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Abstract

When the environment is partially observable (PO), a deep reinforcement learning
(RL) agent must learn a suitable temporal representation of the entire history in
addition to a strategy to control. This problem is not novel, and there have been
model-free and model-based algorithms proposed for this problem. However, in-
spired by recent success in model-free image-based RL, we noticed the absence of
a model-free baseline for history-based RL that (1) uses full history and (2) incor-
porates recent advances in off-policy continuous control. Therefore, we implement
recurrent versions of DDPG, TD3, and SAC (RDPG, RTD3, and RSAC) in this
work, evaluate them on short-term and long-term PO domains, and investigate
key design choices. Our experiments show that RDPG and RTD3 can surprisingly
fail on some domains and that RSAC is the most reliable, reaching near-optimal
performance on nearly all domains. However, one task that requires systematic
exploration still proved to be difficult, even for RSAC. These results show that
model-free RL can learn good temporal representation using only reward signals;
the primary difficulty seems to be computational cost and exploration. To facilitate
future research, we have made our PyTorch implementation publicly available2.

1 Introduction

In recent years, deep off-policy reinforcement learning (RL) algorithms based on learning the optimal
Q-function is enjoying great success in fully observable continuous control domains [24, 5, 9, 10].
These algorithms usually achieve significantly better performance than deep on-policy RL methods
given the same number of environment interactions and can learn highly competent policies on robotic
locomotion tasks (e.g., MuJoCo [31] domains in [1]) where the state and action spaces are large.
Their popularity also comes from their easy-to-implement update rules derived from the Bellman
equation, and their robustness to hyper-parameters.

In this paper, we attempt to extend their success to partially observable (PO) domains. Continuous
control under partial observability is an interesting problem for two reasons. First, continuous action
and partial observability are common in real-world applications and often occur together, e.g., in
robotics. Second, PO domains are more challenging than fully observable domains because, to
succeed, an RL agent must learn a suitable temporal representation of the entire observation-action
history, in addition to a strategy to control.

Continuous control under partial observability is not a novel problem, and there have been model-free
and model-based algorithms proposed for this problem (see Section 2). However, we recognize the
need for an open-source implementation of baseline algorithms that (1) are easy to implement, (2)
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Figure 1: Comparison between architectures for standard, image-based, and recurrent off-policy
model-free RL. The convolutional neural networks (CNNs) and recurrent neural networks (RNNs)
can be trained end-to-end using gradients from loss terms, just like the actor and critic networks.

can learn from the entire history, and (3) can learn stably and achieve good performance on a diverse
set of PO tasks. To fill in the first and second gap, this paper describes a neural network architecture
(see the rightmost of Figure 1) that can be used to easily implement recurrent versions of DDPG,
TD3, and SAC (RDPG, RTD3, and RSAC), and draws connection to a state-of-the-art image-based
off-policy model-free algorithm DrQ [21] (see the middle of Figure 1). This architecture allows the
recurrent agents to take into account the entire history ht = {o1:t, a1:t−1} at each timestep t, making
it possible to learn arbitrary time dependencies. In addition, we adapt the standard experience replay
procedure for these recurrent agents. To our knowledge, these agents are not available as is in popular
RL repositories [16, 30, 6, 33].

To fulfill the third gap, we evaluate RDPG, RTD3, and RSAC on short-term and long-term PO
domains. In addition, we investigate important design choices, including the sharing of recurrent
representation across actors and critics, and the types of recurrent neural networks used. Our
experiments show that RDPG and RTD3 can surprisingly fail on some domains and that RSAC is the
most reliable, often reaching near-optimal performance on nearly all domains. However, one task
that requires systematic exploration still proved to be difficult, even for RSAC. These results show
that model-free RL can learn good temporal representation using only reward signals; the primary
difficulty seems to be computational cost and exploration. In the end, we suggest future research
directions. Note that we do not intend to compare our algorithms to other algorithms but show that
one of our algorithms can achieve near-optimal performance in several domains.

2 Related work

There have been several recent works on learning memory-based policies in deep RL for continuous
control. Recurrent Deterministic Policy Gradient (RDPG) [15] prepends recurrent layers to both
the actor and critic networks of Deep Deterministic Policy Gradient (DDPG) [24], and was able to
solve a variety of simple PO domains, including sensor integration and memory tasks. However,
since it is based on DDPG, it inevitably suffers from value over-estimation and premature policy
convergence, two problems addressed later by algorithms such as Twin-delayed DDPG (TD3) [5]
and Soft Actor-critic (SAC) [9]. Moreover, it has not been publicly reproduced. To address value
over-estimation and investigate high-dimensional tasks, [26] combines TD3 and LSTM [17] into
TD3-LSTM. While TD3-LSTM shows good performance on high-dimensional sensor integration
tasks, its network architecture is designed for POMDPs that are solvable with very short-term memory
(e.g., 3-5 timesteps) and cannot be efficiently extended. A concurrent work [29] also combines TD3
and LSTM, but can be used with arbitrary memory length and is hence most similar to our work.

While the aforementioned works learn the temporal representation and the policy jointly, Variational
Recurrent Model (VRM) [13] was proposed to learn these two separately and showed better perfor-
mance than its SAC-LSTM implementation (see Appendix A.2). However, learning a separate model
of the environment is a complex task, and the investigated domains are exclusively sensor integration
tasks with either positional or velocity information and dense rewards. In this sense, VRM is related
to several model-based algorithms proposed for image-based control tasks [23, 12, 11], since each
image only offers positional information and an optimal policy must integrate such information across
frames. However, learning from images entails a different set of challenges and is beyond our scope.

2



While previous approaches all fall under off-policy RL, various other approaches have been proposed
for memory-based control in general. Several approaches build on the concept of belief states
[20], a distribution over the state space given the entire history. Since the precise belief state is
computationally expensive to track for continuous domains, algorithms mostly either work with small
and discrete observation and action spaces (e.g., [28]) or only seek to approximate the belief (e.g.,
with particle filters [19], [25]). While both approaches require the use of RNNs, [34] does not and
instead lets the policy read and set part of the state space as a form of memory and train the policy
via directed policy search. However, it uses a linear policy and requires a well-defined latent space
during training. Apart from continuous control, memory-based control in discrete action spaces has
been explored mainly by adding recurrent layers to the Q-network [14, 35, 22] in DQN [27].

3 Background

3.1 Partially observable Markov Decision Processes (POMDP)

In real-world settings, an agent often can only have access to a reflection of the underlying state
of the environment due to noise, occlusions, limited measurement resolutions, and so on. Under
partial observability, a decision-making problem can be effectively modeled as a POMDP [20]. We
can formally specify a finite-horizon POMDP by the tuple (S,A, T ,R,Ω,O, H, γ), where S is the
state space, A is the action space, T (st+1|st, at) is the transition probability,R(st, at, st+1) is the
reward function, Ω is the observation space, O(ot|st+1, at) is the observation probability, H is the
horizon, and γ ∈ [0, 1] is the discount factor. The goal is to learn a policy π that maximizes the
expected discounted return for a finite horizon H defined as Eπ[

∑H
t=0 γ

trt]. To perform optimally
in a POMDP, an agent must condition its policy on the entire history of observations and actions that
it has seen so far. However, the size of the history space increases exponentially with the length of
the history. Therefore, a recurrent neural network (RNN) is often used to summarize the history, and
the policy is then condition on the RNN’s fixed-size hidden states.

3.2 Off-policy RL methods for fully-observable continuous control

Deep deterministic policy gradient (DDPG) DDPG [24] is an extension of the tabular Q-learning
to (1) continuous state spaces and (2) continuous action spaces. To deal with (1), it uses a deep
neural network Qφ to represent the Q-function, commonly known as the critic. It replaces the exact
maximization problem in target computation (which is costly due to (2)) with approximation using
an actor neural network µθ, commonly known as the actor. During training, given a batch of M
transitions {(si, ai, ri, s′i, di)}Mi=1 uniformly sampled from a replay buffer, DDPG performs

φ← φ− η∇φ
1

M

M∑
i=1

Qφ(si, ai)︸ ︷︷ ︸
prediction

− (ri + γ(1− di)Qφtarg(s
′
i, µθtarg(s

′
i)))︸ ︷︷ ︸

target


2

(train critic)

θ ← θ + η∇θ
1

M

M∑
i=1

Qφ (si, µθ (si)) , (train actor)

where γ is the discount factor, η is the learning rate, and φtarg and θtarg are slowly changing versions
of φ and θ obtained through polyak averaging.

Twin-delayed DDPG (TD3) TD3 [5] addresses the issue of value over-estimation in DDPG.
Specifically, in DDPG, µθtarg may exploit3 erroneously high values of Qφtarg(s, ·) and hence make the
targets too large. As a result, bad actions at certain states may end up having over-estimated Q-values.
In response, TD3 introduces three tricks. First, random noise is added to the output of µθtarg(s); this
is called target smoothing. Second, µθ is trained less frequently than Qφ; this is called delayed
policy update. Finally, an additional Q-network is added, and both Q-networks are updated using the
same target, computed using the minimum of the target versions of themselves; this is called clipped
double-Q learning. The actor is updated with respect to only one Q-network. TD3 significantly
out-performs DDPG on several dense-reward high-dimensional continuous-control domains.

3This is because µθ(s) is trained to maximize Qφ(s, ·) and may exploit its erroneously high values; µθtarg(s)
and Qφtarg(s, ·) are slowly changing versions of µθ(s) and Qφ(s, ·), and hence may inherit this property.
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Soft Actor-Critic (SAC) Unlike DDPG and TD3, SAC [9] was derived from Soft Policy Iteration
instead of the standard policy iteration. Nevertheless, SAC is similar to TD3 in two important ways.
First, SAC learns a stochastic actor network, so its next-state actions used for target computation are
sampled from a distribution, similar to target smoothing in TD3. Second, SAC also maintains two
Q-networks, but uses both of them for training the actor network. However, SAC does not use target
actor network or delayed policy update. In practice, TD3 and SAC have similar performance.

3.3 Recurrent neural networks

Recurrent neural networks (RNNs) can be best thought as a function that, at each timestep t, takes in
(1) the previous summary (summaryt−1) and (2) some new information (xt), and produces (1) some
output (outputt) for subsequently layers and (2) some summary for the next timestep (summaryt).
Despite this simple setup, several parametrizations have been proposed for learning this function
effectively, with the most popular ones being Vanilla RNN (VRNN) [4], Long Short-Term Memory
(LSTM) [17], and Gated Recurrent Unit (GRU) [3]. For more details, please refer to Section A.1.
Since RNNs are differentiable with respect to their parameters, they can be trained using gradient
descent in a procedure known as Backpropagation Through Time (BPTT).

4 Architecture & algorithm

In this section, we describe the network architecture and algorithms that we used to train RDPG
stably. We outline RDPG instead of RTD3 or RSAC because DDPG uses the least number of tricks
for improving stability. Then, we describe how it can be easily extended for RTD3 and RSAC.

Architecture DDPG involves the interaction between an actor µθ(s) and a critic Qφ(s, a). To
adapt for POMDPs, recall that ht = (o1:t, a1:t−1) approximates st in POMDPs. Therefore, we
modify the actor to be µθ(ht) and the critic to be Qφ(ht, at). However, it is in general not possible to
pass ht as is since fully-connected neural networks do not accept variable-sized inputs. To that end,
we applied RNNs to distill and summarize ht into a fixed-size hidden vector ĥt. We also modified
the standard experience replay to store individual episodes instead of individual transitions.

Algorithm Formally, each update step consists of the following three sub-steps. First, one episode
(a larger batch of episodes is used in practice) is sampled uniformly from the replay buffer:

(o1, . . . , oT+1) , (a0, . . . , aT ) , (r1, . . . , rT ) , (d1, . . . dT ) ,

where dt represents the episode termination flag and a0 is the first dummy action.

Second, using this episode, the hidden vectors can be computed by unrolling an RNN over the
sequence of observations and actions as follows (‖ denotes concatenation):

ĥφ1 , . . . , ĥ
φ
T+1 = RNNφ (o1 ‖a0, . . . , oT+1‖ aT )

ĥ
φtarg
1 , . . . , ĥ

φtarg
T+1 = RNNφtarg (o1||a0, . . . , oT+1‖aT )

ĥθ1, . . . , ĥ
θ
T+1 = RNNθ (o1||a0, . . . , oT+1||aT )

ĥ
θtarg
1 , . . . , ĥ

θtarg
T+1 = RNNθtarg (o1||a0, . . . , oT+1‖aT ) ,

where we used a separate RNN for each of the non-recurrent actor, the non-recurrent critic, and their
target networks.

Third, parameter updates to the recurrent actor and critic can be computed as follows:

φ← φ− η∇φ

{
1

T

T∑
t=1

(
Qφ

(
ĥφt , at

)
−
(
rt + γ (1− dt)Qφtarg

(
ĥ
φtarg
t+1 , µθtarg

(
ĥ
θtarg
t+1

))))2}
θ ← θ + η∇θQφ

(
ĥφt , µθ

(
ĥθt

))
and φtarg and θtarg are updated using polyak averaging. Unlike in Section 3.2, here φ denotes
parameters of the entire recurrent critic (the non-recurrent critic plus its corresponding RNN); the
same logic applies to θ, φtarg, and θtarg. Gradients flow through the hidden vectors and reach the
RNN parameters, allowing the entire architecture to be trained end-to-end. For some environments,
episodes have variable lengths, so masking is used.
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(a) pendulum (b) cartpole (c) reacher (d) watermaze (e) push-r-bump

Figure 2: Domains to perform experiments. For watermaze (d), the agent is illustrated as the green
dot and the platform as the red circle.

Extending to RTD3 and RSAC Unlike DDPG, TD3 and SAC use two critics instead of one. This
difference is preserved in their recurrent versions, and hence they both use three RNNs (not counting
the ones in target networks): one for the actor, two for the two critics. Tricks such as clipped double-Q
learning and entropy bonus rewards are directly ported from their non-recurrent versions.

5 Domains

5.1 Sensor integration tasks

Optimal control of physical systems might require integrating sensor inputs over a few past timesteps
due to noise or the difficulty of measuring correctly all relevant physical quantities. Here, we
use the position/velocity-only versions of three fully-observable physical-control domains (see
a, b of Figure 2), similar to domains investigated in [15], [13], and [26]. These domains are
pendulum-swingup (dim(S) = 3,dim(A) = 1), cartpole-balance (dim(S) = 5,dim(A) =
1), and cartpole-swingup (dim(S) = 5,dim(A) = 1); they are generally considered to be
increasingly more difficult. They all have a maximum episode length T of 200 and use a dense reward
function. Their position-only versions remove all entries of the observation related to velocity, and
their velocity-only versions remove all entries related to position. We also append the previous action
to the velocity-only observations, which we observed to improve the performance of recurrent agents.

5.2 Memory tasks

Another important type of PO tasks are memory tasks, where the agent needs to memorize (instead
of simply integrate) some information over timesteps. We evaluate our agents on two memory tasks:
reacher-pomdp and watermaze. reacher-pomdp (see Figure 2c) (T = 50) modifies the original
2-joint reacher task from OpenAI Gym [1] so that the location of the goal only appears for the first
timestep. This task provides dense rewards. watermaze (see Figure 2d) (T = 200) is borrowed
from [15]. Since the paper does not open-source its domains, we re-implemented it with minor
modifications. watermaze simulates a task that is used to study spatial learning for rodents. In this
task, the agent (e.g., a mouse) is released at the center of a circular world. It is rewarded by being on
top of an invisible circular platform, which is randomly positioned per episode. The agent can only
observe the platform when being on top of the platform, and is taken back to the center afterwards.
To maximize return, the agent must memorize the location of the platform to return to it faster.

5.3 Active exploration task

In a PO world, it is very common for an agent to perform non-rewarding but informative actions to
be more certain about the world before performing rewarding actions. As an example, we created a
domain called push-r-bump (see Figure 2e) (T = 50), which is a continuous version of a similar
domain in [28]. In this domain, a robot controls the movement and the stiffness of a finger. When the
finger is soft, it can glide over bumps without moving them, causing reactive angles on the finger. In
contrast, when the finger is stiff enough, it can move bumps. Any bump movement will terminate
the current episode and will bring a reward of 1 if the right bump is pushed right for a short distance
and −1 otherwise. The robot can observe the finger’s position and angle, but it does not observe the
bumps’ locations. Starting each episode, the position of the finger is initialized around the center, and
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the two bumps are randomized to one of three possible cases (see Figure 3). Therefore, an optimal
agent must first use a soft finger to scan around and localize the right bump, and finally push this
bump to the right for a short distance with a stiff finger to get a positive reward.

Figure 3: Three cases in push-r-bump; colors and numbers are for illustration and are not observed.

6 Experiments & results

Unless otherwise noted, (1) RDPG, RTD3, and RSAC take in observations instead of states, and (2)
the default RNN used is LSTM. For return, we plot the mean and min/max (1 standard deviation for
other statistics) w.r.t. 5 seeds as in [9]. Statistics are recorded once per 1k steps (1k environment steps
and 1k update steps). Each return recorded is the average return over 10 episodes with deterministic
actors. Training time is w.r.t. Nvidia’s RTX 2080 (16G). Hyper-parameters are in Appendix A.3.

6.1 Performance on sensor integration tasks

From the 3rd and 4th column of Table 1, we see that RSAC is the only algorithm to achieve similar
performance at convergence as SAC-state on all PO domains. Interestingly, RDPG has 2 failed
seeds in pendulum-p and failed completely in cartpole-swingup-p/v. It is perhaps surprising
that RDPG can have failed seeds on pendulum-p, because the MDP version of pendulum-p is
arguably one of the simplest continuous control domains.

It is well know that, in DDPG, the actor can exploit erroneously high values in the critics and
destabilize learning [5]. Since the actor in RDPG is augmented with a two-layer RNN, the actor is
more expressive and may hence be a stronger exploiter of such errors. However, since RDPG can
perform reasonably well (despite one failed seed in cartpole-swingup) on the MDP versions of the
domains (see the second column of Table 1), we argue that this source of exploitation, if exists, is not
the primary cause for the algorithm to diverge on PO variants. Instead, we hypothesize that partial ob-
servability itself may open up more room for such exploitation, and is worthy of further investigation.
A supporting evidence is that RTD3 and RSAC have successful seeds on cartpole-swingup-p/v,
presumably because of their mechanisms designed to address such exploitation.

RTD3 performs better than RDPG, and has similar performance at convergence as RSAC
on pendulum-p/v and cartpole-balance-p/v. However, RTD3 learns slower than RSAC
on pendulum-p/v, and has one failed seed in both cartpole-swingup-p/v. Interestingly,
RTD3-state also has two failed seeds in the MDP version of cartpole-swingup, suggest-
ing that this failing behavior may be due to RTD3’s brittleness with more expressive actor and
critics instead of partial observability. Empirically, through visualizing the learned policies in
cartpole-swingup-p/v, we noticed that RTD3 can get stuck in a suboptimal policy of quickly
moving the cart to one side to briefly drag the pole to its horizontal position (away from the downward
vertical position) to gain some reward.

As aforementioned, RSAC is the only algorithm that matches its non-recurrent MDP performance
on all PO tasks. Algorithmically, RSAC is highly similar to RTD3 in terms of many design choices,
except that its actor maximizes its entropy in addition to the return. Entropy maximization can
prevent premature convergence of the actor, and has been shown to explore equally rewarding
avenues of behavior much better than simply adding random noise to a deterministic policy [8].
In fact, exploration may be crucial to learning an expressive temporal representation from scratch
since better exploration leads to a wider distribution of observations and rewards, which prevents
over-fitting due to limited experience. In practice, this may help RSAC to be less affected by a large
network and learn more consistently than RTD3 (e.g., by escaping local optima).
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Table 1: Performance on sensor integration tasks. DDPG, TD3, and SAC all learn competent policies
given the state. However, the performance of DDPG and TD3 degrade with LSTMs - wide error
bands are due to splits between successful and failed seeds.

Table 2: Performance on memory and active exploration tasks. For push-r-bump, we plot individual
seeds’ success rates to show that neither RDPG, RTD3, nor RSAC can consistently solve the task.

6.2 Performance and exemplary trajectories on memory and active exploration tasks

RDPG, RTD3, and RSAC all learn competent policies on reacher-pomdp (see Table 2), where dense
rewards are available. In contrast, RSAC is the only algorithm that performs well and consistently
on watermaze, which offers only sparse rewards and requires active exploration at the beginning of
training. RSAC is trained under the entropy maximization framework, potentially making the policy
explore better throughout training. We illustrate one RSAC seed in Figure 4a and 4b; it learns an
exploratory policy and can memorize the platform position to return quickly within fewer timesteps.

In push-r-bump, no algorithm can consistently solve the task to 100% success rate. Still, RDPG,
RTD3, and RSAC all have successful seeds, and RTD3 and RSAC have seeds that solve 1 or 2 cases
(among the 3 mentioned in Section 5.3). This is likely an issue of insufficient exploration, since
systematic exploration is required for the algorithms to solve all 3 cases correctly by chance to obtain
sparse positive rewards to start learning. We visualize 1 successful RTD3 seed on 1 case in Figure 4c,
and the same seed on 2 other cases in Appendix A.5 along with how RNN cell states evolve.

6.3 Sharing a single recurrent representation across the actor and the critics
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(a) Platform at 90◦ (b) Platform at 180◦ (c) Case 1 in Figure 3; events happen from left to right.

Figure 4: Visualization of learned policies. (a) (b) One RSAC seed trained on watermaze. (c) One
RTD3 seed trained on push-r-bump executing in one among three cases.

Figure 5: RSAC-Share
reduces training time.

In RSAC, there are 5 recurrent modules: 1 within the actor, 2 within
the two critics, and 2 within the two critic targets. In this setup, each
update step involves 5 rounds of RNN forward passes and 3 rounds of
BPTTs. Since each round of computation scales with T , it is natural
to ask whether sharing a single recurrent module across them (1 for all
non-target networks, and 1 for all target networks) could have similar
performance as without sharing while using less computation. We call this
approach RSAC-Share. While it is straightforward to optimize parameters
of the single shared representation w.r.t. both the actor and the two critic
losses, these two kinds of losses might have different scales and could
lead to instability [15]. Additionally, while this approach only involves
2 rounds of RNN forward passes, it still requires 3 rounds of BPTTs.

Seeking further improvement, we borrow the insights from DrQ [21],
which trains SAC on image-based domains and shares a single convolu-
tional neural network (CNN) across an actor and two critics. In DrQ, the
shared CNN accumulates gradients from both critic losses; the gradients of the actor loss w.r.t. the
CNN’s parameters are ignored. Similarly, for RSAC-Share, we optimize the parameters of the shared
recurrent module w.r.t. the two critic losses only. Intuitively, using gradients from the critic losses
(instead of the actor loss) helps the shared recurrent module learn a richer representation, since, given
a state, the critics must learn values for all actions but the actor only needs to learn the maximizing
action. Doing so also reduces computation: the final version of RSAC-Share uses 2 rounds of RNN
forward passes and BPTTs per update step, halving the RNN computation in RSAC.

Our experiments show that RSAC-Share is on par with RSAC (see the first row in Table 3), and sig-
nificantly reduces training time (see Figure 5). RSAC-Share is less stable on cartpole-swingup-v,
but reaches better performance at convergence on reacher-pomdp.

We have two interesting observations. Firstly, the Pearson correlation (see Appendix A.4) of Q-values
produced by the two critics is higher for RSAC-Share (see the second row in Table 3), presumably
because they share the same recurrent representation. Such high correlation potentially makes clipped
double Q-learning in RSAC-Share ineffective, since the minimum of two highly correlated random
variables is almost equal to either one of the two. Secondly, RSAC-Share learns higher Q-values
than RSAC does (see the third row in Table 3); this is likely due to the first observation, and that the
actor in RSAC-Share may be a stronger maximizer of the critics’ outputs, since it directly acts on
the critics’ recurrent representation. While these observations suggest risks of value over-estimation,
RSAC-Share has strong empirical performance, and out-performs both RDPG and RTD3. Note that,
for both observations, Q-values are calculated from 10 episodes sampled from the replay buffer.

6.4 Comparison among VRNN, LSTM, and GRU

In earlier experiments, we used LSTM as the recurrent representation since it has shown to be hard to
beat on a variety of tasks [7], and was used as the recurrent component of several deep RL algorithms
[14, 15, 13, 26]. In this section, we compare RSAC-LSTM, RSAC-VRNN, and RSAC-GRU against
each other. Our experiments (see Table 4) show that RSAC-LSTM significantly out-performs RSAC-
VRNN and is on par with RSAC-GRU, indicating that using either LSTM or GRU as the recurrent
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Table 3: Performance of RSAC-Share against RSAC. The first row shows that RSAC-Share is on
par with RSAC in terms of return. The second row shows that RSAC-Share has higher correlation
between critics’ outputs. The third row shows that RSAC-Share learn higher values.

Table 4: Performance of RSAC-LSTM, RSAC-VRNN, and RSAC-GRU. RSAC-LSTM and RSAC-
GRU are on par with each other, and both greatly out-performs RSAC-VRNN.

representation is an equally reasonable choice. Interestingly, RSAC-GRU and RSAC-LSTM have
different speeds of learning, but seem to achieve similar asymptotic performance. RSAC-VRNN
performed the worst, presumably due to the well-known vanishing/exploding-gradient problem [18]
when training VRNN using long sequences.

7 Conclusions

We present several recurrent off-policy baselines, tested on a diverse set of continuous control tasks.
Our experiments show that RSAC is the most reliable algorithm out of the three baselines investigated
RSAC, RDPG, and RTD3. However, they still face difficulties when solving tasks which provide
only sparse rewards and require active exploration. Unfortunately, these two characteristics are often
common in interesting real-world POMDPs. Another limitation is the inability to deal with too long
episodes, inheriting from known weakness of RNNs (e.g., long training time, difficulties learning
long-term dependencies). This suggests a potential research direction of using transformers [32],
which improve upon these weaknesses, as an alternative to RNNs for solving POMDPs.
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A Appendix

A.1 Popular instantiations of RNNs

Elman Network (EN) EN [4], also known as the Vanilla RNN (VRNN), is one of the simplest
forms of RNN. EN uses a single vector h to represent the summary (of all previous inputs) and the
output, and the parametrization used is

ht = tanh(Wihxt + bih +Whhht−1 + bhh),

where W and b denote learnable weights and biases. EN suffers from the vanishing-gradient problem
[18], which hinders its ability to learn long-term dependencies.

Long Short-term Memory (LSTM) LSTM [17] was invented to tackle the vanishing-gradient
problem that plagues EN. Even it seems to be handcrafted and is complicated, it has been shown to
be hard to beat on a variety of tasks [7]. Unlike EN, it uses two vectors h (the hidden state) and c (the
cell state) to represent the summary (of all previous inputs), and only h to represent the output; its
parametrization is

ft = σ (Wifxt + bif +Whfht−1 + bhf ) (forget gate)
it = σ (Wiixt + bii +Whiht−1 + bhi) (input gate)
c̃t = tanh (Wigxt + big +Whght−1 + bhg) (candidate cell state)
ct = ft � ct−1 + it � c̃t (new cell state)
ot = σ (Wioxt + bio +Whoht−1 + bho) (output gate)
ht = ot � tanh (ct) , (output)

where W and b denote learnable weights and biases. The parametrization has an intuitive appeal: the
new cell state is the sum of the results of applying the forget gate to the new cell state and applying
the input gate to the input.

Gated-recurrent Unit (GRU) GRU [3] was motivated by LSTM but is simpler. Like EN, it uses a
single vector h (the hidden state) to represent the summary (of all previous inputs) and the output.
Like LSTM, it computes the new hidden state by a weighted sum of the old hidden state and a
candidate hidden state. The key difference is two-fold: how the candidate is computed, and the fact
that GRU uses a single gate to replace two separate input and forget gates. GRU’s parametrization is

zt = σ (Wizxt + biz +Whzht−1 + bhz) (forget/input gate)
rt = σ (Wirxt + bir +Whrht−1 + bhr)

h̃t = tanh (Wigxt + big + rt ∗ (Whght−1 + bhg)) (candidate hidden state)

ht = (1− zt) h̃t + zt ∗ ht−1, (hidden state & output)

where W and b denote learnable weights and biases.

A.2 Comparison to VRM and its baselines

In this section, we compare our RSAC agent to VRM [13] and its baselines: SAC-LSTM and SLAC.
SAC-LSTM is similar to RSAC, but uses several tricks to allow for truncated BPTT so that it is more
amendable to CPU training. While these tricks are useful, they have not been investigated thoroughly
in literature. The version of SLAC used is a modification of the original SLAC algorithm [23] to
non-pixel observations. On a set of four low-dimensional domains open-sourced by VRM authors,
RSAC out-performs or is on par with all other algorithms (see Table 5). To promote fair comparison,
we used the original code without any modifications, and plot the mean and standard error over 5
seeds as in the original paper.
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Table 5: Performance of RSAC against VRM and its baselines.

A.3 Hyper-parameters

All our agents used hyper-parameters similar to a popular repository [30].

For non-recurrent agents, the actors and critics are 2-layer perceptrons with hidden dimensions
(256, 256) with ReLU as the intermediate activation. For recurrent agents, two recurrent layers with
hidden dimension 256 are prepended to the non-recurrent actors and critics; note that we consider the
recurrent layers as parts of the actors and critics.

For DDPG, TD3, and their recurrent versions, the action noise during training is 0.1. For TD3 and its
recurrent version, the target noise is 0.5 and the noise clip is 0.2. Note that these values are w.r.t. to
a normalized action space such that each dimension lies within [−1, 1]. For SAC and its recurrent
version, the entropy regularizer α is initialized to 1 and auto-tuned as in [30], which implements [10].

For non-recurrent agents, the replay buffer has a capacity of 1 million transitions and, for each
network update, a batch of 100 transitions is sampled. For recurrent agents, the replay buffer has
a capacity of 5000 episodes and, for each network update, a batch of 10 episodes is sampled. The
discount factor γ is 0.99. The polyak-averaging ρ coefficient is 0.995. The learning rate for both
actors and critics is 3e− 4.

Non-recurrent algorithms take actions uniformly sampled from the action space for the first 1k steps,
and recurrent algorithms do the same for the first 10k steps. During this period, returns are recorded
but other statistics are unavailable, so we do not plot them.

A.4 Pearson correlation coefficient

The correlation coefficient [2], or the Pearson correlation coefficient, is a popular measure for the
strength of a linear relationship between two random variables. If only pairs of samples D =

{(xi, yi)}Mi=1 are available, we can compute the sample-version of this measure by the formula

rD =

∑M
i=1(xi − x̄)(yi − ȳ)√∑M

i=1(xi − x̄)2
√∑M

i=1(yi − ȳ)2
,

where x̄ and ȳ are the empirical means.

We illustrate the result of applying this formula to four example datasets with decreasing relationship
strength (see Figure 6). In this work, we used r under the assumption that Q-values produced by
the two critics follow a linear relationship. We believe that this assumption is reasonable since both
critics are updated using the same target, and hence have no reason to follow any other relationship.

Figure 6: Pearson correlation for different example datasets.
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A.5 Additional trajectories for push-r-bump

In this section, we show trajectories of the same RTD3 seed used in Figure 4c on two other cases
of push-r-bump; the trajectories for Case 2 and 3 are shown in Figure 7 and 8 respectively. In all
3 cases, we observe that the agent first checks for bump at position 2, and then checks for bump at
position 3. Intuitively, this behavior allows the agent to collect enough information to differentiate
among the 3 cases: Case 1 has a bump at position 2 but not 3, Case 2 has a bump at both position 2
and 3, and Case 3 has a bump at position 3 but not 2.

We also visualize the evolution of cell state of the 2nd LSTM layer of the same RTD3 seed for all 3
cases (see Figure 9). Cell states have 256 dimensions and we chose to project them to 3 dimensions
using Principal Component Analysis (PCA). In this latent space, all trajectories share the same
starting location, since the cell state is initialized to zeros. Case 3 splits with Case 1 and 2 at region A
because the agent does not detect a bump at position 2. In region B, Case 2 terminates earlier than
Case 1 because, in Case 2, the agent can directly push the bump at position 3 while, in Case 1, the
agent does not detect a bump at position 3 and must return and push the bump at position 2.

Figure 7: One RTD3 seed on Case 2 of push-r-bump.

Figure 8: One RTD3 seed on Case 3 of push-r-bump.

Figure 9: Evolution of the cell state of the 2nd LSTM layer (projected using PCA) of one RTD3 seed
for all 3 cases in push-r-bump. Event A and B correspond to events when the finger makes contact
with bumps. Axis scales are arbitrary.
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