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ABSTRACT

Mobile robots require comprehensive scene understanding to operate effectively
in diverse environments, enriched with contextual information such as layouts,
objects, and their relationships. While advancements like Neural Radiance Fields
(NeRF) offer high-fidelity 3D reconstructions, they are computationally intensive
and often lack efficient representations of traversable spaces essential for plan-
ning and navigation. In contrast, topological maps generated by LiDAR or visual
SLAM methods are computationally efficient but lack the semantic richness nec-
essary for a more complete understanding of the environment. Inspired by neu-
roscientific studies on spatial cognition, particularly the role of postrhinal cortex
(POR) neurons that are strongly tuned to spatial layouts over scene content, this
work introduces Topo-Field, a framework that integrates Layout-Object-Position
(LOP) associations into a neural field and constructs a topometric map from this
learned representation. LOP associations are modeled by explicitly encoding ob-
ject and layout information, while a Large Foundation Model (LFM) technique
allows for efficient training without extensive annotations. The topometric map
is then constructed by querying the learned implicit neural representation, offer-
ing both semantic richness and computational efficiency. Empirical evaluations in
multi-room apartment environments demonstrate the effectiveness of Topo-Field
in tasks such as position attribute inference, query localization, and topometric
planning, successfully bridging the gap between high-fidelity scene understand-
ing and efficient robotic navigation.

1 INTRODUCTION

Mobile robots are rapidly moving from research labs to widespread use. For these robots to operate
autonomously in complex environments, a deep understanding of their surroundings is crucial (Ca-
dena et al., 2016). Efficient path planning and accurate identification of navigable spaces, along
with detailed environmental reconstruction, will be key to enabling their deployment in real-world
scenarios (Blochliger et al., 2018).

Recently, detailed environmental reconstruction has made great progress in producing lifelike 3D
reconstructions (Ullman, 1979; Forster et al., 2014; Dai et al., 2017; Tang & Tan, 2018), in which
NeRF (Mildenhall et al., 2020) is a prime instance. As improvements, works like (Zhi et al., 2021;
Fan et al., 2022; Xie et al., 2021) introduce semantic information for better scene understanding.
Further, features powered by Large-Foundation-Model (LFM)s, trained on massive datasets across
various scenes, are employed with general knowledge for open scene understanding (Shafiullah
et al., 2022; Huang et al., 2023; Kerr et al., 2023). However, it is computationally demanding and
lacks global layout information using detailed neural fields for planning and navigation.

In contrast, existing topological maps for path planning and navigation in complex environments
are often derived from LiDAR Simultaneous-Localization-and-Mapping (SLAM) using 3D dense
submaps (Gomez et al., 2020) or visual SLAM by clustering free-space regions and extracting oc-
cupancy information from point clouds (Blochliger et al., 2018). While this approach increases path
planning accuracy, computing topology with traditional methods comes with high computational
costs and tends to strip away essential semantic information, reducing the robot’s ability to fully
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Figure 1: Illustration of the Topo-Field strategy and capabilities. Hierarchically dividing scene
information into layout, object, and position to model them explicitly, layout-object-position associ-
ated knowledge enables robots with a topometric map representing the scene and planning navigable
path to realize a more comprehensive spatial cognition.

understand and interpret the environment, which is critical for advanced autonomous functions such
as language/image-prompted localization and navigation.

Neuroscientists have long discovered that animals process their surroundings using topological cod-
ing, forming what is known as a ”cognitive map” (Tolman, 1948), a concept embodied by place
cells (O’Keefe & Dostrovsky, 1971). These place cells, along with spatial view cells (Rolls et al.,
1998), respond to specific scene contents. More recently, research has shown that a population code
in the postrhinal cortex (POR) is strongly tuned to spatial layout rather than scene content (LaChance
et al., 2019), capturing spatial representations relative to environmental centers to form a high-level
cognitive map from egocentric perception to allocentric understanding (Zeng et al., 2022), unlike tra-
ditional clustering from occupancy information (Blochliger et al., 2018) or Voronoi diagrams (Fried-
man et al., 2007). Inspired by this, we intuitively abstract the neural representations of space to build
topo-field in three key aspects: 1) The cognitive map corresponds to a topometric map, which uses
graph-like representations to encode relationships among its components, e.g. layouts and objects.
2) The population of place cells is analogous to a neural implicit representation with position en-
coding, enabling location-specific responses. 3) POR, which prioritizes spatial layouts over content,
aligns with our spatial layout encoding of connected regions. We believe this approach makes a step
forward in applying mechanisms of spatial cognition in robotics.

To this end, this work proposes a Topo-Field, integrating the Layout-Object-Position (LOP) associa-
tion into neural field training and constructing a topometric map based on the learned neural implicit
representation for hierarchical robotic scene understanding. By inputting RGB-D sequences, ob-
jects and background contexts are encoded separately as contents and layout information to train a
neural field, forming a detailed scene representation. A contrast loss against features from LFMs
is employed, resulting in little need for annotation. Further, a topometric map is built based on co-
observation relationship among frames, sampling points, and querying the learned field, which is
efficient for navigable path planning. To validate the effectiveness of Topo-Field, we conduct quan-
titative and qualitative experiments on several multi-room apartment scenes evaluating the abilities
including position attributes inference, text/image query localization, and planning.

Our contributions can be listed as follows:

• We develop a brain-inspired Topo-Field, which combines detailed neural scene represen-
tation with high-level efficient topometric mapping for hierarchical robotic scene under-
standing and navigable path planning. Various quantitative and qualitative experiments
on real-world datasets are conducted, showing high accuracy and low error in position at-
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tributes inference and multi-modal localization tasks. Examples of topometric construction
and path planning are also employed.

• We explain the theoretical basis and neuroscience reference to manage the hierarchical
encoding of spatial layouts and contents in the form of objects and connected regions,
according to the spatial mechianism of cognitive map with POR population and place cells.

• We propose to learn a Layout-Object-Position associated implicit neural representation
with target features from separately encoded object instances and background contexts as
objects and layouts. The process is explicitly supervised by LFM-powered strategy with
little human labor.

• We propose a topometric map construction pipeline by querying the learned neural repre-
sentation in a two-stage mapping and updating approach, leveraging LLM to validate edges
conducted among vertices.

2 RELATED WORKS

2.1 DENSE REPRESENTATION WITH NEURAL RADIANCE FIELD

Detailed 3D scene reconstruction has made great efforts in producing lifelike results, among which
NeRF (Neural Radiance Fields) (Mildenhall et al., 2020) has widely attracted researchers’ attention.
While numerous efforts improve the NeRF (Yu et al., 2021; Martin-Brualla et al., 2021; Zhu et al.,
2022), a popular research direction is to integrate semantics with NeRF to achieve a more com-
prehensive understanding of scenes (Zhi et al., 2021; Fan et al., 2022; Xie et al., 2021). Recently,
several robotic works have demonstrated that features from LFMs can be used for self-supervised
learning, which reduces the costly manual annotation (Shafiullah et al., 2022; Huang et al., 2023;
Kerr et al., 2023). However, the semantic feature fields learned in the above methods focus on object
semantics but do not include layout-level features. RegionPLC (Yang et al., 2023) considered region
information by fusing multi-model features but with no explicit representation of layout features. In
contrast, in our work, CLIP (Radford et al., 2021) and Sentence-BERT (Reimers & Gurevych, 2019)
are employed to generate vision-language and semantic features for objects and layout respectively.
In addition to using object semantics, we annotate the belonging regions based on spatial layout and
regional division of scenes. Such annotations incur minimal cost but establish connections between
the position of 3D points, object semantics, and scene regions.

2.2 TOPOMETRIC MAP FOR SCENE STRUCTURE UNDERSTANDING

Using detailed neural fields for planning and navigation is computationally demanding, on the other
hand, hybrid topometric mapping has been known for its efficiency in terms of managing the in-
formation and being queried for downstream tasks (Zhang, 2015; Zhang et al., 2015; Garrote et al.,
2018). It takes advantage of both metric maps and topological maps. Metric maps could refine the
local scale geometry accuracy and navigation plans while topological maps provide reliable global
topological cues and large-scale plans (Oleynikova et al., 2018; Badino et al., 2012). However,
most topological maps have not introduced information such as semantics. This makes it unsuit-
able for language/image-guided planning tasks, which is a growing trend in scene representation
applications. Concept-graph (Gu et al., 2024) makes a step forward utilizing LFM to model the
object structure with a topo map. CLIO Maggio et al. (2024)built a task-driven scene graph inspired
by Information Bottleneck (IB) principle to form task-relevant clusters of primitives. At the same
time, HOV-SG Werby et al. (2024) proposed a hierarchical scene understanding pipeline, using fea-
ture point cloud clustering of zero-shot embeddings in a fusion scheme and realizing the mapping
in an incremental approach. Unlike the incremental mapping and clustering-based graph construc-
tion method, we propose to build the topometric map based on querying the trained neural field
which serves as knowledge-like memory base, whose nodes and edges include attributes represent-
ing object and layout information explicitly learned when training the specific neural representation
encoding.
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2.3 SPATIAL UNDERSTANDING WITH LAYOUT INFORMATION

Generally, topology is built based on traditional clustering from occupancy information or Voronoi
diagrams (He et al., 2021), regardless of the contents and layout relationship. However, neuroscience
findings suggest a mechanism to form a high-level cognitive map from egocentric perception to
allocentric representation (Zeng et al., 2022). Neuroscientists have long discovered that animals
process their surroundings using topological coding, forming a ”cognitive map” (Tolman, 1948).
Place cells (O’Keefe & Dostrovsky, 1971), as the embodiment, together with spatial view cells
show activity to contents (Rolls et al., 1998). Recently, Patrick et al. (LaChance et al., 2019) showed
that a population code in the POR is more strongly tuned to the spatial layout than to the content in
a scene. This suggests that there are specialized cells and signaling mechanisms to process layout
in the process of scene understanding, which captures the spatial layout of complex environments
to rapidly form a high-level cognitive map representation (Zeng et al., 2022). Inspired by the above
research, we propose that the spatial layout connected by regions, as a high-level abstract feature,
is closely related to the object contents and purposes of the scene. We mimic the neural scene
understanding mechanism by employing egocentric neural field knowledge to construct allocentric
topometric map.

3 OVERVIEW

We propose to learn an implicit representation of a scene with the neural encoding approach by
establishing associations between 3D positions and their corresponding layout and object features
as the scene knowledge. Then, a topometric map is built with the learned neural field to form an
efficient and queriable representation with a comprehensive understanding of the scene. Therefore,
we need to train a scene-dependent implicit function, denoted as

F : R3 → Rn, (1)

where for any 3D point P in space, F (P ) is supposed to match with

E{(ev, es)} ∈ Rn, (2)

representing the layout-object-position associated embedding of that point. ev and es are vision-
language embedding and semantic embedding of image point where P is back-projected from.
CLIP (Radford et al., 2021) image encoder is introduced to encode ev integrating the vision and
language feature space. Besides, the Sentence-BERT (Reimers & Gurevych, 2019) feature is also
introduced to encode es in this work. Because intuitively, unlike objects that can have similar ap-
pearances within a certain category, region information often lacks specific visual appearances and
is closely related to semantic representations like the integration purpose of the scene and object
semantics. Models trained on large-scale question-answering datasets can aid in understanding the
semantic relationships between regions and objects. Target feature processing and training strategy
to match the embeddings to targets are described in Section 4.1 and 4.4. Applications utilizing the
learned field are discussed in Section 4.3.1. Based on the trained F , we aim to build a topometric
map denoted as

G = (V,E), (3)
where vertices V include object vertices vo and region vertices vr and edges E include edges
between objects eo−o, edges between regions er−r, and edges between object and region eo−r.
The topological map architecture and construction pipeline are described in Section 4.3.2.

4 METHOD

4.1 TARGET FEATURE PROCESSING

(We clarify the formulation and polish for better understanding. The ground-truth label of layout regions is
described. More details are described for pixel-wise encoding of image and information in the target supervising
embeddings.)

RGB-D image sequences with poses are accepted as input to get the target layout-object-position
features for training F . For pure RGB image sequences, depth point clouds and camera poses can
also be estimated through methods like COLMAP (Schönberger & Frahm, 2016) or simultaneous
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Figure 2: Pipeline of the Topo-Field. (a) The ground truth generation of layout-object-position
vision-language and semantic embeddings for weakly-supervising. (b) The neural implicit network
mapping 3D positions to target feature space. A contrastive loss is optimized against each other. (c)
Topometric mapping process with trained neural field. (Formulation in the figure has been clarified.)

localization and mapping (SLAM). The only employed GT annotation is the layout distribution of
environment where the region of each 3D point P is denoted as rP ∈ R = {r1, r2, . . . , rq}, where
q is the number of regions. Such information is available in datasets like Matterport3D Chang et al.
(2017). However, in fact, partitioning the buildings needs little human labor, where in most human-
made buildings spatial layouts are easily available divided by straight walls if not provided. As in
our practice, region annotation of a house with 8 rooms only takes 3 min by drawing lines from
top-down view according to walls to form a rule to separate (x, y) coordinates, bounding 3D points
to different regions.

For each image I , we employ Detic (Zhou et al., 2022) D to generate object instance patches with
number i, including bounding-boxes B = {b1, b2, . . . , bi}, masks M = {m1,m2, . . . ,mi}, and
labels L = {l1, l2, . . . , li}.
For object pixels po in instance mask j, CLIP (Radford et al., 2021) C is employed to compute
per-pixel features in mask bj and Sentence-BERT (Reimers & Gurevych, 2019) S is employed to
process the semantic feature of lj , prompted in the form of “lj in rpo”. Given the related region rpo

of po, embedding of po can be denoted as epo = {C(bj), S(lj , rpo)}.
What’s more, the background appearance is also considered which we proposed to include context
information for region layout. For background pixels pb out of masks, per-pixel feature of the whole
image I is encoded. Its related region rpb

∈ R = {r1, r2, . . . , rm} is regarded as the text label and
embedding of pb can be calculated as epb

= {C(I), S(rpb
)}.

Then, pixel-wise embeddings are back-projected to 3D space based on depth and pose and averagely
counted to form a distilled 3D feature point cloud. Consequently, the target feature space E{(ev, es)}
consists of object and layout features, where (ev, es) directs from {epo

, epb
}po,pb∈P . The pipeline

is shown in Fig. 2

Compared with previous implicit neural field methods, (ev, es) includes (1) separately encoded
vision-language and semantic information by supervising embeddings from object and background
pixels. (2) region information consisted of vision-language embeddings from per-pixel image en-
coding and semantic embeddings from region text labels. (3) context included object label in the
form of “lp in rp”, where lp and rp is object label and region label at point p (e.g., cup in the kitchen).
Ablation studies of these improvements are conducted in Section 4 with more details.

4.2 SCENE NEURAL ENCODING

(We clarify the formulation and include more details of the MHE and feature mapping head to get the high
dimension feature in neural representation.)
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Figure 3: Capabilities of the learned neural field. (a) The attributes inference using position input.
(b) The LOP association helped localization of text and image queries. (Formulation in the figure has
been clarified.)

Our proposed Topo-Field involves an implicit mapping function to encode the 3D position into a
spatial vector representation g : R3 → Rd and separate heads h : Rd → Rn processing encodings to
match the target feature space E{(ev, es)}. To select an appropriate implicit function, considering
that the target feature space includes object-level local features and layout-level region feature rep-
resentation, we employ the Multi-scale Hash Encoding (MHE) introduced in Instant-NGP (Müller
et al., 2022) as g with d = 144. The feature pyramid structure used in MHE allows for consid-
ering structural features ranging from coarse to fine in the spatial domain. Additionally, MHE has
a faster training speed compared to traditional NeRF (Mildenhall et al., 2020) network structures.
For mapping the position encodings to the target feature space, we employ a unified and simple
Multi-Layer Perceptron (MLP) network structure. It includes heads hv : Rd → fv for obtaining
vision-language features and hs : Rd → fs for semantic features, which together form the high
dimension embeddings {fv, fs} ∈ Rn. The model is shown in Fig. 2.

In this way, given a posed RGB-D image, the target feature of each pixel is processed as mentioned
in Section 4.1 denoted as E{(ev, es)}. At the same time the related pixel in depth image is back-
projected into 3D space according to depth and pose value and processed by the above mentioned
g, h to form {fv, fs}. A contrastive loss is conducted between {(ev, es)} and {fv, fs} to train the
neural representation. Training details are declared in Section 4.4.

4.3 TOPOMETRIC MAPPING

With the function and feature representation mentioned above, we can integrate 3D positions with
the object and region information and construct a topometric map. The topo map construction
process is formed in a mapping and updating strategy, while the implicit neural representation is in-
troduced and queried as scene knowledge in this process. Detailed pipeline is introduced as follows.

4.3.1 KNOWLEDGE FROM LEARNED NEURAL FIELD

(We clarify the formulation and definition for better understanding.)

Position Attributes Inference. Using spatial 3D point P as input, assuming a collection of space
regions R (e.g., “living room”“bathroom”“bedroom”. . . ), we compute the vision-language features
CR = {C(r1), C(r2), . . . , C(rm)} and semantic features SR = {S(r1), S(r2), . . . , S(rm)} using
CLIP Radford et al. (2021) encoder C and Sentence-BERT Reimers & Gurevych (2019) encoder
S, where m is the number of rooms. Then the cosine similarity between F (P ) = {(fv, fs)}P and
{CR,SR} is calculated to find the most likely region to which P belongs. The inference process is
shown in Fig. 3 (a). Similarly, the object information of P can be inferred with the same approach
replacing the region set R with object set O.
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Figure 4: Qualitative comparison of text query localization results among state-of-the-art meth-
ods and our method with text input in the form of “object in the region”. Blue box shows the ground
truth bounding box of object. Red box means miss-predicted box, while green box means the cor-
rectly predicted results.

Methods Scene1 Scene2 Scene3 Scene4
Dist. Acc. Dist. Acc. Dist. Acc. Dist. Acc.

CLIP-Field(2022) 2.97 0.24 3.35 0.21 2.98 0.20 3.06 0.17
VLMaps(2023) 2.78 0.28 3.63 0.16 3.05 0.24 3.12 0.12
LERF(2023) 2.86 0.32 2.82 0.11 3.49 0.17 3.04 0.20
Topo-Field 0.92 0.85 0.86 0.84 0.36 0.95 0.27 0.97

Text queries 100 100 60 60

Table 1: Quantitative comparison of text query localization results on different scenes from the
Matterport3D dataset. The average distance (m) from the target to the localized point cloud and the
accuracy evaluating whether predicted positions are in the correct region are used as metrics.

Localization with Text/Image Query. For natural language text input t (e.g., “cup in the bed-
room”), most existing robotic scene representations struggle to locate specific objects of interest
(e.g., differentiating between cups in the living room and the bedroom). However, with our pro-
posed Topo-Field that includes region information, we can calculate the cosine similarity between
{Ct,St} and the embeddings F (P ∗) = {(fv, fs)}P∗ to find the most likely position of queries,
where P ∗ are sampled from 3D points set to train F . As for image input I , we can calculate the
cosine similarity of {CI ,SI} with F (P ∗) = {(fv, fs)}P∗ in the same way to find the 3D points set
with highest similarity. The localization process of both text query and image query is shown in Fig.
3.

4.3.2 TOPOMETRIC MAP CONSTRUCTION

(We describe the topometric map construction pipeline step-by-step with more details, which can be regarded
as a mapping and updating strategy. Definition and attributes of vertices and edges are clarified, including the
acquisition process.)

As defined in Section 3, topometric map G = (V,E) consists of vertices and edges. We define a
vertice v and edge e as

v : { id, node type, class, bounding box, caption}, (4)

e : { id, edge type, start node, end node, relationship, caption }. (5)
Mimicking the mental representation of cognitive maps, we construct the topometric map in a map-
ping and updating strategy based on the learned Topo-Field F .

7
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Figure 5: Topometric map construction example. The topometric map is represented as a graph
from a top-down view according to the position of nodes. Map structure shows number of nodes and
edges. A planning path from a seen view to target is shown as an example employing topometric
map, the path is highlighted in green showing the related nodes and edges. Visited nodes are listed
on the right. The line with gradient colors represents the waypoints based on the planning results
while different colors represent different predicted regions of waypoints.

Mapping. we first averagely sample k points P1,...,k in the environment (each grid of 0.5m× 0.5m
with a point in our practice) and infer their related regions according to Section 4.3.1. Supposing
there are m regions in total r1,...,m, we calculate the extent of each region in the bounding-box
format according to positions of points within the same region. The topo map region vertice set
is then initialized as vr = {vr1 ,vr2 , . . . ,vrm}. For each v, {id} is set, {node type} is {region},
{class} and {caption} is set according to the inferred region label, and {bounding box} is set to

{[Min(x),Max(x)], [Min(y),Max(y)], [Min(z),Max(z)]}, (x, y, z) ∈ P1,...,k. (6)

On the other hand, while employing Detic Zhou et al. (2022) to detect object instances as mentioned
in Section 4.1, instances with high confidence (more than 60% in our practice) are recorded as ob-
ject vertices candidates. For each v, {node type} is {object}, {class} and {caption} is set according
to the prediction result, and {bounding box} is set according to the back-projected masked pixels
similar to equation 6. With the mapped nodes, we leverage LLM to describe the layouts with con-
nectivity, distances, and relationships of regions and objects in JSON format based on the vertices’
attributes and poses. During this process, edges are built among vertices. For object-object edge
eo−o, we follow Gu et al. (2024) which mainly consider bounding-box overlap. For object-region
edge eo−r, we consider an object belongs to the region if the object b-box is in the region b-box
and filter the unreasonable relation noise powered by LLM (e.g., it’s almost impossible that a bike
is in bedroom). For region relationships, the adjacency and position relationship of region b-box is
considered. Examples of LLM prompts to build relationships and JSONs are listed in appendix for
reference. Fig. 2 shows the pipeline of metric-topological map construction.

Updating. RGB-D image sequence for training F or a newly captured sequence can be used for
constructed topometric map fine-tuning. For object vertices, if an object is detected by more than 3
frames in sequence, the object b-box will be compared with the constructed vertices. A new vertice
will be added if no vertice corresponds to it with the above-mentioned process. For region vertices,
we calculate embeddings F (pI) of sampled back-projected pixels pI in each image I . F (pI) will
be matched with the constructed region set r1,...,m, and extent of a region r will be updated if F (pI)
matches {Cr,Sr} and pI exceeds the {bounding box} extent of vertice vr. LLM to update edges
will be called each 50 frames.

4.4 TRAINING

The pipeline of ground truth data generation is described in Section 4.1 to train F . To fit the im-
plicit representation introduced in Section 4.2 to the target feature space, we design the loss function
through a contrastive approach. For the vision-language feature optimization, the tempered similar-
ity matrix on point P is denoted as

Simv = τ{fv}P {ev}P , (7)
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Methods Scene1 Scene2 Scene3 Scene4 Scene5 Scene6 Scene7 Scene8 Scene9 Scene10
CLIP-Field(2022) 0.242 0.165 0.130 0.142 0.127 0.138 0.227 0.200 0.102 0.060
VLMaps(2023) 0.177 0.194 0.127 0.098 0.148 0.187 0.199 0.221 0.092 0.087
LERF(2023) 0.268 0.189 0.165 0.153 0.136 0.169 0.216 0.252 0.110 0.091
RegionPLC(2023) 0.290 0.202 0.173 0.168 0.152 0.154 0.243 0.248 0.086 0.088
Topo-Field 0.886 0.900 0.884 0.894 0.872 0.858 0.901 0.897 0.821 0.839

Position Samples 169k 185k 111k 112k 106k 176k 130k 121k 205k 211k

Table 2: Comparison of position attributes inference results on the test set of different scenes
from the Matterport3D dataset. The average region prediction accuracy of sampled 3D points is
used as metric.

Methods Scene1 Scene2 Scene3 Scene4
CLIP-Field(2022) 2.541 2.748 2.922 2.651
VLMaps*(2023) 2.112 1.894 1.181 1.595
LERF(2023) 1.276 1.175 1.148 1.129
Topo-Field 0.742 0.830 0.374 0.327

Table 3: Quantitative comparison of image query localization results with other methods. The
similarity weighted average distance (m) between the target view point cloud and the predicted point
cloud is evaluated. VLMaps* is a self-implemented version with image localization ability.

where τ is the temperature term, {fv}P and {ev}P is the calculated implicit representation feature
and target embedding according to P . Using cross-entropy loss, the vision-language loss can be
calculated as

Lv = −exp(−distP )(H(Simv) +H(Simv
T )), (8)

where distP is the distance from P to camera, and H is the cross-entropy function. For the semantic
loss, similarity on points P can be calculated as

Sims = τ{fs}P {es}P . (9)

Similarly, semantic loss can be denoted as

Ls = −conf(H(Sims) +H(Sims
T )), (10)

where conf is the prediction confidence from the detection model. The total loss is computed by:

L = Lv + Ls. (11)

In our experiments, an NVIDIA RTX3090 GPU is utilized and the batch size is set to 12544 to
maximize the capability of our VRAM. As model instances, CLIP with SwinB is employed in De-
tic Zhou et al. (2022), CLIP Radford et al. (2021) encoder is ViT-B/32 and Sentence-BERT Reimers
& Gurevych (2019) encoder is all-mpnet-base-v2. The MHE has 18 levels of grids and the dimen-
sion of each grid is 8, with log2 hash map size of 20 and only 1 hidden MLP layer of size 600.
We train the neural implicit network for 100 epochs with optimizer Adam, employing a decayed
learning rate of 1e− 4 and 3e− 3 decay rate. Each epoch contains 3e6 samples. Codes and scripts
are released in supplementary for reproducibility.

5 EXPERIMENTAL RESULTS

Our experiments are conducted on real-world datasets to validate the established layout-object-
position association. The data environment is of single-floor residential buildings with multiple
rooms which is the common working scenario of household robots widely studied in this field. We
employed Matterport3D (Chang et al., 2017) as well as apartment environment (Zhu et al., 2022)
dataset to demonstrate that our approach can be generalized in diverse scenarios.

5.1 POSITION ATTRIBUTES INFERENCE

To demonstrate the built LOP association integrates positions with layout features, we designed
experiments that accept 3D positions as input to infer the region information. For quantitative eval-
uation, we divided the RGB-D sequences into training and testing sets. The Topo-Field is trained

9
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CLIP-Field (Shafiullah et al., 2022) VLMaps* (Huang et al., 2023) Topo-Field(Ours)Input Image GT View

Image query Cam on top-down view View localization results

TV in living room

Washbasin in bathroom

Sink in kitchen

Figure 6: Qualitative comparison of image query localization results in heatmaps form among
state-of-the-art methods and our method with image input. Our approach localizes the position of
queried image in an exact smaller range.

Methods Scene1 Scene2 Scene3 Scene4
CLIP-Field 0.242 0.165 0.130 0.142
Baseline1 0.852 0.891 0.863 0.874
Baseline2 0.865 0.887 0.872 0.879
Baseline3 0.872 0.891 0.875 0.886
Topo-Field 0.886 0.900 0.884 0.894

Table 4: Ablation of target feature processing pipeline of the neural field construction. The
average region prediction accuracy of sampled points from different scenes on the Matterport3D
dataset is used as the metric. Declarations of baselines are clarified in Fig. 7 and Section 4.

according to Section 4.4 on the training set and tested in the test set. As the region inference task can
be treated as a multi-class classification task for each input, the accuracy, precision, and F1-score are
used as metrics. Tab. A.8 shows the region inference results on 10 real-world scenes in Matterport
3D (Chang et al., 2017) with different scales and layouts indicating the average accuracy exceeds
85%.

5.2 LOCALIZATION WITH PROMPT QUERIES

Localization with Text Queries: For objects of the same category in different regions, we input
the textual description of the target object in the form of “object in the region” and infer the specific
location of the target, comparing the results with the predictions from current state-of-the-art visual-
language algorithms. Fig. 4 demonstrates the advancements of Topo-Field in object localization
tasks involving region information, which allows for the localization of specific target objects based
on the description and features of the region, while other methods confuse objects from different
regions. Tab. 1 shows the quantitative results on 4 scenes of different layouts compared to other
methods with an average accuracy of more than 88% and less distance from targets. For the metrics,
the average distance (m) of predicted point cloud and ground truth point cloud is evaluated, together
with counting whether the center of predicted points is in the correct room. Ground truth comes
from the Matterport3D provided object instance labels. More results can be seen in the appendix.

Localization with Image Queries: To validate the help of region information in the image view
localization task. We localize the images from the test set in the trained Topo-Field. Selected views
include representative objects of the scene (e.g., TV in the living room) and views with similar-
looking objects or context (e.g., bathroom washbasin and kitchen sink) which is challenging. The
localization results are shown in Fig. 6 in the form of heatmaps and Tab. 3 shows the quantitative

10
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Figure 7: Ablation of our LOP information encoding and feature fusion strategy for target features.
(CLIP-Field encoding strategy has been added for comparison.)

results which evaluates the weighted average distance of the target view and localized point cloud
among all samples in a scene, using similarity as weight. VLMaps* is a self-implemented version,
because origin VLMaps (Huang et al., 2023) does not implement the image localization task. To
align with CLIP-Field (Shafiullah et al., 2022) and our work, the LSeg (Li et al., 2022) used in
VLMap (Huang et al., 2023) is replaced by CLIP (Radford et al., 2021). The results show that Topo-
Field constrains the localization results to a smaller range in the exact region. We sampled more than
40 images on each scene from Apartment (Zhu et al., 2022) and Matterport3D (Chang et al., 2017)
dataset. By drawing the predicted camera view on the top-down view, we estimated the localization
precision and found that most views can be ranged into a specific view on the target field of view,
while other methods struggle to get precise results.

5.3 TOPOMETRIC MAP CONSTRUCTION

Fig. 4.3.2 shows an example of the built topometric map. Layout region nodes, object nodes with
bounding boxes, and entrance nodes connecting regions are shown with edges representing rela-
tionships. A planned navigable path is shown in the graph from an observed view in family room
to the TV room sofa in green. The path planning A* algorithm is employed to explore the topo-
logical structure to generate waypoints between nodes, and the waypoints are generated with the
planning API in Habitat Simulator (Savva et al., 2019) and shown in a line with gradient colors,
while different colors indicate different predicted regions of the waypoints.

5.4 ABLATION STUDY

Fig. 7 and Tab 4. show the ablation of our neural field LOP encoding strategy and feature fusion
where 1) CLIP-Field Shafiullah et al. (2022) means the origin feature encoding strategy that doesn’t
explicitly consider the layout features. 2) Baseline1 is our first crude approach that directly super-
vises the learned embedding from the encoded objects with region semantics. 3) Baseline2 encodes
the region description to the target vision-language and semantic feature space for supervision. 4)
Baseline3 takes the background pixels into account with the region labels. 5) Topo-Field further
considers the context of the layout when supervising the object label semantics. These four main
versions of our numerous iterations of trying are listed as examples to show our work on the neural
field encoding of LOP association.

6 CONCLUSION AND LIMITATIONS

Inspired by postrhinal cortex (POR) neurons that prioritize spatial layouts over scene content for
cognitive mapping, we propose Topo-Field, which integrates Layout-Object-Position (LOP) asso-
ciations into a neural field and constructs a topometric map from the learned field for hierarchical
robotic scene understanding. However, there are some limitations: 1) While we present a pipeline
for topometric map construction, querying and path planning are currently implemented using tradi-
tional methods (e.g. A*). Future work will explore using large language models to integrate seman-
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tic information for more advanced path planning. 2) Real-world deployment on mobile robots for
long-term navigation is needed. 3) Future research will focus on updating and editing the topometric
map to accommodate environmental changes.
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A APPENDIX

A.1 SCENE PARTATION EXAMPLE

The scene can be partitioned into different regions using walls as dividers and lines can be aligned
to these walls. This is similar in most scenarios, making the annotation of scene regions a straight-
forward task as shown in Fig. A1.

Figure A1: Using walls as dividers to associate lines with them, the scene can be divided into various
regions and 3D points can be labeled with related regions easily.
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A.2 VISION-LANGUAGE EMBEDDINGS SIMILARITY OF REGION AND OBJECTS

To demonstrate that the relationship of the vision-language and semantic embeddings for different
regions is related to our intuition, we compare the similarity in region-region and object-region form
and show the results in Fig. A2. It can be seen that based on general knowledge, cognitively related
regions (e.g., the dining room and kitchen) and object-region pairs (e.g., sink and kitchen) are also
more correlated in the vision-language and semantic feature spaces.

(a)

(b)

Figure A2: The similarity of a set of region embeddings (as shown in a) and object-region embed-
dings (as shown in b). The left graph shows the vision-language embedding similarity and the right
one shows the semantic embedding similarity.

A.3 ABLATION STUDY

To explicitly encode the region information, we apply the LVM to process the background pixels
out of the object bounding box and LLM to encode the region label text. What’s more, for object
pixels, object label text is combined with the region text in the form of ’object in the region’ be-
fore being encoded by LLM. To ablate the contribution of vision-language embeddings from CLIP
and semantic embeddings from Sentence-BERT in encoding region features, we compare different
weight settings between the v-s embeddings when inferring the regions with 3D position inputs.
Results are shown in Fig. A3. It can be seen that both vision-language embeddings and semantic
embeddings are indispensable, and weight settings with the greatest results are used for Topo-Field.
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Figure A3: Ablation results on the accuracy of region prediction on Matterport3DChang et al. (2017)
with 3D positions input. The w/o BG stands for not encoding background pixels to get region
embeddings, and v-s weight ablates the weight of vision-language and semantic embeddings in
the embeddings similarity contribution. Error bars show the results among samples from different
scenes in Matterport3DChang et al. (2017).

A.4 HIERARCHICAL APPROACH COMPARISON

Hierarchical scene representation is widely studied with numerous tasks, mainly employing scalable
receptive fields and representations to fine-tune results of scalable objects and local relations. As
Fig.A.8 shows, VoxFusion introduced octree map with various voxel sizes, LERF employed feature
pyramids. As far as we know, few of them explicitly consider the layout level information and
the association with objects and positions. This idea comes from recent neuroscience findings, and
similar theory has not yet been introduced in scene representations.

A.5 TOPOMETRIC SEARCH FOR PLANNING

We employ a simple A* approach for planning. Given a topometric graph G, the start point p, and
the target destination object text t. First, the belonged region r of p is inferred according to the
main paper. The existing objects nodes embeddings are compared with the encoded visual-language
and semantic embeddings of t to find the target object node o. At the same time, if the region of
destination object rd is declared, the search process would be more simple by directly search among
region nodes. Here lists the pseudocode of the employed A*.

A.6 TOPOMETRIC MAP NODES EXAMPLES

We list the attributes of nodes and edges in the topometric map as example here in Listing 1 − 4,
including the object nodes, region nodes, and edges.

1 {
2 "id": 0,
3 "node_type": region,
4 "bbox_extent": [
5 4.163309999999999,
6 4.207343,
7 2.53566175
8 ],
9 "bbox_center": [
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Algorithm 1 AStar(G, r, o)
1: openSet← {r} ▷ Set of nodes to be evaluated
2: cameFrom← {} ▷ Mapping of nodes to their parent nodes
3: gScore[r]← 0 ▷ Cost from start along best known path
4: fScore[r]← h(r, o) ▷ Estimated total cost from start to goal
5: while openSet is not empty do
6: current← node in openSet with lowest fScore value
7: if current = o then
8: return ReconstructPath(cameFrom, o)
9: end if

10: remove current from openSet
11: for each neighbor n of current do
12: tentativeGScore← gScore[current] + d(current, n)
13: if tentativeGScore < gScore[n] then
14: cameFrom[n]← current
15: gScore[n]← tentativeGScore
16: fScore[n]← gScore[n] + h(n, o)
17: if n not in openSet then
18: add n to openSet
19: end if
20: end if
21: end for
22: end while
23: return ”No path found”
24: function RECONSTRUCTPATH(cameFrom, current)
25: path← [current]
26: while current is in cameFrom do
27: current← cameFrom[current]
28: insert current at the beginning of path
29: end while
30: return path
31: end function
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10 -8.821845,
11 2.6915385,
12 1.259409125
13 ],
14 "class": "bedroom",
15 "caption": "A bedroom at the northwest of the house with warm

lighting. Main objects include a bed in the center, a large closet,
and a dresser at the corner."

16 },

Listing 1: Region node

1 {
2 "id": 1,
3 "node_type": object,
4 "bbox_extent": [
5 0.3569,
6 0.2297,
7 0.101.8
8 ],
9 "bbox_center": [

10 0.3222,
11 -1.1108,
12 -0.5062
13 ],
14 "class": "picture",
15 "caption": "A white framed picture hanging on the wall."
16 },

Listing 2: Object node

1 {
2 "id": 0,
3 "node_type": Entrance,
4 "bbox_extent": [
5 0.5,
6 1.6,
7 2.8,
8 ],
9 "bbox_center": [

10 -3.244,
11 -0.276,
12 0.487
13 ],
14 "class": "Entrance",
15 "caption": "Entrance connecting bedroom and living room."
16 },

Listing 3: Entrance node

1 {
2 "id": 2,
3 "edge_type": region_entrance,
4 "start_node": {
5 "id": 0,
6 "node_type": region,
7 "bbox_extent": [
8 4.163309999999999,
9 4.207343,

10 2.53566175
11 ],
12 "bbox_center": [
13 -8.821845,
14 2.6915385,
15 1.259409125

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

16 ],
17 "region_tag": "bedroom"
18 },
19 "end_node": {
20 "id": 0,
21 "node_type": Entrance,
22 "bbox_extent": [
23 0.5,
24 1.6,
25 2.8,
26 ],
27 "bbox_center": [
28 -3.244,
29 -0.276,
30 0.487
31 ],
32 "class": "Entrance",
33 "caption": "Entrance connecting bedroom and living room."
34 },
35 "relationship": connected,
36 "position_relation": "b to the southeast of a",
37 "position_reason": "The x-coordinate of the center of bbox of

end_node (-3.244) is larger than that of start_node (-8.821845), and
the y-coordinates of the center of bbox of end_node (-0.276) is less
than that of start_node (4.207343). Therefore, b is to the southeast
of a."

38 "caption": "The pathway from bedroom to living room."
39 },

Listing 4: Region entrance edge

1 {
2 "id": 2,
3 "node_type": object_region,
4 "start_node": {
5 "id": 7,
6 "node_type": object,
7 "bbox_extent": [
8 2.155,
9 2.052,

10 0.883
11 ],
12 "bbox_center": [
13 5.598,
14 2.566,
15 0.136
16 ],
17 "class": "bed",
18 "caption": "a bed with a white comforter and a pillow"
19 },
20 "end_node": {
21 "id": 0,
22 "node_type": region,
23 "bbox_extent": [
24 4.163309999999999,
25 4.207343,
26 2.53566175
27 ],
28 "bbox_center": [
29 -8.821845,
30 2.6915385,
31 1.259409125
32 ],
33 "class": "bedroom"
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34 "caption": "A bedroom at the northwest of the house with warm
lighting. Main objects include a bed in the center, a large closet,
and a dresser at the corner."

35 },
36 "relationship": belong,
37 "position_relation": "a in the center of b",
38 "caption": "According to the bbox center position and extent, the bed

is in the center of bedroom."
39 },

Listing 5: Object region edge

A.7 PROMPT EXAMPLE FOR REGION NODE CONNECTIVITY DESCRIPTION

With topometric mapped nodes, we leverage LLM to describe the connectivity of nodes according
to the general knowledge and bounding box 3D position. In listing 5, here we provide a prompt
example to describe the connectivity relationship between content objects and regions and set up the
edge.

1 {
2 DEFAULT_PROMPT_POST = """
3 You are an excellent graph managing agent. Given a graph nodes set of an

environment,
4 you can explore the relationships of nodes with their attributes and

build edges among
5 them.
6

7 The input is a list of JSONS describing two types of nodes, including the
object and

8 region. You need to produce a JSON string (and nothing else) and set up
edges between them with keys: "relationship", "position_relation" and
"caption".

9

10 Each of the JSON fields will have the following fields:
11 1. id: a unique number
12 2. node_type: type of this node
13 3. bbox_extent: the 3D bounding box extents
14 4. bbox_center: the 3D bounding box center
15 5. class: an extremely brief description
16 6. caption: a sentence describing node attributes in detail
17

18 Produce a "relationship" field that best describes the relationship of
the object node and region node. Set "false" if the object is not
related to the area or is not reasonable, the relationship is refused
. Produce a

19 "position_relation" field describing the position relationship between
object and region according to their

20 bounding box information in the 3D space. Before producing the "
position_relation" field, produce a "caption" field that explains why
the "position_relation" field is reasonable.

21

22 The built edges should include following fields:
23 1. id: a unique number of each edge in order
24 2. node_type: according to the connected node type in the form "

start_node\_end_node"
25 3. start_node: keep JSON values of the object node unchanged
26 4. end_node: keep JSON values of the region node unchanged
27 5. relationship
28 6. position_relation
29 7. caption
30 """

Listing 6: Prompt example to set up edge with nodes.
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A.8 ADDITIONAL EXPERIMENT RESULTS

Additional experiments results of object localization using text query inputs and view localization
using image query inputs. Also, a table is provided showing the metric on exactly each region class
from 4 scenes in Matterport3D dataset.

Regions Scene1 Scene2 Scene3 Scene4
Acc. Pre. F1 Acc. Pre. F1 Acc. Pre. F1 Acc. Pre. F1

Living Room 0.948 0.970 0.959 0.870 0.881 0.875 0.778 0.810 0.793 0.902 0.949 0.925
Bedroom 0.943 0.825 0.880 0.925 0.923 0.924 0.687 0.767 0.725 0.920 0.870 0.894
Bathroom 0.466 0.680 0.554 0.903 0.898 0.901 0.875 0.463 0.605 0.797 0.831 0.814

Dining Room - - - 0.961 0.794 0.870 0.774 0.732 0.752 0.933 0.887 0.910
Lobby 0.681 0.941 0.790 0.853 0.951 0.899 0.978 0.510 0.671 0.855 0.698 0.769

Family Room - - - - - - 0.903 0.571 0.700 0.926 0.936 0.931
Kitchen 0.994 0.654 0.789 0.788 0.836 0.811 0.833 0.833 0.833 0.758 0.854 0.803
Office - - - 0.969 0.848 0.905 - - - 0.953 0.883 0.917
Toilet - - - - - - 0.900 0.711 0.795 - - -

Avg. Acc./Samples 0.886 / 169k 0.900 / 185k 0.884 / 111k 0.894 / 112k

Table 5: Region prediction results on the test set of different scenes from the Matterport3DChang
et al. (2017) dataset. Accuracy, precision, and F1 score are used as metrics.

Layout (Connected Regions) Object Position

(a) Hierarchical octree structure (b) Multi-scale image embeddings

(b) The explicitly represented Layout-Object-Position association

Figure A4: The comparison of the hierarchical scene representation strategy against previous works.
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Text query “Closet in the kitchen”

Kitchen

Bath-

room

Text query “Curtain in the bathroom”

Specific object localization results

CLIP-Field (Shafiullah et al., 2022) VLMaps (Huang et al., 2023) Topo-Field(Ours)GT Region of Text

Text query “Table in the kitchen”

Kitchen

Text query “Picture in the hallway”

Hallway

Figure A5: Text query localization on scene 2t7WUuJeko7Chang et al. (2017).

Text query “Lamp in the bedroom”

Text query “Mat in the bathroom”

Bedroom

Bathroom

Text query “Picture in the living room”

Living

Room

Text query “Table in the dining room”

Dining

Room

CLIP-Field (Shafiullah et al., 2022) VLMaps (Huang et al., 2023) Topo-Field(Ours)GT Region of Text

Specific object localization results

Figure A6: Text query localization on scene 17DRP5sb8fyChang et al. (2017).
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Text query “Cup in the bedroom”

Bedroom

Text query “Clothes in the living room”

Text query “Receptacle in the utility room”

Text query “Heater in the bedroom”

Bedroom

Living Room

Utility

Room

Specific object localization results

CLIP-Field (Shafiullah et al., 2022) VLMaps (Huang et al., 2023) Topo-Field(Ours)GT Region of Text

Figure A7: Text query localization on scene ApartmentZhu et al. (2022).

Text query “Table in the bedroom” Specific object localization results

Bedroom

Text query “Chair in the kitchen”

Kitchen

Text query “Curtain in the living room”

Living

Room

Text query “Closet in the bedroom”

Bedroom

CLIP-Field (Shafiullah et al., 2022) VLMaps (Huang et al., 2023) Topo-Field(Ours)GT Region of Text

Figure A8: Text query localization on scene HxpKQynjfinChang et al. (2017).
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Image query Cam on top-down view

CLIP-Field (Shafiullah et al., 2022) VLMaps* (Huang et al., 2023) Topo-Field(Ours)Input Image GT View

View localization results

Figure A9: Image query localization on scene 2t7WUuJeko7Chang et al. (2017).

Image query Cam on top-down view View localization results

CLIP-Field (Shafiullah et al., 2022) VLMaps* (Huang et al., 2023) Topo-Field(Ours)Input Image GT View

Figure A10: Image query localization on scene 17DRP5sb8fyChang et al. (2017).
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Image query Cam on top-down view View localization results

CLIP-Field (Shafiullah et al., 2022) VLMaps* (Huang et al., 2023) Topo-Field(Ours)Input Image GT View

Figure A11: Image query localization on scene HxpKQynjfinChang et al. (2017).

25


	Introduction
	Related Works
	Dense Representation with Neural Radiance Field
	Topometric Map for Scene Structure Understanding
	Spatial Understanding with Layout Information

	Overview
	Method
	Target Feature Processing
	Scene Neural Encoding
	Topometric Mapping
	Knowledge from Learned Neural Field
	Topometric Map Construction

	Training

	Experimental Results
	Position Attributes Inference
	Localization with Prompt Queries
	Topometric Map Construction
	Ablation Study

	Conclusion and Limitations
	Appendix
	Scene Partation Example
	Vision-language Embeddings Similarity of Region and Objects
	Ablation Study
	Hierarchical Approach Comparison
	Topometric search for planning
	Topometric map nodes examples
	Prompt Example for Region Node Connectivity Description
	Additional Experiment Results


