OPT2022: 14th Annual Workshop on Optimization for Machine Learning

Nonsmooth Composite Nonconvex-Concave Minimax Optimization

Jiajin Li JIAJINLI@STANFORD.EDU
Stanford University

Linglingzhi Zhu LLZZHU @SE.CUHK.EDU.HK
The Chinese University of Hong Kong

Anthony Man-Cho So MANCHOSO @ SE.CUHK.EDU.HK
The Chinese University of Hong Kong

Abstract

Nonconvex-concave minimax optimization has received intense interest in machine learning, includ-
ing learning with robustness to data distribution, learning with non-decomposable loss, adversarial
learning, to name a few. Nevertheless, most existing works focus on the gradient-descent-ascent
(GDA) variants that can only be applied in smooth settings. In this paper, we consider a family
of minimax problems whose objective function enjoys the nonsmooth composite structure in the
variable of minimization and is concave in the variables of maximization. By fully exploiting the
composite structure, we propose a smoothed proximal linear descent ascent (smoothed PLDA)
algorithm and further establish its O(e~*) iteration complexity, which matches that of smoothed
GDA [37] under smooth settings. Moreover, under the mild assumption that the objective function
satisfies the one-sided Kurdyka-Fojasiewicz condition with exponent 6 € (0, 1), we can further
improve the iteration complexity to O(e~2™2x{20:1}) " To the best of our knowledge, this is the
first provably efficient algorithm for nonsmooth nonconvex-concave problems that can achieve the
optimal iteration complexity O(e~2) if § € (0,1/2].

1. Introduction

Recently, the class of nonconvex-(non)concave minimax optimization problems has attracted intense
attention across both optimization and machine learning communities [27], mainly as it appears
in applications such as (distributionally) robust optimization [5, 9, 12, 15, 22, 30], learning with
non-decomposable loss [29, 38], adversarial learning [1, 13], to just name a few. In this paper, we
are interested in studying nonconvex concave minimax problems of the form

i F 1.1
min e (z,9), (1.1)

where F' : R” x R? — R is nonconvex in x but concave in y, X C R™1is closed convex and ) C R4
is convex compact.

When F'(x,y) is smooth, a simple yet natural method to solve (1.1) is gradient descent ascent
(GDA). At each iteration, this algorithm performs gradient descent over the variable x and gradient
ascent over the variable y. On the positive side, GDA can generate an e-stationary solution for a
nonconvex strongly concave problem with iteration complexity O(e~2) [18], which already matches
the best-known lower bound for solving (1.1) via first-order algorithms [7, 17, 39]. Nevertheless,
without the strongly concave condition, GDA will suffer from oscillation. To address this issue,
various diminishing step size techniques have been proposed to guarantee the convergence but can

© J.Li, L. Zhu & A.M.-C. So.



NONSMOOTH NONCONVEX-CONCAVE MINIMAX OPTIMIZATION

only achieve the suboptimal complexity of at most O(e~%) [18, 20, 33]. By further exploiting
problem-specific structures, [37] invokes the Nesterov smoothing trick to the vanilla GDA, and the
resulting smoothed GDA can achieve the best iteration complexity of O(e~?2) for minimizing the
point-wise maximum of a finite collection of nonconvex smooth functions under some assumptions.
Complement to [37], the work [35] obtains the same complexity under the Polyak-t.ojasiewicz (PL)
condition [25]. On another front, multi-loop type algorithms with acceleration in the subproblems [23,
24,32, 34] have advantages over GDA variants in terms of iteration complexity for general nonconvex
concave problems. The best iteration complexity among them is O(e~2?), which is achieved by
two triple-loop algorithms [19, 24]. Furthermore, if (1.1) admits a separable nonsmooth structure
— the objective function consists of a smooth term plus a separable nonsmooth term with an easily
computed proximal mapping, the analysis and algorithmic framework from the pure smoothness
case can be adopted. The authors of [4, 6, 8, 14] introduce a class of (accelerated) proximal-GDA
type algorithms, in which the gradient step is simply replaced by the proximal gradient step. Armed
with the gradient Lipschitz continuity condition of the smoothness part, similar iteration complexity
results have also been obtained.

Although nonconvex minimax optimization has already been extensively investigated in the
literature, most existing works focus on the almost smooth case. In fact, it is only recently that
researchers [26] have proposed the proximally guided stochastic subgradient method for general
nonsmooth weakly convex-concave problems. However, it suffers from the slow iteration complexity
of O(e7%). The main reason is that the method does not take any problem-specific structure into
account but just utilizes the subgradient information. As a result, there is a huge theoretical gap
between the lower and upper bounds. Thus, one natural question to ask here is Can we design
a provably efficient algorithm to address nonsmooth nonconvex-concave problems, which
matches the lower bound O(e=2)? In this paper, we will answer the above question in the
affirmative for a specific class of nonsmooth problems, that is, F'(-,y) := hy o ¢, enjoys the
nonsmooth composite structure. Here, h,, is convex and Lipschitz continuous (possibly nonsmooth)
and ¢, is continuously differentiable with Lipschitz continuous Jacobian map for all y € ).

Due to the nonsmooth composite structure , o ¢, there is no available gradient information
to rely on. As such, we are motivated to leverage the proximal linear scheme [11] for the primal
update. This leads us to a new algorithm, which we call smoothed proximal linear descent ascent
(smoothed PLDA) and can be regarded as a natural extension of smoothed GDA [37] to solve
nonsmooth composite nonconvex-concave problems. Unfortunately, the analysis framework in [37]
cannot be adopted. The key difficulty lies in the lack of the gradient Lipschitz smoothness condition
for the primal function. To circumvent this difficulty, we prove that a tight Lipschitz-type primal
error bound condition (i.e., Proposition 3.1) holds for the proximal linear scheme even without the
gradient Lipschitz condition. Such an error bound is new and acts as a crucial step for establishing
the sufficient decrease property of a potential function for the problem.

Next, to provide a comprehensive study of the iteration complexity and convergence behavior
of smoothed PLDA for nonconvex-concave problems, we prove that a dual error bound condition
(i.e., Proposition 3.3) holds for the dual ascent scheme. Again, such an error bound is new. The key
idea for establishing this result is to employ the Kurdyka-t.ojasiewicz (KL.) property with an explicit
exponent § € (0, 1) [16] in the dual variable y. This is a notable departure from the usual approach
of utilizing the KL exponent in pure primal nonconvex optimization [2, 3, 16]. Specifically, the KL
exponent # here is used to explicitly control the trade-off between the decrease in the primal and the
increase in the dual. As a result, we are able to achieve O (e~ 2™#x{20,1}) jteration complexity if the
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Table 1: Comparison of the iteration complexities of smoothed PLDA proposed in this paper and
other related methods under different settings for solving mingec xy maxyey F'(z,y).

Primal Func. Dual Func. Iter. Compl.' | Add. Asm.
GDA [18] L-smooth concave O(e70) X =R"
Smoothed GDA [37] L-smooth concave O(e™) —
PG-SMD [26] weakly-convex concave O(e7%) X bounded
This paper nonsmooth composite concave O(e™) —
GDA [18] L-smooth strongly-concave O(e7?) X =R"
Smoothed GDA [35] L-smooth PL. condition O(e7?) Yy =Rd
This paper nonsmooth composite | Kt exponent 6§ = % O(e7?) —

dual function satisfies the KE property with exponent 6 € (0,1). In particular, when 6 € (0,1/2],
the proposed smoothed PLDA achieves the optimal iteration complexity O(e~2). To the best of our
knowledge, this is the first provably efficient algorithm for nonsmooth nonconvex-concave problems
that can achieve the optimal order in convergence rate. For general concave problems, the iteration
complexity of O(¢~4) has also been shown for the proposed smoothed PLDA, which achieves the
same complexity as the smoothed GDA studied in [37]. Table 1 summarizes the comparison of the
iteration complexities of smoothed PLDA and other related methods under various setups.

2. Preliminaries
Let us introduce the basic problem setup and some essential concepts for later analysis.
Assumption 2.1 (Problem setup) The following assumptions hold throughout the paper.

(a) (Primal Function) F'(-,y) := hy o ¢y, where ¢, : R" — R™ is continuously differentiable
with L-Lipschitz continuous Jacobian map for all y € Y on X: ||Vey(x) — Ve, (o)) <
L ||z — &'| forall z,2' € X, and hy : R™ — R for any y € Y is a convex and Ly,-Lipschitz
continuous function satisfying |hy(z) — hy(2')| < Lyp||z — #/||, forall z,z" € R™.

(b) (Dual Function) F(x,-) is concave and continuously differentiable on Y with V,F(-,-)
being L-Lipschitz continuous on X x Y, i.e., |V F(z,y) — V,F(2',y)| < L||(x,y) —
(@, )| forall (z,y),(2',y') € X x Y. Without loss of generality, we assume L = Ly L.

Assumption 2.2 (Kurdyka-t.ojasiewicz (KL) property with exponent 6 for the dual function [16])
For any fixed x € X, the problem max,cy F(x,y) has a nonempty solution set and a finite optimal
value. There exist . > 0 and 6 € (0, 1) such that

6
dist(0, =VyF(z,y) + 0ty(y)) = p (mgig F(z,y) - F(:v,y)> foranyx € X,y € Y.
y/

Now, we introduce the stationarity measures considered in this paper. Denote f := max,cy F'(-,y),
the potential function F;. : R x R? x R™ — R and the dual function d, : R¢ x R" — R as

Fr(z,y,2):= F(z,y) + ng — 2| and d.(y,z2) = néiér\{lFr(w, Y, 2),
x
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respectively, where we always assume r > L in the remaining parts of this paper. Observing that
Vady(y, @) = 7(Z — ProXip(. )40 (7))? by Danskin’s theorem. Thus, we may use ||V.d,(y,z)||
and dist(0, =V, F(x,y) 4+ Oty (y)) as a primal-dual stationarity measure for (1.1). This leads to the
game stationarity measure in Definition 2.3.

Definition 2.3 (Stationarity Measures) The pair (z,y) € X X ) is an e-game stationary point
(e-GS) if
IVady (g 2)l| < ¢ and  dist(0, ~V, Fle,y) + duy(y)) < e.

3. Convergence Analysis of Smoothed PLDA

In this section, we first present the proposed smoothed proximal linear descent ascent algorithm
and then establish its iteration complexity with/without Assumption 2.2. For smooth nonconvex
concave optimization problems, a natural and intuitive algorithm is Gradient Descent Ascent (GDA),
which however may suffer from oscillations. To address this issue, [37] proposes a Nesterov-type
smoothing technique to handle the primal updates. It is tempting to adapt this smoothing technique to
the structured nonsmooth setting. However, the nonsmoothness will cause fundamental difficulties.

On the algorithmic side, due to the composite structure h,, o ¢y, there is no available gradient
information to rely on. Nevertheless, by fully exploiting the composite structure, we can leverage the
proximal linear scheme [11] to handle the primal update, i.e.,

2"+ = argmin {ka,)\(x,yk) + g”:v — zkH?} : (3.1)

TEX
Here, F y(2,5*) = by (cyu(2F) + Ve (aF) T (x — 2%)) + 3 ||lo — 2|2 and {2*} is the auxiliary
sequence. We use the same auxiliary sequence, smoothing and dual update as the smoothed GDA [37].
The “Smoothed PLDA” algorithm is formally presented in Algorithm 1.
Algorithm 1: Smoothed Proximal Linear Descent Ascent (Smoothed PLDA)

Input : Initial point 22, 3, 2% and A > 0, a > 0, 8 € (0, 1)
fork=0,1,2,...do

okt .= argmin, ¢ y {ka)\(x,yk) + 5l — zk||2}

Yl = projy (yk: + ava(xk—i-l’yk))

AL ok 4 B(gh L — k)
end

On the theoretical side, it is far from obvious how to tackle the nonsmoothness. Before we
introduce the main obstacle and our main theoretical results, let us introduce some basic definitions
and concepts for the later analysis. We define the proximal function p, : R® — R as

:= mi F
pr(2) min max (Y, 2)

and let

zr(y, 2) == argn;(in Fo(@,y,2) = proxip(. 4, (2);
S "

2.1y : R™ — Ris the indicator function of ), and dist(z, S) := inf.cs ||z — z|| is the distance from = € R™ to a set
S CR".
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zr(z) = arxger?(m max Fo(z,y,2) = prox%fﬂx(z),

Y4(2) :== projy (y + aVy (2 (y, 2), 4, 2)) -

To analyze the convergence of smoothed PLDA, we follow [37] to define a potential function as

(I)T(xvyv Z) = FT(xayv Z) - dT(ya Z) +p7‘(z) - dr(yaz) + &@

Primal Descent Dual Ascent Proximal Descent

In fact, all terms in the potential function ®,. are closely related with the algorithmic updates. Namely,
the update for the primal, dual and auxiliary variables can be understood as a primal descent for the
function F;., approximate dual ascent for the dual function d,- and approximate proximal descent for
the proximal function p,..

To start with, we study the sufficient decrease property of this potential function. One of the
main obstacles that prevents us from adopting the analysis framework in [37] is the lack of the
gradient Lipschitz smoothness condition for the primal function. In the smooth case, the key to
guarantee the basic descent estimate (i.e., Proposition 4.1 in [37]) is the primal error bound condition
(3.2), which trivially holds because it is equivalent to the Luo-Tseng error bound condition for
structured strongly convex functions [21, 36]. That is, for some ¢ > 0 [lz¥+! — 2. (v, 2F)|| <
Cl|z* — projy(z¥ — eV F.(z%,y*, 2¥))||, where ¢ > 0 is the step size for the primal descent.
However, to the best of our knowledge, there is no analog for the nonsmooth convex composite
problem with the proximal linear scheme. One of our main theoretical contributions is to show that a
similar Lipschitz-type primal error bound condition still holds without L-smooth Lipschitz condition.

Proposition 3.1 (Lipschitz-type primal error bound) For any k > 0, it holds that

|28 = 2y (", 2P| < Clla® — 2 (3.2)

o 2(r=L) T (L) L
where ( := ()/\+L)(—1 ) ( )\2—TL + 1).

It is worth noting that a similar error bound condition has also been investigated in [10]. However, the

approach therein did not provide any explicit constant estimation. The explicit constant we derive in

Proposition 3.1 plays an important role in controlling the step size for both primal and dual updates.
Armed with Proposition 3.1, we can establish the sufficient decrease property of the potential

function.

Proposition 3.2 (Sufficient decrease property) Letr > 3L, A > L, a < min {10%’ ﬁ} and

. 1 (r—L)?
f < min q 5, Bar(r+1)2 [ Then for any k > 0,

A 1 4y
B — 041 > Sk — M 4 gt = g R + e - 2

28y (2F) — @ (v (2F), 2°)|1%,
where ®F .= ®,.(z¥ yF, 2F).

A basic principle to conduct the convergence analysis is to make the potential function decrease
sufficiently at each iteration. The key obstacle here is to bound the negative term ||z (z*) —
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z(y% (2%), 2¥)||. Conceptually, this term is related to [|y* — y* (2*)||. That s, if [|y* — y¥ (z%)[| = 0,
then y* is the optimal solution of maxyey d,(y, 2*) and thus 7 (2%) = z,(y% (%), 2%) = 2. (v*, 25).
Consequently, it is a natural idea to bound ||z} (%) — 2, (y% (%), 2%)| by |ly* — y% (z%)||. The
remaining question is how to determine the explicit growth rate. At the heart of our analysis is to
exploit the KL exponent to characterize the primal-dual perturbation quantity explicitly, which leads
to the following dual error bound condition. As we shall see later, it plays a vital role in analyzing
the explicit convergence rate or iteration complexity of the proposed smoothed PLDA algorithm.

Proposition 3.3 (Dual error bound condition with K¥. exponent) Suppose Assumption 2.2 holds.
Then

|25(2) — 2 (y+(2), 2) | < wlly — v (2)]|79,

\/;/% (1+a%;+02)) %‘

where w 1=

Remark 3.4 (i) This result generalizes the one in [35], which corresponds to the special case of
0 = % and Y = R%, to the full range of 0 with/without constraints. (i) For the general concave
case without Assumption 2.2, there is a similar dual error bound as Proposition 3.3 with 0 = 1 and
w being related to the diameter of the compact set ), see Lemma 7 for details. (iii) The analysis
framework of Proposition 3.3 cannot include the sharpness case (i.e., 0 = 0). [37] provides a certain
dual error bound condition for max-structure problems under several strong assumptions, which
satisfies the KL condition with 8 = 0. We leave this case as our future work.

Armed with Proposition 3.3, we present the main theorem concerning the iteration complexity of
smoothed PLDA under various settings.

. . —L)?
Theorem 3.5 Suppose thatr > 3L, A > L, a < min {10%, ﬁ} , B < min {%, m} .
Then for any integer K > 0, there existsa k € {1,2,--- | K} such that (:L'k“‘l, yk“) is an O(K‘i )-

game stationary if f < K -3, If we further suppose Assumption 2.2 holds, then

(a) (KL exponent § € (3,1)): O(K‘ﬁ)—game stationary if 5 < K%,

20—1
(b) (KE exponent 6 € (0, ]): O(Kfé)—game stationary if 5 < %

Remark 3.6 We claim that our algorithm can achieve the optimal iteration complexity of O(e~2)

when the dual function satisfies the KE condition with exponent 6 € (0, %] which certainly includes

the nonconvex-strongly concave problem as a special case. To the best of our knowledge, this is the

first provably efficient algorithm for nonsmooth nonconvex-concave problems, which can achieve the

same results as the smooth case.

4. Conclusion and Future Directions

In this paper, we propose a smoothed proximal linear descent ascent (smoothed PLDA) algorithm
to solve a class of nonsmooth composite nonconvex concave problems, which can achieve O(e~*)
iteration complexity for general concave problems. To further arm with the one-sided Kurdyka-
Lojasiewicz condition with the exponent 6 € (0, 1) in the dual variable, we can establish the iteration
complexity as O(e~2™2x{20,1}) "which matches the optimal order as O(e~2). It would be super
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interesting to further investigate whether the analysis framework introduced in this paper can be
extended to include the sharpness case (i.e., # = 0) and thus address the max structure problem
studied in [37]. Another natural future direction is to extend our algorithm into the stochastic setting
so that the modern machine learning tasks can be benefited from our methods.
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Appendix A. Organization of the Appendix
We organize the appendix as follows:
* All notations used are summarized in A.1 and useful technical lemmas in A.2.

* The proof of Lipschitz type perturbation bound (Proposition 3.1) is included in Section B.

Sufficient decrease property of potential function ®, (Proposition 3.2) is given in Section C.
* Dual error bound condition under two different settings is established in Section D.

* The proof details of the main theorem 3.5 are given in Section E.

A.1. Notations

Before we present all proof details of theorems and lemmas, we adopt the following notations:

« Fo(z,y,2) = F(z,y) + 5|z — 2||* : smoothed potential function;

L]
=
S
&

I

E.
=
8
m
=
I
4
<
m
<
=
—~
8
=
P
el
=
]
&,
=
=)
=K
=
(@]
=
]
=
Q
=
S
K
&
N
g

* Y(z) := argmax,cy dr(y, 2);

* Y4 (2) := projy (y + aVy F.(x(y, 2),y, 2)) : one-step projected gradient ascent of dual function.

A.2. Useful Technical Lemmas

To begin with, we introduce the weakly convex function which plays an important role in our
following analysis.

Definition A.1 The function ¢ : R® — R is p-weakly convex on X C R" if for any x,y € X and

T €10,1],

pr(1—7)
2

When ( is locally Lipschitz, it is equivalent to £ + 5|| - ||* is convex on X.

Ure+ (1 —7)y) < 7l(z) + (1 —7)ly) + lz —y]*.

By assumption of the problem (1.1) (recalling L. = Ly L. and r > L) with [11, Lemma 3.2, Lemma
4.2], we directly have the following useful results.

Fact A.2 The functions F(-,y) for any y € R and f are L-weakly convex on X.

Fact A3 Lety € R Forall z,% € X it follows that

77“+L L—r

2

|z — Z|* < F(z,y) — Fe,(z,y) < o —z||.

10
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The definition of the weakly convex function together with Fact A.2 implies that F,.(-, y, z) is
(r — L)-strongly convex for any (y,z) € Y x R™.

Lemma 1 Suppose that f; is p;-weakly convex functions for all i € [N] and A is a bounded set ,

i.e., diam(A) < B, we have sup Efil yi fi(x) is <B max pz') -weakly convex.
yeA i€[N]

The following Lemma 2 and 3 are also needed in our analysis, and the proof of which is similar
to that of Lemma B.2 and B.3 in [37], respectively. For the sake of completeness, we present the
proof here.

Lemma 2 Foranyy,y € Y and z,2 € R, the following inequalies hold:

Hm(y,z) r(y, ) < oullz = 2], (A1)

l27(2) — 222l < ollz — 2], (A2)

er(y,Z) - wr(y 2 < o2lly =yl (A.3)
where 01 := *5 and o9 1= 25331”.

Proof From the definition of F;. we know forany z € X,y € ) and z, 2/ € R™ that
r r
Fr(a,y,2) = By, 2) = S(le = 2P = llo = 21%) = ZZIP =2 = 2) T = [[2]). (A4)

Since from Fact A.2 one has that F'(-,y) is L-weakly convex, and consequently we know for any
z e X,y € Yand z € R” that

r— 1L
FT(x7y>Z) _FT(xT(y7Z)>y7z) Z ‘|x_$r(y7z)||2 (AS)

Thus, combining (A.4) and (A.5) one has that

FT(xT(yaz)ayaz/) - FT('rT(yvzl)7y7 Z/)
- FT(xT(yvz)vy’Z/) - FT(xT(yvz)vyvz) + FT(xT(yvz)vyaz) - FT(xT(yaz,)ayvz)_
(F (xT(y72/)7y7 Z/) _Fr(xr(yaz,) y,Z))

< P = 20" = )Ty, 2) ~ ) = T e, 2) — ey, )P
LI~ 2( ~ )23, 2) = [1l)
<o =) @y, #) = (9, 2) = 5 ey, 2) =y )P (A6

On the other hand, again by (A.5) we have

—L
FT"(:UT(ya Z)a Y, Z,) - FT(xT(yv Z/), Y, Z/) > ||$T(y7 Z) - xT(ya Z/>||27

and this together with (A.6) implies that
(r = D)llzr(y, 2) = 2 (y, 2)* < (2" = 2) " (22 (y, 2') — 2y, 2)),

11
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which by the Cauchy-Schwarz inequality further implies

r

lr(y, 2) = r(y, 2 < — [z = #/l|.

Hence, (A.1) holds with Lipschitz modulus o1 =

argument as above since f = maxycy F'(-,y) is also L-weakly convex by Fact A.2.
Now, we start to prove (A.3). Using (A.5) we have that

/ ~L .
F’f"(xT(y 72)7y72) —Fr(.’L’r(y,Z),y,Z) 2 Hx'r(ya Z) _xr(yaz)H27 (A7)

’r‘_
FT(xT(ya Z)a yla Z) - Fr(xr(ylv Z)vy,7 Z) Z

Yoty o)~ w212 a®)
Moreover, by the concavity of F,.(z, -, z) we have

Fr(zr(y, 2),y',2) = Fo(@e(y, 2), 9, 2) < (VyFr(ar(y,2), 9. 2), ' — y), (A.9)
and from the Lipschitz continuity of V, F;.(x, -, z), we have

L
Fr(xr(y/a z)ayv Z) - FT(xT(y/> Z) y Z) <V F (xT(y Z) y,a Z)a Yy — y,> + 5”3/ - y,||2'
(A.10)
Combining (A.7)-(A.10) it follows that
(T - L)||$T(y7 Z) - ':UT(y,’ Z)||2 g <VyFT(xT(y7 Z), Y, Z) - var(mr(yla Z)v y/7 Z)v y/ - y> +
L /112
Sy =1
This together with the consequence of the Lipschitz continuity of V, F}.(-, -, z) that

Hvar('rT(y7 Z)) Y, Z) - VyFr(x'r(ylv Z)v y/> Z)H
S |‘var($r(y, Z)) Y, Z) - vaT(xT‘(ya Z)a y/7 2) + VyFT(xT(ya Z)a y,7 Z) - vaT(:ET(yla Z)v y,7 Z)H
< L(ly = y'll + llzr (v, 2) = 2 (y, 2)I]),

implies that
/ 2 ! ! 3L 1112
(r—D)l|r(y, 2) — 2 (v, 2)I7 < Lz (Y, 2) — 2o (v, 2)lly — 'l + jlly =97 (AdD)

Let ¢ := W Then we know from (A.11) that

2
g r+L_ 3r+L) 1, 7“+L 3 7"+L 1 % r+L
< <= - 2
¢ _7“—LC+2(7"—L)_2C +2 2 2 r—L
<

%(a +b?) fora,b € Rand “t& > 1.

where the second inequality is due to the basic inequality ab

Thus,
2(r+L
ooy 2) — ey, < 20D gy,
r—1L
which shows that (A.3) holds with Lipschitz constant oy = % The proof is complete. |

12
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Lemma 3 The dual function d,(-,-) is differentiable on Y x R™, and for eachy € Y, z € R"

vydT(yv Z) = va(mT(yv Z)v y)? vzdr(:% Z) = VZFT(xT(ya Z), Y, Z) = T(Z - wT(:U? Z))

Moerover, Vyd,.(-, -) is Lipschitz continuous, i.e.,

IVydr (v, 2) = Vydr(y", 2)|| < La, Iy = "ll, forally',y" € Y,
IV.dr(y,2") — V.ode(y, 2")|| < Lg, ||2" = 2"\, forallZ " € R"

with Ly, := max{o1 +r, (02 + 1)L}.

Proof Since F, (-, y, z) is strongly convex, F,(z,-, z) is concave on ) and F,.(x,y, -) is (strongly)
convex, by [28, Theorem 10.31] we know that

d’l‘('7 ) = lgél‘}vlF’l‘(wv Yy )

is differentiable on ) x R™. Then for each y € ), z € R", one has

vydT<y7z> = vaT<x7’(y7 Z)7y7z) = va(xT(y7z)7y)7

and from [11, Lemma 4.3] we know that

V.d (y,z) = V. F(2r(y,2),y,2) =1r(z — PrOX1 pr( y)+LX(z)) =r(z —x,(y, 2)).

Then for any ¢/, y” € ), it follows that

”vydr(y/a z) — Vydr(y”, Z)H
= |VyEr(zr(y, 2), 5, 2) = VyFr(z (v, 2), 4", 2) ||
< HVyF,«(xT(y/, z), Y, z) — VyFr(xr<y/7 z), Y’ 2)||
+ HvaT(xr(y/a z), y", z) — VyFr(x,«(y”, z), y", z)|
<Llly =" + Lllzr(y', 2) — (4", 2)|| < LIy — y"[l + Loally’ — 4"l < La. lly" — "I,

where the third inequality is due to (A.3). Also,
IV=di(y, 2) = Vede(y, 2")|| = 7ll2" = 20 (y, 2') = (2" = 20(y,2"))

<rll2 = 2"+ rlla(y, &) — 2 (y, 2]

<rlle’ = 2"+ oull2’ = 2| < La, |I2 = 27,

where the second inequality is due to (A.1). The proof is complete. |

Appendix B. Proof of Proposition 3.1 — Lipschitz type Primal Error Bound
Condition

Recall that

z.(yF, 2F) = argmin F,(z, ¥, 2%).
reX

13
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For simplicity, we denote Fy,z := F,(-,y,2) + 1y forany y € R% and z € R". Note that

r—L

|z — z,. (4%, 2%)||?, foreachz € X. (B.1)

Fyk7zk($) - Fyk,zk (zr(y", 25)) >
By the convexity of Fy’“, &, we obtain for each z € X that

Fyk’zk (x) — Fyk7zk(fﬁr(yk, zk)) < g;r(a: — xr(yk, zk))

= dist(0, 8Fyk7zk z)) - ||z — xr(ykv Zk)Hv

(B.2)

where g, € aﬁyk7zk (x) satisfying ||g;|| = min ) |lg]|. Together (B.1) and (B.2), we have

9eOF ) k(x
|z — 2 (y*, 2)|| < 2(r — L)~ dist(0, 8Fykyzk (x)), foreachz € X.

By invoking [10, Theorem 3.4], it follows that

2(r —L)"t 4t
k kK
o=, (4, )| < T [e — prox,z, (@) (B3)
Next, we exploit the precise quantitative relationship between the norm of the residual term
|z +1 — 2| and ||2* 1 — prox, . . k(mkH)H. We define the function ¢, : R® — R forany k € N
yv,z
as

- A+ L A+ L
r(x) = Fye (@) + == o — M| = == o — 27

From Fact A.3 and the strong convexity of Fyx 5 (-, y*) we know that for any z € X,

for each x € R™.

A T
B (@) = Pl ) + Ll — ¥

> Fyn(,y) = 5 o — ¥4 L — 242
> B a5+ 20— a2 = A g gk g Tt e
> F(a+ k) 4+ %HﬁH 2+ Mnx _ g2
R A
e R Rt PR L
Then, from r» — L > 0 we have for any x € X
ou(x) > By )+ 2 ke k2 g Ty b
> By () + 2kt o2

which combines with the definition of ¢y implies

SDk(xk+1) _égfvwk(x) < LkaJrl _$k||2.

14
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Consequently we can observe that for any p > 0

p
o (proxs, (@) + D proxs,, (@F1) — 2512

< inf LllzE+L — *)2
< inf gu(a) + Lk — 2¥|

< gn (proxa,, (@81) + Lllah ! — a2,

which implies that

2L
[proxa,, (1) — " <y [ ==t = 2t (B.4)
Furthermore, it is interesting to observe that
- A+ L o A+ L i
Fyeon(@) + == [z = 2¥* = gi() + =~ o = "%,

k.+1 _ . k . . . —
and consequently prox o (") = prox P (z"). This together with (B.4) (letting p
A+ L) and (B.3) (letting t = (A + L)~!) implies that

|25 — 2 (yF, 2|

_ 20— L())\—i L)(A1+ L)~ [+ —prox, @)
i (P, )
=R (e w0 )
< 2 ()A n L)(AljL b ( A2+LL + 1) o — 2",

which completes the proof for (3.2). Furthermore, by the nonexpansiveness of the projection operator,
we have

k ko k
Iyt =y ()l

= || projy(y* + aVy F.(a" T y* 2F)) — projy (v* + oV Fr (2, (4", 25), 4", 2)]|
ko Fo (2Rl gk kY — (o V. F E _k\ .k _k

Hy +a Yy 7-(17 ,y7z) (y +a Yy ’f'(x?"(yvz )7y’z ))H

aL|z" T — 2. (yF, 28|

aL||z® — 8|, (B.5)

VANVAN

IN

where the first inequality is due to the nonexpansiveness of the projection operator. The proof is
complete.

15
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Appendix C. Sufficient Decrease Property of Potential Function

Lemma 4 (Primal Descent) For any k > 0, it follows that

Fr('rka yka zk) - Fr(xk—H: yk+17 Zk+1)

2A+r—L
> f”xk . xk+1”2 + <var(xk+17yk’zk)7yk o yk+1> +

2-p)r
26

sz - Zk+1H2.

Proof From the definition we know that F,x (-, y") is A-strongly convex, and then one has that

.
ea(@® yf) + St = 2F|?

.
Fo(ab o, 2% = F(a of) + Llah — 42 = F :

2 xT

(C.1)
> ka’)\(a}k—i—l’yk) i g“$k+1 . ZkH2 + %Hl‘k . JUkHHQ-
Due to Fact A.3, we have
P 55) 2 B gy + 2 et ok €2
Hence, it follows that
F(ah g, 24) 2 P ) 4 Dbt — b2 g IR gk b
R 2)\++—LH$1€ _ g2, C3)
Next, as F.(x, -, z) is concave, we have
Fy(a®+L,yf 28) — F(a+L, yf 1 29) > (W, F (e, o, 20, gF — ). (C4)

At last, on top of the update of variable 21, i.e. 28T = 2F + B(2F*1 — 2¥), we can verify
2 —
Fr(xk+1’ yk+17 Zk) . Fr(xk+17yk+l7 Zk+1) — ( 2BB)T sz o Zk+1||2- (Cs)
Summing up (C.3), (C.4) and (C.5), the desired result is obtained. |

Lemma 5 (Dual Ascent) For any k > 0, it follows that
Ly,
de(y™ 1, M) — (Y 28) 2 (VB (0, 25), 25 0) M = o) = Il - T

g <Zk+1 I er(ykﬂ’ Zk+1)> (C.6)

Proof From Lemma 3 we know V,d.(-, z) is Lipschitz continuous with Lg, . Then we know that
=
2

Lg,
= <VyFr(a:(yk’ zk),yk7 Zk)’ yk+1 _ yk> . 7Hyk . kaHQ.

dr(yk+17 Zk) - dr(yka Zk) > <vydr(yka Zk)a yk+1 - yk> - b (7J/l€—~_1||2

Y

16
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On the other hand, one has that

dT‘( k+1 k+1) d?“ ykJrl P )
+1

=F, ( ( k+1 s ) _ Fr(xr(ykﬂ,zk),ykﬂ,zk)
+1 k’-i-l) Fr(xr(yk+17 Zk+1), yk:-i-l’ Zk)

A R

-
=3 <zk+1 I N (AR zk+1)> i

(
)yt
ZFT( ( k+1 +1)’y

Sl (L, ) A2

Finally, combining above inequalities we know (C.6) holds. |

Lemma 6 (Proximal Descent (Smoothness)) For any k > 0, it follows that

pr(zk) _pr(ZkJrl) > % <Zk+1 _ 2k er(y(zk+1)7zk) Lk Zk+1>’ (C.7)

where y(2F+1) € Y (2F*1),
Proof From Sion’s minimax theorem [31], we know that

min max F,.(x,vy, z) = maxmin F,.(z.,y, 2
zeX yey 7"( 7:'-/7 ) yEy rEX 7"( >y7 )

which implies
z) = maxd,(y, 2).
p?”( ) yey T'(y7 )

Consequently, it follows from the definition of y(2**1) that
M) = pr(2F) < de(y(M), 2 = do(y(M), 2)
< Fr(an(y(z"), 27), y(2F ), k“) F( P(y(2), 25,y (M), 25)

= B <zk+1 — zk ktl y ok — 2z, (y >

Pr(

where the second inequality is from that F.(2',y, 2) > mingex Fy.(x,y, 2) = d,(y, 2) holds for any
2’ € X. The proof is complete. |

Proof Proposition 3.2 From Lemma 4, 5, 6, we know that
‘Pr(l‘k,yk, Zk) _ @r(l‘k—H, yk-i—l’ Zk—f—l)
— Fr(mk,yk,zk) o Fr(xkﬂ,ykﬂ,zk*l) + 2(dr(yk+17zk+l) - dr(ykak)) +
2(pr(zk) - pr(Zk-H))

2 +r—L 2—0
> 7”$k o :L‘k+1”2 ( ) HZ k+1H2 - LdTHyk o yk+1||2 +
2 23
(VyFp(aF Tk 29), g — )+ 2(V B2 (yF, 29), 2 7), 0P — oF) +

@

17



NONSMOOTH NONCONVEX-CONCAVE MINIMAX OPTIMIZATION

2r <zk+1 — 2P e (y(ZF Y, 2R — 2 (T zk+1)> . (C.8)

-~

@

Subsequently, we simplify the terms @ and @. First, for © we know that
@ = (VyFp (e, g 28), oF — ") 4+ 2(V F (2 (0F, 25), 25 0), o4 — ob)
:<Vy ( k+17y z )’yk+1*yk>+
2<var(~T7~(y ) % )7 Zk? yk) — VyFr(x]H_l, yk7 zk), yk'H _ yk’>'
For the left term, one has that
(VyFp (bt g 27), gF = o)
1 1
= (Y, Fo (2" o, ) + a(yk L), R Ry a”yk g2
1 1
=~ +aVy B (2 g 28 — gLy =) 4 g - gt

1
>~y -y

where the last inequality essentially follows from the property of the projection operator and the
update of dual variable y* that y*™! = projy,(y* + aVyF, (2", y*, z¥)). On the other hand, for
the right term we have

2<VyFr(xr(yk, Zk), Zk; yk) — VyFr(l'k+17yk7 zk)7yk+1 _ yk>

> — 2|V Fr(ap (v, 2%), 4%, 2F) = Vy BT ok, ) 5 = o))
> — 2L — 2 (yF, 20| - lyF = |

> — LC||y* — oY1 — L2l — 2 (vF, 201

> — LC|y* — " = L2t — 2R,

where the third inequality follows from 2|z||y| < 722 + 1y? and the last inequality follows from
Proposition 3.1. Together them, we obtain,

1
©> (5 1) Iy~ - Lt R ©9)
Then, we continue to bound @),

@ — 9 <zk+1 — 2k (y(2FY), 2F) — (R, Zk+1)>

= 2 (M= 2R (), ) — (), ) ) +

s
9 <Zk+1 L (2R, Y o (R R >

Y

- 27“01”Zk+1 _ zk:H2 + 9 <Zk+1 Zk xr(y( k-&-l)’zk—i-l) _ xr(yk+1’zk+1)>

,
B = e [ (Ve | EN (T Cans iy

B

B,

Y

—2roq||z —ar(y

(C.10)

18
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where the inequality is from (A.1) with the Cauchy-Schwarz inequality and the AM-GM inequality.

Thus, the inequalities (C.8)-(C.9) above imply that
(I)r(l?k,yk, Zk) o (I)T(Sﬂk+1,yk+l, Zk+1)

2 +r—3L 1
I i T C RSP TR

(2 — B)r T *
( — 20y — ) (128 — YR Bl — (L, Y2,

On top of (B.5), we have

P kP = Iy'““—y’“(zk)+yfi(2"‘3)—y'“ll2

A ) [ A

k+1H2'

ly

> SyE - gk M) - et -
Similarly, by Lemma 2 and (B.5), we have
5 (M) — 2 (™ P
< df|lap (M) = 2F P+ 4l (27) - 2 (F), 21 +
) (yh (27), 27) — e (v 2 )H2 + Al (g, 2F) — (T 2P
<807l = P Ay () — 2 (v (7). 2P + dodn? |2t — M2,
Substituting (C.12)-(C.13) to (C.11) yields
(I)T(xkaykazk) -0 ( k+17y 1 k+1)

2\ —3L
> <+g - 28rﬁo%n2) e — a2 +

1 1
(- -1¢2) <2Hy’“ B ERIP = Pl - AR 4

(0%

((2 —B)r —2ro1 — — — 567"501> 2% — 2FFY|2 — 281 8|2k (2F) — xr(yﬁ(zk), 2"

2 7ﬁ
Suppose that r > 3L (which implies Ly, < 5L), we have

+ Asa < min {7, 7 |, we have L — Ly, > L and of — L¢3 >

* AsB < 55 and o1 < , we have

9 _ 6 r

( ggﬁ) _2r01—ﬁ—56rﬁ01_—7;—?—1267“5
_z 9_7 _ 9 4r
_ﬁ<7 ° 1265>z7ﬂ.

19
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e As A > L, we have

o1 A L_ A and n?  ol?¢? A
o = — — = —.
TALCZ AL2C2 N\ T 4L2(2 %" 4 T 16
Moreover, due to 5 < min {%, Saiag }, we can obtain
14n% 14X 2\ +7r — 3L n”? A
28rB02n? < — L < 22 and LT 07 98rBoln? — L > 2
L T 2 U T:

Together all pieces, we get
(I)r(l‘kvyka Zk) - (I)T(xk+17 yk+17 ZkJrl)
Ak k2, Yok kokg2 o, ATk k412
> Tollat — 2P = R 4l
287 6|2 (27) — (v (2F), 2.

The proof is complete.

Appendix D. Dual Error Bound Condition

We mainly discuss two cases — the general concave and the KL functions with the exponent 6, i.e.,
Assumption 2.2.

Lemma 7 Forany z € R", it follows that

l27(2) = 27 (y+(2), 2) 1 < wlly =y (2)], (D.1)

where y (z) := projy (y + aVyF.(2:(y, 2),y, 2)) and k := % - diam(Y).

Proof Recall that y(z) is an arbitrary vector in Y (z). By the strong convexity of F.(-,y, z) we have

Fy(25(2), 94 (2), 2) — Fo(n (9. (2), 2194 (2),2) = = Zllan (g (2), 2) — 222
" e (2), 2) — 22 )P,

Fr(zr(y+(2), 2),y(2), 2) = Fr(a7(2),y(2), 2) 2
which together with F.(z}(z),y(z), z) > F.(x}(2), y+(2), z) implies that

Fy(r(y+(2), 2),5(2), 2) = Fr(r(y+(2), 2), 9+ (2), 2) 2 (r = L)l|2r(y+(2), 2) —27(2)|*. (D2)
Note that y (z) is the maximizer of the following problem:
wax (y + aVyFr(@r(y,2),9,2) =4+ (), 4').

For simplicity, we denote the function
£() = aFp (2, (y1(2), 2), - 2) = (aVyFr (20 (y1(2), 2), y4(2), 2), ) —

20
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<y+(z) - Y- OszFT(xr(y, 2),Y, %), >

Then we know that
max £(1) < @B (2 (1 (2), 2),14(2).2) = (@Vy B (04 (2),2). 92(2). 2. (2)) +

g/rllgj)/( <y + avar(ﬂﬁr(% Z)a Y, Z) - y+(z)7 y/>

< &(y+(2)), (D.3)

where the first inequality holds since F,.(x,(y+(2), 2), -, z) is concave. Thus, we have £(y(z)) <
&(y+(z)), which implies that

FT(xT(y-I-(Z)a Z)a y(z)v Z) - FT(xT(y-I-(Z)a Z)a y+(z)7 Z)

< 2 {4(2) ~ 1 (2, AV Fr(es (04 (2), 20,04 (2), 2) + 05 (2) — y — 0V, Fo(an (3, 2),9,2))
< Dy () = 9l — 9+l + Ll (2) — wE@ I (s (2), 2) = 20l D)+ s (2) — )
< (5 + 2o L) I ) = vl - w2 ) D)

where the last inequality is from (A.3). Hence, we know from (D.2) and (D.4) that

(= Dlai(e) = oy (). AP < (5 Lo+ L) dima) -y = s )

which is the desired result. [ ]

Proof of Proposition 3.3 Proof At first, we define the function 1) : R® x R” — R as

x,z) =max F.(z,y, 2),
(@, 2) = max Fr(z,y, 2)

where ¥(+, z) is (r — L) strongly convex. As such, one has that

r—L

5 177(2) = 2o (v (2), 2)|1° < (ar(y1:(2), 2), 2) = V(@7 (2), 2). (D.5)

Furthermore, note that,

w(iﬂr(y+(2’)az)az) - 1/1(1’:(2)72) < ¢($r(y+(z)72)72) - Fr(;vr(y+(z),z),y+(z),2)
= max [ (@r(y+(2), 2),y) — F(2r(y+(2), 2),y+(2)), (D.6)

where the inequality holds as we have

Fr(o(y+ (), 2), 94 (2), 2) = min { P,y (2)) + Sl — =1}

IA

. r 2
maxmin s F(z,y) + =[x — 2 }
ye;’ixeX{ (@,9) 2” I
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.
= mi F —|lz — 2}: * ,
minma { F(z,y) + glle — 2} = v(x7(2). 2

Incorporating (D.5) and (D.6), we obtain the following intermediate relationship as a starting point:
r—L

5 1177 (2) = 2o (v (2), 2)” < max F(z,(y+(2), 2),y) = Far(y4(2), 2), y1.(2)). - (D7)

Next, by fully exploiting the KL exponent of the dual function, we target at quantifying the right-hand
side term of (D.7) by ||y — y+(2)]].
By fully exploiting the Kt condition, we have

0
i (e P42, 2090 = Fla s (2).),0(2)

ye
dist(0, =Vy F (2, (y+(2), 2), Y+ (2)) + ey (y+(2)))
z)) + Ouy(y+(2)))+

)
dist(0, =V F (2, (y, 2), y+(
IVyE (2 (y, 2), y+(2)) = Vy F(2r(y+(2), 2), 4+ (2))

dist(0, =Vy F'(2r(y, 2), y+(2)) + 0y (y+(2))) + Lozlly — v+ (2)]

1
(5 +2+202) ) ol

VANVA

IN® IN©

where @ follows from the gradient Lipschitz continuity property of V, F'(x,y) and (A.3); @ follows
from the fact that projected gradient ascent method satisfied the so-called relative error condition [3]
and recall that y, (2) = projy(y + oV F(z,(y, 2),y)).

Incorporating with (D.7), we have

V2 <1+04L(1+02)

Ja3(e) = 2 (20 2 < Ay (PR T gy ),

Appendix E. Proof of Theorem 3.5

To prove the main theorem, we rely on the following lemma, which connects the decrease quantities
and the game stationary concept.

Lemma 8 Let € > 0. Suppose that
maix { 281 — ¥ g (5) — P, 25— 2 < e

then (mkH, ka) is a pe-game stationary solution for some p > 0.
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Proof Based on Definition 2.3, we have to quantify the two terms ||V.d,(y**1, 2*+1)|| and
dist(0, V, F (k1 y*+1) 4+ 9y (y**1)). From Lemma 3, we know

IIder(yk“,xk“)H
k+1 _ k+17xk+l)H

=rllx (Y
= 7|2 — 2, (5, %) + 2 (U, 2F) — 2 (Y 2R + 2 (g 2R — (R 2R )|

< v (15 = (2 e, 25) = 2 )+ e (2R — (2R )
(e R s R ATy )

P (Gt = 2R+ a4 gk (F) - ) + et )

< (¢4 oaln+ 1) + o1)e.

IN

IN

On the other hand, we have

Y= = projy (4 +aV, P, yb) ) = e {ly = o* = av, P )12}
yE

and the necessary optimality condition yields
= yk—H o yk . ava($k+1, yk) + aby(yk+1) _ yk—H . yk o ava($k+1, yk—H) + 8Ly(yk+1).

Letv:= —L(yk+1 —yk) € —V F(a"1 y**+1) + 9uy(y**1). Then from (B.5) we have

Lo k1 k My k k+1 Lok k 1
= — — " < L|2* — - " < =1 :
ol = —ly*** = y* < Zllah — )]+ gk () =M < (1 + e

Hence, we finish the proof with p = max {1(1 4+ n),r(( + o2(n+ 1) + o1) }. [ |
Proof of Theorem 3.5 First, for both general concave case and the case KL exponent 6 € (%, 1),

we consider two phrases separately:
(1) there exists k € {0,1,--- , K — 1} such that

1 A 1 4
5 nax {16||xk — g2 @Ilyk — gk (M) = |2k - 2k+1|!2}
< 28rB||xi(2F) — xp (5 (2F), 27)|1%

(2) forany k € {0,1,--- , K — 1}, we have

1 A 1 4
g {2l — SHR, L = A GRIP st -
> 98 a3 (24) — 2 4 (1), )P

To begin with, we consider the first phrase. For the case Kt exponent 6 € (%, 1), from Proposition
3.3 we know that

* 1
Iy — 95 ()1 < 2247 B2 (=) — 2 (9 (7). 2M)IP < 224rBw?|ly” — o (7).
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%) 9
Then we have ||y* — y* (2%)|| < p1 82T where p; := (224rw?)2-1. Additionally,
1
k k k k ko k k *( k
1t = 2¥)1* = 72 T2 < 49| (95 (2F), 2°) — 25 ()12

1 _1
< 493 ||y" — o (2P| < peBPT,

1
where py 1= 49w2p19 . We also have

448rp | 448rw?B 1 20
o+ = oF2 < I (25) — (), 2P < SR - g R < po T,
1
where p3 1= M p{ . Combining the above inequalities we have

20 1 20
max { ¥ — a2, [y = gk PP, 125 - o2 < max { R8T, g8, py T |
According to Lemma 8, we know that there exists p > 0 such that (zF*1,y*1) isa

0 1 1 1 0 .
pmax{p1S2-1, pj f30-2 pz 320-T }-solution. For the general concave case, from Lemma 7 we

1 1
know that above analysis holds with # = 1 and « replacing w, i.e., (mk’H, ka) isa pmax{p1 03, p3 B% . p3 B}-
solution.

In the second phrase, from Proposition 3.2 we have for any k& € {0,1,--- , K — 1} that

A 1 2r
B, (2%, )~y (YR R > R g ()P 2 R
32 16 7
(E.1)
By the definition of d,.(-) and p,(-), we have
F.(z,y,z) > min F,(z,y, z) = d,(y, 2),
TEX

= mi F > min F, =d
pr(2) min max r(:v,y,Z)_gg(l v, y,2) = dp(y, 2),

pr(2) = min max {F(wny) + gllﬂ: - lez} > 0.

Hence, we have
O (2,y,2) = pr(z) + (Fr(2,y,2) — dr(y, 2)) + (pr(2) — di(y, 2)) = pr(2) = 2.
Consequently, it follows that

®,(z°,9°,2%) — @

K-1
> (I)r(l'k,yk,zk) _ (I)r<xk+17yk+1,zk+l)
k=0
K-1
Ak & 1 2r
> Ak k2 Lk gk k2 STk k2
>3 5 2+ gaalt — A G+ 2 u
K-1
A L2 ko kL2 k(R (2 ko k12
> k_omm{?)?’m’7}(”x R AR o ey o )
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Therefore, there exists a k € {0,1,--- , K — 1} such that

@, (a°,y°,2°) —
L, g — gk (2R, Bt — 2|2} < =

max{sz x 2
min {35, 755 7 } K

Hence, by Lemma 8 and 0 < 8 < 1, (zFt!, ¢Ft1) is a P (0,97 ZO) 2) ame stationar
Y g ( Y ) mln{32’16a }Kﬁ " Y

solution. Then we take 5 = CK ™~ (C is a constant) for the case KL exponent 6 € ( 1) (resp.

8=CK~ 3 for the general concave case), and consequently the results for two phrases coincide
which yields the desirable result O(K 74*19) (resp. O(K 7i)).
Now, we consider the case KE exponent 6 € (0, %] Again based on Proposition 3.2, we have

Bp(ak 4, 2F) = By (ahH L R

4r
kE xk-&-l”Q k _ Zk+1H2_

5z

>
> e

28y (z") — @ (v (2F), 2°)|1*.

Armed with the dual error bound (see Proposition 3.3) with % € [1, +0o0) and the boundedness of
), then

x( k ko ky k k ko ky|=& k ko ky&—1,k ko k
25 (%) — 2 (W (%), 2| < wlly® = yh ()12 = wlly® — ¥k ()22 ly® — o (M)
. 1
< w - diam ()20 [lyF -k ()]

I 2,
+8a”y yk ()17 +

Thus,
(I)T(xk7 yka Zk) - q)T(xk+1> yk+17 Zk+1)

Ak k12 1 2 1. 1220\ ok ko2, e k12
> 2k = — — [ PY_ .
> 16”:5 THE + . 28rfwdiam(Y) 7 ) [ly* — yi(z7)|I7 + 75”2 27|

Since 3 < %, we have

(I)T(xk7ykvzk) - ( k+1ay 1 k+1)

7”mk _ xk+l”2 k _ Zk+1H2.

4r
> ko ko k2 AT
> 2 + 1aalt I+ e

Similarly, we know the potential function is bounded below and

<I>(,yz) [}

K-1

k=0

K-1

)\ & 4r

> A +112 ko ko kyi2 L 2Tk k12
D> el — @ I+ g v — v OIF + 2l =2

K-1

A 1 4r E_ k

S . +1)12 ko ko ky)2 E k+12)_
> k_omm{lﬁ T o} (124 = M I = IR + 814 — o)
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Therefore, due to 5 < 1, there exists a k € {0,1,--- , K — 1} such that

(@, (2°,9°,2") — @)

min {5, 55, 7} K5

max { Jo* — 2, [yt - gk (P2, 2R - 2F)2) <

. 0 4,0 ,0)_ . . C . .
Hence, by Lemma 8, (z*1,y**1)isa , /£ (&0 (@0,4°,20)=0) game stationary solution which implies
min{ 7, 755, HB

the result O(K -3 ). Finally, the case § = 0 is similar to = % with w’ replacing w with regard to
Proposition 3.3. The proof is complete.
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