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Abstract

This paper describes our method for the ECCV 2024
Workshop W-CODA Track 1: Corner Case Scene Un-
derstanding. We propose LiteViLA: a Lightweight
Vision-Language model pipeline for corner-case scene
understanding in Autonomous driving, leveraging the
TinyLLaVA [7] backbone for efficiently processing large-
scale multimodal data. Our approach extracts visual fea-
tures through a Vision Encoder and Q-Former [2], with
the integration of visual and language modalities han-
dled by the Language Model (LM) through a Mixture-of-
Adapters (MoA) mechanism. The MoA dynamically selects
task-specific adapters for General Perception, Region Per-
ception, and Driving Suggestions, optimizing performance
across these critical tasks. Finally, a Reviewer compo-
nent refines the generated answers, ensuring their accu-
racy and relevance. The project page can be found at
https://imyingcheng.github.io/LiteViLA/.

1. Introduction

Autonomous driving demands advanced processing of mul-
timodal data, particularly in complex and challenging sce-
narios. To address this, we propose a lightweight Vision-
Language Model (VLM) pipeline, named LiteViLA, that
integrates visual and language modalities for effective scene
understanding and decision-making.

At the core of our approach is a lightweight back-
bone, TinyLLaVA [7], selected for its efficiency in han-
dling large-scale data without compromising performance.
This backbone includes SigLIP [6] as vision encoder that
extracts visual features, refined by a Q-Former [2] into fine-
grained visual tokens. These tokens are then processed by a
small-scale Language Model (LM) Phi-2 [3] equipped with
a Mixture-of-Adapters (MoA) mechanism, allowing task-
specific adapters to optimize performance in General Per-
ception, Region Perception, and Driving Suggestions tasks.

To enhance scene comprehension, we employ a multi-

turn QA method [5] that sequentially queries different road
objects, leading to more detailed and context-aware re-
sponses compared to traditional single-turn QA. Addition-
ally, our Progressive Instruction Tuning Strategy fine-tunes
the model for each task individually before implementing
joint training, ensuring deep, task-specific understanding
while maintaining the model’s lightweight nature. Finally,
a Reviewer component refines the model’s generated an-
swers, ensuring accuracy and relevance.

Our ablation studies confirm the effectiveness of these
components, demonstrating significant performance im-
provements with our lightweight backbone. The final
results affirm the success of our architecture in manag-
ing complex driving environments, advancing autonomous
driving technology with both accuracy and efficiency.

2. Method

2.1. Overview

The proposed LiteViLA showcases a lightweight and effi-
cient approach to integrating visual and language modalities
for corner-case scene understanding in autonomous driv-
ing. The system begins with a Vision Encoder that trans-
forms visual inputs into relevant features. These features
are then processed by a Q-Former proposed by Instruct-
BLIP [2], which further extracts essential query tokens,
streamlining the information before it reaches the small-
scale Language Model (LM). The LM is equipped with a
Mixture-of-Adapters mechanism, which includes special-
ized adapters for General Perception, Region Perception,
and Driving Suggestions. Each adapter functions as an ex-
pert for its respective task, ensuring that the most relevant
knowledge is applied depending on the specific task. This
design optimizes performance while maintaining a com-
pact structure, allowing the model to generate detailed and
context-aware answers with reduced resource requirements.
Finally, the process concludes with a Reviewer component,
refining the final output to ensure accuracy and relevance.
The overall framework is shown in Fig. 1.
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Figure 1. The overall framework of our LiteViLA. The vision encoder obtains the holistic visual features and Q-Former further extracts
and transforms them into fine-grained visual tokens. The Mixture of Adapters in the frozen small-scale Language Model dynamically fuses
visual knowledge learned from different adapters based on the task types.

2.2. The Progressive Training Strategy

Directly instruction-tuning VLMs across all three tasks —
General Perception, Region Perception, and Driving Sug-
gestions — in a single training step is sub-optimal because it
forces the model to simultaneously balance conflicting task
requirements, which dilutes its ability to specialize in the
distinct features of each task, and risks overfitting to general
features rather than developing the deep, task-specific un-
derstanding necessary for accurate and context-aware per-
formance across all areas.

To address the challenges of single-step instruction-
tuning, we first perform instruction-tuning individually for
each task, allowing the model to develop specialized ex-
pertise without the interference of competing task require-
ments. In each tuning process, images are first processed
through an Image Encoder to extract relevant features,
which are then refined into query tokens by the Q-Former.
These tokens are passed to a task-specific adapter, which is
fine-tuned to excel at the specific task at hand — whether it
understands the overall scene, analyzes specific regions, or
generates driving suggestions. This targeted approach en-
sures that the model deeply understands the distinct features
and demands of each task.

Once the individual task adapters are finely tuned, we
implement the Mixture-of-Adapters mechanism for joint
training. This final stage combines the specialized knowl-
edge from the individual adapters, enabling the model to
seamlessly integrate general scene understanding, precise

regional analysis, and effective driving decision-making
into a unified, context-aware output. The joint training
phase ensures the model performs optimally across all tasks,
leveraging its specialized components in a coordinated and
efficient manner.

2.3. Mixture of Adapters with Router

In the final stage of our Progressive Instruction Tuning
Strategy, we propose a unified model that integrates the
specialized adapters trained in earlier stages. Inspired by
the Mixture of Experts (MoE) framework, we treat each
adapter [7] as an expert in its respective task. To efficiently
manage the interaction between these experts, we follow
LION [1] to employ a router module that dynamically di-
rects the input features to the appropriate adapter based on
the task type, as shown in Fig. 2.

At each Feed-Forward Network (FFN) layer, the in-
put features are processed through a series of task-specific
adapters, with the router determining which adapter’s out-
put will be utilized. The routing function allows for the
selective activation of adapters, ensuring that the model ap-
plies the most relevant task-specific knowledge to the cur-
rent input.

Let X represent the hidden representations generated by
the self-attention layer. The output representation after the
FFN layer, with the inclusion of an adapter (denoted by H),
is given by:

O = F (X) +H(X)
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Figure 2. The architecture of the Mixture of Adapters with
a Router mechanism, where input features are processed by a
Feed-Forward Network (FFN) and routed to the appropriate task-
specific adapter based on the task type.

where H(X) = Wu(σ(WdX)), with σ representing a
non-linear ReLU function. The router aggregates hidden
features from the main branch and the adapters (denoted
by H1, H2, ...,Hk), modulating them based on the task-
specific vector Gt

k as:

Ot = F (X) +

K∑
k=1

Gt
k ⊙Hk(X)

This routing mechanism ensures that the model lever-
ages task-specific knowledge effectively, leading to opti-
mized performance across all tasks.

2.4. Text QA Construction

In the Text QA Construction module, we design a multi-
turn QA approach [5] for tasks such as General Perception
and Driving Suggestion that require a comprehensive under-
standing of the entire scene. This method allows the model
to sequentially query different road objects, leading to a
deeper and more nuanced understanding of the scene. Com-
pared to a single-turn QA, which might only provide a su-
perficial overview, the multi-turn QA enables the model to
explore specific details and relationships between objects,
resulting in more accurate and context-aware responses.

2.5. Implementation Details

Dataset. We only use the CODA-LM dataset [4] for train-
ing, which contains 4,884 images for training and 4,384
images for validation. Each image is paired with detailed

textual descriptions covering General Perceptions, Region-
specific details, and Driving Suggestions, with a focus on
challenging corner cases.
Backbone Network. We use TinyLLaVA-3.1B [7] as
our backbone Vision-Language Model (VLM) due to its
lightweight design and efficiency. While TinyLLaVA [7]
originally uses a simple MLP as the connector, we have re-
placed it with Q-Former to enhance connectivity between
the SigLIP [6] image encoder and the Phi-2 [3] language
model.
Experimental Details. Our training process is struc-
tured into four stages, with each stage fine-tuning the model
for one epoch. All experiments are conducted on a single
Nvidia RTX 4090 GPU, ensuring consistent performance
and efficient utilization of computational resources.

2.6. Ablation Study

We perform some ablation experiments to validate the ef-
fectiveness of the modules used in the final method. Note
that in the tables, G score represents GPT score of General
Perception task, R score represents GPT score of Region
Perception task, and D score represents GPT score of Driv-
ing Suggestion task.
Effects of Using Q-Former as Connector. As shown
in Tab. 1. Using Q-Former as a connector instead of MLP
enhances the integration of visual and textual features in
Vision-Language Models (VLM) by leveraging attention
mechanisms, which better capture complex multimodal in-
teractions. This leads to improved performance across
tasks.
Comparison of Default QA and Multi-turn QA Ap-
proaches. As shown in Tab. 2. The Multi-turn QA
method [5], designed to handle tasks requiring global scene
understanding such as General Perception and Driving Sug-
gestions, outperforms the Default QA method across all
metrics. This demonstrates the effectiveness of the Multi-
turn QA in providing more detailed and context-aware re-
sponses by sequentially querying different road objects.
Effects of Adding Mixture of Adapters (MoA). As shown
in Tab. 3. The Mixture-of-Adapters (MoA) mechanism
and the progressive instruction tuning strategy further im-
prove performance across all three tasks compared to fine-
tuning VLM with LoRA. By dynamically selecting task-
specific adapters, the model efficiently shares knowledge
across tasks while optimizing for task-specific complexi-
ties, especially in multi-task fusion scenarios like Driving
Suggestions. This results in better adaptability and overall
performance than individual fine-tuning.

2.7. Final Results

The final results, with G score of 55.16, an R score of 82.88,
and a D score of 65.50, demonstrate the effectiveness of
our LiteViLA, with an average score 4 points higher than
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Method G score R score D score

TinyLLaVA 47.32 72.58 51.60
TinyLLaVA + Q-Former 47.62 82.27 53.22

Table 1. Ablation Study on the impact of using Q-Former as a
connector

Method G score R score D score

Default QA 47.62 82.27 53.22
Multi-turn QA 51.58 82.76 56.42

Table 2. Ablation study on comparing default single-turn QA and
multi-turn QA approaches

Method G score R score D score

TinyLLaVA + LoRA 51.58 82.76 53.22
TinyLLaVA + MoA 55.16 82.88 65.50

Table 3. Ablation study on comparing the performance of fine-
tuning each task individually with LoRA and using the MoA
method

the baseline CODA-VLM. Examples of the results gener-
ated by LiteViLA are shown in Fig. 3 and Fig. 4. By inte-
grating Q-Former [2] as a connector, utilizing a multi-turn
QA approach [5], and employing a Mixture-of-Adapters
module for specialized task handling, we show LiteViLA
significantly enhances its ability to manage complex tasks
like General Perception and Driving Suggestions. These
components work together to capture and process the intri-
cate relationships within the driving environment, leading
to more accurate, context-aware outputs, demonstrating the
overall success of the architecture.

However, despite these improvements, the model’s rank-
ing in the competition was not as high as anticipated, indi-
cating there is still room for enhancement. Future research
could focus on refining the multi-turn QA approach for bet-
ter contextual understanding, enhancing visual-language in-
tegration with advanced fusion techniques, and optimizing
the Progressive Instruction Tuning Strategy in order to fur-
ther elevate the model’s capabilities in handling complex
driving scenarios.

3. Conclusion
The proposed LiteViLA demonstrates significant improve-
ment in handling complex urban scenes. Through inte-
grating Q-Former as a connector, utilizing a multi-turn QA
approach, and employing a Mixture of Adapters for task-
specific processing, LiteViLA effectively captures and pro-
cesses intricate relationships within driving environments.
The experimental results show its ability to deliver more ac-

Figure 3. In this corner-case scenario, our LiteViLA accurately
identifies key objects in the image, including a traffic cone, and a
tricycle. Despite the challenging conditions, the model success-
fully provides precise driving suggestions, such as reducing speed
and using headlights, ensuring safe navigation around these poten-
tial hazards.

Figure 4. In this urban traffic scenario, our model accurately iden-
tifies key elements such as a black Volkswagen, a left-turn traffic
sign, and adjacent vehicles. Despite the complex setting, it pro-
vides precise driving suggestions, like maintaining safe distances
and observing traffic signals, ensuring smooth navigation through
potential hazards.

curate, context-aware outputs, confirming the system’s ef-
fectiveness and efficiency.
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