problems raised
in Bevilacqua et al. (2022); Frasca et al. (2022); Qian et al.
(2022); Zhao et al. (2022a) (see Section 8 for discussions).

Related to practical expressiveness. We provide concrete
evidence that subgraph GNNs with better theoretical expres-
sivity are also stronger in terms of their ability to compute
fundamental graph properties. Inspired by the recent work
of Zhang et al. (2023), we prove that the PSWL (defined
in Corollary 4.7) is strictly more powerful than a variant
of the Generalized Distance WL proposed in their paper,
which incorporates both the shortest path distance and the
hitting time distance (Definition A.1). Our result unifies and
extends the findings in Zhang et al. (2023) and implies that
all SWL algorithms stronger than PSWL are able to encode
both distance and biconnectivity properties. In contrast, we
give counterexamples to show that neither of these basic
graph properties can be fully encoded in vanilla SWL.

Localized (Folklore) WL tests. Similar to the classic WL
and Folklore WL tests (Weisfeiler & Leman, 1968; Cai et al.,
1992), node marking SWL corresponds to a natural class of
computation models for graph canonization (Immerman &
Lander, 1990). All SWL algorithms have O(n2) memory
complexity and O(nm) computational complexity (per iter-
ation) for a graph of n vertices and m edges. Owing to the
improved computational efficiency over classic 2-FWL/3-
WL (i.e. O(n3)), a better understanding of what can/cannot
be achieved under this complexity class is arguably an im-
portant research question. We answer this question by first
establishing a close relation between SWL and localized
versions of 2-WL (Morris et al., 2020) and 2-FWL tests,
both of which have the same complexity as SWL. We then
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Figure 1. Expressiveness hierarchy of different WL algorithms.

derive a number of key results: (i) The strongest SSWL
is as powerful as localized 2-WL. This builds a surprising
link between the works of Frasca et al. (2022) and Morris
et al. (2020). (ii) Despite the same complexity, there is an
inherent gap between localized 2-WL and localized 2-FWL.
(iii) There is an inherent gap between localized 2-FWL and
classic 2-FWL. Consequently, our results settle a fundamen-
tal open problem raised in Frasca et al. (2022) about whether
subgraph GNNs can match the power of 2-FWL, and further
implies that subgraph GNNs even do not reach the maxi-
mal expressiveness in the model class of O(nm) complexity.
This reveals an intrinsic limitation of the subgraph GNN
model class and points out a new direction for improvement.

Technical Contributions. Actually, it is quite challenging
to find a principled class of hard graphs that can reveal the
expressivity gap of different SWL/FWL-type algorithms.
As a main technical contribution, we develop a novel an-
alyzing framework inspired by Cai et al. (1992) based on
pebbling games, where we considerably extend the game
originally designed for FWL to all types of SWL and local-
ized 2-WL/2-FWL algorithms. The game viewpoint offers
deep insights into the power of different algorithms, through
which we can skillfully construct a collection of nontrivial
counterexample graphs to prove all strict separation results
in this paper. We believe the proposed games and counterex-
amples may be of independent value in future work.

Practical Contributions. Our theoretical insights can also
guide in designing simple, efficient, yet powerful subgraph
GNN architectures. In particular, the proposed SSWL cor-
responds to an elegant design principle with only 3 atomic
equivariant aggregation operations, yet the resulting model
is strictly more powerful than all prior node-based sub-
graph GNNs. Empirically, we verify SSWL-based subgraph
GNNs on several benchmarks such as substructure counting
and molecular property prediction, showing that they can
significantly outperform prior architectures despite fewer
model parameters and great simplicity.
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2. Formalizing Subgraph GNNs
Notations. We use { } to denote sets and use {{ }} to denote
multisets. The cardinality of (multi)set S is denoted as
|S|. In this paper, we consider finite, undirected, simple,
connected graphs, and we useG = (VG, EG) to denote such
a graph with vertex set VG and edge set EG. Each edge in EG
is expressed as a set {u, v} containing two distinct vertices
in VG. Given a vertex u, denote its neighbors as NG(u) :=
{v ∈ VG : {u, v} ∈ EG}. Similarly, the k-hop neighbors
of u is denoted as N k

G(u) := {v ∈ VG : disG(u, v) ≤ k},
where disG(u, v) is the shortest path distance between u
and v. In particular, N 1

G(u) = NG(u) ∪ {u}.
A general subgraph GNN processes an input graphG follow-
ing three steps: (i) generating subgraphs, (ii) equivariant
message-passing, and (iii) final pooling. Below, we sepa-
rately describe each of these components.

Node-based graph generation policies. The first step is to
generate a collection of subgraphs of G based on a prede-
fined graph generation policy π and initialize node features
in each subgraph. For node-based subgraph GNNs, there
are a total of |VG| subgraphs, and each subgraph is uniquely
associated with a specific node u ∈ VG, so that π can be
expressed as a mapping of the form π(G) = {{(Gu, h̃uG) :
u ∈ VG}}. Here, all subgraphs Gu = (VG, EuG) share the
vertex set VG but may differ in the edge set EuG. The map-
ping h̃uG : VG → Rd defines the initial node features, i.e.,
h̃uG(v) is the initial feature of vertex v in subgraph Gu.

Various graph generation policies have been proposed in
prior works, which differ in the choice of EuG and h̃uG. For
example, common choices of EuG are: (i) using the original
graph (EuG = EG), (ii) node deletion (EuG = EG\{{u, v} :
v ∈ NG(u)} by deleting all edges associated to node u,
and (iii) k-hop ego network (EuG = {{v, w} ∈ EG : v, w ∈
N k

G(u)}). To initialize node features, there are also three
popular choices: (i) constant node features, where h̃uG(v) is
the same for all u, v ∈ VG; (ii) node marking, where h̃uG(v)
depends only on whether u = v or not; (iii) distance en-
coding, where h̃uG(v) depends on the shortest path distance
between u and v, i.e. disG(u, v).

In this paper, we mainly consider the canonical node mark-
ing policy on the original graph due to its simplicity. Impor-
tantly, we will show in Section 4.1 that it already achieves
the maximal expressiveness among all the above policies.

Equivariant message-passing. The main backbone of sub-
graph GNNs consists of L stacked equivariant message-
passing layers. For each network layer l ∈ [L], the feature of
each node v in each subgraphGu is computed, which can be
denoted as h(l)G (u, v). At the beginning, h(0)G (u, v) = h̃uG(v).
Following Frasca et al. (2022), we study arguably the most
general design space that incorporates a broad class of pos-
sible message-passing aggregation operations.

Definition 2.1. A general subgraph GNN layer has the form

h
(l+1)
G (u,v)=σ(l+1)(op1(u,v,G,h

(l)
G ),· · ·, opr(u,v,G,h

(l)
G )),

where σ(l+1) is an arbitrary (parameterized) continuous
function, and each atomic operation opi(u, v,G, h) can take
any of the following expressions:

• Single-point: h(u, v), h(v, u), h(u, u), or h(v, v);

• Global:
∑

w∈VG h(u,w) or
∑

w∈VG h(w, v);

• Local:
∑

w∈NGu (v) h(u,w) or
∑

w∈NGv (u) h(w, v).

We assume that h(u, v) is always present in some opi.

It is easy to see that any GNN layer defined above is per-
mutation equivariant. Among them, two most basic atomic
operations are h(u, v) and

∑
w∈NGu (v) h(u,w), which are

applied in all prior subgraph GNNs. Without using further
operations, the vanilla subgraph GNN layer has the form

h
(l+1)
G (u, v) = σ(l+1)

h(l)G (u, v),
∑

w∈NGu (v)

h
(l)
G (u,w)

 .

Besides, several works have explored other aggregation op-
erations, and we list a few representative examples below1.

Example 2.2. (i) ESAN (Bevilacqua et al., 2022) addition-
ally uses global aggregation

∑
w∈VG h(w, v). (ii) GNN-AK

(Zhao et al., 2022a) additionally uses single-point operation
h(v, v). It also uses global aggregation

∑
w∈VG h(u,w)

when u = v. (iii) SUN (Frasca et al., 2022) additionally
uses h(u, u), h(v, v), and both types of global aggregations.

Final pooling layer. The last step is to output a graph
representation f(G) based on all the collected features
{{h(L)

G (u, v) : u, v ∈ VG}}. There are two different
ways to implement this, which differ in the order of pool-
ing along the two dimensions u, v. The first approach,
called vertex-subgraph pooling, first pools all node features
in each subgraph Gu to obtain the subgraph representa-
tion, i.e., fS(G, u) := σS

(∑
v∈VG h

(L)
G (u, v)

)
, and then

pools all subgraph representations to obtain the final out-
put f(G) := σG(

∑
u∈VG f

S(G, u)). Here, σS and σG can
be any parameterized function. Most prior works follow
this paradigm. In contrast, the second approach, called

1We note that there are still other possible equivariant oper-
ations that are not included in Definition 2.1, such as diagonal
aggregations (e.g.,

∑
w∈VG

h(w,w)) and composite aggregations
(e.g.,

∑
w∈VG

∑
x∈NG(v) h(w, x) used in ESAN). In particular,

Frasca et al. (2022) recently proposed a powerful subgraph GNN
framework called ReIGN(2), which contains a total of 39 atomic
operations for node-marking policy (the number can be even larger
for other policies). However, we prove that incorporating these
operations does not bring extra expressiveness beyond the current
framework (see Appendix F). Here, we select the 8 basic oper-
ations in Definition 2.1 mainly due to their fundamental nature,
simplicity, and completeness.
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subgraph-vertex pooling, first generates node representa-
tions fV(G, v) := σV(

∑
u∈VG h

(L)
G (u, v)) for each v ∈ VG,

and then pools all these node representations to obtain the
graph representation, i.e., f(G) := σG(

∑
v∈VG f

V(G, v)).
This approach is adopted in Qian et al. (2022).

3. Subgraph Weisfeiler-Lehman Test
To formally study the expressive power of subgraph GNNs,
in this section we introduce the Subgraph WL Test (SWL), a
class of color refinement algorithms for graph isomorphism
test. Let G = (VG, EG) and H = (VH , EH) be two graphs.
As with subgraph GNNs, SWL first generates for each graph
a collection of subgraphs and initializes color mappings
based on a graph generation policy π. We denote the results
as {{(Gu, χ̃u

G) : u ∈ VG}} and {{(Hu, χ̃u
H) : u ∈ VH}},

where χ̃ is the color mapping that can be constant, node
marking or distance encoding (according to Section 2).

Given graph G, let χ(0)
G (u, v) := χ̃u

G(v) for u, v ∈ VG.
SWL then refines the color of each (u, v) pair using various
types of aggregation operations defined as follows:
Definition 3.1. A general SWL iteration has the form

χ
(t+1)
G (u, v)=hash(agg1(u, v,G,χ

(t)
G ),· · ·, aggr(u, v,G,χ

(t)
G )),

where hash is a perfect hash function and each
aggi(u, v,G, χ) can take any of the following expressions:

• Single-point: χ(u, v), χ(v, u), χ(u, u), or χ(v, v);
• Global: {{χ(u,w) :w ∈ VG}} or {{χ(w, v) :w ∈ VG}}.
• Local: {{χ(u,w) : w ∈ NGu(v)}} or
{{χ(w, v) : w ∈ NGv (u)}}.

We use symbols aggPuv, agg
P
vu, aggPuu, aggPvv, agg

G
u , aggGv ,

aggLu, and aggLv to denote each of the 8 basic operations,
respectively. We assume aggPuv is always present in some
aggi. The set A := {aggi : i ∈ [r]} fully determines the
SWL iteration and is called the aggregation scheme.

For each iteration t, the color mapping χ
(t)
G induces an

equivalence relation and thus a partition P(t)
G over the set

VG×VG. Since aggPuv is present inA, P(t)
G must get refined

as t grows. Therefore, with a sufficiently large number of
iterations t ≤ |VG|2, the color mapping becomes stable (i.e.,
inducing a stable partition). Without abuse of notation, we
denote the stable color mapping by χG.

Finally, the representation of graph G, denoted as c(G), is
computed by hashing all colors χG(u, v) for u, v ∈ VG. Par-
allel to the previous section, there are two different pooling
paradigms to implement this:

• Vertex-subgraph pooling (abbreviated as VS): c(G) =
hash ({{hash({{χG(u, v) : v ∈ VG}}) : u ∈ VG}});

• Subgraph-vertex pooling (abbreviated as SV): c(G) =
hash ({{hash({{χG(u, v) : u ∈ VG}}) : v ∈ VG}}).

We say SWL can distinguish a pair of graphs G and H if
c(G) 6= c(H). Similarly, given a subgraph GNN f , we
say f distinguishes graphs G and H if f(G) 6= f(H). The
following proposition establishes the connection between
SWL and subgraph GNNs in terms of expressivity in distin-
guishing non-isomorphic graphs.

Proposition 3.2. The expressive power of any subgraph
GNN defined in Section 2 is bounded by a corresponding
SWL by matching the graph generation policy π, the aggre-
gation scheme (between Definitions 2.1 and 3.1), and the
pooling paradigm. Moreover, when considering bounded-
size graphs, for any SWL algorithm, there exists a matching
subgraph GNN with the same expressive power.

Qian et al. (2022) first proved the above result for vanilla
subgraph GNNs without cross-graph aggregations. Here,
we consider general aggregation schemes and give a unified
proof of Proposition 3.2 in Appendix D. Based on this result,
we can focus on studying the expressive power of SWL in
subsequent analysis.

4. Expressiveness and Hierarchy of SWL
In this section, we systematically study how different design
paradigms impact the expressiveness of SWL algorithms.
To begin with, we need the following set of terminologies:

Definition 4.1. Let A1 and A2 be two color refinement
algorithms, and denote ci(G), i ∈ {1, 2} as the graph repre-
sentation computed by Ai for graph G. We say:

• A1 is more powerful than A2, denoted as A2 � A1,
if for any pair of graphs G and H , c1(G) = c1(H)
implies c2(G) = c2(H).

• A1 is as powerful as A2, denoted as A1 ' A2, if both
A1 � A2 and A2 � A1 hold.

• A1 is strictly more powerful than A2, denoted as A2 ≺
A1, if A2 � A1 and A2 6' A1, i.e., there exist graphs
G, H such that c1(G) 6= c1(H) and c2(G) = c2(H).

• A1 and A2 are incomparable, denoted as A1 � A2, if
neither A1 � A2 nor A2 � A1 holds.

4.1. The canonical form: node marking SWL test

The presence of many different graph generation policies
complicates our subsequent analysis. Interestingly, however,
we show the simple node marking policy (on the original
graph) already achieves the maximal power among all poli-
cies considered in Section 2 under mild assumptions.

Proposition 4.2. Consider any SWL algorithm A that con-
tains the two basic aggregations aggPuv and aggLu in Defini-
tion 3.1. Denote Â as the corresponding algorithm obtained
from A by replacing the graph generation policy π to node
marking (on the original graph). Then, A � Â.
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We give a proof in Appendix E.2, which is based on the
following finding: when the special node mark is propagated
by SWL with local aggregation, the color of each node pair
(u, v) can encode its distance disG(u, v) (Lemma E.4), and
the structure of k-hop ego network is also encoded.

Note that for the node marking policy, all subgraphs are just
the original graph (Gu = G), which simplifies our analysis.
We hence focus on the simple yet expressive node marking
policy in subsequent sections. The following notations will
be frequently used:

Definition 4.3. Denote A(A,Pool) as the node marking
SWL test with aggregation schemeA∪{aggPuv} and pooling
paradigm Pool, where Pool ∈ {VS,SV}, and
A ⊂ {aggPuu, aggPvv, aggPvu, aggGu , aggGv , aggLu, aggLv}.

Here, we assume that aggPuv is always present in SWL.

4.2. Hierarchy of different algorithms

As shown in Definition 4.3, there are a large number of
possible combinations of aggregation/pooling designs. In
this subsection, we aim to build a complete hierarchy of
SWL algorithms by establishing expressivity inclusion rela-
tions between different design paradigms. All proofs in this
section are deferred to Appendix E.

We first consider the expressive power of different aggrega-
tion schemes. We have the following main theorem:

Theorem 4.4. Under the notation of Definition 4.3, for any
A and Pool, the following hold:

• A(A ∪ {aggGu },Pool) � A(A ∪ {aggLu},Pool) and
A(A ∪ {aggLu},Pool) ' A(A ∪ {aggLu, aggGu },Pool);

• A(A ∪ {aggPuu},Pool) � A(A ∪ {aggGu },Pool) and
A(A∪{aggGu },Pool) ' A(A∪{aggGu , aggPuu},Pool);

• A({aggLu, aggPvu},Pool) ' A({aggLu, aggLv},Pool) '
A({aggLu, aggLv , aggPvu},Pool).

Theorem 4.4 shows that local aggregation is more powerful
than (and can express) the corresponding global aggregation,
while global aggregation is more powerful than (and can
express) the corresponding single-point aggregation. In ad-
dition, the “transpose” aggregation aggPvu is quite powerful:
when combining a local aggregation aggLu, it can express the
other local aggregation aggLv .

We next turn to the pooling paradigm. We first show that
there is a symmetry (duality) between u, v and the two types
of pooling paradigms VS,SV.

Proposition 4.5. Let A be any aggregation scheme defined
in Definition 4.3. Denote Au↔v as the aggregation scheme
obtained from A by exchanging the element aggPuu with
aggPvv, exchanging aggGu with aggGv , and exchanging aggLu
with aggLv . Then, A(A,VS) ' A(Au↔v,SV).

Based on the symmetry, one can easily extend Theorem 4.4
to a variant that gives relations for aggPvv, agg

G
v , and aggLv .

Moreover, we have the following main theorem:

Theorem 4.6. Let A be defined in Definition 4.3 with
aggLu ∈ A. Then, the following hold:

• A(A,VS) � A(A,SV);
• If {aggGv , aggLv}∩A 6= ∅, then A(A,VS) ' A(A,SV).

Theorem 4.6 indicates that the subgraph-vertex pooling is
always more powerful than the vertex-subgraph pooling,
especially when the aggregation scheme is weak (e.g, the
vanilla SWL). On the other hand, they become equally ex-
pressive for SWL with strong aggregation schemes.

Combined with the above three results, we have built a
complete hierarchy for the expressive power of all node
marking SWL algorithms in Definition 4.3. In particular,
we show any SWL must fall into the following 6 types:

Corollary 4.7. Let A(A,Pool) be any SWL defined in
Definition 4.3 with at least one local aggregation, i.e.
{aggLu, aggLv} ∩ A 6= ∅. Then, A(A,Pool) must be as ex-
pressive as one of the 6 SWL algorithms defined below:

• (Vanilla SWL) SWL(VS) := A({aggLu},VS),
SWL(SV) := A({aggLu},SV);

• (SWL with additional single-point aggregation)
PSWL(VS) := A({aggLu, aggPvv},VS),
PSWL(SV) := A({aggLu, aggPvv},SV);

• (SWL with additional global aggregation)
GSWL := A({aggLu, aggGv },VS);

• (Symmetrized SWL) SSWL := A({aggLu, aggLv},VS).

Moreover, we have

SWL(VS) � SWL(SV) and PSWL(VS) � PSWL(SV),

SWL(VS) � PSWL(VS) and SWL(SV) � PSWL(SV),

PSWL(SV) � GSWL � SSWL.

Corollary 4.7 is significant in that it drastically reduces the
problem of studying a large number of different SWL vari-
ants to the study of only 6 standard paradigms. Moreover,
it implies that the simple SSWL already achieves the maxi-
mal expressive power among all SWL variants. A detailed
discussion on how these standard paradigms relate to previ-
ously proposed subgraph GNNs will be made in Section 8.

Yet, there are still two fundamental problems that are not
answered in Corollary 4.7. First, it remains unclear whether
some SWL algorithm is strictly more powerful than another.
This question is particularly important for a better under-
standing of how global, local, and single-point aggregations
vary in their expressive power brought to SWL.

Second, a deep understanding of the limitation of SWL
algorithms is still open. While Frasca et al. (2022); Qian
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et al. (2022) recently discovered that the expressiveness of
subgraph GNNs can be upper bounded by the standard 2-
FWL (3-WL) test, it remains a mystery whether there is an
inherent gap between 2-FWL and SWL (in particular, the
strongest SSWL). Note that the per-iteration complexity of
SWL isO(nm) for a graph of n vertices andm edges, which
is remarkably lower than 2-FWL (O(n3) complexity), so it
is reasonable to expect that 2-FWL is strictly more powerful.
If this is the case, one may further ask: does SWL achieve
the maximal power among all color refinement algorithms
with complexity O(nm)? We aim to fully address both the
above fundamental questions in subsequent sections.

5. Localized Folklore Weisfeiler-Lehman Test
In this section, we propose two novel types of WL
algorithms based on the standard 2-dimensional Folklore
Weisfeiler-Lehman test (2-FWL) (Weisfeiler & Leman,
1968; Cai et al., 1992), which turns out to be closely
related to SWL. Recall that 2-FWL maintains a color
for each vertex pair (u, v) ∈ VG × VG. Initially, the
color χ(0)

G (u, v) depends on the isomorphism type of the
subgraph induced by (u, v), namely, depending on whether
u = v, {u, v} ∈ EG, or {u, v} /∈ EG. In each iteration t,
the color is refined by the following update formula:

χ
(t+1)
G (u, v) = hash(χ

(t)
G (u, v),walk(u, v,VG, χ(t)

G )),
(1)

where we define

walk(u, v,V, χ) := {{(χ(u,w), χ(w, v)) : w ∈ V}}. (2)

The color mapping χ
(t)
G stabilizes after a sufficiently

large number of iterations t ≤ |VG|2. Denote the stable
color mapping as χG. 2-FWL finally outputs the graph
representation c(G) := hash({{χG(u, v) : u, v ∈ VG}}).

One can see that each 2-FWL iteration has a complexity of
O(n3) for a graph of n vertices andm edges, due to the need
to enumerate all w ∈ VG for each pair (u, v). For sparse
graphs where m = o(n2), 2-FWL is inefficient and does
not well-exploit the sparse nature of the graph. This inspires
us to consider variants of 2-FWL that enumerate only the
local neighbors, such as w ∈ N 1

G(v), by which the rich ad-
jacency information is naturally incorporated in the update
formula (besides in the initial colors by the isomorphism
type). We note that such an idea was previously explored in
Morris et al. (2020) (see Section 8 for further discussions).
Importantly, the simple change substantially reduces the
computational cost to O(nm), which is the same as SWL.
To this end, we define two novel FWL-type algorithms:
Definition 5.1. Define LFWL(2) as the localized version
of 2-FWL, which replaces VG in (1) by N 1

G(v). Define
SLFWL(2) as the symmetrized version of LFWL(2), which
replaces VG in (1) by N 1

G(u) ∪ N 1
G(v). Finally, denote

FWL(2) as the standard 2-FWL for consistency.

Note that LFWL(2) only exploits the local information of
the vertex v, while SLFWL(2) uses all the local information
of a vertex pair (u, v) while still maintaining the O(nm)
cost. Therefore, one may expect that the latter is more
powerful. Indeed, we have the following central result:

Theorem 5.2. The following relations hold:

• LFWL(2) � SLFWL(2) � FWL(2);

• PSWL(VS) � LFWL(2) and SSWL � SLFWL(2).

The proof is given in Appendix G. We now make several
discussions regarding the significance of Theorem 5.2. First,
FWL(2) is more powerful than its localized variants, con-
firming that there is indeed a trade-off between complexity
and expressiveness. Second, Theorem 5.2 reveals a close re-
lationship between SWL and these localized 2-WL/2-FWL
variants. In particular, SLFWL(2) is more powerful than
all SWL algorithms despite the same computational cost.
Therefore, we obtain a tight upper bound on the expressive
power of subgraph GNNs with matching complexity, which
remarkably improves the previous 2-FWL upper bound
(Frasca et al., 2022; Qian et al., 2022).

However, again, it is not known whether these localized 2-
FWL variants are strictly more powerful than SWL, nor do
we know whether there is an intrinsic gap between 2-FWL
and its localized variants. To thoroughly answer all of these
questions, we need a new tool: the pebbling game.

6. Pebbling Game
In this section, we develop a novel and unified analyz-
ing framework for various SWL/FWL algorithms based
on Ehrenfeucht-Fraı̈ssé games (Ehrenfeucht, 1961; Fraı̈saé,
1954). The seminal paper of Cai et al. (1992) has used such
games to prove the existence of counterexample graphs
which k-FWL could not distinguish. Here, we vastly extend
their result and show how pebbling games can be used to
analyze all types of SWL and localized FWL algorithms.
All proofs in this section are deferred to Appendix H.

First consider any SWL algorithm A(A,Pool). The peb-
bling game is played on two graphs G = (VG, EG) and
H = (VH , EH). Each graph is equipped with two different
pebbles u and v, both of which lie outside the graph initially.
There are two players, the Spoiler and the Duplicator. To
describe the game, we first introduce a basic game operation
dubbed “vertex selection”.

Definition 6.1 (Vertex Selection). Let SG ⊂ VG and
SH ⊂ VH be given sets. Spoiler first freely chooses a
non-empty subset SS from either SG or SH , and Duplicator
should respond with a subset SD from the other set, satisfy-
ing |SS| = |SD|. Duplicator loses the game if she has no fea-
sible choice. Then, Spoiler can select any vertex xS ∈ SD,
and Duplicator responds by selecting any vertex xD ∈ SS.
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Initialization. If Pool = VS, the two players first select
vertices xS and xD following the vertex selection procedure
with SG = VG and SH = VH . Spoiler places pebble u on
the selected vertex xS and Duplicator places the other pebble
u on vertex xD. Next, Spoiler and Duplicator perform the
vertex selection step again with SG = VG and SH = VH
and place pebbles v similarly. If Pool = SV, the above
procedure is analogous except that Spoiler/Duplicator places
pebble v in the first step and pebble u in the second step.

Main loop. The game then cyclically executes the following
process. Depending on the SWL aggregation scheme A,
Spoiler can freely choose one of the following ways to play:

• Local aggregation aggLu ∈ A. Spoiler and Duplicator
perform the vertex selection step with SG = NG(v)
and SH = NH(v), where NG(v)/NH(v) represents
the set of vertices in graph G/H adjacent to the vertex
placed by pebble v. Spoiler moves pebble v to the
selected vertex xS, and Duplicator moves the other
pebble v to vertex xD.

• Global aggregation aggGu ∈ A. Spoiler and Duplicator
perform the vertex selection step with SG = VG and
SH = VH . Spoiler moves pebble v to the selected
vertex xS, and Duplicator moves the other pebble v to
vertex xD.

• Single-point aggregation aggPuu ∈ A. Both players
move pebble v to the position of pebble u.

• Single-point aggregation aggPvu ∈ A. Both players
swap the position of pebbles u and v.

The cases of aggLv , aggGv , aggPvv are similar (symmetric) to
aggLu, aggGu , aggPuu, so we omit them for clarity.

Spoiler wins the game if, after a certain round, the subgraph
of G induced by vertices placed by pebbles u, v does not
have the same isomorphism type as that of H . Duplicator
wins the game if Spoiler cannot win after any number of
rounds. Roughly speaking, Spoiler tries to find differences
between graphs G and H using pebbles u and v, while
Duplicator strives to make these pebbles look the same in
the two graphs. Our main result is stated as follows:

Theorem 6.2. Let A(A,Pool) be any SWL algorithm de-
fined in Definition 4.3, satisfying {aggLu, aggLv} ∩ A 6= ∅.
Then, A(A,Pool) can distinguish a pair of graphs G and
H if and only if Spoiler can win the corresponding pebbling
game on graphs G and H .

We next turn to FWL-type algorithms. The games are mostly
similar to SWL but with a few subtle differences. There are
also two pebbles u, v for each graph. Here, the two players
first places pebbles u, v using just one vertex selection step:
Spoiler first chooses a non-empty subsets SS from either
VG×VG or VH×VH , and Duplicator should respond with a
subset SD from the other set, satisfying |SS| = |SD|. Then,

Spoiler selects any vertex pair (xSu, x
S
v ) ∈ SD, and Dupli-

cator responds by selecting (xDu , x
D
v ) ∈ SS. Spoiler places

pebbles u and v on xSu and xSv , respectively. Duplicator
places the other pebbles u and v on xDu and xDv , respectively.

The game then cyclically executes the following process.
First consider LFWL(2). In each round, the two players
perform the vertex selection step with SG = N 1

G(v) and
SH = N 1

H(v) and select vertices xS and xD, respectively.
Then it comes to the major difference from SWL: Spoiler
can choose whether to move pebble u or pebble v to vertex
xS, and Duplicator should move the same pebble in the other
graph to xD. For SLFWL(2), the process is exactly the same
as above except that the vertex selection is performed with
SG = N 1

G(u)∪N 1
G(v) and SH = N 1

H(u)∪N 1
H(v). Finally,

for the standard FWL(2), the vertex selection is performed
with SG = VG and SH = VH . We have the following result:

Theorem 6.3. LFWL(2)/SLFWL(2)/FWL(2) can distin-
guish a pair of graphs G and H if and only if Spoiler can
win the corresponding pebbling game on graphs G and H .

Theorems 6.2 and 6.3 build an interesting connection be-
tween WL algorithms and games. Importantly, the game
viewpoint offers us a much clearer picture to sort out various
complex aggregation/pooling paradigms and leads to the
main result of this paper in the next section.

7. Strict Separation Results
Up to now, all results derived in this paper are of the form
“A1 � A2”. In this section, we will complete the analysis by
proving that all relations� in Corollary 4.7 and Theorem 5.2
are actually the strict relations ≺. Formally, we will prove:

Theorem 7.1. The following hold:

• SWL(VS) ≺ SWL(SV), PSWL(VS) ≺ PSWL(SV);

• SWL(VS) ≺ PSWL(VS), SWL(SV) ≺ PSWL(SV);

• PSWL(SV) ≺ GSWL ≺ SSWL;

• PSWL(VS) ≺ LFWL(2), SSWL ≺ SLFWL(2);

• LFWL(2) ≺ SLFWL(2) ≺ FWL(2);

• SWL(SV) � PSWL(VS);

• LFWL(2) � SWL(SV), LFWL(2) � PSWL(SV),
LFWL(2) � GSWL, LFWL(2) � SSWL.

Due to space limitations, we can only present a brief proof
sketch below, but we strongly encourage readers to browse
the proof in Appendix I, where novel counterexamples for
all these cases are constructed and analyzed using the peb-
bling game developed in Section 6. This is highly non-trivial
and is a major technical contribution of this paper.

Our counterexamples are motivated by Fürer (2001). Given
a base graph F , Fürer (2001) gave a principled way to con-
struct a pair of non-isomorphic but highly similar graphs
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G(F ) and H(F ) that cannot be distinguished by k-FWL.
The key insight is that the difference between G(F ) and
H(F ) is caused by a “twist” operation. (One can imagine
the two graphs as a circle strip and its corresponding Möbius
strip.) To distinguish the two graphs, Spoiler’s only strategy
is to fence out a twisted edge using his pebbles, similar to
the strategy in Go. Yet, their analysis only applies to k-FWL
algorithms. We considerably generalize Fürer’s approach by
noting that different SWL/FWL-type algorithms differ sig-
nificantly in their “surrounding” capability in the pebbling
game. Given two WL algorithms A1,A2 where we want
to prove A1 ≺ A2, we can identify the extra surrounding
capability of A2 and skillfully construct a base graph F such
that the extra power is necessary to fence out a twisted edge.
Here, the main challenge lies in constructing base graphs,
which are given in Figures 4 to 11.

In Figure 1, we give a clear illustration of the relationships
between different SWL/FWL-type algorithms stated in The-
orem 7.1, which forms a complete and elegant hierarchy. In
the next section, we will give a detailed discussion of the
significance of Theorem 7.1 in the context of prior works.

8. Discussions with Prior Works
The theoretical results in this paper can be directly used to
analyze and compare the expressiveness of various subgraph
GNNs in prior work, as summarized below:
Proposition 8.1. Under the node marking policy,
(i) ReconstructionGNN (Cotta et al., 2021), NGNN (Zhang
& Li, 2021), IDGNN (You et al., 2021), and DS-GNN
(Bevilacqua et al., 2022) are as expressive as SWL(VS);
(ii) OSAN (Qian et al., 2022) is as expressive as SWL(SV);
(iii) GNN-AK (Zhao et al., 2022a) is as expressive as
PSWL(VS); (iv) DSS-GNN (or ESAN) (Bevilacqua et al.,
2022), GNN-AK-ctx (Zhao et al., 2022a), and SUN (Frasca
et al., 2022) are as expressive as GSWL; (v) ReIGN(2)
(Frasca et al., 2022) is as expressive as SSWL.

Proof. The proof of ReconstructionGNN, NGNN, IDGNN,
DS-GNN, and OSAN follows by directly using Corol-
lary 4.7 since these subgraph GNNs fit our framework of
Definition 2.1. For other architectures, the proof can be
found in Appendix F.

Regarding open problems in prior works. Below, we
show how our results can be used to settle a series of open
problems raised before.

In Bevilacqua et al. (2022), the authors proposed two vari-
ants of WL algorithms, the DS-WL and the DSS-WL. They
conjectured that the latter is strictly more powerful than
the former due to the introduced cross-graph aggregation.
Very recently, Zhang et al. (2023) gave the first evidence to
this conjecture by proving that DSS-WL can distinguish cut

vertices using node colors while DS-WL cannot. However,
since identifying cut vertices is a node-level task, it remains
an open question when considering the standard graph-level
expressiveness, in particular, the task of distinguishing non-
isomorphic graphs. Our result fully addressed the open ques-
tion by showing that DSS-WL is indeed strictly more pow-
erful than DS-WL in distinguishing non-isomorphic graphs.

In Zhao et al. (2022a), the authors proposed two GNN
architectures: GNN-AK and its extension GNN-AK-ctx.
GNN-AK incorporates the so-called centroid encoding and
GNN-AK-ctx further incorporates the contextual encoding.
While the authors empirically showed the effectiveness of
these encodings and found that GNN-AK-ctx can achieve
much better performance on real-world tasks, they did
not give a theoretical justification. Here, our result pro-
vides deep insights into the two models by indicating that
(i) with centroid encoding, GNN-AK is strictly more power-
ful than vanilla subgraph GNNs; (ii) with contextual encod-
ing, GNN-AK-ctx is strictly more powerful than GNN-AK.

Recently, Qian et al. (2022) proposed two classes of sub-
graph GNNs, the original OSAN and the vertex-subgraph
OSAN, which differ only in the final pooling paradigm.
However, the authors did not discuss the relationship be-
tween the two types of architectures. Indeed, one may natu-
rally guess that they have the same expressive power given
the same GNN backbone. However, our result highlights
that it is not the case: the original 1-OSAN is strictly more
powerful than vertex-subgraph 1-OSAN.

Recently, Frasca et al. (2022) proposed a theoretically-
inspired model called ReIGN(2), as well as a practical ver-
sion called SUN that unifies prior node-based subgraph
GNNs. The authors conjectured that these models are
more powerful than prior architectures and may even match
the power of 2-FWL. It is formally left as an important
open problem to study the expressiveness lower bound of
ReIGN(2) and SUN (Frasca et al., 2022, Appendix E). In
this paper, we fully settle the open problem by showing
that: (i) ReIGN(2) is indeed the strongest subgraph GNN
model and is strictly more powerful than prior models; (ii)
However, SUN is just as powerful as the simpler ESAN
although it incorporates many extra equivariant aggrega-
tion operations; (iii) ReIGN(2) does not achieve the 2-FWL
expressiveness. Moreover, we point out an inherent gap be-
tween ReIGN(2) and 2-FWL, showing that ReIGN(2) even
does not match SLFWL(2), a much weaker WL algorithm
with the same complexity as ReIGN(2).

Finally, we note that Frasca et al. (2022) mentioned two
basic atomic aggregations that are not included in prior
subgraph GNNs: aggLv and aggPvu (see Definition 3.1). In
this paper, we highlight that they are actually fundamental:
incorporating either of them into the subgraph GNN layer
can essentially improve the model’s expressiveness.
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Discussions with Morris et al. (2020). Our results also
reveal a surprising relationship between the work of Morris
et al. (2020) and subgraph GNNs. In Morris et al. (2020),
the authors proposed the so-called δ-2-LWL, which can be
seen as the symmetrized version of local 2-WL test. The
update formula of δ-2-LWL is written as follows:

χ
(t+1)
G (u, v)=hash

(
χ
(t)
G (u, v), {{χ(t)

G (u,w) :w ∈ NG(v)}},

{{χ(t)
G (w, v) :w ∈ NG(u)}}

)
.

δ-2-LWL shares great similarities with SSWL in the update
formula. Actually, while the two algorithms differ in the
initial color and the final pooling paradigm, we can prove
that δ-2-LWL is as powerful as SSWL. We thus obtain the
following key results:

• Subgraph GNNs are also bounded by δ-2-LWL. More-
over, the strongest subgraph GNN, such as ReIGN(2),
matches the power of δ-2-LWL. This builds an inter-
esting link between the works of Frasca et al. (2022)
and Morris et al. (2020).

• There is a fundamental gap between localized 2-WL
and localized 2-FWL, despite the fact that both algo-
rithms have the same computation/memory complexity.
Such a result is perhaps surprising: it strongly con-
trasts to the relation between standard WL and FWL
algorithms, where algorithms with equal computational
complexity (e.g., k-FWL and (k+1)-WL) always have
the same expressive power.

9. Experiments
Our theory also provides clear guidance in designing sim-
ple, efficient, yet powerful subgraph GNN architectures. In
particular, we find that all the previously proposed prac-
tical node-based subgraph GNNs are bounded by GSWL
(Proposition 8.1), which does not attain the maximal power
in the SWL hierarchy. Instead, we decide to adopt the el-
egant, SSWL-based subgraph GNN design principle, re-
sulting in only 3 atomic equivariant aggregation opera-
tions; yet the corresponding model, called GNN-SSWL, is
strictly more powerful than all prior node-based subgraph
GNNs. We also design an extension of GNN-SSWL, de-
noted as GNN-SSWL+, by further incorporating the single-
point aggregation aggPvv. While this does not improve the
model’s expressivity in theory, we find that it can often
achieve better performance in real-world tasks. In addi-
tion, motivated by Proposition 4.2, the graph generation
policy for both GNN-SSWL and GNN-SSWL+ is chosen
as the distance encoding on the original graph (which
is as expressive as node marking). A detailed descrip-
tion of model configuration and training hyper-parameters
is given in Appendix K. Our code will be released at
https://github.com/subgraph23/SWL.

Performance on Counting Substructure Benchmark.
Following Zhao et al. (2022a); Frasca et al. (2022), we
first consider the synthetic task of counting substructures.
The result is presented in Table 1. Our proposed models can
solve all tasks almost completely and performs better than
all prior node-based subgraph GNNs on most substructures,
such as triangle, tailed triangle, 4-cycle, 5-cycle, and 6-
cycle. In particular, GNN-SSWL+ significantly outperform
GNN-AK+ and SUN for counting 6-cycles. We suspect that
GSWL is not expressive for counting 6-cycle while SSWL is
expressive for this task, which may highlight a fundamental
advantage of SSWL in practical scenarios when the ability
to count 6-cycle is needed (Huang et al., 2022).

Performance on ZINC benchmark. We then validate our
proposed models on the ZINC molecular property prediction
benchmark (Dwivedi et al., 2020). We consider both ZINC-
subset (12K selected graphs) and ZINC-full (250k graphs)
and compare our models with both subgraph GNNs and
other typical methods, such as substructure-based GNNs
(Bouritsas et al., 2022; Bodnar et al., 2021a) and Graph
Transformers (Zhang et al., 2023).

The result is presented in Table 2. First, it can
be observed that our proposed GNN-SSWL already
matches/outperforms the performance of all subgraph GNN
baselines while being much simpler. In particular, com-
pared with state-of-the-art SUN architecture, GNN-SSWL
requires only a quarter of atomic aggregations in each GNN
layer and roughly half of the parameters, yet matches the
performance of SUN on ZINC-subset. Second, by further
incorporating aggPvv, GNN-SSWL+ significantly surpasses
all subgraph GNN baselines and achieves state-of-the-art
performance on both tasks. Finally, an interesting finding
is that the performance of different subgraph GNN
architectures shown in Table 2 roughly aligns with their
theoretical expressivity in the SWL hierarchy. This may
further justify that designing theoretically more powerful
subgraph GNNs can benefit real-world tasks as well.

Other tasks. We also conduct experiments on the OGBG-
molhiv dataset (Hu et al., 2020). Due to space limit, the
result is presented in Appendix K.4.

10. Conclusion
This paper gives a comprehensive and unified analysis of the
expressiveness of subgraph GNNs. By building a complete
expressiveness hierarchy, one can gain deep insights into
the power and limitation of various prior works. On the
theoretical side, we reveal close relations between SWL,
localized WL, and localized Folklore WL, and propose a
unified analyzing framework via pebbling games. On the
practical side, we design a simple yet powerful subgraph
GNN architecture that achieves strictly better expressivity
and superior performance on multiple benchmarks.

9
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P. Principal neighbourhood aggregation for graph nets.
In Advances in Neural Information Processing Systems,
volume 33, pp. 13260–13271, 2020.

Cotta, L., Morris, C., and Ribeiro, B. Reconstruction for
powerful graph representations. In Advances in Neural
Information Processing Systems, volume 34, pp. 1713–
1726, 2021.
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1954.

Frasca, F., Bevilacqua, B., Bronstein, M. M., and Maron, H.
Understanding and extending subgraph gnns by rethink-
ing their symmetries. In Advances in Neural Information
Processing Systems, 2022.
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Table 1. Performance comparison of different GNN architectures on the Counting Substructure benchmark. We report the Mean Absolute
Error (MAE), and use different background colors to distinguish different levels of MAE.

Model Reference Triangle Tailed Tri. Star 4-Cycle 5-Cycle 6-Cycle
PPGN Maron et al. (2019a) 0.0089 0.0096 0.0148 0.0090 0.0137 0.0167
GNN-AK Zhao et al. (2022a) 0.0934 0.0751 0.0168 0.0726 0.1102 0.1063
GNN-AK+ Zhao et al. (2022a) 0.0123 0.0112 0.0150 0.0126 0.0268 0.0584
SUN (EGO+) Frasca et al. (2022) 0.0079 0.0080 0.0064 0.0105 0.0170 0.0550
GNN-SSWL This paper 0.0098 0.0090 0.0089 0.0107 0.0142 0.0189
GNN-SSWL+ This paper 0.0064 0.0067 0.0078 0.0079 0.0108 0.0154

Table 2. Performance comparison of different subgraph GNNs on ZINC benchmark. The Mean Absolute Error (MAE) and the standard
deviation are reported. We also list the WL equivalence class and the number of parameters/atomic aggregations for each model.

Model Reference WL #
Param.

#
Agg.

ZINC Test MAE
Subset Full

GSN Bouritsas et al. (2022) - ∼500k - 0.101±0.010 -
CIN (small) Bodnar et al. (2021a) - ∼100k - 0.094±0.004 0.044±0.003
Graphormer-GD Zhang et al. (2023) GD-WL 503k - 0.081±0.009 0.025±0.004
NGNN Zhang & Li (2021) SWL(VS) ∼500k 2 0.111±0.003 0.029±0.001
GNN-AK Zhao et al. (2022a) PSWL(VS) ∼500k 4 0.105±0.010 -
GNN-AK+ Zhao et al. (2022a) GSWL ∼500k 5 0.091±0.002 -
ESAN Bevilacqua et al. (2022) GSWL ∼100k 4 0.102±0.003 0.029±0.003
ESAN Frasca et al. (2022) GSWL 446k 4 0.097±0.006 0.025±0.003
SUN Frasca et al. (2022) GSWL 526k 12 0.083±0.003 0.024±0.003
GNN-SSWL This paper SSWL 274k 3 0.082±0.003 0.026±0.001
GNN-SSWL+ This paper SSWL 387k 4 0.070±0.005 0.022±0.002
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Appendix
The Appendix is organized as follows:

• In Appendix A, we complete our theoretical analysis by showing that subgraph GNNs with better expressivity can also
be stronger in terms of their ability to compute fundamental graph properties, such as distance and biconnectivity.

• In Appendix B,we provide a broader review of related literature in the area of expressive GNNs, including higher-order
GNNs, sparsity-aware GNNs, subgraph GNNs, and more.

• In Appendix C, we list a few promising open directions of this paper.

• In Appendix D, we give the missing proof of Proposition 3.2, showing the equivalence between SWL and Subgraph
GNNs.

• In Appendix E, we give all the missing proofs in Section 4, which we use to build a complete hierarchy of SWL
algorithms. This part is technical and is divided into several subsections (from Appendices E.1 to E.5).

• In Appendix F, we discuss several subgraph GNNs beyond our proposed framework (Definition 2.1), including
GNN-AK, GNN-AK-ctx, ESAN, SUN, and ReIGN(2). We show that each of these architectures still corresponds to an
equivalent SWL algorithm in terms of expressive power.

• In Appendix G, we give the missing proof of Theorem 5.2, showing the expressivity relationships between different
SWL and localized FWL algorithms.

• In Appendix H, we give all the missing proofs in Section 6, bridging SWL/FWL-type algorithms and pebbling games.

• In Appendix I, we give the missing proof of Theorem 7.1. The proof is non-trivial and contains the main technical
contribution of this paper. It is divided into three parts in Appendices I.1 to I.3 for readability.

• In Appendix J, we give all the missing proofs in Appendix A, showing how various SWL algorithms differ in terms of
their practical expressiveness such as encoding graph distance and biconnectivity.

• In Appendix K, we provide experimental details to reproduce the results in Section 9, as well as a comprehensive set of
ablation studies.
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A. Discussions on Practical Expressiveness
Up to now, we have obtained precise expressivity relations for all pairs of SWL/FWL-type algorithms in distinguishing
non-isomorphic graphs. From a practical perspective, however, one may still wonder whether/how GNNs designed based on
a theoretically stronger WL algorithm can be more powerful in solving practical graph problems. Here, we give concrete
evidence that the power of different SWL algorithms does vary in terms of computing fundamental graph properties. In
particular, WL algorithms with expressiveness over PSWL are capable of encoding distance and biconnectivity of a graph,
while weaker algorithms like the vanilla SWL are unable to fully encode any of them.

Our result is motivated by the recent study of Zhang et al. (2023), who proposed a new class of WL algorithms called the
Generalized Distance WL (GD-WL). Given graph G = (VG, EG), GD-WL maintains a color χG(v) for each node v ∈ VG,
and the node color is updated according to the following formula:

χ
(t+1)
G (v) := hash({{(dG(u, v), χ(t)

G (u)) : u ∈ V}}),

where dG(u, v) is a generalized distance between u and v. Zhang et al. (2023) proved that, by incorporating both the shortest
path distance (SPD) and the resistance distance (RD), i.e., setting dG(u, v) = (disG(u, v),dis

R
G(u, v)), the resulting GD-

WL is provably expressive for all types of biconnectivity metrics, such as identifying cut vertices, cut edges, or distinguishing
non-isomorphic graphs with different block cut trees. Surprisingly, we find that the PSWL has intrinsically (implicitly)
encoded another type of GD-WL defined as follows:

Definition A.1 (Hitting time distance). Define disHG(u, v) to be the hitting time distance (HTD) from node u to v in graph
G, i.e., the average number of edges passed in a random walk starting from u and reaching v for the first time.

Theorem A.2. Let dG(u, v) = (disG(u, v),dis
H
G(u, v)). Then, GD-WL ≺ PSWL(VS).

Hitting time distance is closely related to resistance distance, in that disRG(u, v) = (disHG(u, v) + disHG(v, u))/2|EG| holds
for any graph G and nodes u, v ∈ VG (Chandra et al., 1996). In other words, RD can be seen as the symmetrized version of
HTD (by ignoring the constant 1/|EG|). Moreover, we have the following theorem, showing that HTD-WL also resembles
RD-WL in distinguishing vertex-biconnectivity:

Theorem A.3. By setting dG = disHG, the resulting HTD-WL is fully expressive for all vertex-biconnectivity metrics
proposed in Zhang et al. (2023).

The proofs of Theorems A.2 and A.3 are given in Appendix J. Combining the two theorems readily leads to the following
corollary:

Corollary A.4. PSWL(VS) is fully expressive for both edge-biconnectivity and vertex-biconnectivity.

On the other hand, we find that the vanilla SWL is unable to fully encode either SPD, HTD, or RD, as shown in the
proposition below:

Proposition A.5. The following hold:

• SWL(VS) � SPD-WL, SWL(SV) � SPD-WL;

• SWL(VS) � HTD-WL, SWL(SV) � HTD-WL;

• SWL(VS) � RD-WL, SWL(SV) � RD-WL.

Besides, Zhang et al. (2023) has shown that the SWL(VS) cannot identify cut vertices of a graph. Therefore, incorporating
extra aggregation operations in the vanilla SWL does essentially improve its practical expressiveness in computing basic
graph properties like distance and biconnectivity.

A further discussions with Zhang et al. (2023). In Zhang et al. (2023), the authors showed that most prior GNN models
are not expressive for biconnectivity metrics except ESAN (Bevilacqua et al., 2022), which corresponds to GSWL in our
framework. Here, we unify, justify, and extend their results/findings in the following aspects:

• We show ESAN can identify cut vertices mainly because it encodes the generalized distance. This provides deep
insights into ESAN and complements the finding that ESAN can encode SPD. From this perspective, we obtain an
alternative and unified proof for ESAN in distinguishing vertex-biconnectivity. Moreover, we also prove that ESAN
can distinguish the block cut-vertex tree, a new result that was not originally proved in Zhang et al. (2023).
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• We strongly justify the introduced generalized distance and GD-WL as a fundamental class of color refinement
algorithms, since the reason why ESAN and other SWL variants can encode biconnectivity metrics simply lies in the
fact that it is more powerful than GD-WL.

• In contrast, we prove that the weaker SWL(VS) (or SWL(SV)) is not more powerful than either SPD-WL or RD-WL.
This explains and complements the finding in Zhang et al. (2023) on why DS-WL cannot identify cut vertices. We also
partially answered the question in Zhang et al. (2023) for OS-WL (Qian et al., 2022).

• We show adding the global aggregation in vanilla SWL (like ESAN) is not the only way to make it expressive for
biconnectivity metrics. In particular, simply adding a single-point aggregation (PSWL) already suffices.

Remark A.6. We suspect that the PSWL can also encode the resistance distance, but currently we can only prove that the
strongest SSWL can encode RD (Appendix J). We leave this as an open problem for future work.

B. Related Work
Since Xu et al. (2019); Morris et al. (2019) discovered the limited expressiveness of vanilla MPNNs, a large amount of works
have been devoted to developing GNNs with better expressive power. Here, we briefly review the literature on expressive
GNNs that are most relevant to this paper.

Higher-order GNNs. Maron et al. (2019a;c); Azizian & Lelarge (2021); Geerts & Reutter (2022) theoretically studied the
question of designing provably expressive equivariant GNNs that match the power of k-FWL test for k > 1. In this way,
they build a hierarchy of GNNs with strictly growing expressivity (similar to this paper). A representative higher-order GNN
architecture is called the k-IGN (Maron et al., 2019c): it stores a feature representation for each node k-tuple and updates
these features using higher-order equivariant layers developed in Maron et al. (2019b). Recently, Frasca et al. (2022) proved
that all node-based subgraph GNNs can be implemented by 3-IGN, which then implies that subgraph GNNs’ expressive
power is intrinsically bounded by 2-FWL (Geerts & Reutter, 2022).

Sparsity-aware GNNs. One major drawback of higher-order GNNs is that the architectural design does not well-exploit
the graph structural information, since the graph adjacency is only encoded in the initial node features. In light of this,
subsequent works like Morris et al. (2020; 2022); Zhao et al. (2022b) incorporated this inductive bias directly into the
network layers and designed local versions of higher-order GNNs. For example, Morris et al. (2020) developed the
so-called δ-k-LWL, which can be seen as a localized version of k-WL. Morris et al. (2022) proposed the (k, s)-SpeqNets by
considering only k-tuples whose vertices can be grouped into no more than s connected components. Zhao et al. (2022b)
concurrently proposed the (k, s)-SETGNN which is similar to (k, s)-SpeqNets. In this paper, we propose a class of localized
k-FWL, which shares interesting similarities to δ-k-LWL. Our major contribution is to establish complete relations between
localized 2-FWL, δ-2-LWL, and subgraph GNNs.

Subgraph GNNs. Subgraph GNNs are an emerging class of higher-order GNNs that compute a feature representation for
each subgraph-node pair. The earliest idea of subgraph GNNs may track back to Cotta et al. (2021); Papp et al. (2021), which
proposed to use node-deleted subgraphs and performed message-passing on each subgraph separately without cross-graph
interaction. Papp & Wattenhofer (2022) argued to use node marking instead of node deletion for better expressive power.
Zhang & Li (2021) proposed the Nested GNN (NGNN), a variant of subgraph GNNs that use k-hop ego nets with distance
encoding. It further added the global aggregation aggGu to merge all node information in a subgraph when computing the
feature of the root node of a subgraph. You et al. (2021) designed the ID-GNN, which is similar to NGNN and also uses
k-hop ego nets as subgraphs. Bevilacqua et al. (2022) developed a principled class of subgraph GNNs, called ESAN, which
first introduced the cross-graph global aggregation into the network design. Zhao et al. (2022a) concurrently proposed the
GNN-AK and its extension GNN-AK-ctx, which also includes the cross-graph global aggregation. Recently, Frasca et al.
(2022); Qian et al. (2022) first provided theoretical analysis of various node-based subgraph GNNs by proving that they
are intrinsically bounded by 2-FWL. We note that besides node-based subgraph GNNs, one can also develop edge-based
subgraph GNNs, which have been explored in Bevilacqua et al. (2022); Huang et al. (2022). Both works showed that the
expressive power of edge-based subgraph GNNs can go beyond 2-FWL. Finally, we note that Vignac et al. (2020) proposed
a GNN architecture that is somewhat similar to the vanilla subgraph GNN, and the δ-2-LWL proposed in Morris et al. (2020)
can also be seen as a subgraph GNN according to Section 8.

Practical expressivity of GNNs. Another line of works sought to develop expressive GNNs from practical consideration.
For example, Fürer (2017); Chen et al. (2020); Arvind et al. (2020) studied the power of WL algorithms in counting graph
substructures and pointed out that vanilla MPNNs cannot count/detect cycles, which may severely limit their practical
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performance in real-world tasks (e.g., in bio-chemistry). In light of this, Bouritsas et al. (2022); Barceló et al. (2021)
proposed to incorporate substructure counting (or homomorphism counting) into the initial node features to boost the
expressiveness. Bodnar et al. (2021b;a) further proposed a message-passing framework that enables interaction between
nodes, edges, and higher-order substructures. Huang et al. (2022) studied the cycle counting power of subgraph GNNs and
proposed the I2-GNN to count cycles of length no more than 6. Recently, Puny et al. (2023) studied the expressive power of
GNNs in expressing/approximating equivariant graph polynomials. They showed that computing equivariant polynomials
generalizes the problem of counting substructures.

Besides cycle counting, several works explored other aspects of encoding basic graph properties. You et al. (2019); Li et al.
(2020); Ying et al. (2021) proposed to use distance encoding to boosting the expressiveness of MPNNs or Graph Transformers.
In particular, Li et al. (2020) proposed to use a generalized distance called page-rank distance. Balcilar et al. (2021); Kreuzer
et al. (2021); Lim et al. (2022) studies the expressive power of GNNs from the perspective of graph spectral (Cvetkovic
et al., 1997). Recently, Zhang et al. (2023) discovered that most prior GNN architectures are not expressive for graph
biconnectivity and built an interesting relation between biconnectivity and generalized distance. Here, we extend Zhang et al.
(2023) by giving a comprehensive characterization of which SWL equivalence class can encode distance and biconnectivity.

C. Open directions
We highlight several open directions for future work as follows.

Regarding higher-order subgraph GNNs. From a theoretical perspective, it is an interesting direction to generalize the
results of this paper to higher-order subgraph GNNs (which compute a feature representation for each node k-tuple). We
note that such an idea has appeared in Cotta et al. (2021); Qian et al. (2022); Papp & Wattenhofer (2022). However, none of
these works explored the possible design space of cross-graph aggregations. Since our results imply that these cross-graph
aggregations do essentially improve the expressive power, it may be worthwhile to establish a complete hierarchy of
higher-order subgraph GNNs. This may include the following questions: (i) How many expressivity equivalence classes
are there? (ii) What are the expressivity inclusion relations between different equivalence classes? (iii) What design
principle achieves the maximal expressive power with a minimal number of atomic aggregations? We conjecture that, by
symmetrically incorporating k local aggregations, the resulting k-order subgraph GNN achieves the maximal expressiveness
and is as expressive as ReIGN(k) (by extending Frasca et al. (2022)).

Regarding edge-based subgraph GNNs. Another different perspective is to study edge-based subgraph GNNs, which
compute a feature representation for each edge-node pair. Importantly, edge-based subgraph GNNs and the corresponding
SWL are also a fundamental class of computation models with O(nm) memory complexity and O(m2) computation
complexity. For sparse graphs (i.e. m = O(n)), such a complexity is quite desirable and is close to that of node-based
subgraph GNNs. Yet, it results in enhanced expressiveness: as shown in Bevilacqua et al. (2022); Huang et al. (2022),
their proposed edge-based subgraph GNNs are not less powerful than 2-FWL. Therefore, we believe that characterizing the
expressiveness hierarchy of edge-based subgraph GNNs is of both theoretical and practical interest. Another interesting
topic is to build expressivity relations between node-based and edge-based subgraph GNNs.

Regarding localized Folklore WL tests. This paper proposed a novel class of color refinement algorithms called localized
Folklore WL. Importantly, we show SLFWL(2) is strictly more powerful than all node-based subgraph GNNs despite the
same complexity. Therefore, an interest question is whether we can design practical GNN architectures based on SLFWL(2)
for both efficiency and better expressiveness. On the other hand, from a theoretical side, it may also be an interesting
direction to study higher-order localized Folklore WL tests, in particular, SLFWL(k), due to its fundamental nature. We
conjecture that SLFWL(k) is strictly more powerful than δ-k-LWL (Morris et al., 2020) and strictly less powerful than
standard k-FWL. Furthermore, does SLFWL(k) achieve the maximal expressive power among the algorithm class within
O(nk−1m) computation cost?

Regarding practical expressiveness of GSWL and SSWL. This paper discusses the practical expressiveness of subgraph
GNNs by showing an inherent gap between SWL and PSWL in terms of their ability to encode distance and biconnectivity
of a graph. Yet, it remains an open problem how PSWL, GSWL, and SSWL differ in terms of their practical expressiveness
for computing graph properties. This question is particularly important since recently proposed subgraph GNNs are typically
bounded by GSWL. Answering this question will thus highlight the power and limitation of prior architectures.
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D. The Equivalence between SWL and Subgraph GNNs
This section aims to prove Proposition 3.2. We restate the proposition below:

Proposition 3.2. The expressive power of any subgraph GNN defined in Section 2 is bounded by a corresponding SWL by
matching the policy π, the aggregation scheme between Definitions 2.1 and 3.1, and the pooling paradigm. Moreover, when
considering bounded-size graphs, for any SWL algorithm, there exists a matching subgraph GNN with the same expressive
power.

Proof. We first prove that any subgraph GNN defined in Section 2 is bounded by a corresponding SWL. To do this,
we will prove the following result: given a pair of graphs G = (VG, EG) and H = (VH , EH), for any t ∈ N and any
vertices u, v ∈ VG and x, y ∈ VH , χ(t)

G (u, v) = χ
(t)
H (x, y) =⇒ h

(t)
G (u, v) = h

(t)
H (x, y), where χ and h are defined in

Definitions 2.1 and 3.1, respectively.

We prove the result by induction over t. For the base case of t = 0, the result clearly holds when the graph generation policy
is the same between SWL and subgraph GNNs. Now assume the result holds for all t ≤ T , and we want to prove that it also
holds for t = T + 1. By Definition 3.1, χ(T+1)

G (u, v) = χ
(T+1)
H (x, y) is equivalent to

aggi(u, v,G, χ
(T )
G ) = aggi(x, y,H, χ

(T )
H ), ∀i ∈ [r].

We separately consider each type of aggregation operation:

• Single-point aggregation. Take aggPvu for example: aggPvu(u, v,G, χ
(T )
G ) = aggPvu(x, y,H, χ

(T )
H ) implies

χ
(T )
G (v, u) = χ

(T )
H (y, x). By induction, we have h(t)G (v, u) = h

(t)
H (y, x).

• Local aggregation. Take aggLu for example: aggLu(u, v,G, χ
(T )
G ) = aggLu(x, y,H, χ

(T )
H ) implies

{{χ(T )
G (u,w) : w ∈ NGu(v)}} = {{χ(T )

H (x, z) : z ∈ NHx(y)}}.

By induction, it is straightforward to see that

{{h(T )
G (u,w) : w ∈ NGu(v)}} = {{h(T )

H (x, z) : z ∈ NHx(y)}}.

Therefore, ∑
w∈NGu (v)

h
(T )
G (u,w) =

∑
z∈NHx (y)

h
(T )
H (x, z).

• Global aggregation. This case is similar to the above one and we omit it for clarity.

Combining all these cases, we have

opi(u, v,G, χ
(T )
G ) = opi(x, y,H, χ

(T )
H ) ∀i ∈ [r],

and thus h(T+1)
G (u, v) = h

(T+1)
H (x, y). We have completed the induction step.

Let L be the number of layers in a subgraph GNN. Then χ(L)
G (u, v) = χ

(L)
H (x, y) implies h(L)

G (u, v) = h
(L)
H (x, y). Since

aggPuv is always present, the stable color mapping χ satisfies that χG(u, v) = χH(x, y) =⇒ χ
(L)
G (u, v) = χ

(L)
H (x, y).

Therefore, χG(u, v) = χH(x, y) =⇒ h
(L)
G (u, v) = h

(L)
H (x, y).

Finally consider the pooling paradigm. As in the analysis of global aggregation, it can be concluded that c(G) = c(H)
implies f(G) = f(H) where c(G) and f(G) represent the graph representation computed by SWL and subgraph GNN,
respectively. We have finished the first part of the proof.

It remains to prove that for any SWL algorithm, there exists a matching subgraph GNN with the same expressive power. The
key idea is to ensure that whenever χ(t)

G (u, v) 6= χ
(t)
H (x, y), we have h(t)G (u, v) 6= h

(t)
H (x, y). To achieve this, we rely on

injective functions that take a set as input. When assuming that the size of the set is bounded, the injective property can be
easily constructed using the approach proposed in Maron et al. (2019a), called the power-sum multi-symmetric polynomials
(PMP). We note that while Maron et al. (2019a) only focused on the case when the input belongs to sets of a fixed size, it
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can be easily extended to our case for sets of different but bounded sizes by padding zero-elements. The summation in PMP
just coincides with the aggregation in Definition 2.1, and the power can be extracted by the function σ(t) in the previous
layer. For more details, please refer to Maron et al. (2019a).

Finally, note that when the input graph has bounded size N , the SWL iteration must get stabled in no more than N2

steps. Therefore, by using a sufficiently deep GNN (i.e., L = N2), one can guarantee that χG(u, v) 6= χH(x, y) implies
h
(L)
G (u, v) 6= h

(L)
H (x, y). This eventually yields that c(G) 6= c(H) implies f(G) 6= f(H), as desired.

E. Proof of Theorems in Section 4
This section contains all the missing proofs in Section 4.

E.1. Preliminary

We first introduce some basic terminologies and facts, which will be frequently used in subsequent proofs.
Definition E.1. Let χ and χ̃ be two color mappings, with χG(u, v) and χ̃G(u, v) representing the color of vertex pair (u, v)
in graph G. We say:

• χ̃ is finer than χ, denoted as χ̃ � χ, if for any two graphs G = (VG, EG), H = (VH , EH) and any vertices u, v ∈ VG,
x, y ∈ VH , we have χ̃G(u, v) = χ̃H(x, y) =⇒ χG(u, v) = χH(x, y).

• χ̃ and χ are equivalent, denoted as χ̃ ' χ, if χ̃ � χ and χ � χ̃.

• χ̃ is strictly finer than χ, denoted as χ̃ ≺ χ, if χ̃ � χ and χ̃ 6' χ.
Remark E.2. Several simple facts regarding this definition are as follows.

(a) For any color refinement algorithm, let {χ(t)}∞t=0 be the sequence of color mappings generated at each iteration t, then
χ(t+1) � χ(t) for any t. This is exactly why we call the algorithm “color refinement”. As a result, the stable color
mapping χ is finer than any intermediate color mapping χ(t).

(b) Definition E.1 is closely related to the power of WL algorithms. Indeed, let χA and χB be two stable color mappings
generated by algorithms A and B, respectively. If both algorithms use the same pooling paradigm, then χB � χA

implies that B is more powerful than A, i.e. A � B.

(c) Consider two SWL algorithms A and B with the same graph generation policy, but with different aggregation schemes
A and B. Denote χA and χB as the corresponding stable color mappings. Define a new color mapping χ̃ = T (A, χB)
that “refines” χB using aggregation scheme A ∪ {aggPuv}:

[T (A, χ)]G(u, v) = hash(agg1(u, v,G, χG), · · · , aggr(u, v,G, χG)), (3)

where A ∪ {aggPuv} = {aggi : i ∈ [r]}. Then we can prove that χB � χ̃ =⇒ χB � χA. If the two algorithms further
share the same pooling paradigm, Remark E.2(b) yields A � B. This gives a simple way to compare the expressiveness
of different algorithms.

Proof of Remark E.2(c). Define a sequence of color mappings {χ̃(t)}∞t=0 recursively, such that χ̃(0) = χB and

χ̃
(t+1)
G (u, v) = hash(agg1(u, v,G, χ̃

(t)
G ), · · · , aggr(u, v,G, χ̃

(t)
G ))

for any u, v in graph G. Clearly, χ̃(1) is just χ̃ in Remark E.2(c). Since we have both χ̃(0) � χ̃(1) (by the assumption of
χB � χ̃) and χ̃(1) � χ̃(0) (by Remark E.2(a)), χ̃(1) ' χ̃(0). Therefore, χ̃(t) ' χB holds for all t ∈ N. On the other hand, a
simple induction over t yields χ̃(t) � χA,(t) (where χA,(t) is the color mapping at iteration t for algorithm A), since they are
both refined by the same aggregation scheme A (for the base case, χ̃(0) = χB � χB,(0) = χA,(0)). By taking t→∞, this
finally yields χ̃ � χA, namely, χB � χA, as desired.

E.2. Discussions on graph generation policies

In this subsection, we make a detailed discussion regarding graph generalization policies and prove that the canonical node
marking policy already achieves the best expressiveness among all of these policies (Proposition 4.2).

Depending on the choice of (Gu, huG), there are a total of 7 non-trivial combinations. For ease of presentation, we first give
symbols to each of them:
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• NM: the node marking policy on the original graph;

• DE: the distance encoding policy on the original graph;

• EGO(k): the k-hop ego network policy with constant node features;

• EGO(k)+NM: the policy with both node marking and k-hop ego network;

• EGO(k)+DE: the policy with both distance encoding and k-hop ego network;

• ND: the node deletion policy with constant node features;

• NDM: the policy with both node deletion and marking.

Proposition E.3. Consider any fixed aggregation scheme A that contains the two basic aggregations aggPuv and aggLu in
Definition 3.1, and consider any fixed pooling paradigm Pool defined in Section 3. We have the following result:

• NM is as powerful as DE;

• EGO(k)+NM is as powerful as EGO(k)+DE;

• NM is more powerful than EGO(k)+NM;

• NM is more powerful than NDM;

• EGO(k)+NM is more powerful than EGO(k);

• NDM is more powerful than ND.

Proof. Let χPolicy,(t) be the color mapping of the SWL algorithm with graph generation policy Pocily, aggregation scheme
A, and pooling paradigm Pool at iteration t, and let χPolicy be the corresponding stable color mapping. Here, Pocily ∈
{NM,DE,EGO(k),EGO(k)+NM,EGO(k)+DE,ND,NDM}.

We first consider the case NM vs. DE. By definition, χDE,(0) is finer than χNM,(0). Since the subgraphs {{Gu : u ∈ VG}} are
the same for the two policies and the aggregation scheme A is fixed, a simple induction over t then yields χDE,(t) � χNM,(t)

for any t ∈ N, namely, χDE � χNM. It follows that DE is more powerful than NM (by Remark E.2(b)).

To prove the converse direction, we leverage Lemma E.4 (which will be proved later). Lemma E.4 implies that χNM,(D) �
χDE,(0) when the input graphs have bounded diameter D. Then using the same analysis as above, we have χNM,(D+t) �
χDE,(t) for any t ∈ N. By taking t → ∞, this implies that χNM � χDE, namely, NM is more powerful than DE (by
Remark E.2(b)). Combining the two directions concludes the proof of the first bullet.

The proof for the case EGO(k)+NM vs. EGO(k)+DE is almost the same, so we omit it for clarity.

We next turn to the case NM vs. EGO(k)+NM. Initially, by definition we have χNM,(0) = χEGO(k)+NM,(0). Therefore,
χNM,(D) � χEGO(k)+NM,(0) (by Remark E.2(a)), where we assume the input graphs have bounded diameter D. Below, we
aim to prove that χNM,(t) � χEGO(k)+NM,(t−D) for any integer t ≥ D. We prove it by induction.

The base case of t = D already holds. Assume the above result holds for t = T and consider t = T + 1. Let G = (VG, EG)
and H = (VH , EH) be two graphs with diameter no more than D. Consider any vertices u, v ∈ VG and x, y ∈ VH satisfying
χ
NM,(T+1)
G (u, v) = χ

NM,(T+1)
H (x, y), and we want to prove that χEGO(k)+NM,(T+1−D)

G (u, v) = χ
EGO(k)+NM,(T+1−D)
H (x, y).

By Definition 3.1,
aggi(u, v,G, χ

NM,(T )
G ) = aggi(x, y,H, χ

NM,(T )
H )

holds for all i ∈ [r]. If aggi is any single-point aggregation or global aggregation, by induction we clearly have
aggi(u, v,G, χ

EGO(k)+NM,(T−D)
G ) = aggi(x, y,H, χ

EGO(k)+NM,(T−D)
H ). If aggi is any local aggregation, e.g., aggLu, we

have
{{χNM,(T )

G (u,w) : w ∈ NG(v)}} = {{χNM,(T )
H (x, z) : z ∈ NH(y)}} (4)

for policy NM. We additionally need to prove that

{{χNM,(T )
G (u,w) : w ∈ NGu(v)}} = {{χNM,(T )

H (x, z) : z ∈ NHx(y)}}, (5)

where Gu and Hx are generated by policy EGO(k)+NM. This is due to the following observations: if w ∈ N k
G(u) and

z /∈ N k
H(x), then disG(u,w) 6= disH(x, z). Therefore, by Lemma E.4 we have χNM,(T )

G (u,w) 6= χ
NM,(T )
H (x, z). Similarly,
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if w /∈ N k
G(u) and z ∈ N k

H(x), then χNM,(T )
G (u,w) 6= χ

NM,(T )
H (x, z). This yields (5). By induction,

{{χEGO(k)+NM,(T−D)
G (u,w) : w ∈ NGu(v)}} = {{χEGO(k)+NM,(T−D)

H (x, z) : z ∈ NHx(y)}}.

Therefore, in all cases we have

aggi(u, v,G, χ
EGO(k)+NM,(T−D)
G ) = aggi(x, y,H, χ

EGO(k)+NM,(T−D)
H ).

This concludes the induction step. We finally obtain that the stable mappings satisfy χNM � χEGO(k)+NM and thus NM is
more powerful than EGO(k)+NM (by Remark E.2(b)).

We next turn to the case NM vs. NDM. This case is similar to the above one. Initially, by definition we have χNM,(0) =
χNDM,(0). Therefore, χNM,(D) � χNDM,(0) where we assume the input graphs have bounded diameter D. We aim to prove
that χNM,(t) � χNDM,(t−D) for any integer t ≥ D. We prove it by induction. The base case of t = D already holds.

Assume the above result holds for t = T and consider t = T + 1. Let χNM,(T+1)
G (u, v) = χ

NM,(T+1)
H (x, y). Then by

Definition 3.1,
aggi(u, v,G, χ

NM,(T )
G ) = aggi(x, y,H, χ

NM,(T )
H )

holds for all i ∈ [r]. If aggi is any single-point aggregation or global aggregation, by induction we have
aggi(u, v,G, χ

NDM,(T−D)
G ) = aggi(x, y,H, χ

NDM,(T−D)
H ). If aggi is any local aggregation, e.g., aggLu, we have (4)

for policy NM, and we additionally need to prove (5), where Gu and Hx are generated by policy NDM. Note that we
have disG(u, v) = disH(x, y) due to the assumption χNM,(T+1)

G (u, v) = χ
NM,(T+1)
H (x, y) and Lemma E.4. Consider the

following three cases:

• If disG(u, v) = disH(x, y) ≥ 2, then NGu(v) = NG(v) and NHx(y) = NH(y).

• If disG(u, v) = disH(x, y) = 1, then NGu(v) = NG(v)\{u} and NHx(y) = NH(y)\{x}. We also have
χ
NM,(T )
G (u, u) = χ

NM,(T )
H (x, x), because by (4) there exists a vertex z ∈ VH such that χNM,(T )

G (u, u) = χ
NM,(T )
H (x, z),

implying 0 = disG(u, u) = disH(x, z) by Lemma E.4.

• If disG(u, v) = disH(x, y) = 0, then NGu(v) = ∅ and NHx(y) = ∅.

In all cases (5) holds, which concludes the induction step. We finally obtain that the stable mappings satisfy χNM � χNDM

and thus NM is more powerful than NDM (by Remark E.2(b)).

We next turn to the case EGO(k)+NM vs. EGO(k). This case follows by a simple induction that χEGO(k)+NM,(t) �
χEGO(k),(t) for all t ∈ N.

We finally turn to the case NDM vs. ND. This case also follows by a simple induction that χNDM,(t) � χND,(t) for all
t ∈ N.

It remains to prove the following key lemma:
Lemma E.4. Consider an SWL algorithm A such that the aggregation scheme A contains the two basic aggregations aggPuv
and aggLu in Definition 3.1, and the node marking policy is used (possibly along with an ego network policy). Denote χ(t) as
the color mapping of A at iteration t. For any graphs G = (VG, EG), H = (VH , EH) and vertices u, v ∈ VG, x, y ∈ VH ,
when t ≥ min(DG, DH), χ(t)

G (u, v) = χ
(t)
H (x, y) =⇒ disGu(u, v) = disGx(x, y). Here, DG and DH are the diameter of

graphs G and H , respectively.

Proof. It suffices to prove the following result: if disGu(u, v) 6= disGx(x, y), then χ
(t)
G (u, v) 6= χ

(t)
H (x, y) for t =

min(disGu(u, v),disGx(x, y)). We prove it by induction over t.

For the base case of t = 0, without loss of generality we can assume disGu(u, v) = 0 and disHx(x, y) > 0. For node
marking policy, we clearly have χ(0)

G (u, v) 6= χ
(0)
H (x, y) since v = u but y 6= x.

Assume the result holds for t ≤ T and consider t = T + 1. Without loss of generality, we can assume disGu(u, v) = T + 1

and disHx(x, y) > T + 1 (remark: disHx(x, y) can be∞ for ego network policy). If χ(T+1)
G (u, v) = χ

(T+1)
H (x, y), by

definition of aggLu we have

{{χ(T )
G (u,w) : w ∈ NGu(v)}} = {{χ(T )

H (x, z) : z ∈ NHx(y)}}.
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Pick any vertex w ∈ NGu(v) satisfying disGu(u,w) + 1 = disGu(u, v). Then, there is a vertex z ∈ NHx(y) such that
χ
(T )
G (u,w) = χ

(T )
H (x, z). By induction, disGu(u,w) = disHx(x, z). This yields a contradiction, since

disHx(x, y) ≤ disHx(x, z) + 1 = disGu(u,w) + 1 = disGu(u, v) = T + 1.

This concludes the induction step.

The above lemma directly leads to the following corollary, which is useful in subsequent analysis.

Corollary E.5. Let χ be the stable color mapping of SWL algorithm A(A,Pool) defined in Definition 4.3, satisfying
aggLu ∈ A. For any graphs G = (VG, EG), H = (VH , EH) and vertices u, v ∈ VG, x, y ∈ VH , if χG(u, v) = χH(x, y),
then

• disG(u, v) = disH(x, y);

• χG(u, u) = χH(x, x).

Proof. The first bullet directly follows from Lemma E.4. The second bullet can be proved by induction over the distance
disG(u, v). For the base case of disG(u, v) = disH(x, y) = 0, u = v, x = y, and the result already holds. For the induction
step, the proof is similar to the above proof of Lemma E.4, in that we can find w ∈ NG(v) and z ∈ NH(y) such that
disG(u,w) + 1 = disG(u, v) and disH(x, z) + 1 = disH(x, y), and χG(u,w) = χH(x, z) (we omit the detail here). This
finishes the induction step and concludes the proof.

E.3. Hierarchy of different aggregation schemes

This subsection gives a complete analysis of different aggregation schemes in SWL, which is related to the proofs of
Theorem 4.4. Note that we focus on the canonical node marking policy with a fixed pooling paradigm Pool throughout this
subsection. In all proofs, we denote G = (VG, EG) and H = (VH , EH) as any connected graphs.

Lemma E.6. Let χ be the stable color mapping of SWL algorithm A(A,Pool) defined in Definition 4.3, satisfying aggLu ∈ A.
For any vertices u ∈ VG and x ∈ VH , if χG(u, u) = χH(x, x), then {{χG(u, v) : v ∈ VG}} = {{χH(x, y) : y ∈ VH}}.

Proof. Actually, we can prove a stronger result: for any k ∈ N,

{{χG(u, v) : v ∈ N k
G(u)}} = {{χH(x, y) : y ∈ N k

H(x)}}. (6)

This implies Lemma E.6 because G and H are connected graphs.

We prove it by induction over k. The base case of k = 0 is trivial. Now assume (6) holds for all k ≤ K, and we want
to prove that (6) holds for k = K + 1. Using the condition aggLu ∈ A, for any vertices v ∈ VG and y ∈ VH satisfying
χG(u, v) = χH(x, y), we have

{{χG(u,w) : w ∈ NG(v)}} = {{χH(x, z) : z ∈ NH(y)}}. (7)

Combining (7) with (6), we obtain⋃
v∈DK

G (u)

{{χG(u,w) : w ∈ NG(v)}} =
⋃

y∈DK
H (x)

{{χH(x, z) : z ∈ NH(y)}}, (8)

where we define
DK

G (u) := NK
G (u)\NK−1

G (u) = {v ∈ VG : disG(u, v) = K}.

Here, each vertex w in (8) satisfies K − 1 ≤ disG(u,w) ≤ K + 1, and each vertex z in (8) satisfies K − 1 ≤ disH(x, z) ≤
K + 1. By Corollary E.5, for any vertices w ∈ VG and z ∈ VH , disG(u,w) 6= disH(x, z) implies χG(u,w) 6= χH(x, z).
Therefore, ⋃

v∈DK
G (u)

{{χG(u,w) : w ∈ NG(v) ∩ DK+1
G (u)}} =

⋃
y∈DK

H (x)

{{χH(x, z) : z ∈ NH(y) ∩ DK+1
H (x)}}. (9)
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Rearranging the terms in (9) yields an equivalent formula:⋃
w∈DK+1

G (u)

{{χG(u,w)}} × |NG(w) ∩ DK
G (u)| =

⋃
z∈DK+1

H (x)

{{χH(x, z)}} × |NH(z) ∩ DK
H (x)|, (10)

where we denote {{c}} ×M as a multiset containing M repeated elements c. Next, note that if χG(u,w) = χH(x, z) for
some w ∈ VG and z ∈ VH , then by (7) and Corollary E.5, we have |NG(w) ∩ DK

G (u)| = |NH(z) ∩ DK
H (x)|. This proves

{{χG(u,w) : w ∈ NK+1
G (u)}} = {{χH(x, z) : z ∈ NK+1

H (x)}}

and finishes the induction step.

Corollary E.7. Let χL, χG, and χLG be the stable color mappings of SWL algorithms A(A ∪ {aggLu},Pool), A(A ∪
{aggGu },Pool) and A(A ∪ {aggLu, aggGu },Pool), respectively. Then, χLG ' χL � χG.

Proof. The proof is based on Remark E.2(c). We first prove that χL � χG. Define an auxiliary color mapping χ̃ =
T (A ∪ {aggGu }, χL) where T is defined in (3). It suffices to prove that χL � χ̃.

Consider any vertices u, v ∈ VG and x, y ∈ VH satisfying χL
G(u, v) = χL

H(x, y). Since the mapping χL is already stable,
for any agg ∈ A, we have

agg(u, v,G, χL
G) = agg(x, y,H, χL

H).

Moreover, due to the use of aggLu, by Corollary E.5 we have χL
G(u, u) = χL

H(x, x). Using Lemma E.6, we further obtain

{{χL
G(u,w) : w ∈ VG}} = {{χL

H(x, z) : z ∈ VH}}.

Namely,
aggGu (u, v,G, χ

L
G) = aggGu (x, y,H, χ

L
H).

Therefore, χ̃(u, v) = χ̃(x, y). We have proved χL � χ̃.

We next turn to χL ' χLG, for which it suffices to prove χL � χLG. The process is exactly the same as above.

Lemma E.8. Let χ be the stable color mapping of SWL algorithm A(A,Pool) defined in Definition 4.3, satisfying aggGu ∈ A.
For any vertices u, v ∈ VG and x, y ∈ VH , if χG(u, v) = χH(x, y), then χG(u, u) = χH(x, x).

Proof. Since aggGu ∈ A, we have

{{χG(u,w) : w ∈ VG}} = {{χH(x, z) : z ∈ VH}}.

Therefore, there is a vertex z ∈ VH such that χG(u, u) = χH(x, z). By definition of node marking policy, we must
have x = z (otherwise, the initial color satisfies χ(0)

G (u, u) 6= χ
(0)
H (x, z), a contradiction). This already proves that

χG(u, u) = χH(x, x).

Corollary E.9. Let χG, χP, and χGP be the stable color mappings of SWL algorithms A(A ∪ {aggGu },Pool), A(A ∪
{aggPuu},Pool), and A(A ∪ {aggGu , aggPuu},Pool), respectively. Then, χGP ' χG � χP.

Proof. Similar to Corollary E.7, the proof is based on Remark E.2(c). We only prove χG � χP, and the proof of χG � χGP

is exactly the same. Define an auxiliary color mapping χ̃ = T (A ∪ {aggPuu}, χG) where T is defined in (3). It suffices to
prove that χG � χ̃.

Consider any vertices u, v ∈ VG and x, y ∈ VH satisfying χG
G(u, v) = χG

H(x, y). Due to the presence of aggGu , by
Lemma E.8 we have χG

G(u, u) = χG
H(x, x). This already implies

aggPuu(u, v,G, χ
G
G) = aggPuu(x, y,H, χ

G
H).

For any agg ∈ A, we also have
agg(u, v,G, χG

G) = agg(x, y,H, χG
H).

Therefore, χ̃(u, v) = χ̃(x, y), namely, χG � χ̃.
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Lemma E.10. Let χ be the stable color mapping of SWL algorithm A({aggLu, aggLv},Pool). Then for any vertices u, v ∈ VG
and x, y ∈ VH , if χG(u, v) = χH(x, y), then χG(v, u) = χH(y, x).

Proof. We will prove a stronger result: let χ(t) be the color mapping at iteration t, then for any t ∈ N, χ(t)
G (u, v) =

χ
(t)
H (x, y) ⇐⇒ χ

(t)
G (v, u) = χ

(t)
H (y, x). We prove it by induction over t.

The base case of t = 0 trivially holds by definition of the node marking. Assume the above result holds for t = T , and
consider t = T + 1. Let χ(T+1)

G (u, v) = χ
(T+1)
H (x, y). By definition of the aggregation scheme {aggLu, aggLv}, we have

{{χ(T )
G (u,w) : w ∈ NG(v)}} = {{χ(T )

H (x, z) : z ∈ NH(y)}},

{{χ(T )
G (w, v) : w ∈ NG(u)}} = {{χ(T )

H (z, y) : z ∈ NH(x)}}.

Using induction we obtain

{{χ(T )
G (w, u) : w ∈ NG(v)}} = {{χ(T )

H (z, x) : z ∈ NH(y)}},

{{χ(T )
G (v, w) : w ∈ NG(u)}} = {{χ(T )

H (y, z) : z ∈ NH(x)}}.

Therefore, χ(T+1)
G (v, u) = χ

(T+1)
H (y, x), which finishes the induction step.

Corollary E.11. Let χLL, χLP, and χLLP be the stable color mappings of SWL algorithms A({aggLu, aggLv},Pool),
A({aggLu, aggPvu},Pool), and A({aggLu, aggLv , aggPvu},Pool), respectively. Then, χLL ' χLP ' χLLP.

Proof. Similar to Corollary E.7, the proof is based on Remark E.2(c). We only prove χLL ' χLP, and the proof of
χLL ' χLLP is exactly the same.

We first prove χLP � χLL. Define an auxiliary color mapping χ̃ = T ({aggLu, aggLv}, χLP) where T is defined in (3). It
suffices to prove that χLP � χ̃. Consider any vertices u, v ∈ VG and x, y ∈ VH satisfying χLP

G (u, v) = χLP
H (x, y). Since the

mapping χLP is already stable, we have χLP
G (v, u) = χLP

H (y, x) and

{{χLP
G (u,w) : w ∈ NG(v)}} = {{χLP

H (x, z) : z ∈ NH(y)}}. (11)

Since χLP
G (v, u) = χLP

H (y, x), we also have

{{χLP
G (v, w) : w ∈ NG(u)}} = {{χLP

H (y, z) : z ∈ NH(x)}}.

This further implies
{{χLP

G (w, v) : w ∈ NG(u)}} = {{χLP
H (z, y) : z ∈ NH(x)}}. (12)

Combining (11) and (12) we obtain χ̃G(u, v) = χ̃H(x, y), as desired.

We next prove χLL � χLP. Define an auxiliary color mapping χ̃ = T ({aggLu, aggPvu}, χLL) where T is defined in (3). It
suffices to prove that χLL � χ̃. This simply follows by the fact that the stable color mapping χLL cannot be refined using
aggLu (by definition) or using aggPvu (by Lemma E.10).

E.4. Analyzing the pooling paradigm

This subsection discusses how the pooling paradigm can influence the expressive power of the SWL algorithm, which is
related to the proofs of Theorem 4.6. In all proofs, we denote G = (VG, EG) and H = (VH , EH) as any graphs.

Lemma E.12. Let A be defined in Definition 4.3 with {aggGu , aggLu} ∩ A 6= ∅. Then, A(A,VS) � A(A,SV).

Proof. Let cVS(G) and cSV(G) be the graph representations computed by algorithms A(A,VS) and A(A,SV), respectively.
Since both algorithms use the same aggregation scheme, we denote the stable color mapping as χ. We aim to prove that if
cSV(G) = cSV(H), then cVS(G) = cVS(H).

Let cSV(G) = cSV(H), then by definition of SV pooling

{{rVG(v) : v ∈ VG}} = {{rVH(y) : y ∈ VH}},
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where we denote rVG(v) = {{χG(u, v) : u ∈ VG}}. Consider any vertices v ∈ VG and y ∈ VH satisfying rVG(v) = rVH(y).
Then, there exists vertex w ∈ VH such that χG(v, v) = χH(w, y). Due to the definition of node marking, we must have
w = y. This implies that χG(v, v) = χH(y, y). Now separately consider two cases:

• If aggGu ∈ A, then by definition of stable color mapping we have {{χG(v, u) : u ∈ VG}} = {{χH(y, x) : x ∈ VH}};

• If aggLu ∈ A, then by Lemma E.6 we have {{χG(v, u) : u ∈ VG}} = {{χH(y, x) : x ∈ VH}}.

In both cases, we have rSG(v) = rSH(y) where we denote rSG(v) = {{χG(v, u) : u ∈ VG}}.

Therefore, we have proved that rVG(v) = rVH(y) =⇒ rSG(v) = rSH(y). This finally yields

{{rSG(v) : v ∈ VG}} = {{rSH(y) : y ∈ VH}},

namely, cVS(G) = cVS(H), as desired.

E.5. Proof of theorems in Section 4.2

We are now ready to prove all the main results in Section 4.2, which we restate below.

Theorem 4.4. Under the notation of Definition 4.3, the following hold:

• A(A ∪ {aggGu },Pool) � A(A ∪ {aggLu},Pool) and A(A ∪ {aggLu},Pool) ' A(A ∪ {aggLu, aggGu },Pool);

• A(A ∪ {aggPuu},Pool) � A(A ∪ {aggGu },Pool) and A(A ∪ {aggGu },Pool) ' A(A ∪ {aggGu , aggPuu}},Pool);

• A({aggLu, aggPvu},Pool) ' A({aggLu, aggLv},Pool) ' A({aggLu, aggLv , aggPvu},Pool).

Proof. Based on Remark E.2(b), we only need to focus on the stable color mappings of these algorithms. The proof readily
follows by using Corollaries E.7, E.9 and E.11.

Proposition 4.5. Let A be any aggregation scheme defined in Definition 4.3. Denote Au↔v as the aggregation scheme
obtained from A by exchanging the element aggPuu with aggPvv, exchanging aggLu with aggLv , and exchanging aggGu with aggGv .
Then, A(A,VS) ' A(Au↔v,SV).

Proof. The proof is almost trivial by symmetry. It is easy to see that for any vertices u, v ∈ VG and x, y ∈ VH ,
χG(u, v) = χH(x, y) ⇐⇒ χu↔v

G (v, u) = χu↔v
H (y, x), where χ and χu↔v are the stable color mapping of SWL algorithms

A(A,VS) and A(Au↔v,SV), respectively.

Theorem 4.6. Let A be defined in Definition 4.3 with aggLu ∈ A. Then the following hold:

• A(A,VS) � A(A,SV);

• If {aggGv , aggLv} ∩ A 6= ∅, then A(A,VS) ' A(A,SV).

Proof. The first bullet is a direct consequence of Lemma E.12. The second bullet is a direct consequence of the first
bullet and Proposition 4.5, since we have both A(A,VS) � A(A,SV) and A(A,SV) ' A(Au↔v,VS) � A(Au↔v,SV) '
A(A,VS).

Corollary 4.7. Let A(A,Pool) be any SWL algorithm defined in Definition 4.3 with at least one local aggregation, i.e.
{aggLu, aggLv} ∩ A 6= ∅. Then, A(A,Pool) must be as expressive as one of the 6 SWL algorithms defined below:

• (Vanilla SWL) SWL(VS) := A({aggLu},VS), SWL(SV) := A({aggLu},SV);

• (SWL with additional single-point aggregation) PSWL(VS) := A({aggLu, aggPvv},VS),
PSWL(SV) := A({aggLu, aggPvv},SV);

• (SWL with additional global aggregation) GSWL := A({aggLu, aggGv },VS);

• (Symmetrized SWL) SSWL := A({aggLu, aggLv},VS).
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Moreover, we have

SWL(VS) � SWL(SV) and PSWL(VS) � PSWL(SV),

SWL(VS) � PSWL(VS) and SWL(SV) � PSWL(SV),

PSWL(SV) � GSWL � SSWL.

Proof. Due to Proposition 4.5, we can assume aggLu ∈ A without loss of generality. We separately consider several cases:

• Case 1: {aggLv , aggGv , aggPvv, aggPvu} ∩ A = ∅. In this case, we have

A(A,Pool) � A({aggLu, aggGu , aggPuu},Pool) ' A({aggLu, aggGu },Pool) ' A({aggLu},Pool)

by Theorem 4.4. On the other hand, clearly A({aggLu},Pool) � A(A,Pool). We thus have
A(A,Pool) ' A({aggLu},Pool), namely, A(A,Pool) ' SWL(VS) or A(A,Pool) ' SWL(SV).

• Case 2: aggPvv ∈ A and {aggLv , aggGv , aggPvu} ∩ A = ∅. In this case, we have

A(A,Pool) � A({aggLu, aggGu , aggPuu, aggPvv},Pool)
' A({aggLu, aggGu , aggPvv},Pool)
' A({aggLu, aggPvv},Pool)

by Theorem 4.4. On the other hand, clearly A({aggLu, aggPvv},Pool) � A(A,Pool). We thus have
A(A,Pool) ' A({aggLu, aggPvv},Pool), namely, A(A,Pool) ' PSWL(VS) or A(A,Pool) ' PSWL(SV).

• Case 3: aggGv ∈ A and {aggLv , aggPvu} ∩ A = ∅. In this case, we have

A(A,Pool) � A({aggLu, aggGu , aggPuu, aggGv , aggPvv},Pool)
' A({aggLu, aggGu , aggGv },Pool)
' A({aggLu, aggGv },Pool)

by Theorem 4.4. On the other hand, clearly A({aggLu, aggGv },Pool) � A(A,Pool). We thus have
A(A,Pool) ' A({aggLu, aggGv },Pool). Moreover, by Theorem 4.6 we have
A({aggLu, aggGv },VS) = A({aggLu, aggGv },SV). Therefore, A(A,Pool) ' GSWL.

• Case 4: aggLv ∈ A or aggPvu ∈ A. In this cases, a similar analysis yields

A(A,Pool) � A({aggLu, aggLv , aggPvu},Pool)
' A({aggLu, aggLv},Pool)
' A({aggLu, aggPvu},Pool)

by Theorem 4.4. On the other hand, A({aggLu, aggLv},Pool) ' A({aggLu, aggPvu},Pool) � A(A,Pool). We thus have
A(A,Pool) ' A({aggLu, aggLv},Pool). Moreover, by Theorem 4.6 we have
A({aggLu, aggLv},VS) = A({aggLu, aggLv},SV). Therefore, A(A,Pool) ' SSWL.

Combining the four cases concludes the proof.

F. Discussions on Subgraph GNNs beyond the Framework of Definition 2.1
There have been several prior works that design subgraph GNNs beyond the aggregation schemes of Definition 2.1. In this
section, we will investigate them and compare the expressive power with our framework. We focus on the WL algorithm
corresponding to each subgraph GNN because it has the same expressive power as the GNN model in distinguishing
non-isomorphic graphs (which can be easily proved following Appendix D). Throughout this section, we assume that node
marking policy is used since it achieves the strongest expressive power according to Proposition 4.2.

Below, we discuss the following works:
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• GNN-AK (Zhao et al., 2022a);

• GNN-AK-ctx (Zhao et al., 2022a);

• DSS-WL (Bevilacqua et al., 2022);

• SUN (Frasca et al., 2022);

• ReIGN(2) (Frasca et al., 2022).

GNN-AK (Zhao et al., 2022a). The GNN aggregation scheme can be written as

χ
(t+1)
G (u, v) =



hash(χ
(t)
G (u, v),

χ
(t)
G (v, v),

{{χ(t)
G (u,w) : w ∈ NG(v)}})

if u 6= v,

hash(χ
(t)
G (v, v),

{{χ(t)
G (u,w) : w ∈ NG(v)}},

{{χ(t)
G (u,w) : w ∈ VG}})

if u = v.

GNN-AK uses the vertex-subgraph pooling. As can be seen, there is an additional global aggregation aggGu when u = v,
which differs from the case of u 6= v. Therefore, it goes beyond the framework of Definition 3.1.
Proposition F.1. GNN-AK is as powerful as PSWL(VS).

Proof. Consider the following two SWL algorithms defined in Definition 4.3: (i) A({aggLu, aggPvv},VS), and (ii)
A({aggLu, aggPvv, aggGu },VS). It is clear that the stable color mapping of GNN-AK is finer than that of A({aggLu, aggPvv},VS),
but the stable color mapping of A({aggLu, aggPvv, aggGu },VS) is finer than GNN-AK. However, both algorithms are equivalent
to PSWL(VS) as shown in Corollary 4.7. Therefore, by Remark E.2(b) GNN-AK is as powerful as PSWL(VS).

GNN-AK-ctx (Zhao et al., 2022a). The GNN aggregation scheme can be written as

χ
(t+1)
G (u, v) =



hash(χ
(t)
G (u, v),

χ
(t)
G (v, v),

{{χ(t)
G (u,w) : w ∈ NG(v)}})

if u 6= v,

hash(χ
(t)
G (v, v),

{{χ(t)
G (u,w) : w ∈ NG(v)}},

{{χ(t)
G (u,w) : w ∈ VG}},

{{χ(t)
G (w, v) : w ∈ VG}})

if u = v.

GNN-AK also uses the vertex-subgraph pooling. Compared with GNN-AK, GNN-AK-ctx further introduces the cross-graph
global aggregation aggGv when u = v (which they called the contextual encoding).
Proposition F.2. GNN-AK-ctx is as powerful as GSWL.

Proof. Similar to the above proof, by using the result that GSWL is as powerful as A({aggLu, aggPvv, aggGv },VS) (Corol-
lary 4.7), it is clear that GSWL is more powerful than GNN-AK-ctx. It remains to prove that GNN-AK-ctx is more powerful
than GSWL.

The proof is based on Remark E.2(c). Let χ be the stable color mapping of GNN-AK-ctx. Define an auxiliary color mapping
χ̃ = T ({aggLu, aggGv }, χ) where T is defined in (3). It suffices to prove that χ � χ̃.

Consider any vertices u, v ∈ VG and x, y ∈ VH satisfying χG(u, v) = χH(x, y). Since the mapping χ is already stable, by
definition of GNN-AK-ctx we have

χG(v, v) = χH(y, y), (13)
{{χG(u,w) : w ∈ NG(v)}} = {{χH(x, z) : z ∈ NH(y)}}. (14)

Again by definition of the stable color mapping, (13) implies that

{{χG(w, v) : w ∈ VG}} = {{χH(z, y) : z ∈ VH}}. (15)

Combining with (14) and (15), we obtain that χ̃G(u, v) = χ̃H(x, y), concluding the proof.
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DSS-WL (Bevilacqua et al., 2022). The aggregation scheme of DSS-WL can be written as

χ
(t+1)
G (u, v) = hash(χ

(t)
G (u, v),

{{χ(t)
G (u,w) : w ∈ NG(v)}},

{{χ(t)
G (w, v) : w ∈ VG}},

{{χ(t)
G (w,w′) : w ∈ VG, w′ ∈ NG(v)}}).

Here, the last aggregation does not belong to Definition 3.1. DSS-WL also uses the vertex-subgraph pooling.

Proposition F.3. DSS-WL is as powerful as GSWL.

Proof. Clearly, DSS-WL is more powerful than the SWL algorithm A({aggLu, aggGv },VS), which is precisely GSWL. It
remains to prove that GSWL is more powerful than DSS-WL.

Similar to Proposition F.2, the proof is based on Remark E.2(c). Let χ be the stable color mapping of GSWL. For any
vertices u, v ∈ VG and x, y ∈ VH , if χG(u, v) = χH(x, y), then we have

{{χG(u,w) : w ∈ NG(v)}} = {{χH(x, z) : z ∈ NH(y)}}, (16)
{{χG(w, v) : w ∈ VG}} = {{χH(z, y) : z ∈ VH}}. (17)

Plugging (17) into (16) yields

{{{{χG(w,w
′) : w ∈ VG}} : w′ ∈ NG(v)}} = {{{{χH(z, z′) : z ∈ VH}} : z′ ∈ NH(y)}}.

Therefore,
{{χG(w,w

′) : w ∈ NG(v), w
′ ∈ VG}} = {{χH(z, z′) : w ∈ NH(y), z′ ∈ VH}}. (18)

Combining with (16), (17), and (18), it implies that DSS-WL cannot further refine the stable color mapping χ, which
concludes the proof.

SUN (Frasca et al., 2022). The WL aggregation scheme can be written as

χ
(t+1)
G (u, v) = hash(χ

(t)
G (u, v), χ

(t)
G (u, u), χ

(t)
G (v, v),

{{χ(t)
G (u,w) : w ∈ NG(v)}},

{{χ(t)
G (u,w) : w ∈ VG}},

{{χ(t)
G (w, v) : w ∈ VG}},

{{χ(t)
G (w,w′) : w ∈ VG, w′ ∈ NG(v)}}).

We note that the formulation of Frasca et al. (2022) slightly differs from the above WL formula, in that SUN introduces
different model parameters separately for the cases of u = v and u 6= v, respectively. However, when using a node marking
policy, introducing two sets of parameters for the two cases does not theoretically increase the expressivity (but it may
benefit practical performance in real-world tasks).

Proposition F.4. SUN is as powerful as GSWL.

Proof. The proof is almost the same as the above one, by using the result that GSWL is as powerful as
A({aggLu, aggGu , aggGv , aggPuu, aggPvv},VS) (Corollary 4.7). We omit the details here.

ReIGN(2) (Frasca et al., 2022). This GNN architecture is motivated by 2-IGN (Maron et al., 2019b;c) by extending each
basic equivariant linear operator into various types of local/global aggregations. Each atomic aggregation operation in
ReIGN(2) can be symbolized as aggop1,op2 , where op1 and op2 can take one of the following symbols: Pu, Pv, G, Lu, Lv,
and D. The semantic of aggop1,op2 is defined as follows:

aggop1,op2(u, v,G, χ) = {{χ(w,w′) : w ∈ ©, w′ ∈ ©}},

where the first/second© is filled by one of the following expression depending on op1/op2, respectively:
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• For symbol Pu: © is filled by {u};
• For symbol Pv: © is filled by {v};
• For symbol Lu: © is filled by NG(u);

• For symbol Lv: © is filled by NG(v);

• For symbol G: © is filled by VG;

• For symbol D : © is filled by {w}. This symbol corresponds to diagonal aggregation and can only be used by op2.

Based on the choice of op1 and op2, there are a total of 5 × 6 − 2 = 28 nonequivalent aggregation operations. Note
that aggPu,D is equivalent to aggPu,Pu and aggPv,D is equivalent to aggPv,Pv. As a result, ReIGN(2) incorporates all these
28 aggregation operations into the WL iteration. Similar to SUN, ReIGN(2) also introduces different model parameters
separately for the cases of u = v and u 6= v, respectively. It can be calculated that the total number of linear equivariant
transformations is 28 + 11 = 39.

Proposition F.5. ReIGN(2) is as powerful as SSWL.

Proof. First, it is obvious that ReIGN(2) is more powerful than SSWL. Therefore, it remains to prove that SSWL is more
powerful than ReIGN(2). Similar to the previous propositions, the proof is based on Remark E.2(c). Let χ be the stable
color mapping of SSWL. Consider any vertices u, v ∈ VG and x, y ∈ VH satisfying χG(u, v) = χH(x, y). Since SSWL is
as powerful as A({aggLu, aggLx , aggGu , aggGv , aggPuu, aggPvv, aggPvu},VS), we have

χG(u, u) = χH(x, x),

χG(v, v) = χH(y, y),

χG(v, u) = χH(y, x),

{{χG(u,w) : w ∈ VG}} = {{χH(x, z) : z ∈ VH}},
{{χG(w, v) : w ∈ VG}} = {{χH(z, y) : z ∈ VH}},

{{χG(u,w) : w ∈ NG(v)}} = {{χH(x, z) : z ∈ NH(y)}},
{{χG(w, v) : w ∈ NG(u)}} = {{χH(z, y) : z ∈ NH(F )}}.

Using a similar proof technique as previous propositions, we can show that χ cannot be refined by all aggop1,op2 . We list
one representative example below.

The diagonal aggregation aggG,D. Combining the fourth equation and the second equation above, we obtain

{{χG(w,w) : w ∈ VG}} = {{χH(z, z) : z ∈ VH}},

as desired.

G. Proof of Theorems in Section 5
This section aims to prove Theorem 5.2. Throughout this section, we denote G = (VG, EG) and H = (VH , EH) as any
graphs. Denote χPSWL, χSSWL, χFWL, χLFWL, and χSLFWL as the stable color mappings of PSWL(VS), SSWL, FWL(2),
LFWL(2), and SLFWL(2), respectively.

We begin with the following simple fact, which holds by definition of the isomorphism type.

Fact G.1. Let χ ∈ {χFWL, χLFWL, χSLFWL}. For any vertices u, v ∈ VG and x, y ∈ VH , if χG(u, v) = χH(x, y), then:

• u = v ⇐⇒ x = y;

• {u, v} ∈ EG ⇐⇒ {x, y} ∈ EH .

Lemma G.2. The following relations hold:

• χLFWL � χPSWL;

• χSLFWL � χSSWL;

• χSLFWL � χLFWL;
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• χFWL � χSLFWL.

Proof. Note that all the FWL-type algorithms considered in Lemma G.2 use isomorphism type as initial colors, which is
finer than node marking in SWL algorithms. In this case, it is straightforward to see that Remark E.2(c) still applies. Namely,
it suffices to prove that the stable color mapping of each stronger algorithm cannot get refined using the aggregation scheme
of the weaker algorithm.

We first prove χLFWL � T ({aggLu, aggPvv}, χLFWL) := χ̃, where T is defined in (3). Consider any vertices u, v ∈ VG and
x, y ∈ VH satisfying χLFWL

G (u, v) = χLFWL
H (x, y). Then by definition,

{{(χLFWL
G (u,w), χLFWL

G (w, v)) : w ∈ N 1
G(v)}} = {{(χLFWL

H (x, z), χLFWL
H (z, y)) : z ∈ N 1

H(y)}}.

It must be the case that

(χLFWL
G (u, v), χLFWL

G (v, v)) = (χLFWL
H (x, y), χLFWL

H (y, y)),

{{(χLFWL
G (u,w), χLFWL

G (w, v)) : w ∈ NG(v)}} = {{(χLFWL
H (x, z), χLFWL

H (z, y)) : z ∈ NH(y)}},

due to Fact G.1. Therefore,

χLFWL
G (v, v) = χLFWL

H (y, y)

and

{{χLFWL
G (u,w) : w ∈ NG(v)}} = {{χLFWL

H (x, z) : z ∈ NH(y)}}.

Namely, χ̃G(u, v) = χ̃H(x, y). This proves χLFWL � χPSWL.

We next prove χSLFWL � T ({aggLu, aggLv}, χSLFWL) := χ̃. Consider any vertices u, v ∈ VG and x, y ∈ VH satisfying
χSLFWL
G (u, v) = χSLFWL

H (x, y). Then by definition,

{{(χSLFWL
G (u,w), χSLFWL

G (w, v)) : w ∈ N 1
G(u) ∪N 1

G(v)}}
={{(χSLFWL

H (x, z), χSLFWL
H (z, y)) : z ∈ N 1

H(x) ∪N 1
H(y)}}.

Using Fact G.1 we have

{{(χSLFWL
G (u,w), χSLFWL

G (w, v)) : w ∈ NG(u)}} = {{(χSLFWL
H (x, z), χSLFWL

H (z, y)) : z ∈ NH(F )}},
{{(χSLFWL

G (u,w), χSLFWL
G (w, v)) : w ∈ NG(v)}} = {{(χSLFWL

H (x, z), χSLFWL
H (z, y)) : z ∈ NH(y)}}.

Therefore,

{{χSLFWL
G (u,w) : w ∈ NG(v)}} = {{χSLFWL

H (x, z) : z ∈ NH(y)}},
{{χSLFWL

G (w, v) : w ∈ NG(u)}} = {{χSLFWL
H (z, y) : z ∈ NH(F )}}.

Namely, χ̃G(u, v) = χ̃H(x, y). This proves χSLFWL � χSSWL.

The third and fourth bullets follow exactly the same procedure, so we omit the proof for clarity.

Lemma G.3. Let χ ∈ {χFWL, χLFWL, χSLFWL}. If

{{χG(u, v) : u, v ∈ VG}} = {{χH(x, y) : x, y ∈ VH}},

then

{{{{χG(u, v) : v ∈ VG}} : u ∈ VG}} = {{{{χH(x, y) : y ∈ VH}} : x ∈ VH}}.

Proof. Based on the assumption of Lemma G.3 and Fact G.1, we have

{{χG(u, u) : u ∈ VG}} = {{χH(x, x) : x ∈ VH}}.

Therefore, it suffices to prove that for any vertices u ∈ VG and x ∈ VH , if χG(u, u) = χH(x, x), then

{{χG(u, v) : v ∈ VG}} = {{χH(x, y) : y ∈ VH}}. (19)

Based on Lemma G.2, we have χ � χPSWL. Note that χPSWL incorporates the aggregation aggLu. Therefore, Lemma E.6
applies. We can follow the same proof technique of Lemma E.6 to obtain (19).
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We are now ready to prove Theorem 5.2, which we restate below:

Theorem 5.2. The following relations hold:

• LFWL(2) � SLFWL(2) � FWL(2);

• PSWL(VS) � LFWL(2);

• SSWL � SLFWL(2).

Proof. The first bullet readily follows from Lemma G.2 and Remark E.2(b). For the other two bullets, although these
algorithms have different pooling paradigms, we have proved that the pooling paradigm of FWL-type algorithms is as
powerful as the pooling paradigm VS (Lemma G.3). Therefore, the results hold by Lemma G.2.

H. Proof of Theorems in Section 6
This section proves the equivalence between SWL/FWL-type algorithms and pebbling games. For ease of presentation, we
first define several notations.

Let G = (VG, EG) and H = (VH , EH) be two graphs, and let u, v be two types of pebbles. For each type of pebbles u, the
placement information can be represented by a vertex pair (uG, uH) where uG ∈ VG and uH ∈ VH are the corresponding
vertices that hold pebble u. Without abuse of notation, we also use the symbol u to represent the placement information of
pebble u, i.e. u = (uG, uH).

We next define a game modified from Section 6, called the L-round (u, v)-pebbling game.
Definition H.1. Given aggregation scheme A and an integer L ∈ N, define the L-round (u, v)-pebbling game GA,L(u; v)
as follows. Initially, pebbles u and v are already placed on graphs G and H according to specified locations u = (uG, uH),
v = (vG, vH). The game has L rounds. In each round, Spoiler and Duplicator can change the position of u and v according
to the game rules of A defined in Section 6. Spoiler wins if after certain round 0 ≤ l ≤ L, the isomorphism type of vertex
pair (uG, vG) in graph G differs from the isomorphism type of vertex pair (uH , vH) in graph H . Duplicator wins the game
if Spoiler does not win after playing L rounds.

We are ready to establish the connection between SWL and the (u, v)-pebbling game. Below, denote χA,(t) as the color
mapping of SWL algorithm A(A,Pool) at iteration t.

Lemma H.2. Let l ∈ N be any integer. For any vertices uG, vG ∈ VG and uH , vH ∈ VH , if χA,(l)
G (uG, vG) 6=

χ
A,(l)
H (uH , vH), then Spoiler can win the l-round (u, v)-pebbling game GA,l(u; v) with u = (uG, uH), v = (vG, vH).

Proof. The proof is based on induction over l. First consider the base case of l = 0. If χA,(0)
G (uG, vG) 6= χ

A,(0)
H (uH , vH),

by definition of node marking policy we have either (uG = vG, uH 6= vH ) or (uG 6= vG, uH = vH ). Clearly, (uG, vG) and
(uH , vH) have different isomorphism types and thus Spoiler wins.

Now assume that Lemma H.2 holds for l ≤ L, and consider l = L + 1. Let χA,(L+1)
G (uG, vG) 6= χ

A,(L+1)
H (uH , vH).

If χA,(L)
G (uG, vG) 6= χ

A,(L)
H (uH , vH), then by induction Spoiler wins. Otherwise, there exists an aggregation operation

agg ∈ A such that
agg(uG, vG, G, χ

A,(L)
G ) 6= agg(uH , vH , H, χ

A,(L)
H ).

We separately consider which type of atomic aggregation operation agg is:

• Single-point aggregation aggPvu. In this case, we have χA,(L)
G (vG, uG) 6= χ

A,(L)
H (vH , uH). In the first round, Spoiler

can choose to swap pebbles u and v. The remaining game will then be equivalent to GA,L(u, v) with u = (vG, vH),
v = (uG, uH). By induction, Spoiler wins the game.

• Single-point aggregation aggPuu. In this case, we have χA,(L)
G (uG, uG) 6= χ

A,(L)
H (uH , uH). In the first round, Spoiler

can choose to move pebbles v to the position of u. The remaining game will then be equivalent to GA,L(u, v) with
u = (uG, uH), v = (uG, uH). By induction, Spoiler wins the game.

• Global aggregation aggGu . In this case, we have

{{χA,(L)
G (uG, wG) : wG ∈ VG}} 6= {{χA,(L)

H (uH , wH) : wH ∈ VH}}.
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Therefore, there exists a color c such that |CG(uG, c)| 6= |CH(uH , c)|, where we denote

CG(uG, c) = |{wG ∈ VG : χ
A,(L)
G (uG, wG) = c}|.

If |CG(uG, c)| > |CH(uH , c)|, Spoiler can select the vertex subset SS = CG(uG, c) ⊂ VG. It can be seen that no
matter how Duplicator responds with SD ⊂ VH , there exists wH ∈ SD such that χA,(L)

H (uH , wH) 6= c. Spoiler thus
select this vertex xS = wH , and no matter how Duplicator responds with xD = wG ∈ SS, we have χA,(L)

G (uG, wG) 6=
χ
A,(L)
H (uH , wH). The remaining game will then be equivalent to GA,L(u, v) with u = (uG, uH), v = (wG, wH). By

induction, Spoiler wins the game.

If |CG(uG, c)| < |CH(uH , c)|, Spoiler can select the vertex subset SS = CH(uH , c) ⊂ VH , and the conclusion is the
same.

• Local aggregation aggLu. In this case, we have

{{χA,(L)
G (uG, wG) : wG ∈ NG(vG)}} 6= {{χA,(L)

H (uH , wH) : wH ∈ NH(vH)}}.

Therefore, there exists a color c such that |CG(uG, vG, c)| 6= |CH(uH , vH , c)|, where we denote

CG(uG, vG, c) = |{wG ∈ NG(vG) : χ
A,(L)
G (uG, wG) = c}|.

If |CG(uG, vG, c)| > |CH(uH , vH , c)|, Spoiler can select the vertex subset SS = CG(uG, vG, c) ⊂ NG(vG). If
|CG(uG, vG, c)| < |CH(uH , vH , c)|, Spoiler can select the vertex subset SS = CH(uH , vH , c) ⊂ NH(vH). Using a
similar analysis as the above case, we can conclude that Spoiler wins the game.

The cases of aggLv , aggGv , aggPvv are similar (symmetric) to aggLu, aggGu , aggPuu, so we omit them for clarity. We have
concluded the induction step.

Lemma H.3. Let l ∈ N be any integer. Assume {aggLu, aggLv} ∩ A 6= ∅. For any vertices uG, vG ∈ VG and uH , vH ∈ VH ,
if χA,(l+1)

G (uG, vG) = χ
A,(l+1)
H (uH , vH), then Duplicator can win the l-round (u, v)-pebbling game GA,l(u; v) with

u = (uG, uH), v = (vG, vH).

Proof. The proof is based on induction over l. First, consider the base case of l = 0. Let χA,(1)
G (uG, vG) = χ

A,(1)
H (uH , vH).

If uG = vG, then uH = vH (due to the node marking policy). If {uG, vG} ∈ EG, then {uH , vH} ∈ EH (which follows
by applying the local aggregation, similar to the proof of Lemma E.4). Therefore, (uG, vG) and (uH , vH) have the same
isomorphism type.

Now assume that Lemma H.3 holds for l ≤ L, and consider l = L+ 1. Let χA,(L+2)
G (uG, vG) = χ

A,(L+2)
H (uH , vH). Then,

agg(uG, vG, G, χ
A,(L+1)
G ) = agg(uH , vH , H, χ

A,(L+1)
H ) (20)

holds for all agg ∈ A. Separately consider various possible strategies for Spoiler:

• If aggPvu ∈ A and Spoiler chooses to swap pebbles u and v. Setting agg = aggPvu in (20) yields χA,(L+1)
G (vG, uG) =

χ
A,(L+1)
H (vH , uH). The remaining game is equivalent to GA,L(u, v) with u = (vG, vH), v = (uG, uH). By induction,

Duplicator wins the game.

• If aggPuu ∈ A and Spoiler chooses to move pebbles v to the position of pebble u. This case is similar to the above
one, and we have χA,(L+1)

G (uG, uG) = χ
A,(L+1)
H (uH , uH). The remaining game is equivalent to GA,L(u, v) with

u = (uG, uH), v = (uG, uH). By induction, Duplicator wins the game.

• If aggGu ∈ A, and Spoiler chooses a subset SS. Setting agg = aggGu in (20) yields

{{χA,(L+1)
G (uG, wG) : wG ∈ VG}} = {{χA,(L+1)

H (uH , wH) : wH ∈ VH}}.

If SS ⊂ VG, then Duplicator can respond with a subset SD ⊂ VH such that

{{χA,(L+1)
G (uG, wG) : wG ∈ SS}} = {{χA,(L+1)

H (uH , wH) : wH ∈ SD}}.
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If SS ⊂ VH , then Duplicator can respond with a subset SD ⊂ VG such that

{{χA,(L+1)
G (uG, wG) : wG ∈ SD}} = {{χA,(L+1)

H (uH , wH) : wH ∈ SS}}.

In both cases, we clearly have |SS| = |SD|. Next, no matter how Spoiler moves pebble v to a vertex xS ∈ SD,
Duplicator can always respond by moving the other pebble v to a vertex xD ∈ SS, such that χA,(L+1)

G (uG, ṽG) =

χ
A,(L+1)
H (uH , ṽH), where (ṽG, ṽH) is the new position of pebbles v. The remaining game is equivalent to GA,L(u, v)

with u = (uG, uH), v = (ṽG, ṽH). By induction, Duplicator wins the game.

• If aggLu ∈ A, then all the procedure is similar to the above one except that the subsets SS and SD contain only the
neighboring vertices adjacent to pebbles v.

The cases of aggLv , aggGv , aggPvv are similar (symmetric) to aggLu, aggGu , aggPuu, so we omit them for clarity. We have
concluded the induction step.

Combining Lemmas H.2 and H.3 immediately yields the following theorem:

Theorem H.4. Let χA be the stable color mapping of SWL algorithm A(A,Pool), satisfying {aggLu, aggLv} ∩ A 6= ∅. For
any vertices uG, vG ∈ VG and uH , vH ∈ VH , χAG(uG, vG) = χAH(uH , vH) if and only if Duplicator can win the l-round
(u, v)-pebbling game GA,l(u; v) for any l ∈ N with u = (uG, uH), v = (vG, vH).

We next turn to FWL-type algorithms. We can similarly define the L-round (u, v)-pebbling game GL for FWL(2), LFWL(2),
and SLFWL(2). We have the following theorem parallel to Theorem H.4.

Theorem H.5. Let χ be the stable color mapping of any FWL-type algorithm, e.g., FWL(2), LFWL(2), and SLFWL(2).
For any vertices uG, vG ∈ VG and uH , vH ∈ VH , χG(uG, vG) = χH(uH , vH) if and only if Duplicator can win the
corresponding l-round (u, v)-pebbling game Gl(u; v) for any l ∈ N with u = (uG, uH), v = (vG, vH).

Proof. The proof is highly similar to the proof of Lemmas H.2 and H.3. For clarity, we only take LFWL(2) as an example.
We use induction over l to prove that for any l ∈ N, χ(l)

G (uG, vG) = χ
(l)
H (uH , vH) if and only if Duplicator can win the

l-round (u, v)-pebbling game Gl(u; v) with u = (uG, uH), v = (vG, vH). The base case of l = 0 is trivial.

For the induction step, suppose the result holds for l ≤ L and consider l = L+ 1. Let χ(L+1)
G (uG, vG) 6= χ

(L+1)
H (uH , vH).

If χ(L)
G (uG, vG) 6= χ

(L)
H (uH , vH), Spoiler wins by induction. Otherwise, by definition of LFWL(2) we have

{{(χ(L)
G (uG, wG), χ

(L)
G (wG, vG)) : wG ∈ N 1

G(vG)}} 6= {{(χ
(L)
H (uH , wH), χ

(L)
H (wH , vH)) : wH ∈ N 1

H(vH)}}.

Therefore, there exists a color c such that |CG(uG, vG, c)| 6= |CH(uH , vH , c)|, where we denote

CG(u, v, c) = |{w ∈ N 1
G(v) : (χ

(L)
G (u,w), χ

(L)
G (w, v)) = c}|.

Assume |CG(uG, vG, c)| > |CH(uH , vH , c)| without loss of generality, then Spoiler can select the vertex subset SS =
CG(uG, vG, c) ⊂ N 1

G(vG). No matter how Duplicator responds with SD ⊂ N 1
H(vH), there exists wH ∈ SD such that

(χ
(L)
H (uH , wH), χ

(L)
H (wH , vH)) 6= c. Spoiler thus select this vertex xS = wH , and no matter how Duplicator responds with

xD = wG ∈ SS, we have either χ(L)
G (uG, wG) 6= χ

(L)
H (uH , wH) or χ(L)

G (wG, vG) 6= χ
(L)
H (wH , vH). Spoiler chooses to

move pebbles v or u depending on which relation does not hold. The remaining game will then be equivalent to GL(u, v)

with u = (ũG, ũH), v = (ṽG, ṽH) such that χ(L)
G (ũG, ṽG) 6= χ

(L)
H (ũH , ṽH). By induction, Spoiler wins the game.

For the converse direction, the proof is similar and we omit it for clarity.

Finally, we complete the analysis by incorporating different pooling paradigms into pebbling games. We will prove the
following general result:

Lemma H.6. Let χ be the stable color mapping of any WL algorithm and let G be the corresponding pebbling game, such
that χG(uG, vG) = χH(uH , vH) if and only if Duplicator can win the l-round (u, v)-pebbling game Gl(u; v) for all l ∈ N
with u = (uG, uH), v = (vG, vH). Then,
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• {{χG(uG, vG) : uG, vG ∈ VG}} = {{χH(uH , vH) : uH , vH ∈ VH}} if and only if Duplicator can win the pebbling
game when u = (uG, uH), v = (vG, vH) are selected according to the game rule of FWL-type algorithms defined in
Section 6;

• {{{{χG(uG, vG) : vG ∈ VG}} : uG ∈ VG}} = {{{{χH(uH , vH) : vH ∈ VH}} : uH ∈ VH}} if and only if Duplicator
can win the pebbling game when u = (uG, uH), v = (vG, vH) are selected according to the game rule of VS pooling
defined in Section 6;

• {{{{χG(uG, vG) : uG ∈ VG}} : vG ∈ VG}} = {{{{χH(uH , vH) : uH ∈ VH}} : vH ∈ VH}} if and only if Duplicator
can win the pebbling game when u = (uG, uH), v = (vG, vH) are selected according to the game rule of SV pooling
defined in Section 6.

Proof. We only prove the second bullet and other cases are similar. First assume {{{{χG(uG, vG) : vG ∈ VG}} : uG ∈
VG}} = {{{{χH(uH , vH) : vH ∈ VH}} : uH ∈ VH}}. According to the game rule, both players first place pebbles u based
on a vertex selection procedure. Without loss of generality, suppose Spoiler chooses a subset SS ⊂ VG. Then Duplicator
can respond with a subset SD ⊂ VH such that

{{{{χG(uG, vG) : vG ∈ VG}} : uG ∈ SS}} = {{{{χH(uH , vH) : vH ∈ VH}} : uH ∈ SD}}.

Then no matter how Spoiler selects a vertex xS = uH ∈ SD, Duplicator can always select xD = uG ∈ SS, such that

{{χG(uG, vG) : vG ∈ VG}} = {{χH(uH , vH) : vH ∈ VH}}.

Similarly, after selecting the position of pebbles v, Duplicator always has a strategy to ensure that χG(uG, vG) =
χH(uH , vH). For the remaining game, Duplicator can win due to the assumption of Lemma H.6.

For the converse direction, assume {{{{χG(uG, vG) : vG ∈ VG}} : uG ∈ VG}} 6= {{{{χH(uH , vH) : vH ∈ VH}} : uH ∈
VH}}. Similar to the proof of global aggregation in Lemma H.2, Spoiler has a strategy to ensure that

{{χG(uG, vG) : vG ∈ VG}} 6= {{χH(uH , vH) : vH ∈ VH}}

after placing pebble u to position (uG, uH). Again, after placing pebble v to position (vG, vH), Spoiler has a strategy to
ensure that χG(uG, vG) 6= χH(uH , vH). For the remaining game, Spoiler can win due to the assumption of Lemma H.6.

Consequently, Theorem 6.2 and Theorem 6.3 holds by Theorems H.4 and H.5 and Lemma H.6.

I. Proof of Separation Results (Theorem 7.1)
This section contains the proof of the main result in this paper (Theorem 7.1). The proof is quite involved and is divided into
three parts. First, we introduce a novel construction of counterexample graphs that are based on (and greatly extend) the work
of Fürer (2001). We provide an in-depth analysis of the isomorphism properties of these counterexample graphs through
a set of key theorems. Then, in light of the special properties, we simplify the pebbling game developed in Section 6 for
each type of SWL/FWL algorithm, which specifically targets these counterexample graphs. Finally, we prove all separation
results in Section 7 using the pebbling game viewpoint and give concrete counterexample graphs for each pair of algorithms.

I.1. Generalized Fürer graphs and their properties

We first introduce a class of graphs which we call the Fürer graphs (Fürer, 2001).

Definition I.1 (Fürer graphs). Given any connected graph F = (VF , EF ), the Fürer graph G(F ) = (VG, EG) is constructed
as follows:

VG = {(x,X ) : x ∈ VF ,X ⊂ NF (x), |X | mod 2 = 0},
EG = {{(x,X ), (y,Y)} ⊂ VG : {x, y} ∈ EF , (x ∈ Y ↔ y ∈ X )}.

Here, x ∈ Y ↔ y ∈ X means that either (x ∈ Y and y ∈ X ) or (x /∈ Y and y /∈ X ). For each vertex x ∈ VF , denote the set

MetaF (x) := {(x,X ) : X ⊂ NF (x), |X | mod 2 = 0}, (21)

which is called the meta vertices of G(F ) associated to vertex F . Clearly, VG =
⋃

x∈VF MetaF (x).
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(a) Base graph F (b) Fürer graph G(F ) (c) Twisted Fürer graph H(F ) for edge {2, 4}

Figure 2. Illustration of the construction of Fürer graph and twisted Fürer graph.

We next define an operation called “twist”:

Definition I.2 (Twist). Let G(F ) = (VG, EG) be the Fürer graph of F = (VF , EF ), and let {x, y} ∈ EF be an edge of F .
The twisted Fürer graph for edge {x, y} is constructed as follows: twist(G(F ), {x, y}) := (VG, EH), where

EH := EG4{{ξ, η} : ξ ∈ MetaF (x), η ∈ MetaF (y)}.

Here,4 is the symmetric difference operation, i.e., A4B = (A\B) ∪ (B\A).

In other words, the twisted Fürer graph twist(G(F ), {x, y}) is the graph modified from G(F ) by deleting all edges of the
form {(x,X ), (y,Y)} ∈ EG and adding the following set of edges

{{(x,X ), (y,Y)} ⊂ VG : (x ∈ Y ↔ y /∈ X )}.

We give an illustration of the construction of Fürer graph and twisted Fürer graph for a simple graph F in Figure 2.

The twist operation can be further generalized into twisting a set of edges. We adopt the following notations:

twist(G(F ), E) := twist(· · · twist(G(F ), e1) · · · , ek) (22)

given an edge set E = {e1, · · · , ek} ⊂ EF . Note that the resulting graph twist(G(F ), E) does not depend on the order of
edges e1, · · · , ek for twisting, so (22) is well-defined.

The first key result below shows that if we twist any two edges of a Fürer graph, the resulting graph is isomorphic to the
original graph.

Lemma I.3. LetG(F ) = (VG, EG) be the Fürer graph of F = (VF , EF ). Then, for any two different edges {x, y}, {u, v} ∈
EF ,

twist(G(F ), {{x, y}, {u, v}}) ' G(F ).

Moreover, there exists an isomorphism f : VG → VG from G(F ) to twist(G(F ), {{x, y}, {u, v}}) that maps each meta
vertex set MetaF (x) to itself for all x ∈ VF .

Proof. Denote Ĝ(F ) := twist(G(F ), {{x, y}, {u, v}}). Since F is connected, one can always find a simple path
(w0, w1, · · · , wk), k ≥ 1 with {w0, w1} = {x, y} and {wk−1, wk} = {u, v}. Denote P = {w1, · · · , wk−1}. Construct a
mapping f : VG → VG as follows:

f(z,Z) =
{

(z,Z4{wi−1, wi+1}) if z = wi, i ∈ [k − 1],
(z,Z) if z /∈ P. (23)

We will prove that f is an isomorphism from G(F ) to Ĝ(F ). First, since |Z| mod 2 = 0 implies that
|Z4{wi−1, wi+1}| mod 2 = 0, f is indeed a valid mapping from VG to VG. Also, it is straightforward to see that
f is bijective. It remains to verify that for any edge {(z,Z), (z′,Z ′)} ∈ EG, {f(z,Z), f(z′,Z ′)} is an edge of Ĝ(F ).
Separately consider the following cases:
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• If z, z′ /∈ P , then {f(z,Z), f(z′,Z ′)} = {(z,Z), (z′,Z ′)} is clearly an edge of Ĝ(F ).

• If z, z′ ∈ P , denote z = wi and z′ = wj . Then it is straightforward to see that wi ∈ Z ′ ↔ wj ∈ Z
if and only if wi ∈ Z ′4{wj−1, wj+1} ↔ wj ∈ Z4{wi−1, wi+1}. Therefore, {f(z,Z), f(z′,Z ′)} =

{(z,Z4{wi−1, wi+1}), (z′,Z ′4{wj−1, wj+1})} is an edge of Ĝ(F ).

• If z = wi ∈ P , z′ /∈ P , {z, z′} 6= {x, y}, and {z, z′} 6= {u, v}, then z′ 6= wi−1 and z′ 6= wi+1. Therefore,
z ∈ Z ′ ↔ z′ ∈ Z if and only if z ∈ Z ′ ↔ z′ ∈ Z4{wi−1, wi+1}. This implies that {f(z,Z), f(z′,Z ′)} =

{(z,Z4{wi−1, wi+1}), (z′,Z ′)} is an edge of Ĝ(F ).

• If {z, z′} = {x, y}, we can denote z = w0 and z′ = w1. We have z ∈ Z ′ ↔ z′ ∈ Z if and only if
z /∈ Z ′4{w0, w2} ↔ z′ ∈ Z . Note that there is a twist in Ĝ(F ) for edge {x, y}, so we still obtain that
{f(z,Z), f(z′,Z ′)} = {(z,Z), (z′,Z ′4{w0, w2})} is an edge of Ĝ(F ).

• Finally, if {z, z′} = {u, v}, the analysis is the same as the above one and {f(z,Z), f(z′,Z ′)} is an edge of Ĝ(F ).

In all cases, {f(z,Z), f(z′,Z ′)} is an edge of Ĝ(F ). Moreover, it is clear that f maps each meta vertex set MetaF (x) to
itself for all x ∈ VF , which concludes the proof.

Based on Lemma I.3, it is convenient to define a notion called proper isomorphism:

Definition I.4 (Proper isomorphism). Let G(F ) = (VG, EG) be the Fürer graph of F = (VF , EF ) and Ĝ(F ) =

twist(G(F ), E) for some E ⊂ EF . We say f is a proper isomorphism from G(F ) to Ĝ(F ), if f is an isomorphism
from G(F ) to Ĝ(F ) that maps each meta vertex set MetaF (x) to itself for all x ∈ VF .

Lemma I.3 can be generalized into the following corollary:

Corollary I.5. Let G(F ) = (VG, EG) be the Fürer graph of F = (VF , EF ). Then, for any edge set E ⊂ EF and any two
different edges {x, y}, {u, v} ∈ EF ,

twist(G(F ), E4{{x, y}, {u, v}}) ' twist(G(F ), E).

Moreover, any proper isomorphism f : VG → VG fromG(F ) to twist(G(F ), {{x, y}, {u, v}}) is also a proper isomorphism
from twist(G(F ), E) to twist(G(F ), E4{{x, y}, {u, v}}).

Proof. Denote Ĝ(F ) := twist(G(F ), {{u, v}, {x, y}}), H(F ) := twist(G(F ), E), and Ĥ(F ) := twist(Ĝ(F ), E). Note
that by definition of the twist operation, we equivalently have Ĥ(F ) = twist(G(F ), E4{{x, y}, {u, v}}). Due to
Lemma I.3, we have Ĝ(F ) ' G(F ). Let f be a proper isomorphism from G(F ) to Ĝ(F ) (according to Lemma I.3). It
suffices to prove that f is also an isomorphism from H(F ) to Ĥ(F ).

For any edge {(w,W), (z,Z)} in H(F ):

• If {w, z} ∈ E , then {(w,W), (z,Z)} is not an edge in G(F ). Therefore, {f(w,W), f(z,Z)} is not an edge in Ĝ(F ).
Since f maps MetaF (w) to MetaF (w) and maps MetaF (z) to MetaF (z), we obtain that {f(w,W), f(z,Z)} is an
edge in Ĥ(F ).

• If {w, z} /∈ E , then {(w,W), (z,Z)} is an edge in G(F ). Therefore, {f(w,W), f(z,Z)} is an edge in Ĝ(F ). Since
f maps MetaF (w) to MetaF (w) and maps MetaF (z) to MetaF (z), we also obtain that {f(w,W), f(z,Z)} is an
edge in Ĥ(F ).

In both cases, {f(w,W), f(z,Z)} is an edge in Ĥ(F ). Since Lemma I.3 has proved that f is bijective, f is an isomorphism
from H(F ) to Ĥ(F ) and thus H(F ) ' Ĥ(F ).

As a special case, Corollary I.5 leads to the following important fact:

Corollary I.6. Let G(F ) be the Fürer graph of F = (VF , EF ). Then, for any two edges {x, y}, {u, v} ∈ EF ,

twist(G(F ), {x, y}) ' twist(G(F ), {u, v}).

Proof. Setting E = {u, v} in Corollary I.5 readily concludes the proof.
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Corollary I.6 shows that the structure of a twisted Fürer graph does not depend on which edge is twisted. Therefore, we can
simply denote H(F ) as the twisted Fürer graph of F without specifying the twisted edge {x, y}. Moreover, recursively
applying Corollary I.5 obtains that, if we twist k edges of a Fürer graph G(F ), the resulting graph is isomorphic to either
G(F ) or H(F ), depending on whether k is even or odd. To complete the result, we show G(F ) and H(F ) are actually
non-isomorphic under certain conditions:

Lemma I.7. Let G(F ) = (VG, EG) be the Fürer graph of F = (VF , EF ), and let H(F ) = (VG, EH) be the twisted Fürer
graph. Then there does not exist a proper isomorphism f : VG → VG from G(F ) to H(F ).

Proof. Assume H(F ) = twist(G(F ), {u, v}) for some {u, v} ∈ EF and f : VG → VG is a proper isomorphism. Then we
can write f(x, ∅) = (x, Tx) for all x ∈ VF . Note that for any {x, y} ∈ EF , by definition of the Fürer graph there is an edge
between vertices (x, ∅) and (y, ∅) in G(F ). However, we will prove that this is not the case for H(F ): there must exist an
odd number of edges {x, y} ∈ EF such that {(x, Tx), (y, Ty)} /∈ EH . This will lead to a contradiction and finish the proof.

Formally, let E = {{(x, Tx), (y, Ty)} : {x, y} ∈ EF }, and our goal is prove that |E\EH | mod 2 = 1. The proof is
based on induction. First, consider the base case when Tx = ∅ for all x ∈ VF . Clearly, there is exactly one element
{(u, Tu), (v, Tv)} /∈ EH since H(F ) is obtained from G(F ) by twisting edge {u, v}. Next, for the induction step, we show
if |E\EH | mod 2 = 1, then |Ẽ\EH | mod 2 = 1 holds for any Ẽ that is modified from E by changing a given Sz to another
feasible S̃z for some z ∈ VF , namely,

Ẽ = {{(x, Tx), (y, Ty)} : {x, y} ∈ EF , x, y 6= z} ∪ {{(x, Tx), (z, T̃z)} : {x, z} ∈ EF }.

This is because

|Ẽ\EH | − |E\EH | ≡ |(Ẽ4E)\EH |
≡ |{x ∈ NF (z) : x ∈ Tz ↔ x /∈ T̃z}|
≡ |Tz4T̃z| ≡ 0 (mod 2),

where the last equation holds because |Tz| ≡ |T̃z| ≡ 0 (mod 2). This concludes the induction step.

Since any set E can be obtained from the initial set {{(x, ∅), (y, ∅)} : {x, y} ∈ EF } by modifying ∅ to Tz for each z ∈ VF
and the parity of |E\EH | does not change throughout the process, we have concluded the proof.

Below, we proceed to perform an in-depth analysis of the properties regarding the isomorphisms of (twisted) Fürer graphs.
We need several definitions.

Definition I.8 (Connected components). Let F = (VF , EF ) be a connected graph and let S ⊂ VF be a vertex set, called
separation vertices. We say two edges {u, v}, {x, y} ∈ EF are in the same connected component if there is a path
(y0, y1, · · · , yk) satisfying that {y0, y1} = {u, v}, {yk−1, yk} = {x, y} and yi /∈ S for all i ∈ [k − 1]. It is easy to see that
the above relationship between edges forms an equivalence relation. Therefore, we can define a partition over the edge set:
CCS(F ) = {Pi : i ∈ [M ]}, where each Pi ⊂ EF is called a connected component.

We are ready to state the central theorem:

Theorem I.9. Let G(F ) = (VG, EG) be either the original or twisted Fürer graph of F = (VF , EF ), and let S ⊂ VF be
any set. For each u ∈ S , let (u, Tu), (u,Uu) ∈ MetaF (u) be any given vertex sets. Then, there exists a proper isomorphism
f from graph G(F ) to graph twist(G(F ), E) for some E ⊂ EF with |E| mod 2 = 0, such that f(u, Tu) = (u,Uu) for
all u ∈ S. Moreover, for any Ẽ ⊂ EF , there exists a proper isomorphism f̃ from G(F ) to twist(G(F ), Ẽ) such that
f̃(u, Tu) = (u,Uu) for all u ∈ S if and only if |P ∩ Ẽ| ≡ |P ∩ E| (mod 2) for all P ∈ CCS(F ).

Proof. We only consider the case when G(F ) is a Fürer graph, and the case of twisted Fürer graph is similar. We prove the
theorem by induction over the size of S. For the base case of |S| = 0, there is clearly a trivial isomorphism (identity map)
from G(F ) to twist(G(F ), ∅) = G(F ).

Now assume that the result holds for set S , and there exists a proper isomorphism f from G(F ) to twist(G(F ), E) for some
E with |E| mod 2 = 0, such that f(u, Tu) = (u,Uu) for all u ∈ S. Consider adding a vertex v ∈ VF and two given sets
(v, Tv), (v,Uv) ∈ MetaF (v). We will construct a new proper isomorphism fnew from G(F ) to twist(G(F ), Enew) for some
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Enew ⊂ EF with |Enew| mod 2 = 0, such that fnew(u, Tu) = (u,Uu) for all u ∈ S and fnew(v, Tv) = (v,Uv). Denote
Ũv := f(v, Tv) and denote Dv = Uv4Ũv . Note that the size of Dv is even.

Denote Dv = {x1, · · · , x2k}. We define k mappings fi : VG → VG, i ∈ [k] as follows:

fi(w,W) =

{
(w,W4{x2i−1, x2i}) if w = v,
(w,W) otherwise. (24)

We set fnew to be the composition of a series of mappings fnew := fk ◦ · · · ◦ f1 ◦ f . By definition, we have

fnew(v, Tv) = (fk ◦ · · · ◦ f1)(v, Ũv) = (v, Ũv4Dv) = (v,Uv),

and for all u ∈ S,
fnew(u, Tu) = (fk ◦ · · · ◦ f1)(u,Uu) = (u,Uu).

It remains to verify that fnew is an isomorphism from G(F ) to twist(G(F ), Enew) for some Enew with |Enew| mod 2 = 0.
Denote E(i) =

⋃2i
j=1{{v, uj}} for i ∈ {0, 1, · · · , k}. Based on the proof of Lemma I.3 (i.e., the construction in (23)), fi is

an isomorphism from G(F ) to twist(G(F ), {{v, u2i−1}, {v, u2i}}). Further using Corollary I.5, fi is also an isomorphism
from twist(G(F ), E4E(i−1)) to twist(G(F ), E4E(i)). Thus by composition, fnew is an isomorphism from G(F ) to
twist(G(F ), E4E(k)), namely, Enew = E4E(k). Also, since |E(k)| = 2k and |E| mod 2 = 0, we have |Enew| mod 2 = 0,
as desired. This finishes the induction step and concludes the proof of the first part.

For the second part, let us first consider how to find a proper isomorphism f̃ from G(F ) to twist(G(F ), Ẽ) for other
Ẽ satisfying |P ∩ Ẽ| ≡ |P ∩ E| (mod 2) for all P ∈ CCS(F ), such that f̃(u, Tu) = (u,Uu) for all u ∈ S. For each
P ∈ CCS(F ), denote DP := (E4Ẽ) ∩ P . Clearly,

⋃
P∈CCS(F )DP = E4Ẽ . By assumption we have

|DP | = |(E4Ẽ) ∩ P| = |(E ∩ P)4(Ẽ ∩ P)|
≡ |E ∩ P|+ |Ẽ ∩ P| ≡ 0 (mod 2).

Therefore, there is a proper isomorphism fP from G(F ) to twist(G(F ),DP) based on Lemma I.3 and Corollary I.5.
Concretely, denote DP = {e1, · · · , e2k}, then fP can be constructed as a composition fP = fPk ◦ · · · ◦ fP1 where each
fPi is a proper isomorphism from twist(G(F ),

⋃2(i−1)
j=1 {ej}) to twist(G(F ),

⋃2i
j=1{ej}). Since all edges ej ∈ DP are in

the same connected component, there exists a path containing edges e2i−1 and e2i and it does not go through vertices in S .
Therefore, by construction of (23) in Lemma I.3, all the mappings fPi does not change the value for inputs MetaF (u) for all
u ∈ S . Namely, fP(u,Uu) = (u,Uu) for all u ∈ S . Finally, we set f̃ = (◦P∈CCS(F )f

P) ◦ f to be the composition of f and
all fP . We have f̃(u, Tu) = (◦P∈CCS(F )f

P)(u,Uu) = (u,Uu), as desired. Moreover, f̃ is indeed a proper isomorphism
from G(F ) to twist(G(F ), E4(

⋃
P∈CCS(F )DP)) = twist(G(F ), Ẽ).

Conversely, suppose Ẽ satisfies that |P ∩ Ẽ| 6≡ |P ∩ E| (mod 2) for some P ∈ CCS(F ). We will prove that any proper
isomorphism f̃ from G(X) to twist(G(X), Ẽ) cannot satisfy f̃(u, Tu) = (u,Uu) for all u ∈ S. To prove the result, it
suffices to prove that any proper isomorphism f̂ from twist(G(X), E) to twist(G(X), Ẽ) cannot satisfy f̂(u,Uu) = (u,Uu)
for all u ∈ S. Let VPF :=

⋃
{x,y}∈P{x, y} ⊂ VF be the set of vertices associated to the connected component P , and let

VPG :=
⋃

x∈VP
F
MetaF (x). It thus suffices to prove that any proper isomorphism fP : VPG → VPG from the induced subgraph

GP := twist(G(X), E)[VPG ] to the induced subgraph HP := twist(G(X), Ẽ)[VPG ] cannot satisfy fP(u,Uu) = (u,Uu) for
all u ∈ S ∩ VPF .

The proof follows the same technique as Lemma I.7. For each x ∈ VPF \S , pick an arbitrary meta vertex (x,Ux) ∈ MetaF (x).
Combined with all (u,Uu) for u ∈ S ∩ VPF , now each vertex x ∈ VPF is associated with a set Ux. First consider the base
case when fP(x,Ux) = (x,Ux) for all x ∈ VPF . It can be proved that the set {{(x,Ux), (y,Uy)} : {x, y} ∈ P} contains
an odd/even number of edges in GP but an even/odd number of edges in HP , i.e., their parity differs. This is because
HP can be obtained from GP by twisting the edge set (E4Ẽ) ∩ P , which contains an odd number of edges. Therefore,
fP is not a proper isomorphism from GP to HP in this case. For the induction step, consider gradually changing the
output fP(w,Uw) = (w,Uw) to fP(w,Uw) = (w, Ũw) for each w ∈ VPF \S where (w, Ũw) ∈ MetaF (w) can be an
arbitrary meta vertex. It can be proved that the parity defined above does not change throughout the process (following the
proof of Lemma I.7). We have thus proved the induction step, and in all cases there does not exist a proper isomorphism
fP : VPG → VPG from GP to HP satisfying fP(u,Uu) = (u,Uu) for all u ∈ S ∩ VPF .
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Theorem I.9 partially answers the question of how to construct a proper isomorphism f from a Fürer graph G(F ) to another
Fürer graph twist(G(F ), E) when the mapped outputs f(ξ) are specified for several given inputs ξ ∈ VG. However, it
does not fully address the problem, because it does not consider the case when two or more inputs ξ are from the same set
MetaF (u) for some u ∈ VF . In the following, we will focus on this general setting. We first consider the special case when
all ξ are from the same meta vertex set MetaF (u). We have the following result:

Lemma I.10. Let G(F ) = (VG, EG) be either the original or twisted Fürer graph of F = (VF , EF ). Let u ∈ VF and
(u, T 1), (u,U1), · · · , (u, T k), (u,Uk) ∈ MetaF (u) be vertices in VG. Then, there exists a set D ⊂ NF (u) such that
T i4U i = D for all i ∈ [k], if and only if there exists a proper isomorphism f from graph G(F ) to graph twist(G(F ), E)
for some E ⊂ EF with |E| mod 2 = 0, such that f(u, T i) = (u,U i) for all i ∈ [k].

Proof. “⇒”. Let D ⊂ NF (u) satisfy that T i4U i = D for all i ∈ [k]. Clearly, |D| mod 2 = 0. Denote D = {v1, · · · , v2l}.
Similar to the construction in (24), construct a mapping f : VG → VG to be f = fl ◦ · · · ◦ f1, where

fj(w,W) =

{
(w,W4{v2j−1, v2j}) if w = u,
(w,W) otherwise.

Using a similar analysis, we obtain that f is a proper isomorphism from G(F ) to twist(G(F ),
⋃2l

j=1{{u, vj}}) and
f(u, T i) = (u, T i4D) = (u,U i) for all i ∈ [k].

“⇐”. Assume there does not exist D ⊂ NF (u) satisfying T i4U i = D for all i ∈ [k]. Then, there must exist two indices
i, j and a vertex v ∈ NF (u) such that v ∈ T i4U i but v /∈ T j4U j . We show any proper isomorphism f from G(F ) to
twist(G(F ), E) cannot satisfy both f(u, T i) = (u,U i) and f(u, T j) = (u,U j). Let f(v, ∅) = (v,V). This is simply due
to the following fact:

• If f(u, T i) = (u,U i), then by definition of isomorphism we have u ∈ ∅ ↔ v ∈ T i ⇐⇒ u ∈ V ↔ v ∈ U i. Since
v ∈ T i4U i, we obtain u ∈ V;

• If f(u, T j) = (u,U j), then by definition of isomorphism we have u ∈ ∅ ↔ v ∈ T j ⇐⇒ u ∈ V ↔ v ∈ Uj . Since
v /∈ T j4U j , we obtain u /∈ V .

This yields a contradiction and concludes the proof.

We finally consider the most general setting. Our result is present as follows:

Corollary I.11. Let G(F ) = (VG, EG) be either the original or twisted Fürer graph of F = (VF , EF ). Let {(ui, Ti)}ki=1 ⊂
VG and {(ui,Ui)}ki=1 ⊂ VG be two vertex sets of G(F ). Define R(u) := {(Ti,Ui) : ui = u} and let S = {ui : i ∈ [k]}.
The following two items are equivalent:

• There exists a proper isomorphism f from graph G(F ) to graph twist(G(F ), E) for some E ⊂ EF with |E| mod 2 = 0,
such that f(ui, Ti) = (ui,Ui) for all i ∈ [k].

• For all v ∈ VF , there exists Dv ⊂ NF (v) such that Ti4Ui = Dv holds for all (Ti,Ui) ∈ R(v).

Moreover, if the first item holds, then for any Ẽ ⊂ EF , there exists a proper isomorphism f̃ from G(F ) to twist(G(F ), Ẽ)
such that f(ui, Ti) = (ui,Ui) for all i ∈ [k], if and only if |P ∩ Ẽ| ≡ |P ∩ E| (mod 2) for all P ∈ CCS(F ).

Proof. First assume the second item does not hold for some v ∈ VF . Then by Lemma I.10, there does not exist a proper
isomorphism f from graph G(F ) to some twist(G(F ), E) such that f(v, Ti) = (v,Ui) for all (Ti,Ui) ∈ R(v). Clearly, the
first item of Corollary I.11 does not hold either.

Now assume the second item holds. For each v ∈ S, pick an arbitrary element inR(v), denoted as (T v,Uv). We can then
invoke Theorem I.9 with {T v}v∈S and {Uv}v∈S . Denote f as the proper isomorphism from G(F ) to twist(G(F ), E) for
some E with |E| mod 2 = 0 returned by Theorem I.9, such that f(v, T v) = (v,Uv) for all v ∈ S. It remains to prove that
for all other elements (Ti,Ui) /∈ {(T v,Uv) : v ∈ S}, we still have f(ui, Ti) = (ui,Ui).

Observe that the construction of f in Theorem I.9 has the form f(w,W) = (w,W4Dw) for all (w,W) ∈ VG where Dw

is a fixed set for each w ∈ VF (which can be seen from the proof of Theorem I.9). Under the notation above, we have
T v4Dv = Uv for all v ∈ S . If f(ui, Ti) 6= (ui,Ui) for some i, then Ti4Wui 6= Ui. This implies that T ui4Uui 6= Ti4Ui,
which contradicts the second item of Corollary I.11 and concludes the proof.
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Before closing this subsection, we finally introduce a notion called proper Fürer graphs, which will be widely used in
subsequent analysis.

Definition I.12 (Proper Fürer graphs). A Fürer graph G(F ) is called proper, if the base graph F = (VF , EF ) has the
following properties:

• F is a connected graph and the degree of any vertex u ∈ VF is at least two;

• There is at least one vertex u ∈ VF with a degree of at least three.

Proposition I.13. Let G(F ) and H(F ) be any proper Fürer graph and its twisted graph, respectively. Then both G(F )
and H(F ) are connected, and the degree of any vertex in both G(F ) and H(F ) is at least two.

Proof. By definition of (twisted) Fürer graphs, the degree of a vertex (u,U) in G(F ) is
∑

v∈NF (u) |{(v,V) ∈ MetaF (v) :

u ∈ V ↔ v ∈ U}|. By the assumption that |NF (v)| ≥ 2 for all v ∈ VF , the degree of a vertex (u,U) is always∑
v∈NF (u) 2

|NF (v)|−2 ≥
∑

v∈NF (u) 1 ≥ 2. The case of H(F ) is similar. Thus all vertices in both G(F ) and H(F ) have a
degree of at least two.

We next investigate the connectivity of G(F ) and H(F ). Denote u as any vertex in G(F ) or H(F ) with a degree of at least
3. We first show that any two vertices (u, T ), (u,U) ∈ VG satisfying |T 4U| = 2 are in the same connected component. To
see this, pick any w ∈ NF (u)\(T 4U) (which exists since |NF (u)| ≥ 3), and consider the two vertices (w, ∅) and (w,W)
satisfying u ∈ W (the existence ofW is due to w ∈ NF (u) and |NF (w)| ≥ 2). Then,

• If {(w, ∅), (u, T )} is an edge of G(F )/H(F ), then {(w, ∅), (u,U)} is an edge of G(F )/H(F ) (because w ∈ T if and
only if w ∈ U);

• If {(w, ∅), (u, T )} is not an edge of G(F )/H(F ), then {(w,W), (u, T )} is an edge of G(F )/H(F ) (because u /∈ ∅
but u ∈ W). Therefore, {(w,W), (u,U)} is an edge of G(F )/H(F ) (because w ∈ T if and only if w ∈ U).

In both cases, there is a path from (u, T ) to (u,U). Next, we can simply remove the assumption |T 4U| = 2: any
(u, T ), (u,U) ∈ VG are also in the same connected component. Finally, for any vertex (x,X ) in graph G(F )/H(F ), there
is a path from (x,X ) to some vertex in MetaF (u) since F is connected. Using MetaF (u) as a “transit set”, we have proved
that the graph G(F )/H(F ) is connected.

I.2. Simplified pebbling games for Fürer graphs

In Section 6, we developed a unified analyzing framework for all types of WL algorithms based on pebbling games. While
the game viewpoint provides interesting and novel insights into the power of different algorithms, it is still quite challenging
to directly applying such games for Fürer graphs due to their sophisticated structure. In this subsection, we propose a class
of simplified pebbling game motivated from Fürer (2001), which makes our analysis much easier.

We begin by introducing the augmented Fürer graphs defined as follows:

Definition I.14 (Augmented Fürer graphs). Let G(F ) = (VG, EG) be either the original or twisted proper Fürer graph of
F = (VF , EF ) where VF = [n]. Let G̃(F ) be the graph augmented from G(F ) in the following way: for each u ∈ VF , add
a chain Cu of length u+ 1 and link one endpoint of Cu to all vertices in MetaF (u) (see Figure 3 for an illustration). The
vertices on the chains are called auxiliary vertices. For each vertex ξ in G̃(F ), by construction it is associated with a vertex
u in the base graph. We call u is the base vertex of ξ and denote B(ξ) = u.

The main motivation of Definition I.14 is that the added auxiliary vertices help distinguish the sets MetaF (u) for different
u since the lengths of chains Cu are different. Indeed, let A be any SWL algorithm containing a local aggregation or any
FWL-type algorithm, and consider playing the pebbling game for A on augmented Fürer graphs G̃(F ) and its twisted
version H̃(F ). We have the following result, which shows that Duplicator’s best strategy is to match the base vertices for
each pair of pebbles.

Lemma I.15. Consider the pebbling game for any WL algorithm A played on graphs G̃(F ) and H̃(F ). Let (ξG, ξH) be
the position of any pebbles u/v after any round. If B(ξG) 6= B(ξH), then Spoiler can win the remaining game.

Proof. It suffices to consider the (weakest) vanilla SWL algorithm SWL(VS), because Spoiler has more choices to win
when considering more powerful WL algorithms. Also, if B(ξG) 6= B(ξH) holds for pebbles u, Spoiler can just move
pebble v in G̃(F ) in subsequent rounds so that the position of v eventually coincides with pebble u. This is feasible because
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Figure 3. Illustration of the augmented Fürer graph for the Fürer graph in Figure 2. Here, the nodes in gray regions are the vertices of the
original Fürer graph and other vertices are from the chains. We also use different colors to distinguish different types of edges.

G̃(F ) is connected (Proposition I.13). Now if the position of pebble v in H̃(F ) does not coincide with pebble u, Spoiler
already wins. Therefore, in the remaining proof we can assume that B(ξG) 6= B(ξH) holds for pebbles v.

Without loss of generality, assume B(ξG) := vG < vH := B(ξH) (note that VF is a number set). Spoiler’s strategy is then
to move pebble v in G̃(F ) towards the endpoint of the chain CvG . Throughout the process, Duplicator has to keep the
pebble v in H̃(F ) located on the chain CvH (otherwise, the vertices not from the chains must have a degree of at least three
(Proposition I.13), and when the degrees of vG and vH do not match, Spoiler can win in the next round). When Spoiler
finally places pebble v in G̃(F ) to the endpoint of chain CvG , Duplicator cannot place the other pebble v in H̃(F ) to a
vertex of degree 1, so Spoiler can win in the next round.

Similarly, Duplicator has to ensure that for any pebbles u/v on the two graphs, either they are both placed on the auxiliary
vertices, or neither of them is placed on the auxiliary vertices. When they are both placed on the auxiliary vertices, the
distance to the corresponding chain endpoint must be the same. It is easy to see that Duplicator can always achieve this
goal. Therefore, when Duplicator follows her best strategy, there is no reason for Spoiler to place pebbles on these auxiliary
vertices.

We next consider the case when the positions of both pebbles u, v in G̃(F ) correspond to the same base vertex. We have the
following result:

Lemma I.16. Consider the pebbling game for any WL algorithm A played on graphs G̃(F ) and H̃(F ). Let u = (ξG, ξH)
and v = (ηG, ηH) be the positions of pebbles u and v after any round. Assume all pebbles are not placed on auxiliary vertices
and correspond to the same base vertex w ∈ VF . Denote ξG = (w, TG), ξH = (w, TH), ηG = (w,UG), ηH = (w,UH). If
TG4UG 6= TH4UH , Spoiler can win the remaining game.

Proof. The reason why Spoiler can win is essentially given in the proof of Lemma I.10. Similar to the proof of Lemma I.15,
we only consider the (weakest) vanilla SWL algorithm SWL(VS). Since TG4UG 6= TH4UH , there is a vertex x ∈
TG4TH4UG4UH . Clearly, x ∈ NF (w). Spoiler’s strategy is then to move pebble v to any of its neighbors (x, ŨG) for
some ŨG, and Duplicator should move the other pebble v to any of its neighbors (x, ŨH) for some ŨH . By definition of
Fürer graphs, since {(w,UG), (x, ŨG)} is an edge of G̃(F ) and {(w,UH), (x, ŨH)} is an edge of H̃(F ), we have

(x ∈ UG ↔ w ∈ ŨG) = (x ∈ UH ↔ w ∈ ŨH)

⇐⇒ x ∈ UG4UH ↔ w ∈ ŨG4ŨH
⇐⇒ x /∈ TG4TH ↔ w ∈ ŨG4ŨH
⇐⇒ (x ∈ TG ↔ w ∈ ŨG) 6= (x ∈ TH ↔ w ∈ ŨH)

Therefore, the isomorphism type of the two vertex pairs (ξG, η̃G) and (ξH , η̃H) is not the same, where η̃G := (x, ŨG) and
η̃H := (x, ŨH). Spoiler thus wins the game.

41



A Complete Expressiveness Hierarchy for Subgraph GNNs via Subgraph Weisfeiler-Lehman Tests

Lemma I.16 further limits Duplicator’s strategy when two pebbles share the same base vertex. Moreover, when Duplicator
follows her best strategy, it also implies that Spoiler cannot gain extra advantage when he places multiple pebbles to positions
that belong to the same base vertex. Actually, we will show below that the strategy for both Spoiler and Duplicator can
be reduced to focusing only on the information of the base vertices placed by pebbles u, v. In particular, this results in a
simplified pebbling game defined as follows.

Simplified pebbling game for augmented Fürer graphs. Let F = (VF , EF ) be the base graph of a proper Fürer graph.
The simplified pebbling game is played on F . There are three pebbles u, v, w of different types. Initially, all three pebbles
are left outside the graph F . We first describe the game rule for Spoiler, which is similar to Section 6 but is much simpler.

First consider SWL algorithms A(A,Pool). If Pool = VS, Spoiler first places pebble u on any vertex of F and then places
pebble v on any vertex of F . If Pool = SV, Spoiler first places pebble v and then places pebble u.

The game then cyclically executes the following process. Depending on the aggregation scheme A, Spoiler can freely
choose one of the following ways to play:

• Local aggregation aggLu ∈ A. Spoiler first places pebble w adjacent to the vertex placed by pebble v, then swaps
pebbles v and w, and finally places pebble w outside the graph F .

• Global aggregation aggGu ∈ A. Spoiler first places pebble w on any vertex of F , then swaps pebbles v and w, and
finally places pebble w outside F .

• Single-point aggregation aggPuu ∈ A. Spoiler first places pebble w to the position of pebble u, then swaps pebbles v
and w, and finally places pebble w outside F .

• Single-point aggregation aggPvu ∈ A. Spoiler swaps the position of pebbles u and v.

The cases of aggLv , aggGv , aggPvv are similar (symmetric) to aggLu, aggGu , aggPuu, so we omit them for clarity.

Next consider FWL-type algorithms. Initially, Spoiler simultaneously places pebbles u and v on two vertices of F . The
game then cyclically executes the following process. For LFWL(2), Spoiler first places pebble w to some vertex in N 1

F (v),
then either swaps pebbles v, w or swaps pebbles u, w, and finally places w outside the graph F . The cases of SLFWL(2)
and FWL(2) are similar, expect that N 1

F (v) is replaced by N 1
F (u) ∪N 1

F (v) and VF , respectively.

We next describe the game rule for Duplicator, which is of a very different kind. In brief, she maintains a subset Q of
connected components Q ⊂ CCS(F ) (Definition I.8) where the set S contains vertices of F on which the pebbles u, v, w
are currently located. Initially, Q := CC∅(F ) = {EF }. Note that throughout the game, Spoiler only performs three types of
basic operations: (i) add a pebble/two pebbles and place it/them on vertices of F ; (ii) remove a pebble and leave it outside
the graph F ; (iii) swap the positions of two pebbles. Once Spoiler performs an operation above, Duplicator will update Q
according to the following rules so that the parity of |Q| is always odd throughout the game.

• When Spoiler places some pebble(s) on vertices of F , there are two cases. If CCS(F ) does not change, then Duplicator
does nothing. Otherwise, the presence of new pebbles will split some connected components into a set of smaller
regions. For each original connected component P ⊂ EF that is split into P1, · · · ,Pk with

⋃k
i=1 Pi = P , Duplicator

can replace Q by Q̃ = (Q\P) ∪ {Pj1 , · · · ,Pjl} for some j1, · · · , jl ∈ [k], such that |Q̃| mod 2 = 1. In other
words, Duplicator updates the set Q by removing the old connected component P (if in the set) and adding some new
partitioned components, while ensuring that the parity of the size of Q does not change.

• When Spoiler removes a pebble and leave it outside the graph F , there are also two cases. If CCS(F ) does not
change, then Duplicator does nothing. Otherwise, the removal of a pebble will merge several connected components
P1, · · · ,Pk into a larger one P =

⋃k
i=1 Pi. Duplicator then replaces Q by either Q̃ = Q\{P1, · · · ,Pk} or Q̃ =

(Q\{P1, · · · ,Pk}) ∪ P , depending on which one satisfies |Q̃| mod 2 = 1. In other words, Duplicator updates the set
Q by removing these small connected components and optionally adding the merged component to preserve parity.

• When Spoiler swaps the positions of two pebbles, CCS(F ) clearly does not change and thus Duplicator does nothing.

For the case of local aggregation aggLu, there is an extra constraint for Duplicator: after Spoiler places pebble w adjacent to
v and Duplicator updates Q, Duplicator should additionally ensure that {{v, w}} /∈ Q. Similar game rule applies for local
aggregation aggLv .

After any round, Spoiler wins if pebble u is adjacent to v and {{u, v}} ∈ Q. In other words, Spoiler wins if there is a
connected component in Q with only one edge. Finally, Duplicator wins if Spoiler cannot win after any number of rounds.
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Below, we will prove that the simplified pebbling game designed above is actually equivalent to the original pebbling game.
Importantly, the simplified pebbling game is played on the base graph F rather than the sophisticated (augmented) Fürer
graphs and avoids the complicated vertex selection procedure (Definition 6.1), which greatly eases the analysis of players’
strategies.

Theorem I.17. Let G̃(F ) and H̃(F ) be any augmented proper Fürer graph and its twisted version for some base graph F .
For any WL algorithm A considered in this paper, Spoiler can win the corresponding pebbling game on graphs G̃(F ) and
H̃(F ) if and only if he can win the simplified pebbling game on graph F .

Proof. In the original pebbling game, let H̃(F ) = twist(G̃(F ), E) for some E with |E| mod 2 = 1. Based on Lemma I.15,
after any round we can assume that the pebbles u, v are placed on u = (ξG, ξH), v = (ηG, ηH) with matching base vertices,
i.e., we can denote ξG = (x, Tx), ξH = (x,Ux), ηG = (y, Ty), ηH = (y,Uy). We also assume that the condition of
Lemma I.16 holds when x = y. The proof is divided into the following parts.

Part 1 (understanding the relationship between the two types of pebbling games). Consider two game states with different
pebble positions:

• State 1: the positions of pebbles are u = ((x, Tx), (x,U (1)
x )), v = ((y, Ty), (y,U (1)

y ));

• State 2: the positions of pebbles are u = ((x, Tx), (x,U (2)
x )), v = ((y, Ty), (y,U (2)

y )).

In other words, the positions of pebbles on graph G̃(F ) are the same for the two states, but the positions of pebbles on
graph H̃(F ) differ. By Corollary I.11, there is a proper isomorphism f from H̃(F ) to twist(H̃(F ), Ẽ) for some Ẽ with
|Ẽ | mod 2 = 0, such that f(x,U (1)

x ) = (x,U (2)
x ) and f(y,U (1)

y ) = (y,U (2)
y ). Note that the second bullet of Corollary I.11 is

satisfied since we assume that Duplicator follows the strategy of Lemma I.16 and thus U (1)
x 4U (1)

y = Tx4Ty = U (2)
x 4U (2)

y

when x = y. Now using Corollary I.11 again, there is a proper automorphism f̃ of H̃(F ) satisfying f̃(x,U (1)
x ) = (x,U (2)

x )

and f̃(y,U (1)
y ) = (y,U (2)

y ), if and only if |Ẽ ∩P| mod 2 = 0 for all P ∈ CC{x,y}(F ). In other words, if |Ẽ ∩P| mod 2 = 0
for all P ∈ CC{x,y}(F ), then the two states are equivalent.

Similarly, since H̃(F ) = twist(G̃(F ), E), one can also find for each i = 1, 2 a proper isomorphism fi from G̃(F ) to
twist(H̃(F ), Ẽi), such that f(x, Tx) = (x,U (i)

x ) and f(y, Ty) = (y,U (i)
y ). Based on the above analysis, whether Spoiler

can win the game at state i will thus depend purely on the set

Qi = {P ∈ CC{x,y}(F ) : |Ei ∩ P| mod 2 = 0}
= {P ∈ CC{x,y}(F ) : |(E4Ei) ∩ P| mod 2 = 1}.

Namely, if Q1 = Q2, then the two states are equivalent. This is why in the simplified pebbling game Duplicator only
maintains the set Q, which has a similar meaning to Qi.

Part 2 (regarding vertex selection). We show vertex selection in Definition 6.1 can be simplified to satisfy |SS| = |SD| = 1.
First, when SS contains multiple vertices that correspond to different base vertices in F , Duplicator must respond by
matching each base vertex separately and merging them to obtain SD, otherwise Spoiler can win according to Lemma I.15.
When Duplicator follows this strategy, there is no reason for Spoiler to choose multiple base vertices. Next, when SS
contains multiple vertices that correspond to the same base vertex in F , Duplicator must match each (x,X ) ∈ SS with
(x,X4D) ∈ SD by selecting a set D (according to Lemma I.16). In this case, Spoiler still does not gain an additional
benefit by selecting SS with multiple elements. Moreover, it does not make any difference whether Spoiler chooses to move
pebbles on G̃(F ) or on H̃(F ). Therefore, the pebbling game can be simplified so that Spoiler directly moves a pebble in
G̃(F ) and Duplicator responds by moving the corresponding pebble in H̃(F ). (Nevertheless, note that the vertex selection
procedure is still necessary when dealing with auxiliary vertices as in the proof of Lemma I.15).

Part 3 (equivalence between updating pebble positions and updating Q for Duplicator). Suppose that in a certain round
Spoiler places a pebble w to vertex (z, Tz) in G̃(F ) . If the placement of w does not increase the number of connected
components, then no matter how Duplicator responds by replacing the other pebble w to (z,Uz) in H̃(F ), the game is
equivalent due to Part 1 and the set Q should not change, which coincides with the game rule. If the placement of w
increases the number of connected components, then how Duplicator chooses the position of the other pebble w will matter.
Suppose Duplicator places the other pebble w on the vertex (z,Uz), then the value of Tz4Uz determines the update ofQ by
Corollary I.11. Conversely, each possible game rule for updating Q also corresponds to at least one feasible position (z,Uz).
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For the local aggregation aggLu, there is an additional restriction that the pebble w should be adjacent to pebble v. Clearly,
the presence of w will make a new connected component {{v, w}}. It is easy to see that {{v, w}} /∈ Q, otherwise pebble
w is not adjacent to pebble v in H̃(F ). For localized FWL aggregations, although pebble w should also be placed in the
neighborhood of some pebble (e.g., w ∈ N 1

G̃(F )
(v)), we may not add this restriction for Duplicator, because if Duplicator

does not obey the game rule, Spoiler can always win after this round by swapping a pair of pebbles (e.g., swapping u and w)
such that the isomorphism types of pebbles u and v differ between G̃(F ) and H̃(F ).

Similarly, when Spoiler places a pebble w outside the graph G̃(F ), the connected components may merge, and Q should
be updated accordingly while preserving the parity of its size. This matches the design of the simplified pebbling game.
Finally, if Spoiler swaps a pair of pebbles, all connected components remains unchanged, so Duplicator does nothing in the
simplified pebbling game.

I.3. Concrete constructions

In this section, we give concrete constructions to prove all results of Theorem 7.1. We split the proof into a collection of
lemmas. All the proofs are based on constructing base graphs F and studying the simplified pebbling game developed in
Appendix I.2 on F .

Illustration. For clarity, we illustrate the proof of each lemma with a set of figures (Figures 4 to 11). In each of these
figures, the node in orange/green/purple responds to the vertex that holds pebble u/v/w, respectively. We use bold red edges
to denote connected components in Q chosen by Duplicator.

Lemma I.18. There exist two non-isomorphic graphs such that

• SWL(SV) can distinguish them;

• SWL(VS) cannot distinguish them;

• PSWL(VS) cannot distinguish them.

Proof. The base graph is constructed in Figure 4. We separately consider each algorithm.

We first analyze the simplified pebbling game for algorithm SWL(VS). Initially, Spoiler should first place pebble u on some
vertex. Due to the symmetry of the graph, there are three cases: vertex 4, vertex 2, and vertex 1. We separately consider
each case below:

• If Spoiler places pebble u on vertex 4, then the graph is split into two connected components. By symmetry, without
loss of generality suppose Duplicator selects the component at the right of u (Figure 4(a)). Next, Spoiler will place
pebble v on some vertex. Clearly, his best strategy is to choose vertex 5 (or equivalently, vertex 6), which can further
split the connected component into two parts. Duplicator has to respond by choosing the larger part (Figure 4(b)). In
the next round, according to the game rule, Spoiler should place pebble w adjacent to pebble v. He’d better place it on
vertex 6. Duplicator can respond appropriately without losing the game (Figure 4(c)). Then Spoiler swaps pebbles v
and w and leaves w outside the graph. It can be seen that multiple connected components are then merged into a larger
one, yielding Figure 4(d). Now the game state is equivalent to Figure 4(b) by symmetry. It is easy to see that Spoiler
can never win the game.

• If Spoiler places pebble u on vertex 2, then the connected component remains unchanged, so Duplicator just does
nothing (Figure 4(e)). Next, Spoiler will place vertex v on some vertex, e.g., vertex 3 or vertex 4. Regardless of where
he places pebble v, Duplicator’s strategy is always to choose the rightmost connected component (see Figure 4(f)
and Figure 4(h) for the two cases). First consider the case when pebble v is placed on vertex 3 (Figure 4(f)). In the
next round, Spoiler should place pebble w adjacent to pebble v. He’d better place it on vertex 4 to further split the
connected component. Duplicator just responds by selecting again the rightmost component as shown in Figure 4(g).
Spoiler then swaps pebbles v and w and leaves w outside the graph. It can be seen that the game returns to Figure 4(h)).
When Spoiler continues to place pebble w adjacent to pebble v, Duplicator again responds by updating the connected
component (Figure 4(i)). However, when Spoiler swaps pebbles v and w and leaves w outside the graph, multiple
connected components then merges into a whole, as shown in Figure 4(j). Clearly, Spoiler cannot win the game as well.

• If Spoiler places pebble u on vertex 1, we can similarly prove that Spoiler cannot win the game. Actually, placing
pebble u on vertex 1 is clearly not optimal.
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Figure 4. Illustration of the proof of Lemma I.18. When Duplicator follows her optimal strategy, the game process of SWL(VS)
corresponds to a sequence of figures, such as (a, b, c, d, ...), (e, f, g, h, i, j, ...), or (e, h, i, j, ...), depending how Spoiler plays. In all cases,
Spoiler cannot win. The game process of PSWL(VS) is similar. In contrast, the game process of SWL(SV) corresponds to figures (k, l,
m, n, o) and Spoiler eventually wins as shown in figure (o).

We next analyze the simplified pebbling game for algorithm PSWL(VS), which is similar to SWL(VS) except that Spoiler
has the additional ability to move pebble u to the position of pebble v. However, when Spoiler performs this operation, the
resulting game will simply be equivalent to the three cases studied above, e.g., Figure 4(a) or Figure 4(e), except that pebble
v is also present and coincides with u. As already proved above, Spoiler cannot win the game.

We finally analyze the simplified pebbling game for algorithm SWL(SV). In the beginning, Spoiler can first place pebble v
on vertex 4, and suppose Duplicator chooses the connected component at the right of v (Figure 4(k)). Spoiler can then place
pebble u on vertex 5 to further split this connected component, and Duplicator has to respond by choosing the rightmost
component (Figure 4(l)). In the next round, Spoiler can place w on vertex 6. Duplicator has not lost the game yet (see
Figure 4(m)). Then it comes to the major difference: when Spoiler swaps pebbles v and w and leaves w outside the graph,
the rightmost connected component is not merged into a larger one due to the position of pebbles u, v (see Figure 4(n)).
Therefore, in the next round, Spoiler can further use pebble w to split the component as shown in Figure 4(o), and Duplicator
has no choice other than selecting the connected component {{5, 7}}. Duplicator loses the game after this round.

Insight into Lemma I.18. The reason why SWL(SV) is stronger lies in the fact that Spoiler can specify the position of
pebble u after seeing Duplicator’s response because pebble v is first placed before pebble u is placed. In this way, Spoiler
can exploit such information to better choose the position of pebble u. Importantly, note that pebble u cannot be moved
easily according to the game rule, therefore determining its position later may have additional benefits.

Lemma I.19. There exist two non-isomorphic graphs such that

• PSWL(VS) can distinguish them;

• SWL(VS) cannot distinguish them;

• SWL(SV) cannot distinguish them.

Proof. The base graph in constructed in Figure 5, which can be seen as a simple adaptation of Figure 4.
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Figure 5. Illustration of the proof of Lemma I.19. When Duplicator follows her optimal strategy, the game process of SWL(VS) (or
SWL(SV)) may correspond to figures (a, b, c, ...) or figures (d, e, f, g, h, ...) depending on how Spoiler chooses the initial positions of
pebbles u, v. In both cases, Spoiler cannot win. In contrast, the game process of PSWL(VS) corresponds to figures (d, e, f, i, j, k) and
Spoiler eventually wins in figure (k).

We first analyze the simplified pebbling game for algorithm SWL(VS) or SWL(SV). Initially, Spoiler should choose the
positions for pebbles u, v. We will show that it does not matter whether u or v is placed first. By symmetry, there are mainly
two types of strategies which we separately investigate below. Other strategies are similar in analysis and we omit the proof
for clarity.

• Strategy 1: Spoiler places pebbles u and v on vertices 1 and 8, respectively. In this case, Duplicator’s strategy is
to ensure that the middle connected component is selected after pebbles u, v are present, as shown in Figure 5(a).
According to the game rule, Spoiler should then place pebble w on some vertex adjacent to v, and clearly, he’d better
place w on vertex 4 (or vertex 5 by symmetry). Duplicator can respond appropriately without losing the game (shown
in Figure 5(b)). When Spoiler swaps pebbles v, w and leaves w outside the graph, the chosen connected component
will be merged (Figure 5(c)). It is easy to see that Spoiler can never win the game after any number of rounds.

• Strategy 2: Spoiler places pebbles u and v on vertices 4 and 5, respectively. By symmetry, suppose Duplicator chooses
the connected component on the right (Figure 5(d)). Then Spoiler should place pebble w on some vertex adjacent
to v, and he’d clearly place w on vertex 8. Duplicator must respond by choosing the rightmost triangle, resulting
in Figure 5(e). When Spoiler swaps pebble v, w and leaves w outside the graph, the triangle component remains
unchanged due to the presence of pebble v (Figure 5(f)). In the next round, Spoiler should place pebble w to further
split the triangle, like Figure 5(g). However, he cannot win: when he swaps pebble v, w and leaves w outside the graph,
all previous components merge into a whole as shown in Figure 5(h). Spoiler has no idea how to win.

We next turn to algorithm PSWL(VS). Initially, the game is the same as SWL(VS) until reaching the state of Figure 5(f). In
the next round, Spoiler can resort to the game rule of aggPvv and move pebble u to the position of pebble v (Figure 5(i)).
Now pebble u becomes useful and Spoiler can easily win the remaining game, like Figure 5(j, k).

Insight into Lemma I.19. The reason why PSWL(VS) is stronger lies in the fact that Spoiler can change the position of
pebble u throughout the game process. In contrast, for SWL(VS) and SWL(SV), pebble u has to be kept fixed once it is
placed on the graph, which severely limits the utility of the pebble u in the subsequent game.

Lemma I.20. There exist two non-isomorphic graphs such that

• GSWL can distinguish them;

• PSWL(SV) cannot distinguish them.
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Figure 6. Illustration of the proof of Lemma I.20. When Duplicator follows her optimal strategy, the game process of PSWL(SV) may
correspond to figures (a, b, c, d, ...) or figures (a, e, f, g, ...) depending on how to choose the initial position of pebble u. In both cases,
Spoiler cannot win. In contrast, the game process of GSWL corresponds to figures (a, b, c, h, i, j) and Spoiler eventually wins in figure (j).

Proof. The base graph in constructed in Figure 6, which can be seen as a further extension of the counterexample in Figure 4.

We first analyze the simplified pebbling game for algorithm PSWL(SV). Initially, Spoiler should place pebble v on some
vertex. We only consider the case of choosing vertex 6 (or equivalently, vertex 4), which is intuitively the best choice. Other
choices can be similarly analyzed and we omit them for clarity. Since the presence of v splits the graph into two connected
components, Duplicator should select the larger one (Figure 6(a)). Next, Spoiler should place pebble u on some vertex.

• We first consider the case when Spoiler places u on vertex 4, which further splits the left connected component. In
this case, Duplicator just selects the left diamond-shaped component (Figure 6(b)). In the next round, Spoiler will
play according to Figure 6(c) by placing pebble w on vertex 4 adjacent to v, swapping v and w, and leaving pebble
w outside the graph. Duplicator just does nothing. The remaining game can be illustrated in Figure 6(d), and the
analysis is the same as the previous proof of Lemma I.18. In short, Spoiler can never split the red connected component
{{1, 2}, {1, 3}} shown in Figure 6(d). Note that although Spoiler can additionally use the game rule of single-point
aggregation aggPvv, he should better not change the position of u: if he leaves pebble u from vertex 4, the connected
component will be merged. Therefore, Spoiler cannot win the game.

• Seeing why Spoiler cannot win in Figure 6(d), let us restart from Figure 6(a) with a different strategy. Suppose this time
Spoiler places pebble u on vertex 2 (shown in Figure 6(e)). Since the red connected component remains unchanged,
Duplicator does nothing. In the next round, Spoiler should place pebble w on vertex 4 adjacent to v, which splits the
red connected component in Figure 6(e) into two parts. However, seeing the position of pebble u, this time Duplicator
chooses a different strategy: she selects the upper triangle (Figure 6(f)). When Spoiler swaps pebbles v, w and leaves
w outside the graph, the upper triangle is merged into a larger connected component (see Figure 6(g)). It is easy to see
that Spoiler still cannot win the game after any number of rounds.

We next turn to algorithm GSWL. Initially, the game is the same as PSWL(SV) until reaching the state of Figure 5(c). In the
next round, Spoiler can choose a different way to play: according to the game rule of aggGv , Spoiler can place pebble w
on vertex 2 and swap w with u. Clearly, Duplicator has to respond by selecting the left connected component as shown in
Figure 6(h). Now the remaining game is easy for Spoiler. As illustrated in Figure 6(i) and Figure 6(j), Spoiler can finally
win the game.
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Figure 7. Illustration of the proof of Lemma I.21. When Duplicator follows her optimal strategy, the game process of GSWL may
correspond to figures (c, d, e, ...), (c, f, g, ...), (a, b, c, d, e, ...), or (a, b, c, f, g, ...), depending on Spoiler’s strategy. In all cases, Spoiler
cannot win. In contrast, the game process of SSWL corresponds to figures (a, b, c, d, h, i) and Spoiler eventually wins in figure (i). The
game process of LFWL(2) is similar and Spoiler can also win.

Insight into Lemma I.20. The proof of Lemma I.20 clearly shows why global aggregation is more powerful than the
corresponding single-point aggregation (Theorem 4.4).

Lemma I.21. There exist two non-isomorphic graphs such that

• GSWL cannot distinguish them;

• SSWL can distinguish them;

• LFWL(2) can distinguish them.

Proof. The base graph is constructed in Figure 6, which is precisely the graph originally analyzed in Fürer (2001) and is
often called the Fürer grid graph (Qian et al., 2022, Appendix D).

We first analyze the simplified pebbling game for algorithm GSWL. Depending on how Spoiler chooses the initial positions
of pebbles u and v, we main consider the two cases illustrated in Figure 7(a) and Figure 7(c) due to symmetry of the graph.
Other cases are clearly not optimal. For the first case, Duplicator will select the larger connected component on the right
(Figure 7(a)). In the next round, Spoiler may place pebble w on vertex 6 adjacent to pebble v, and Duplicator updates her
selected component accordingly (Figure 7(b)). Spoiler then swaps pebbles v and w and leaves w outside the graph, returning
to Figure 7(c). What follows is the central part of the proof. Spoiler should clearly place pebble w on vertex 5 to further
split the component selected by Duplicator, but he has two different ways to achieve this:

• He plays according to the game rule of aggLu. Duplicator knows this information and thus responds by selecting the
connected component on the right (see Figure 7(d)). Then Spoiler should swap pebbles w and v and leave w outside
the graph. However, this will merge multiple component as shown in Figure 7(e). Clearly, Spoiler cannot win the
subsequent game.

• A better choice would be to follow the game rule of aggGv because it can move pebble u to vertex 5 after this round.
However, Duplicator knows this information and thus responds differently: she selects the connected component of
{{3, 5}} containing only one edge (see Figure 7(f)). Note that Duplicator does not lose the game, because for global
aggregation Duplicator can freely choose a connected component of one edge (while for local aggregation she cannot).
Now, when Spoiler swaps pebbles w and u and leaves w outside the graph, the component {{3, 5}} is merged into a
larger component, as shown in Figure 7(g), which is equivalent to Figure 7(a) by symmetry. Again, Spoiler cannot win
the subsequent game.

We next turn to algorithm SSWL. Initially, the game is the same as GSWL until reaching the state of Figure 7(d). Now it
comes to the major difference: Spoiler can play according to the game rule of aggLv . This time Duplicator can no longer
choose the connected component of {{3, 5}} since it is prohibited by the game rule. Therefore, her only choice is to select
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Figure 8. Illustration of the proof of Lemma I.22. When Duplicator follows her optimal strategy, the game process of SSWL may
correspond to figures (a, b, c, ...), and Spoiler cannot win. In contrast, the game process of LFWL(2) or SLFWL(2) corresponds to figures
(a, b, d) and Spoiler can eventually win.

the rightmost component as shown in Figure 7(d). This then yields Figure 7(h) when Spoiler swaps pebbles u,w and leaves
w outside the graph. The remaining game will be quite easy for Spoiler and it is easy to see that Spoiler can win when
playing according to Figure 7(i).

We finally turn to algorithm LFWL(2). Initially, the game is also the same as GSWL until reaching the state of Figure 7(d).
Now it comes to the major difference: Duplicator does not know whether Spoiler will swap pebbles u,w or swap pebbles
v, w. Therefore, depending on Duplicator’s response, Spoiler can adopt different strategies:

• If Duplicator chooses the rightmost connected component, then Spoiler swaps pebbles u,w. This corresponds to
Figure 7(h) when w is left outside the graph, and we have proved that Spoiler can win.

• If Duplicator chooses the component containing only one edge {{3, 5}}, then Spoiler swaps pebbles v, w. This
corresponds to Figure 7(f) and Spoiler already wins after this round.

• Similarly, if Duplicator chooses the component containing only one edge {{5, 6}}, then Spoiler swaps pebbles u,w
and wins after this round.

In all cases, Spoiler has a winning strategy.

Insight into Lemma I.21. The proof of Lemma I.21 shows why local aggregation is more powerful than global aggregation
(Theorem 4.4). Importantly, in local aggregation there is an additional constraint that Duplicator cannot choose the connected
component containing the neighboring edge. The proof also reveals the power of FWL-type algorithms. Intuitively, in
FWL-type algorithms Duplicator cannot “see” Spoiler’s strategy before making choices, and thus Spoiler can gain an
additional advantage by deliberately playing against Duplicator’s strategy.

Based on the proof of Lemma I.21, curious readers may ask whether there is an expressivity relationship between SSWL
and LFWL(2). However, below we will show that it is not the case: they are actually incomparable (due to Lemmas I.22
and I.23).

Lemma I.22. There exist two non-isomorphic graphs such that

• SSWL cannot distinguish them;

• SLFWL(2) can distinguish them;

• LFWL(2) can distinguish them.

Proof. The base graph is constructed in Figure 8.

We first analyze the simplified pebbling game for algorithm SSWL. Initially, Spoiler should place pebbles u and v on
vertices of the graph. Due to symmetry, we can assume that Spoiler places u on vertex 2 and places v on vertex 3 (other
nonequivalent cases are clearly not optimal). Duplicator then selects the bottom connected component split by pebbles
u, v (see Figure 8(a)). In the next round, Spoiler should place w on vertex 5 to further split the connected component. By
definition of SSWL, he can play according to the rule of either aggLu or aggLv . By symmetry, it suffices to analyze the case of
aggLu. Since Duplicator knows the information that Spoiler plays according to aggLu, she selects the connected component
in the lower right corner (see Figure 8(b)). Then, Spoiler should swap pebbles v, w and leave w outside the graph, which
leads to the merging of multiple connected components. The resulting game, as illustrated in Figure 8(c), is equivalent to
Figure 8(a) by symmetry. Therefore, Spoiler cannot win the game.
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Figure 9. Illustration of the proof of Lemma I.23. When Duplicator follows her optimal strategy, the game process of LFWL(2) may
correspond to figures (a, b, c, ...) or figures (a, b, d, ...) depending on Spoiler’s strategy. In both cases, Spoiler cannot win. Similarly, the
game process of GSWL may correspond to figures (a, b, c, ...) or figures (a, e, f, ...), and Spoiler still cannot win. In contrast, the game
process of SSWL or SLFWL(2) corresponds to figures (a, g, h) and Spoiler can eventually win.

We next analyze the simplified pebbling game for algorithm LFWL(2) or SLFWL(2). Initially, the game is the same as
SSWL until reaching the state of Figure 8(b). Now it comes to the major difference: Duplicator does not know whether
Spoiler will swap pebbles u,w or swap pebbles v, w. Therefore, Duplicator can only choose either the bottom left component
or the bottom right one at random, which is equivalent by symmetry. Spoiler can then play against Duplicator’s strategy and
swap the pebbles so that after leaving pebble w outside the graph, the connected component selected by Duplicator is not
merged, as shown in Figure 8(d). Clearly, Spoiler can win the remaining game.

Insight into Lemma I.22. Lemma I.22 shows the inherent advantage of FWL-type algorithms compared with SWL
algorithms, answering an open problem raised in Frasca et al. (2022).

Lemma I.23. There exist two non-isomorphic graphs such that

• LFWL(2) cannot distinguish them;

• SLFWL(2) can distinguish them;

• GSWL cannot distinguish them;

• SSWL can distinguish them.

Proof. The base graph is constructed in Figure 9.

We first analyze the simplified pebbling game for algorithm LFWL(2). Initially, Spoiler should place pebbles u and v on
vertices of the graph. Due to symmetry, there are mainly two cases we need to consider, as shown in Figure 9(a) and
Figure 9(f), respectively. Here, we only consider the case of Figure 9(a), where pebble u is placed on vertex 2 and pebble v
is placed on vertex 5; the other case is similar to analyze. Duplicator will respond by selecting the top connected component
(Figure 9(a)). In the next round, Spoiler should place pebble w adjacent to pebble v. Clearly, he should place it on vertex
3 or 7, which is equivalent. Assume that he places w on vertex 7. Duplicator can easily respond by choosing the larger
component (Figure 9(b)). According to the game rule of LFWL(2), he can either swap pebbles v, w or swap pebbles u,w,
and then leaves w outside the graph. As shown in Figure 9(c) and Figure 9(d), in both cases the connected components get
merged after leaving pebble w. Clearly, Spoiler cannot win.
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Figure 10. Illustration of the proof of Lemma I.24. When Duplicator follows her optimal strategy, the game process of SLFWL(2) may
correspond to figures (a, b, c, ...), and Spoiler cannot win. In contrast, the game process of FWL(2) corresponds to figures (a, d, e) and
Spoiler can eventually win.

We next turn to algorithm GSWL. Initially, the game is similar (Figure 9(a)). Now Spoiler has the additional choice to place
pebble w on vertex 1 according to the game rule of aggGv . In this case, Duplicator responds by choosing the connected
component {{1, 2}} which contains only one edge (see Figure 9(e)). Note that Duplicator does not lose the game. Then
Spoiler will swap pebbles u and w and leaves w outsides the graph, yielding Figure 9(f). Spoiler cannot win the game either.

We finally turn to algorithm SSWL. This time Spoiler can place pebble w adjacent to pebble u according to the game rule of
aggLv , and Duplicator can only choose either the connected component {{1, 3}, {3, 5}} or {{1, 7}, {7, 5}} (Figure 9(g)).
Note that She cannot choose the component {{1, 2}} according to the game rule. After swapping pebbles u,w and leaving
w outside the graph (Figure 9(h)), the remaining game is quite easy for Spoiler and he can eventually win.

Insight into Lemma I.23. Lemma I.23 shows the inherent advantages of “symmetrized” WL algorithms compared with
WL algorithms that only aggregate local information of one vertex.

Lemma I.24. There exist two non-isomorphic graphs such that

• SLFWL(2) cannot distinguish them;

• FWL(2) can distinguish them.

Proof. The base graph in constructed in Figure 10.

We first analyze the simplified pebbling game for algorithm SLFWL(2). Initially, Spoiler should place pebbles u and v on
vertices of the graph. Due to symmetry, we can assume that he places pebble u on vertex 1 and places pebble v on vertex 2.
Other nonequivalent choices are clearly not optimal. Duplicator then responds by choosing the largest connect component as
shown in Figure 10(a). In the next round, Spoiler can place pebble w on any vertex in N 1

F (1) ∪N 1
F (2), namely, any vertex

except vertex 3. Due to symmetry, we can assume that he places w on vertex 6. Duplicator can easily respond according
to Figure 10(b). No matter how Spoiler swaps pebbles, as long as pebble w is left outside the graph, multiple connected
components then merge as shown in Figure 10(c) and Spoiler has no idea how to win.

We next turn to algorithm FWL(2). Starting from Figure 10(a), this time Spoiler can place pebble w on vertex 3. Then Dupli-
cator should choose an odd number of connected components from the four components: {{1, 6}, {6, 3}}, {{1, 7}, {7, 3}},
{{2, 8}, {8, 3}}, and {{2, 9}, {9, 3}}. Regardless of Duplicator’s choice, after swapping either pebbles u,w or pebbles
v, w, the chosen component are always surrounded by pebbles u and v (Figure 10(e)). Therefore, Spoiler can easily win the
remaining game.

Insight into Lemma I.24. Lemma I.24 shows there is an inherent gap between 2-FWL and all O(nm)-complexity
algorithms considered in this paper. It can also be used to settle the open problem raised in Frasca et al. (2022).

Lemma I.25. There exist two non-isomorphic graphs such that

• SWL(SV) can distinguish them;

• LFWL(2) cannot distinguish them.

Proof. The base graph is constructed in Figure 11.
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Figure 11. Illustration of the proof of Lemma I.25. When Duplicator follows her optimal strategy, the game process of SWL(SV)
corresponds to figures (a, b, c, d), and Spoiler can eventually win the game. In contrast, the game process of LFWL(2) may correspond to
figures (e, f, g, h, i, ...) or figures (j, k, l, g, h, i, ...) or figures (j, k, l, m, n, ...), depending how Spoiler swaps pebbles. In both cases,
Spoiler cannot win. 52
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We first analyze the simplified pebbling game for algorithm SWL(SV). Initially, Spoiler places pebble v on vertex 8, which
splits the graph into two equal parts. Due to symmetry, suppose Duplicator selects the left component (Figure 11(a)). Spoiler
then places pebble u on vertex 1 to further split the connected component. Due to symmetry, suppose Duplicator selects
the top-left component (Figure 11(b)). In the next round, Spoiler places pebble w adjacent to v on vertex 6. Duplicator
should choose the connected component of either {{1, 3}, {3, 6}} or {{1, 2}, {2, 6}}, which is equivalent by symmetry
(see Figure 11(c)). Spoiler then swaps pebbles v, w and leaves w outside the graph (Figure 11(d)). The remaining game is
straightforward to analyze and Spoiler can easily win.

We next turn to the algorithm LFWL(2). Initially, Spoiler should simultaneously place pebbles u and v on two vertices of
the graph. Without loss of generality, assume that he places one pebble on vertex 8 and places the other pebble on vertex 1
(other cases are similar to analyze). Depending on which pebble is placed on vertex 8, there are two cases:

• Spoiler places pebble u on vertex 1 and places pebble v on vertex 8. In this case, Duplicator responds by choosing the
connected component on the right (Figure 11(e)). In the next round, Spoiler should better place pebble w on vertex 9
(or vertex 10) adjacent to pebble v, and Duplicator can respond accordingly (Figure 11(f)). Spoiler should then swap
pebbles u and w and leave w outside the graph (Figure 11(g)). In the next round, Spoiler can similarly place pebble w
on vertex 10 adjacent to pebble v to further split the connected component. This corresponds to Figure 11(h) after
swapping pebbles v and w and leaving w outside the graph. In subsequent rounds, Spoiler can continue to place pebble
w adjacent to pebble v (Figure 11(i)). However, whether he swaps pebbles u,w or pebbles v, w, as long as pebble w is
left outside the graph, multiple connected components then merge into a whole. Clearly, Spoiler cannot win the game.

• Spoiler places pebble u on vertex 8 and places pebble v on vertex 1. In this case, Duplicator similarly responds by
choosing the connected component on the right (Figure 11(j)). In subsequent rounds, Spoiler should gradually move
pebble v until it reaches the position of pebble u (Figure 11(k)). Next, Spoiler will continue to place pebble w adjacent
to pebble v on vertex 9, and Duplicator can respond accordingly (Figure 11(l)). Spoiler should then either swap pebbles
u,w or swap pebbles v, w and leave w outside the graph. The former case corresponds to (Figure 11(g) and has been
analyzed. Now consider the latter case, which corresponds to Figure 11(m). In subsequent rounds, Spoiler can perform
arbitrary operations, but he can never change the position of pebbles u. Otherwise, the lack of a pebble on vertex 8 will
cause the merging of multiple connected components. With the position of pebble u unchanged, the best state Spoiler
can achieve is illustrated in Figure 11(i). It is not hard to figure out that Spoiler cannot win the game, either.

In both cases, Spoiler cannot win.

Insight into Lemma I.25. The reason why SWL(SV) is stronger in this case is due to the SV pooling strategy. Lemma I.25
shows that LFWL(2) does not have the ability to implement the SV pooling strategy.

We are now ready to prove Theorem 7.1.

Proof of Theorem 7.1. Theorem 7.1 is a direct consequence of Corollary 4.7, Theorem 5.2, and Lemmas I.18 to I.25.

J. Proof of Theorems in Appendix A
J.1. Proof of Theorem A.2

We first define several notations. Consider a path P = (x0, · · · , xd) (not necessarily simple) in graph G of length d ≥ 1.
We say P is a hitting path, if xi 6= xd for all i ∈ {0, 1, · · · , d− 1}. Denote Qd

G(u, v) to be the set of all hitting paths from
node u to node v of length d. Denote disHG(u, v) as the hitting time distance between vertices u and v in graph G, i.e, the
average hitting time in a random walk from vertex u to v. Then,

disHG(u, v) =

∞∑
d=0

d ·
∑

(x0,··· ,xd)∈Qd
G(u,v)

1/

(
d−1∏
i=0

deg(xi)

)
.

Given a path P = (x0, · · · , xd), define ω(P ) := (degG(x1), · · · ,degG(xd−1)), which is a tuple of length d− 1. Our proof
if based on the following lemma:

Lemma J.1. Let G = (VG, EG) and H = (VH , EH) be two graphs, and let t ∈ N+ be a positive integer. Consider any
SWL algorithm A(A,Pool) with aggLu ∈ A and denote χ(t) to be the color mapping after iteration t. Given nodes u, v ∈ VG
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and x, y ∈ VH , if χ(t)
G (u, v) = χ

(t)
H (x, y), then {{ω(Q) : Q ∈ Qt

G(v, u)}} = {{ω(Q) : Q ∈ Qt
H(y, x)}}.

Proof. The proof is based on induction over t. For the base case of t = 1, it is easy to see that {{ω(Q) : Q ∈ Q1
G(v, u)}}

depends only on whether {u, v} ∈ EG or not. Clearly, if χ(1)
G (u, v) = χ

(1)
H (x, y), then {u, v} ∈ EG ↔ {x, y} ∈ EG holds

(Lemma E.4), implying {{ω(Q) : Q ∈ Q1
G(v, u)}} = {{ω(Q) : Q ∈ Q1

H(y, x)}}.

Now assume that the lemma holds for all t ≤ T , and consider the case of t = T + 1. When χ(T+1)
G (u, v) = χ

(T+1)
H (x, y),

by definition of aggLu we have

{{χ(T )
G (u,w) : w ∈ NG(v)}} = {{χ(T )

H (x, z) : z ∈ NH(y)}}.

Since T ≥ 1, we have χ(T )
G (u,w) = χ

(T )
H (x, z) =⇒ degG(w) = degH(z) for any w ∈ VG and z ∈ VH . Therefore,

{{(χ(T )
G (u,w),degG(w)) : w ∈ NG(v)}} = {{(χ(T )

H (x, z),degH(z)) : z ∈ NH(y)}}.

By definition of node marking policy, we further obtain

{{(χ(T )
G (u,w),degG(w)) : w ∈ NG(v)\{u}}} = {{(χ(T )

H (x, z),degH(z)) : z ∈ NH(y)\{x}}}.

By induction,

{{(degG(w), {{ω(Q) : Q ∈ QT
G(w, u)}}) : w ∈ NG(v)\{u}}}

={{(degH(z), {{ω(Q) : Q ∈ QT
H(z, x)}}) : z ∈ NH(y)\{x}}}.

Therefore, {{ω(Q) : Q ∈ QT+1
G (v, u)}} = {{ω(Q) : Q ∈ QT+1

H (y, x)}}, concluding the induction step.

Corollary J.2. Consider any SWL algorithm A(A,Pool) with aggLu ∈ A and let χ be the stable color mapping. For any
vertices u, v ∈ VG and x, y ∈ VH , if χG(u, v) = χH(x, y), then disHG(v, u) = disHH(y, x).

Proof. By definition of hitting time distance,

disHG(v, u) =

∞∑
i=0

i ·
∑

Q∈Qi
G(v,u)

1/q(Q),

where q(Q) = degG(x0)
∏d−1

i=1 deg(xi) for path Q = (x0, x1, · · · , xd). Therefore, q(Q) is fully determined by ω(Q) and
degG(x0). If disHG(v, u) 6= disHH(y, x), then either degG(v) 6= degH(y) or there exists a length t such that {{ω(Q) : Q ∈
Qt

G(v, u)}} 6= {{ω(Q) : Q ∈ Qt
H(y, x)}}. Therefore, by using Lemma J.1 we have χG(u, v) 6= χH(x, y), as desired.

We are now ready to prove the main theorem:

Theorem J.3. Define a variant of GD-WL that incorporates the shortest path distance and the hitting time distance as
follows:

χ
(t+1)
G (u) =

{{(
(disG(v, u),dis

H
G(v, u)), χ

(t)
G (v)

)
: v ∈ VG

}}
.

Then, GD-WL � PSWL(VS).

Proof. Denote χP as the stable color mapping of PSWL(VS). Consider a pair of graphs G and H indistinguishable by
PSWL(VS). Then, we clearly have

{{χP
G(u, v) : u, v ∈ VG}} = {{χP

H(x, y) : x, y ∈ VH}}.

By definition of the node marking policy,

{{χP
G(u, u) : u ∈ VG}} = {{χP

H(x, x) : x ∈ VH}}.
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Figure 12. Illustration of the proof of Lemma J.6. When Duplicator follows her optimal strategy, the game process of SWL(VS)
corresponds to figures (a, b, c) and Spoiler can eventually win.

Now consider any vertices u ∈ V and x ∈ VH satisfying χP
G(u, u) = χP

H(x, x). Since aggLu is present in PSWL(VS), we
can invoke Lemma E.6, which obtains that

{{χP
G(u,w) : w ∈ VG}} = {{χP

H(x, z) : z ∈ VH}}.

Further using Corollaries E.5 and J.2 yields

{{(χP
G(u,w),disG(w, u),dis

H
G(w, u)) : w ∈ VG}} = {{(χP

H(x, z),disG(z, x),dis
H
G(z, x)) : z ∈ VH}}.

Next, by definition of the aggregation aggPvv, we have

{{(χP
G(w,w),disG(w, u),dis

H
G(w, u)) : w ∈ VG}} = {{(χP

H(z, z),disG(z, x),dis
H
G(z, x)) : z ∈ VH}}.

The above equation shows that χP
G induces a finer vertex partition (i.e., by treating χP

G(u) := χP
G(u, u)) compared with

the stable color mapping of GD-WL. Concretely, based on Remark E.2(c), we have χP
G(u, u) = χP

H(x, x) =⇒ χG(u) =
χH(x). This finally yields

{{χG(u) : u ∈ VG}} = {{χH(x) : x ∈ VH}},

concluding the proof.

Remark J.4. We note that the form of GD-WL in Theorem J.3 slightly differs from Zhang et al. (2023), in that they use
resistance distance instead of hitting time distance. Nevertheless, similar to resistance distance, hitting time distance also
satisfies the following key property: for any vertices u, v, w ∈ VG in graph G, disHG(u, v) = disHG(u,w)+ disHG(w, v) if and
only if w is a cut vertex of G (see Zhang et al. (2023, Appendix C.5.1)). This property is crucial to prove the expressivity for
vertex-biconnectivity. Following the almost same proof, we can show that the variant of GD-WL defined in Theorem J.3 is
also fully expressive for vertex-biconnectivity.

Finally, for the original GD-WL defined in Zhang et al. (2023) that incorporates SPD and RD, currently we can only prove
the following result, which is a straightforward extension of Theorem J.3:

Theorem J.5. Consider the WL algorithm GD-WL that incorporates the shortest path distance and the resistance distance.
Then, GD-WL � SSWL.

Proof. Note that disRG(u, v) = (disHG(u, v) + disHG(v, u))/2|EG|. The proof follows by noting that both aggLu and aggLv are
present in SSWL.

However, it remains unclear whether RD-WL � GSWL or RD-WL � PSWL(VS) holds. We leave them as open problems.

J.2. Counterexamples

We first show that the vanilla SWL has additional power than GD-WL.

Lemma J.6. There exist two non-isomorphic graphs such that

• SWL(VS) can distinguish them;

• RD-WL, HTD-WL, SPD-WL cannot distinguish them.
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Figure 13. Illustration of the proof of Lemma J.7. For SWL(SV), when Duplicator follows her optimal strategy, Spoiler can never win the
game.

Proof. The proof is based on Appendix I.3 using generalized Fürer graphs. The base graph is constructed in Figure 12.

We first consider SWL(VS) and analyze the simplified pebbling game developed in Appendix I.2. At the beginning, Spoiler
just places pebble u on vertex 1, and Duplicator does nothing. Spoiler then places pebble v on vertex 4, splitting the
connected component into three parts. It is easy to see that Duplicator should select the largest connected component on the
left (Figure 12(a)). In the next round, Spoiler places pebbles w adjacent to pebble v on vertex 3. Duplicator has to respond
according to Figure 12(b). Spoiler then swaps pebbles v, w and leaves w outside the graph (Figure 12(c)). It is easy to see
that Spoiler can win the remaining game.

We next consider GD-WL, for which we do not have a corresponding game. Nevertheless, a good news is that the
corresponding (twisted) Fürer graph has only 20 vertices. We can thus directly verify that the stable colors of the Fürer
graph match those of the twisted Fürer graph. A deep understanding of why GD-WL cannot distinguish the two graphs is
left for future work.

Conversely, we next show that GD-WL also has additional power than the vanilla SWL.

Lemma J.7. There exist two non-isomorphic graphs such that

• SWL(SV) cannot distinguish them;

• SPD-WL can distinguish them;

• RD-WL can distinguish them;

• HTD-WL can distinguish them.

Proof. The proof is based on Appendix I.3 using generalized Fürer graphs. The base graph is constructed in Figure 13.

We first consider SWL(SV) and analyze the simplified pebbling game developed in Appendix I.2. At the beginning,
Spoiler should place pebble v on some vertex. Regardless of Spoiler’s choice, Duplicator just selects the largest connected
component after pebble v is placed. Next, Spoiler should place pebble u on some vertex. Now Duplicator’s strategy is to
select a connected component such that it contains a triangle with no pebbles. It is easy to see that Duplicator can always
achieve her goal (see Figure 13(a) and Figure 13(b) for two representative cases). The remaining game is easy to analyze:
since pebble u cannot be moved throughout the game, there is a triangle that holds at most two pebbles and cannot be split
into three single-edge components. Clearly, Duplicator can always respond without losing the game.

We next turn to SPD-WL, for which we do not have a corresponding game. Nevertheless, a good news is that the
corresponding (twisted) Fürer graph has only 26 vertices. We can thus directly verify that the stable colors of the Fürer
graph do not match those of the twisted Fürer graph. The case of RD-WL and HTD-WL can be similarly verified. A deep
understanding of why these algorithms can distinguish the two graphs is left for future work.

K. Experimental Details
We conduct experiments on three standard benchmark datasets: ZINC (Dwivedi et al., 2020), Counting Substructure (Zhao
et al., 2022a; Frasca et al., 2022), and OGBG-molhiv (Hu et al., 2020). ZINC is a standard benchmark for molecular
property prediction, where the task is to predict the constrained solubility of a molecule, which is an important chemical
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property for drug discovery. We train and evaluate our proposed GNN-SSWL and GNN-SSWL+ on both ZINC (consisting
of 250k molecular graph) and ZINC-subset (a 12K-subset selected as in Dwivedi et al. (2020)). Counting Substructure is a
widely-used synthetic task in the expressive GNN community, where the task is to predict the number of a given substructure
(such as cycle or star) in an input graph. We use the same dataset in Zhao et al. (2022a); Frasca et al. (2022) and further
extend it to include the setting of counting 5/6-cycles motivated by Huang et al. (2022). Finally, we additionally consider the
OGBG-molhiv dataset in Appendix K.4.

K.1. Model details

We implement our model using Pytorch (Paszke et al., 2019) and Pytorch Geometric (Fey & Lenssen, 2019) (available
respectively under the BSD and MIT license). All experiments are run on a single NVIDIA Tesla V100 GPU. Our code will
be released at https://github.com/subgraph23/SWL.

Motivated by Propositions 4.2 and E.3, for all SWL models, the graph generation policy is chosen as the distance encoding
on the original graph. Such a policy achieves the maximal power among other policies (as expressive as node marking)
while explicitly introducing inductive biases, which may be beneficial for real-world tasks. Concretely, we initialize the
feature of node v in subgraph Gu by summing the atom embedding hatom(v) and the distance encoding hdis(disG(u, v)),
where the atom embedding is a learnable vector determined by the atom type of v, and the distance encoding is a learnable
vector determined by the shortest path distance between u and v. Mathematically, h(0)G (u, v) = hatom(v) + hdis(disG(u, v)).
Distances exceeding max dis (including infinity) are all encoded as a shared embedding. For tasks without atom features
(e.g., Counting Substructure dataset), we set hatom(v) to zero.

As an instance of Definition 2.1, our subgraph GNN layer can be written in the following form:

h
(l+1)
G (u, v) = ReLU

(
r∑

i=1

µ(l+1,i)
(
h
(l)
G (u, v), opi(u, v,G, h

(l)
G )
))

, (25)

where each opi can take one of the following forms, depending on the atomic aggregations in the SWL algorithm:

• For aggPuu: opi(u, v,G, h) = h(u, u);

• For aggPvv: opi(u, v,G, h) = h(v, v);

• For aggGu : opi(u, v,G, h) =
∑

w∈VG h(u,w);

• For aggGv : opi(u, v,G, h) =
∑

w∈VG h(w, v);

• For aggLu: opi(u, v,G, h) =
∑

w∈NG(v) ReLU((h(u,w) + g(w, v));

• For aggLv : opi(u, v,G, h) =
∑

w∈NG(u) ReLU(h(w, v) + g(u,w)).

Note that we have included the single-point aggregation aggPuv directly in the update formula (25). For the last two local
aggregations, we further encode the edge embedding g(w, v) for edge {w, v} ∈ EG (or g(u,w) for edge {w, u} ∈ EG)
when there is additional information for each edge (e.g., the bond information in the ZINC dataset). In the above equation,
each µ(l+1,i) is implemented by a GIN base encoder (Xu et al., 2019):

µ(l+1,i)(h1, h2) = MLP(l+1,i)
(
(1 + ε(l+1,i))h1 + h2

)
,

where ε(l+1,i) is a learnable scalar and MLP(l+1,i) is a one-hidden-layer MLP with hidden size equal to the input dimension.
Batch Normalization (Ioffe & Szegedy, 2015) is adopted in the hidden layer of each MLP as well as in (25) before taking
ReLU.

The final pooling layer is implemented as an MLP over the summation of v-dimension for VS-pooling scheme (or u for
SV-pooling) and a global mean pooling, namely

f(G) =
1

|VG|
∑
u∈VG

MLP

(∑
v∈VG

h
(L)
G (u, v)

)

Batch Normalization is adopted similarly.
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K.2. Training details

ZINC. Throughout all experiments, we set the number of layers L = 6, similar to Frasca et al. (2022). To constrain the
parameter budget within 500k, the feature dimension of each layer is set to 96. The initial atom embedding, distance
embedding, and edge embedding is also set to 96. The hyper-parameter max dis is set to 5. We adopt the Adam optimizer
(Kingma & Ba, 2014) with an initial learning rate 0.001. The learning rate will be decayed by a factor of 0.5 when the MAE
on validation set plateaus for 20 epochs (similar to Frasca et al. (2022)). The batch size is set to 128. On ZINC-12K subset,
the model is trained for 400 epochs according to Frasca et al. (2022), and it takes roughly 1 to 2 hours for a single run. On
ZINC-250K full set, we find that the model still does not converge after 400 epochs, so we adjust the configuration to 500
epochs, which takes about 40 hours. For each setting, we run the model 10 times with different seeds from 1 to 10 and report
both the mean value and the standard deviation of MAE.

We also compare our model performance with various subgraph GNN baselines. The performance numbers of these
baselines in Table 2 are generally brought from the original works. For some baselines such that GNN-AK and GNN-AK-ctx,
the results are obtained from Frasca et al. (2022). The NGNN result is obtained from Huang et al. (2022). Since other
baseline models did not present the results on ZINC-full, we obtain their performance by running the code provided on
the authors’ official GitHub repo. We run each model 10 times with different seeds and report the mean performance and
standard deviation. For ESAN and SUN, we tried both the k-ego network policy and the k-ego network policy with marking
and reported the better performance among the two policies. We find that the results are almost the same for SUN, and the
k-ego network policy with marking is slightly better for ESAN.

Counting Substructure. Throughout all experiments, we simply follow the same model configuration as ZINC to use
a 6-layer GNN with a hidden size of 96. The hyper-parameter max dis is also set to 5. We adopt the Adam optimizer
(Kingma & Ba, 2014) with an initial learning rate 0.002. The learning rate is decayed with cosine annealing. The batch
size is set to 512. The models are trained for 600 epochs. Note that unlike prior works, we use the same model/training
hyper-parameters for all six substructures. For each setting, we run the model 5 times with different seeds from 1 to 5 and
report the mean performance of MAE. We found that the standard deviation is very small.

We also compare our model performance with various subgraph GNN baselines. The performance numbers of GNN-AK
and SUN in Table 1 are brought from the Zhao et al. (2022a) and Frasca et al. (2022), respectively. For the tasks of counting
5/6-cycles, we obtain their performance by running the code provided on the authors’ official GitHub repo. To make the
SUN result convincing, we grid search the network width from {64, 96, 110}, depth from {5, 6}, and search the k-hop ego
net with k ∈ {2, 3} as suggested by Frasca et al. (2022). We consider both the ego network policy with and without marking
and find that k-ego network with marking is better.

K.3. Ablation study on ZINC

In this subsection, we present a set of ablation results to investigate the effect of different aggregation operations in
GNN-SSWL+. We fix all model details and hyper-parameters presented above, and remove one or both of the additional
two operations aggLv , agg

P
vv in GNN-SSWL+ or change the pooling paradigm. This results in several types of models with

expressivity corresponding to SSWL, PSWL(VS), PSWL(SV), SWL(SV), and SWL(VS), respectively. The results are
shown in Table 3. It can be seen that both of these additional aggregations aggLv , agg

P
vv provide a significant improvement in

performance. Moreover, SV pooling is significantly better than VS for vanilla SWL.

We further design an ablation experiment to verify that our introduced local aggregation aggLv is actually crucial and cannot
be replaced by other aggregations. Here, we consider the model SUN proposed in Frasca et al. (2022), which comprises a
large number of basic aggregation operations but without aggLv . SUN uses different parameters to compute the on-diagonal
(i.e. h(l)G (u, u)) and off-diagonal (i.e. h(l)G (u, v), v 6= u) features in order to further enhance the model flexibility. We rerun
their code by changing the graph generation policy to distance encoding (on the original graph) and use exactly the same
training configuration as our model. Notably, the feature dimension is increased to 96 (instead of 64), resulting in a larger
model with roughly 1163k parameters. We can see in Table 3 that, even with distance encoding policy and larger model
size, there is still a remarkable gap between SUN and GNN-SSWL+ (less than 400k parameters). This confirms that the
introduced aggregation aggLv in SSWL not only theoretically improves the expressive power of the GNN model, but also
leads to significantly better performance on real datasets.
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Table 3. Ablation study of GNN-SSWL+ on ZINC-subset.
Method Pooling Test MAE ↓
GNN-SSWL+ VS 0.0703 ± 0.0046
w/o aggvv (GNN-SSWL) VS 0.0822 ± 0.0029
w/o aggLv VS 0.0765 ± 0.0028
w/o aggLv SV 0.0758 ± 0.0037
w/o aggLv and aggvv VS 0.1103 ± 0.0090
w/o aggLv and aggvv SV 0.0999 ± 0.0044
SUN (Distance Encoding) - 0.0802 ± 0.0024

K.4. Additional experiments on OGBG-molhiv

We further run experiments on the OGBG-molhiv dataset. Following Frasca et al. (2022), we use a 2-layer GNN-SSWL+
model with a network width of 64, and add residual connection between different layers. The hyper-parameter max dis is
also set to 5. To prevent overfitting, we similarly use the ASAM optimizer (Kwon et al., 2021) with a batch size of 32, a
learning rate of 0.01, and a dropout ratio of 0.3. Moreover, we change each MLP to a linear layer following Frasca et al.
(2022). We train the model for 100 epochs. We run our model 8 times with different seeds ranging from 1 to 8 and report
the average ROC AUC as well as the standard deviation. The result is presented in Table 4.

Table 4. Performance comparison on OGBG-molhiv.
Model Reference Test ROC-AUC (%)
GCN Kipf & Welling (2017) 76.06±0.97
GIN Xu et al. (2019) 75.58±1.40
PNA Corso et al. (2020) 79.05±1.32
GSN Bouritsas et al. (2022) 80.39±0.90
CIN Bodnar et al. (2021a) 80.94±0.57
Recon. GNN Cotta et al. (2021) 76.32±1.40
DS-GNN (EGO+) Bevilacqua et al. (2022) 77.40±2.19
DSS-GNN (EGO+) Bevilacqua et al. (2022) 76.78±1.66
GNN-AK+ Zhao et al. (2022a) 79.61±1.19
SUN Frasca et al. (2022) 80.03±0.55
GNN-SSWL+ This paper 79.58±0.35
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