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ABSTRACT

During fine-tuning, multiple solutions may emerge which perform similarly on
training data but generalize differently out of distribution. For instance, a decep-
tive model may be indistinguishable from an aligned model during training, but
perform catastrophically at deployment. We present a novel technique for con-
trolling what models learn during fine-tuning by identifying and ablating specific
sparse autoencoder latents that represent undesired concepts. Our approach steers
models toward intended generalizations when multiple policies correctly fit the
training data. We evaluate our method on two tasks, significantly outperforming
baselines: a gender bias task containing spurious correlations and a double mul-
tiple choice task where models must learn to focus on intended questions while
ignoring others. On gender bias, our method completely eliminates spurious cor-
relations, leading to strong performance out of distribution. In double multiple
choice, it succeeds in 12 out of 16 scenarios. Our results mark an initial step to-
ward using interpretability techniques to ensure the safe and reliable deployment
of frontier AI systems.

1 INTRODUCTION

Models often learn undesired behaviors during fine-tuning. For example, training AI assistants
with human feedback can encourage them to match user beliefs instead of giving truthful answers
(Sharma et al., 2023). One way to prevent models from learning undesired behaviors is to remove
the data responsible for them, and there is a large body of research aimed at localizing subsets of
training data responsible for a given model behavior (Grosse et al., 2023; Park et al., 2023; Ilyas
et al., 2022). However, it is possible that structural factors lead to intended and unintended be-
haviors being deeply linked across an entire training corpus, which would make it impossible to
remove unintended behaviors by removing corresponding training data. For example, data for dif-
ferent classes might come from different distributions (Zech et al., 2018). As AI systems become
more powerful, controlling how a model generalizes from training data will become an increasingly
important problem (Burns et al., 2023; Hase et al., 2024).

In this work we present a method that uses interpretability techniques to control what a model
learns during fine-tuning. We address the case where there are multiple policies that are correct on
all training samples but have extremely different generalizations. To do so, we decompose model
activations into interpretable directions using sparse autoencoders (SAEs) (Bricken et al., 2023;
Cunningham et al., 2023). We identify unwanted concepts and ablate them during fine-tuning. This
steers the model towards the intended solution.

We evaluate our method on two types of multiple choice tasks. The first task involves pronoun
completion using data that contains a spurious correlation between occupation and gender. The
second is a double multiple choice task where each prompt contains two questions on different
topics, and the model must learn to focus on one intended question while ignoring the other. We
successfully use our method to train LLMs that generalize correctly in 13 out of 17 scenarios. Our
results demonstrate that by identifying and ablating specific SAE latents during fine-tuning, we can
effectively prevent models from learning unintended generalizations from the training data while
preserving their ability to learn the intended task.
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Figure 1: Example inputs from our multiple choice datasets. Damb contains a spurious correlation
that allows the model to learn either the intended task or an unintended shortcut. The test dataset
DOOD breaks this correlation to evaluate whether the model learned the correct generalization.

2 BACKGROUND AND RELATED WORK

Sparse autoencoders (SAEs). Recent work in interpretability employs techniques from sparse
dictionary learning (Olshausen & Field, 1997; Lee et al., 2006) to decompose language model ac-
tivations into a set of latent vectors (Cunningham et al., 2023; Bricken et al., 2023). While recent
work has improved upon initial SAE baselines (Gao et al., 2024; Rajamanoharan et al., 2024), SAEs
have shown limited practical improvements outside of narrow interpretability tasks (Wu et al., 2025;
Farrell et al., 2024; Menon et al., 2025; Marks et al., 2024).

Removing unintended correlations or concepts. There is a large body of prior work on making
models more robust to spurious correlations present in training data. Many such techniques require:
access to an additional set of labels to distinguish the intended from unintended generalizations
(Nam et al., 2020; 2022; Sagawa et al., 2020), the spurious correlation to only be present in some
of the data (Yaghoobzadeh et al., 2021; Utama et al., 2020), or an additional classifier for the un-
intended label (Kim et al., 2019). Prior work on unlearning also assumes access to supervised data
that isolates an unlearning target (Belrose et al., 2023; Guo et al., 2024; Iskander et al., 2023; Wang
et al., 2020; Ravfogel et al., 2020; 2022; Thaker et al., 2024). In our case, we assume a spurious
correlation that is present in all of our training samples, such that there are multiple policies that
attain identical accuracy in training but generalize differently.

3 FORMULATION

Our problem assumes that we have a labeled ambiguous dataset Damb = {(x, y)} such that there are
multiple ways to predict the label y from the input x. For simplicity, we consider cases where, due
to a spurious correlation present in all of the training data, there are two possible generalizations,
an intended generalization and an unintended generalization. Our goal is to train a model to predict
the output in the intended way by only fine-tuning it on Damb. To test the model’s generalization,
we create a dataset DOOD (out of distribution) where only the intended generalization results in high
accuracy, while the unintended generalization results in low accuracy. To validate in-distribution
performance, we also use a dataset Dval of the same form as Damb. We use two types of multiple
choice tasks to test our method, with Damb and DOOD examples shown in Figure 1.

Gender bias is a multiple choice task in which the model selects between two gendered pronouns to
complete a sentence. The dataset has a correlation between the subject’s gender and the grammati-
cally correct answer. In Damb and Dval, the correct pronoun is always male for a doctor and female
for a nurse. DOOD has the inverted gender correlation; to correctly generalize, the model should
learn to select the grammatically correct pronoun regardless of the subject. The dataset prompts
were generated using Claude 3.5 Sonnet, inspired by Perez et al. 2022 and De-Arteaga et al. 2019.

Double multiple choice consists of multiple choice problems where each question is composed of
two sub-questions from different datasets. We use four different datasets for the individual questions.
We formalize the task using tuples (Qa, Qb, Q

∗), where Qa is the first question, Qb is the second
question and Q∗ ∈ {Qa, Qb} is the intended question. This results in 24 possible (Qa, Qb, Q

∗)
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combinations (we exclude those where Qa = Qb). Answers are comma separated combinations
of answers to (Qa, Qb). In Damb and Dval, the correct answers to both questions are in the same
selection. In DOOD, the options each contain one correct and one incorrect answer. We filter out
the (Qa, Qb, Q

∗) combinations that achieve higher than 90% accuracy when trained without inter-
ventions, leaving 16 combinations. Although the task is unnatural, it provides a simple method for
creating many unintended correlations to test our method.

4 METHODS

Given Damb, we use sparse autoencoders to identify causally relevant latents for predicting the cor-
rect answer. We interpret the latents and identify ones related to the unintended generalization, then
fine-tune the model directly on Damb while ablating these latents at each forward pass. Specifically:

1. Find causally important latents by attribution effects over the whole dataset Damb. We
calculate attribution scores by approximating the effect that ablating each latent would have
on an output metric m as in Marks et al. (2024), which applies attribution patching (Nanda,
2023; Syed et al., 2023)) to SAE latents:

E = m (x∗|do(z = 0))−m(x∗) ≈
∑
t

∇zm|zt=z∗
t
· z∗t , (1)

where z is the SAE latent activation, x is the model input, and x∗ and z∗ denote values
under a given input. m (x∗|do(z = 0)) refers to the value m takes under input x∗ when we
intervene in the forward pass setting z = 0. The subscript t refers to the token position of
the activations. In our case, the metric m is the logit difference between the correct answer
token and the incorrect answer token (usually ‘_A’ or ‘_B’). We average effects over Damb
inputs to estimate the expected value over the dataset.

2. Interpret and select latents by inspecting top activating examples. We select the top
100 latents by attribution effect, then filter for relevance on the unintended generalization
task. We automatically interpret top latents with Llama 3.3 70B (Grattafiori et al., 2024)
using a modified pipeline from Paulo et al. (2024). For each task, we query for relevant
explanations using a text embedding model, then further filter for explanations with high
interpretability scores. We use simulation scoring from Bills et al. (2023), with Qwen 2.5
7B as our simulator (Qwen et al., 2025). As a baseline, we also manually interpret the same
sets of latents using activating examples from Neuronpedia (Lin, 2023). See Appendix B
for further implementation details.

3. Ablate unintended latents while fine-tuning on Damb. At each forward pass, we use
the SAE to encode model activations and obtain SAE latents. We set the unintended ac-
tivations to zero, then use the decoder to obtain new model activations. We add the SAE
reconstruction error to the model activations.

At runtime, it is an empirical question as to whether we should continue to ablate unintended latents
as we do during fine-tuning or if ablation during fine-tuning is sufficient for the model to learn
the intended task. This simplifies inference since there is no need to ablate latents after training.
As a baseline, we compare against random ablations, where we ablate an equal number of latents
at random from the latents with top 100 effects. We also compare against fine-tuning the model
without interventions and only ablating the latents during test time.

5 RESULTS

We conduct our experiments on Gemma 2 2B (Team et al., 2024) using a suite of residual stream
SAEs from Gemma Scope (Lieberum et al., 2024). Results are averaged over 5 different seeds and
error bars show standard error of the mean unless noted otherwise.

Baseline performance. On gender bias, Gemma achieves perfect validation accuracy but learns
to make gendered completions, achieving just 8% accuracy on DOOD. Across all double multiple
choice combinations, Gemma gets at least 97% validation accuracy. We filter for task combinations
where the model achieves less than 90% accuracy on the intended question on DOOD. Figure 2
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Figure 2: (Left) Accuracy on DOOD for the gender bias and multiple choice tasks. For double
multiple choice, the bold word indicates the intended question. (Right) Accuracy on DOOD across
all tasks, comparing ablations using manually and automatically interpreted latents. (Both) Accuracy
is tested using the model that was fine-tuned with ablations, without ablating during testing.

shows eight of the sixteen tasks; all pairs are represented, and we choose the pair ordering that had
lower no-intervention accuracy. See Appendix E for more.

Interpreting latents with highest attribution. When interpreting the top 100 latents, we find many
that appear important for answering multiple choice questions; for example, features that detect or
promote ‘A’, ‘B’, and other similar tokens. We also find latents relevant to intended and unintended
task features. For the gender bias task, we identify 6 unintended latents, mostly activating on female
or nurse related words. For the double multiple choice task, we find 2-27 latents depending on the
data set and question order. Results are similar for automated interpretations. See Appendix A for a
detailed breakdown.

Training with unintended features ablated. On gender bias, the model trained with ablations
learns the intended generalization, achieving 99.1% accuracy on Dval and 86.4% accuracy on DOOD.
For double multiple choice, out of the 16 task combinations we found improvement in intended
question accuracy DOOD in 12 cases. Figure 2 shows the results for the gender bias task and double
multiple choice question tasks. Full results are shown in Appendix D and E. In four of the cases, the
ablation did not work; these correspond to ablating the pronoun latents when the intended question
is sentiment or verbs. Figure 2 shows that ablating automatically interpreted latents yields similar
accuracies.

Baselines. Random ablations prove ineffective (Figure 2). Another way to alter the unintended
generalization is to ablate features at evaluation on a model fine-tuned without ablations. This per-
forms worse than intervening during training across our tasks (Appendix E). It also requires constant
modification of the model at inference which is impractical for efficient and reliable deployment.

6 CONCLUSION

We demonstrate a method for guiding a language model’s generalization by ablating certain sub-
spaces during training. The approach performs strongly on toy tasks, but it faces certain limitations
in scaling to larger, complex scenarios. Our work is an initial step in the direction of using in-
terpretability methods for building trust into language models. By controlling generalization from
training data, we provide more robust guarantees for safety and reliability in the real world.

7 LIMITATIONS

Locating full concept subspaces for ablation is challenging due to limitations of SAEs. Engels et al.
(2024) find SAE error is pathological and Menon et al. (2025) show that SAEs reflect inductive
biases of their pipeline, not true features of model computation. Additionally, automated inter-
pretability pipelines fail to capture functional features whose explanations aren’t obvious from top
activations.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

REFERENCES

Nora Belrose, David Schneider-Joseph, Shauli Ravfogel, Ryan Cotterell, Edward Raff, and
Stella Biderman. Leace: Perfect linear concept erasure in closed form. In A. Oh,
T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), Advances in Neu-
ral Information Processing Systems, volume 36, pp. 66044–66063. Curran Associates, Inc.,
2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/
file/d066d21c619d0a78c5b557fa3291a8f4-Paper-Conference.pdf.

Steven Bills, Nick Cammarata, Dan Mossing, Henk Tillman, Leo Gao, Gabriel Goh, Ilya Sutskever,
Jan Leike, Jeff Wu, and William Saunders. Language models can explain neurons in lan-
guage models. URL https://openaipublic. blob. core. windows. net/neuron-explainer/paper/index.
html.(Date accessed: 14.05. 2023), 2, 2023.

Trenton Bricken, Adly Templeton, Joshua Batson, Brian Chen, Adam Jermyn, Tom Conerly,
Nicholas L Turner, Cem Anil, Carson Denison, Amanda Askell, Robert Lasenby, Yifan Wu,
Shauna Kravec, Nicholas Schiefer, Tim Maxwell, Nicholas Joseph, Alex Tamkin, Karina Nguyen,
Brayden McLean, Josiah E Burke, Tristan Hume, Shan Carter, Tom Henighan, and Chris Olah.
Towards monosemanticity: Decomposing language models with dictionary learning, 2023. URL
https://transformer-circuits.pub/2023/monosemantic-features.

Collin Burns, Pavel Izmailov, Jan Hendrik Kirchner, Bowen Baker, Leo Gao, Leopold Aschen-
brenner, Yining Chen, Adrien Ecoffet, Manas Joglekar, Jan Leike, Ilya Sutskever, and Jeff Wu.
Weak-to-strong generalization: Eliciting strong capabilities with weak supervision, 2023. URL
https://arxiv.org/abs/2312.09390.

Hoagy Cunningham, Aidan Ewart, Logan Riggs, Robert Huben, and Lee Sharkey. Sparse autoen-
coders find highly interpretable features in language models, 2023. URL https://arxiv.
org/abs/2309.08600.

Maria De-Arteaga, Alexey Romanov, Hanna Wallach, Jennifer Chayes, Christian Borgs, Alexandra
Chouldechova, Sahin Geyik, Krishnaram Kenthapadi, and Adam Tauman Kalai. Bias in bios: A
case study of semantic representation bias in a high-stakes setting. In proceedings of the Confer-
ence on Fairness, Accountability, and Transparency, pp. 120–128, 2019.

Joshua Engels, Logan Riggs, and Max Tegmark. Decomposing the dark matter of sparse autoen-
coders, 2024. URL https://arxiv.org/abs/2410.14670.

Eoin Farrell, Yeu-Tong Lau, and Arthur Conmy. Applying sparse autoencoders to unlearn knowl-
edge in language models. arXiv preprint arXiv:2410.19278, 2024.

Jaden Fiotto-Kaufman, Alexander R Loftus, Eric Todd, Jannik Brinkmann, Caden Juang, Koyena
Pal, Can Rager, Aaron Mueller, Samuel Marks, Arnab Sen Sharma, et al. Nnsight and ndif:
Democratizing access to foundation model internals. arXiv preprint arXiv:2407.14561, 2024.

Leo Gao, Tom Dupré la Tour, Henk Tillman, Gabriel Goh, Rajan Troll, Alec Radford, Ilya
Sutskever, Jan Leike, and Jeffrey Wu. Scaling and evaluating sparse autoencoders. arXiv preprint
arXiv:2406.04093, 2024.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, Amy Yang, Angela Fan,
Anirudh Goyal, Anthony Hartshorn, Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Ko-
renev, Arthur Hinsvark, Arun Rao, Aston Zhang, Aurelien Rodriguez, Austen Gregerson, Ava
Spataru, Baptiste Roziere, Bethany Biron, Binh Tang, Bobbie Chern, Charlotte Caucheteux,
Chaya Nayak, Chloe Bi, Chris Marra, Chris McConnell, Christian Keller, Christophe Touret,
Chunyang Wu, Corinne Wong, Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Allonsius,
Daniel Song, Danielle Pintz, Danny Livshits, Danny Wyatt, David Esiobu, Dhruv Choudhary,
Dhruv Mahajan, Diego Garcia-Olano, Diego Perino, Dieuwke Hupkes, Egor Lakomkin, Ehab
AlBadawy, Elina Lobanova, Emily Dinan, Eric Michael Smith, Filip Radenovic, Francisco
Guzmán, Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis Anderson, Govind That-
tai, Graeme Nail, Gregoire Mialon, Guan Pang, Guillem Cucurell, Hailey Nguyen, Hannah Kore-
vaar, Hu Xu, Hugo Touvron, Iliyan Zarov, Imanol Arrieta Ibarra, Isabel Kloumann, Ishan Misra,

5

https://proceedings.neurips.cc/paper_files/paper/2023/file/d066d21c619d0a78c5b557fa3291a8f4-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/d066d21c619d0a78c5b557fa3291a8f4-Paper-Conference.pdf
https://transformer-circuits.pub/2023/monosemantic-features
https://arxiv.org/abs/2312.09390
https://arxiv.org/abs/2309.08600
https://arxiv.org/abs/2309.08600
https://arxiv.org/abs/2410.14670


270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Ivan Evtimov, Jack Zhang, Jade Copet, Jaewon Lee, Jan Geffert, Jana Vranes, Jason Park, Jay Ma-
hadeokar, Jeet Shah, Jelmer van der Linde, Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy Fu,
Jianfeng Chi, Jianyu Huang, Jiawen Liu, Jie Wang, Jiecao Yu, Joanna Bitton, Joe Spisak, Jong-
soo Park, Joseph Rocca, Joshua Johnstun, Joshua Saxe, Junteng Jia, Kalyan Vasuden Alwala,
Karthik Prasad, Kartikeya Upasani, Kate Plawiak, Ke Li, Kenneth Heafield, Kevin Stone, Khalid
El-Arini, Krithika Iyer, Kshitiz Malik, Kuenley Chiu, Kunal Bhalla, Kushal Lakhotia, Lauren
Rantala-Yeary, Laurens van der Maaten, Lawrence Chen, Liang Tan, Liz Jenkins, Louis Martin,
Lovish Madaan, Lubo Malo, Lukas Blecher, Lukas Landzaat, Luke de Oliveira, Madeline Muzzi,
Mahesh Pasupuleti, Mannat Singh, Manohar Paluri, Marcin Kardas, Maria Tsimpoukelli, Mathew
Oldham, Mathieu Rita, Maya Pavlova, Melanie Kambadur, Mike Lewis, Min Si, Mitesh Ku-
mar Singh, Mona Hassan, Naman Goyal, Narjes Torabi, Nikolay Bashlykov, Nikolay Bogoy-
chev, Niladri Chatterji, Ning Zhang, Olivier Duchenne, Onur Çelebi, Patrick Alrassy, Pengchuan
Zhang, Pengwei Li, Petar Vasic, Peter Weng, Prajjwal Bhargava, Pratik Dubal, Praveen Krishnan,
Punit Singh Koura, Puxin Xu, Qing He, Qingxiao Dong, Ragavan Srinivasan, Raj Ganapathy, Ra-
mon Calderer, Ricardo Silveira Cabral, Robert Stojnic, Roberta Raileanu, Rohan Maheswari, Ro-
hit Girdhar, Rohit Patel, Romain Sauvestre, Ronnie Polidoro, Roshan Sumbaly, Ross Taylor, Ruan
Silva, Rui Hou, Rui Wang, Saghar Hosseini, Sahana Chennabasappa, Sanjay Singh, Sean Bell,
Seohyun Sonia Kim, Sergey Edunov, Shaoliang Nie, Sharan Narang, Sharath Raparthy, Sheng
Shen, Shengye Wan, Shruti Bhosale, Shun Zhang, Simon Vandenhende, Soumya Batra, Spencer
Whitman, Sten Sootla, Stephane Collot, Suchin Gururangan, Sydney Borodinsky, Tamar Herman,
Tara Fowler, Tarek Sheasha, Thomas Georgiou, Thomas Scialom, Tobias Speckbacher, Todor Mi-
haylov, Tong Xiao, Ujjwal Karn, Vedanuj Goswami, Vibhor Gupta, Vignesh Ramanathan, Viktor
Kerkez, Vincent Gonguet, Virginie Do, Vish Vogeti, Vítor Albiero, Vladan Petrovic, Weiwei
Chu, Wenhan Xiong, Wenyin Fu, Whitney Meers, Xavier Martinet, Xiaodong Wang, Xiaofang
Wang, Xiaoqing Ellen Tan, Xide Xia, Xinfeng Xie, Xuchao Jia, Xuewei Wang, Yaelle Gold-
schlag, Yashesh Gaur, Yasmine Babaei, Yi Wen, Yiwen Song, Yuchen Zhang, Yue Li, Yuning
Mao, Zacharie Delpierre Coudert, Zheng Yan, Zhengxing Chen, Zoe Papakipos, Aaditya Singh,
Aayushi Srivastava, Abha Jain, Adam Kelsey, Adam Shajnfeld, Adithya Gangidi, Adolfo Victoria,
Ahuva Goldstand, Ajay Menon, Ajay Sharma, Alex Boesenberg, Alexei Baevski, Allie Feinstein,
Amanda Kallet, Amit Sangani, Amos Teo, Anam Yunus, Andrei Lupu, Andres Alvarado, An-
drew Caples, Andrew Gu, Andrew Ho, Andrew Poulton, Andrew Ryan, Ankit Ramchandani, An-
nie Dong, Annie Franco, Anuj Goyal, Aparajita Saraf, Arkabandhu Chowdhury, Ashley Gabriel,
Ashwin Bharambe, Assaf Eisenman, Azadeh Yazdan, Beau James, Ben Maurer, Benjamin Leon-
hardi, Bernie Huang, Beth Loyd, Beto De Paola, Bhargavi Paranjape, Bing Liu, Bo Wu, Boyu
Ni, Braden Hancock, Bram Wasti, Brandon Spence, Brani Stojkovic, Brian Gamido, Britt Mon-
talvo, Carl Parker, Carly Burton, Catalina Mejia, Ce Liu, Changhan Wang, Changkyu Kim, Chao
Zhou, Chester Hu, Ching-Hsiang Chu, Chris Cai, Chris Tindal, Christoph Feichtenhofer, Cynthia
Gao, Damon Civin, Dana Beaty, Daniel Kreymer, Daniel Li, David Adkins, David Xu, Davide
Testuggine, Delia David, Devi Parikh, Diana Liskovich, Didem Foss, Dingkang Wang, Duc Le,
Dustin Holland, Edward Dowling, Eissa Jamil, Elaine Montgomery, Eleonora Presani, Emily
Hahn, Emily Wood, Eric-Tuan Le, Erik Brinkman, Esteban Arcaute, Evan Dunbar, Evan Smoth-
ers, Fei Sun, Felix Kreuk, Feng Tian, Filippos Kokkinos, Firat Ozgenel, Francesco Caggioni,
Frank Kanayet, Frank Seide, Gabriela Medina Florez, Gabriella Schwarz, Gada Badeer, Georgia
Swee, Gil Halpern, Grant Herman, Grigory Sizov, Guangyi, Zhang, Guna Lakshminarayanan,
Hakan Inan, Hamid Shojanazeri, Han Zou, Hannah Wang, Hanwen Zha, Haroun Habeeb, Harri-
son Rudolph, Helen Suk, Henry Aspegren, Hunter Goldman, Hongyuan Zhan, Ibrahim Damlaj,
Igor Molybog, Igor Tufanov, Ilias Leontiadis, Irina-Elena Veliche, Itai Gat, Jake Weissman, James
Geboski, James Kohli, Janice Lam, Japhet Asher, Jean-Baptiste Gaya, Jeff Marcus, Jeff Tang, Jen-
nifer Chan, Jenny Zhen, Jeremy Reizenstein, Jeremy Teboul, Jessica Zhong, Jian Jin, Jingyi Yang,
Joe Cummings, Jon Carvill, Jon Shepard, Jonathan McPhie, Jonathan Torres, Josh Ginsburg, Jun-
jie Wang, Kai Wu, Kam Hou U, Karan Saxena, Kartikay Khandelwal, Katayoun Zand, Kathy
Matosich, Kaushik Veeraraghavan, Kelly Michelena, Keqian Li, Kiran Jagadeesh, Kun Huang,
Kunal Chawla, Kyle Huang, Lailin Chen, Lakshya Garg, Lavender A, Leandro Silva, Lee Bell,
Lei Zhang, Liangpeng Guo, Licheng Yu, Liron Moshkovich, Luca Wehrstedt, Madian Khabsa,
Manav Avalani, Manish Bhatt, Martynas Mankus, Matan Hasson, Matthew Lennie, Matthias
Reso, Maxim Groshev, Maxim Naumov, Maya Lathi, Meghan Keneally, Miao Liu, Michael L.
Seltzer, Michal Valko, Michelle Restrepo, Mihir Patel, Mik Vyatskov, Mikayel Samvelyan, Mike
Clark, Mike Macey, Mike Wang, Miquel Jubert Hermoso, Mo Metanat, Mohammad Rastegari,
Munish Bansal, Nandhini Santhanam, Natascha Parks, Natasha White, Navyata Bawa, Nayan

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Singhal, Nick Egebo, Nicolas Usunier, Nikhil Mehta, Nikolay Pavlovich Laptev, Ning Dong,
Norman Cheng, Oleg Chernoguz, Olivia Hart, Omkar Salpekar, Ozlem Kalinli, Parkin Kent,
Parth Parekh, Paul Saab, Pavan Balaji, Pedro Rittner, Philip Bontrager, Pierre Roux, Piotr Dollar,
Polina Zvyagina, Prashant Ratanchandani, Pritish Yuvraj, Qian Liang, Rachad Alao, Rachel Ro-
driguez, Rafi Ayub, Raghotham Murthy, Raghu Nayani, Rahul Mitra, Rangaprabhu Parthasarathy,
Raymond Li, Rebekkah Hogan, Robin Battey, Rocky Wang, Russ Howes, Ruty Rinott, Sachin
Mehta, Sachin Siby, Sai Jayesh Bondu, Samyak Datta, Sara Chugh, Sara Hunt, Sargun Dhillon,
Sasha Sidorov, Satadru Pan, Saurabh Mahajan, Saurabh Verma, Seiji Yamamoto, Sharadh Ra-
maswamy, Shaun Lindsay, Shaun Lindsay, Sheng Feng, Shenghao Lin, Shengxin Cindy Zha,
Shishir Patil, Shiva Shankar, Shuqiang Zhang, Shuqiang Zhang, Sinong Wang, Sneha Agarwal,
Soji Sajuyigbe, Soumith Chintala, Stephanie Max, Stephen Chen, Steve Kehoe, Steve Satter-
field, Sudarshan Govindaprasad, Sumit Gupta, Summer Deng, Sungmin Cho, Sunny Virk, Suraj
Subramanian, Sy Choudhury, Sydney Goldman, Tal Remez, Tamar Glaser, Tamara Best, Thilo
Koehler, Thomas Robinson, Tianhe Li, Tianjun Zhang, Tim Matthews, Timothy Chou, Tzook
Shaked, Varun Vontimitta, Victoria Ajayi, Victoria Montanez, Vijai Mohan, Vinay Satish Ku-
mar, Vishal Mangla, Vlad Ionescu, Vlad Poenaru, Vlad Tiberiu Mihailescu, Vladimir Ivanov,
Wei Li, Wenchen Wang, Wenwen Jiang, Wes Bouaziz, Will Constable, Xiaocheng Tang, Xiao-
jian Wu, Xiaolan Wang, Xilun Wu, Xinbo Gao, Yaniv Kleinman, Yanjun Chen, Ye Hu, Ye Jia,
Ye Qi, Yenda Li, Yilin Zhang, Ying Zhang, Yossi Adi, Youngjin Nam, Yu, Wang, Yu Zhao,
Yuchen Hao, Yundi Qian, Yunlu Li, Yuzi He, Zach Rait, Zachary DeVito, Zef Rosnbrick, Zhao-
duo Wen, Zhenyu Yang, Zhiwei Zhao, and Zhiyu Ma. The llama 3 herd of models, 2024. URL
https://arxiv.org/abs/2407.21783.

Roger Grosse, Juhan Bae, Cem Anil, Nelson Elhage, Alex Tamkin, Amirhossein Tajdini, Benoit
Steiner, Dustin Li, Esin Durmus, Ethan Perez, Evan Hubinger, Kamilė Lukošiūtė, Karina Nguyen,
Nicholas Joseph, Sam McCandlish, Jared Kaplan, and Samuel R. Bowman. Studying large lan-
guage model generalization with influence functions, 2023. URL https://arxiv.org/
abs/2308.03296.

Phillip Guo, Aaquib Syed, Abhay Sheshadri, Aidan Ewart, and Gintare Karolina Dziugaite. Mech-
anistic unlearning: Robust knowledge unlearning and editing via mechanistic localization, 2024.
URL https://arxiv.org/abs/2410.12949.

Peter Hase, Mohit Bansal, Peter Clark, and Sarah Wiegreffe. The unreasonable effectiveness of easy
training data for hard tasks, 2024. URL https://arxiv.org/abs/2401.06751.

Andrew Ilyas, Sung Min Park, Logan Engstrom, Guillaume Leclerc, and Aleksander Madry. Data-
models: Predicting predictions from training data, 2022. URL https://arxiv.org/abs/
2202.00622.

Shadi Iskander, Kira Radinsky, and Yonatan Belinkov. Shielded representations: Protecting sen-
sitive attributes through iterative gradient-based projection. In Anna Rogers, Jordan Boyd-
Graber, and Naoaki Okazaki (eds.), Findings of the Association for Computational Linguistics:
ACL 2023, pp. 5961–5977, Toronto, Canada, July 2023. Association for Computational Linguis-
tics. doi: 10.18653/v1/2023.findings-acl.369. URL https://aclanthology.org/2023.
findings-acl.369/.

Caden Juang, Gonçalo Paulo, Jacob Drori, and Nora Belrose. Open source automated interpretability
for sparse autoencoder features. EleutherAI Blog, July, 30, 2024.

Byungju Kim, Hyunwoo Kim, Kyungsu Kim, Sungjin Kim, and Junmo Kim. Learning not to learn:
Training deep neural networks with biased data, 2019. URL https://arxiv.org/abs/
1812.10352.

Honglak Lee, Alexis Battle, Rajat Raina, and Andrew Ng. Efficient sparse coding algorithms.
Advances in neural information processing systems, 19, 2006.

Tom Lieberum, Senthooran Rajamanoharan, Arthur Conmy, Lewis Smith, Nicolas Sonnerat, Vikrant
Varma, János Kramár, Anca Dragan, Rohin Shah, and Neel Nanda. Gemma scope: Open sparse
autoencoders everywhere all at once on gemma 2, 2024. URL https://arxiv.org/abs/
2408.05147.

7

https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2308.03296
https://arxiv.org/abs/2308.03296
https://arxiv.org/abs/2410.12949
https://arxiv.org/abs/2401.06751
https://arxiv.org/abs/2202.00622
https://arxiv.org/abs/2202.00622
https://aclanthology.org/2023.findings-acl.369/
https://aclanthology.org/2023.findings-acl.369/
https://arxiv.org/abs/1812.10352
https://arxiv.org/abs/1812.10352
https://arxiv.org/abs/2408.05147
https://arxiv.org/abs/2408.05147


378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Johnny Lin. Neuronpedia: Interactive reference and tooling for analyzing neural networks, 2023.
URL https://www.neuronpedia.org. Software available from neuronpedia.org.

Samuel Marks, Can Rager, Eric J. Michaud, Yonatan Belinkov, David Bau, and Aaron Mueller.
Sparse feature circuits: Discovering and editing interpretable causal graphs in language models,
2024. URL https://arxiv.org/abs/2403.19647.

Abhinav Menon, Manish Shrivastava, David Krueger, and Ekdeep Singh Lubana. Analyzing
(in)abilities of saes via formal languages, 2025. URL https://arxiv.org/abs/2410.
11767.

Niklas Muennighoff, Nouamane Tazi, Loïc Magne, and Nils Reimers. Mteb: Massive text embed-
ding benchmark, 2023. URL https://arxiv.org/abs/2210.07316.

Junhyun Nam, Hyuntak Cha, Sungsoo Ahn, Jaeho Lee, and Jinwoo Shin. Learn-
ing from failure: De-biasing classifier from biased classifier. In H. Larochelle,
M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances in Neural In-
formation Processing Systems, volume 33, pp. 20673–20684. Curran Associates, Inc.,
2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/
file/eddc3427c5d77843c2253f1e799fe933-Paper.pdf.

Junhyun Nam, Jaehyung Kim, Jaeho Lee, and Jinwoo Shin. Spread spurious attribute: Improving
worst-group accuracy with spurious attribute estimation, 2022. URL https://arxiv.org/
abs/2204.02070.

Neel Nanda. Attribution patching: Activation patching at industrial scale. URL: https://www. neel-
nanda. io/mechanistic-interpretability/attribution-patching, 2023.

Bruno A Olshausen and David J Field. Sparse coding with an overcomplete basis set: A strategy
employed by v1? Vision research, 37(23):3311–3325, 1997.

Sung Min Park, Kristian Georgiev, Andrew Ilyas, Guillaume Leclerc, and Aleksander Madry. Trak:
Attributing model behavior at scale, 2023. URL https://arxiv.org/abs/2303.14186.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-
performance deep learning library. Advances in neural information processing systems, 32, 2019.

Gonçalo Paulo, Alex Mallen, Caden Juang, and Nora Belrose. Automatically interpreting millions of
features in large language models, 2024. URL https://arxiv.org/abs/2410.13928.
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A APPENDIX: ATTRIBUTED EFFECTS BY LAYER

Figure 3: Attribution effect for the top 100 residual stream features in double multiple choice tasks.
The orange line is the effect for features chosen by manual labelling. The blue line is the total effect
for all top 100 features.

We compute attribution on the suite of residual stream SAEs from Gemma Scope (Lieberum et al.,
2024). Specifically, we use the 16k width canonical SAEs (l0s closest to 100 out of the trained SAEs
per layer).

Notably, the attribution effect of features chosen by manual interpretation is highest in early layers.
Early layer SAE features are the most interpretable from their top activating features, and they are
selected the most by human and automated annotators.

B APPENDIX: INTERPRETING LATENTS

We use a modified auto-interp pipeline from Juang et al. (2024); Paulo et al. (2024). For each
question or question pair, we compute the top 100 latents by attribution effect over Damb. We cache
activations for these latents over 2,500,000 million tokens from Fine Web (Penedo et al., 2024). To
generate an explanation for a latent, we present Llama 3.3 70B with the top 20 activating examples,
a prompt explaining how to interpret activations, and three few-shot conversation turns.

We use simulation scoring from Bills et al. (2023) to measure the quality of our explanations. Simu-
lation scoring uses a model to estimate a normalized activation (0-9) for each token in an activating
example, given an explanation for the feature. The correlation between the predicted and true acti-
vations is the score for the feature. We run simulation scoring on 5 examples per explanation, one
from each quantile of cached activations, and filter for features with a simulation score greater than
0.5. We defer to the original work for a more detailed explanation of the method.

To perform simulation scoring, we use Qwen 2.5 7B. We use an all-at-once trick from Bills et al.
(2023) to estimate the predicted activations from the top log probabilities for prompt tokens. To filter
top explanations, we use Stella 1.5B, Zhang et al. (2025) from the sentence-transformers library
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Reimers & Gurevych (2019) and choose features with similarity greater than 0.5 with the query.
We chose this model for its top ranking classification performance on MTEB (Muennighoff et al.,
2023)).

C APPENDIX: TRAINING DETAILS

On all tasks, we fine-tune Gemma 2 2B for four epochs with a learning rate of 5e-6 and batch
size of 16. We use the adamw optimizer with momentum and weight decay, and default PyTorch
configurations (Paszke et al., 2019). We use the NNsight library to perform interventions at each
step of training (Fiotto-Kaufman et al., 2024), along with all other intervention experiments we
performed.

D APPENDIX: AUTOMATED INTERPRETABILITY PERFORMANCE

Figure 4: Accuracy on DOOD for all tasks, ablating latents found using manual interpretation or
automatic interpretation. The top plot shows test accuracies and bottom plot shows test accuracies
while ablating latents during inference. Using features found by automated interpretability performs
about as well as features found by manual inspection.

The performance gap between manual and automatically interpreted features reflects shortcomings
in automated interpretability pipelines. It is difficult to design a query at the level of detail with
which a human annotator would search through features. For example, an automated explainer in
the gender task produces explanations for each feature off the top latents. Querying for “gendered"
but not “pronoun" latents is difficult when using a sentence embedding model since the explanations
are so similar.

One approach is to provide the explainer with the query and have it provide a score as to how well
the information agrees with the query. This has the benefit of not condensing valuable information in
the top activations into a single explanation, but scores are not reusable by tasks. Future work could
investigate explanations that are more detailed than single, one sentence descriptions and pipelines
that incorporate more causal feature information.
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E APPENDIX: BASELINES AND METHOD ABLATIONS

Figure 5: Comparison between ablating latents only during fine-tuning or during fine-tuning and
testing, for random and interpreted latents, evaluated on DOOD. Removing the latent ablations during
evaluation performs about as well, or just a little bit worse than ablating during evaluation. Random
ablations do not work consistently.

Removing latent ablations during evaluation performs about as well as keeping them on. Future
work could adopt a more principled method of slowly turning off ablations during training. This
would be beneficial as ablations during inference are more expensive; each layer with unintended
latents must be decomposed, edited, recomposed, and inserted back into the model.

Figure 6: Comparison between ablation during fine-tuning only, during testing only, or during both,
evaluated on DOOD. When ablating only during testing, we fine-tune the model on Dval without
interventions and ablate the selected latents when testing on DOOD.

Ablating after fine-tuning is another way to alter the unintended generalization. We test two addi-
tional methods:

• Test-only ablation: we fine-tune the model without interventions and ablate the selected
latents only after fine-tuning, when we evaluate performace on DOOD. This shows partial
success some of the time but does not perform as well as fine-tuning with ablations.

• Fine-tuning with ablations + test ablations: we fine-tune with ablations (as described in
Section 4) and then ablate during testing too. This method has the highest accuracy overall.
However, in some cases the ablations lead to low Dval scores and random guessing.
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Table 1: Double multiple choice skyline performance

First Question Second Question Mean Std

verbs pronouns 1.00 0.000
verbs sentiment 0.998 0.00293
verbs sports 0.999 0.00255
pronouns verbs 1.00 0.000
sentiment verbs 1.00 0.000
sports verbs 1.00 0.000
sentiment verbs 0.959 0.00857
pronouns verbs 0.947 0.0125
sports verbs 0.942 0.0202
sports verbs 0.993 0.00831
pronouns verbs 0.991 0.00862
sentiment verbs 0.998 0.00323

Table 1 shows skyline performance on the double multiple choice task. Models trained on a version
of DOOD generalize correctly with at least 95% accuracy.

Table 2: Gender bias skyline performance

Metric Mean Std

Gender bias 0.991 0.00599

Similar performance on the gender dataset, models trained on a balanced dataset correctly generalize
to DOOD.
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