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ABSTRACT

Multi-view clustering effectively integrates information from multi-view data rep-
resentations, yet current methods face key challenges. They often lack inter-
pretability, obscuring how clusters are formed, and fail to fully leverage the com-
plementary information across views, limiting clustering quality. Additionally,
large-scale data introduces high computational demands, with traditional methods
requiring extensive post-processing.To address these issues, we propose a novel
Fast Tensor-Based Multi-View Clustering with Anchor Probability Transition Ma-
trix ((FTMVC-APTM). By selecting anchor points and constructing bipartite sim-
ilarity graphs, we can capture the relationships between data points and anchors
in different views and reduce computational complexity. Through probability ma-
trices, we efficiently transfer cluster labels from anchors to samples, generating
membership matrices without the need for post-processing. We further assem-
ble these membership matrices into a tensor and apply a Schatten p-norm con-
straint to exploit complementary information across views, ensuring consistency
and robustness. To prevent trivial solutions and ensure well-defined clusters, we
incorporate nuclear norm-based regularization. Extensive experiments on various
datasets confirm the effectiveness and efficiency of our method.

1 INTRODUCTION

In recent years, multi-view clustering (MVC) has gained increasing importance in machine learning
and data analysis. As data sources expand through various sensors, imaging technologies, and social
media platforms, multi-view data has become widespread across many fields. Unlike single-view
clustering, which may miss important patterns by focusing on only one data perspective, MVC
integrates information from multiple views to uncover the true underlying structure of the data (Chao
et al., 2021).

Current MVC approaches can be categorized into four main types: subspace learning, graph-based
methods, co-training methods, and multi-kernel learning. Subspace learning reduces the data to
lower dimensions, which helps in handling high-dimensional datasets. However, this approach
may fail to capture complex relationships between different views (Zheng et al., 2023; Gao et al.,
2020a). Graph-based methods, on the other hand, build similarity graphs and apply spectral cluster-
ing. While effective, these methods can be computationally expensive due to the graph construction
and eigendecomposition steps involved (Wei et al., 2017; Yang et al., 2023). Co-training improves
clustering by combining classifiers from different views, especially when these views provide com-
plementary information (Jiang et al., 2013). Multi-kernel learning captures non-linear relationships
across views by learning a combined kernel, integrating information from multiple data sources
(Tzortzis & Likas, 2012).

Despite their strengths, several challenges limit the practical application of these methods. Many
existing approaches follow a two-step process: first, learning a fusion graph or spectral embedding,
and then performing clustering. This separation often results in suboptimal performance, as the
two steps are not jointly optimized. Moreover, many methods require complex post-processing
to generate the final cluster labels, which increases computational complexity, particularly for large
datasets (Brbić & Kopriva, 2018; Li et al., 2019). The separation of steps and the additional overhead
make these methods less scalable for real-world applications (Yu et al., 2023).
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To address these computational complexity issues, anchor graph-based methods have been proposed.
These methods reduce the graph size by selecting a smaller subset of points (anchors) to represent
the original data. By constructing a bipartite graph between the data points and the anchors, these
methods significantly lower the computational burden during graph construction (Li et al., 2015).
Li et al. (2024c) introduced tensor-anchor graph factorization by combining the concepts of tensors
and anchor points. Additionally, Feng et al. (2024) proposed a depth tensor factorization method,
which builds on depth matrix factorization to mine deeper, hidden information embedded in the
anchor graph tensor. However, these methods rely on anchor graph data instead of raw data and pro-
vide only limited improvement in computational efficiency (Li et al., 2023; 2024a). After selecting
anchors, Yu et al. (2023) constructed a probabilistic bipartite graph using both original and anchor
data to derive a consensus matrix directly from the anchor label matrix. However, this method ne-
glects the complementary information between multi-view data, which affects the overall clustering
performance.

To overcome these challenges, we propose a novel method called Fast Tensor-Based Multi-View
Clustering with Anchor Probability Transition Matrix (FTMVC-APTM), which simplifies the pro-
cess and improves efficiency by directly using a probability transition matrix to derive the mem-
bership matrix from the anchor label matrix, eliminating the need for complex post-processing.This
approach significantly reduces computational overhead and streamlines the entire clustering process
while maintaining interpretability. To prevent trivial solutions and ensure well-defined clusters, we
apply nuclear norm regularization to the membership matrix. Additionally, we apply a Schatten p-
norm regularization to the tensor formed by the membership matrices across different views, thereby
fully utilizing the complementary information between views and greatly improving clustering per-
formance. The main contributions of our work are as follows:

• We propose a novel approach using probability matrices to directly compute member-
ship matrices, avoiding the need for complex post-processing and enhancing clustering
interpretability. This simplification enhances clustering efficiency, particularly for large
datasets.

• Our method incorporates both nuclear norm and Schatten p-norm regularization to ensure
balanced and robust clustering results. The nuclear norm promotes clear clusters and pre-
vents trivial solutions, while the Schatten p-norm handles varied data distributions and
mitigates the impact of noisy views. These techniques contribute to high-quality clustering
outcomes.

• We conduct extensive experiments on multiple datasets to demonstrate the effectiveness and
efficiency of our method. Results show that our approach outperforms existing methods in
terms of both clustering accuracy and computational speed, highlighting its practical value
for real-world applications.

2 RELATED WORK

2.1 NUCLEAR NORM IN MULTI-VIEW CLUSTERING

In multi-view clustering, imbalanced sample allocation can lead to two extremes: overly concen-
trated clustering and overly dispersed clustering. In the case of overly concentrated clustering, all
data points are assigned to a single cluster. This results in a cluster assignment matrix where one
column has non-zero entries while the rest remain zero. Such a matrix structure reflects limited
diversity in the clustering, as the model essentially identifies only one cluster, providing little insight
into the underlying data structure. Conversely, in overly dispersed clustering, the data points are
evenly spread across all clusters, leading to a matrix where each column has equal entries. This
uniform distribution makes it hard to discern meaningful groupings because the clustering fails to
differentiate between the data points based on their inherent similarities.

To address this issue, Yu et al. (2023) introduced the nuclear norm as a regularization term to pro-
mote a balanced distribution of samples across clusters. The nuclear norm ∥Y ∥∗, defined as the
sum of the singular values of the matrix Y , helps prevent extreme cases of over-concentration or
over-dispersion by encouraging a more evenly distributed clustering. Formally, the nuclear norm is
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expressed as:

∥Y ∥∗ = Tr
(√

Y TY
)
=

c∑
i=1

√
ρi(Y TY ) (1)

where ρi(Y
TY ) represents the i-th eigenvalue of the matrix Y TY . Maximizing this norm helps

avoid clustering outcomes that are too concentrated or too dispersed.

For example, in the case of overly concentrated clustering, the nuclear norm is low because the
singular values reflect a lack of diversity in the cluster assignments. Conversely, in overly dispersed
clustering, where each data point is equally distributed across clusters, the nuclear norm also remains
low, as it fails to capture meaningful separations between groups.

The impact of the nuclear norm can be further understood through the following inequality:

c∑
i=1

√
ni ≤

√√√√ c∑
i=1

ni =
√
nc (2)

where ni denotes the number of samples in the i-th cluster. According to the Cauchy-Schwarz
inequality, the nuclear norm reaches its maximum value when the number of samples in each cluster
is equal, i.e., n1 = n2 = · · · = nc =

n
c .

By maximizing the nuclear norm, clustering results are more balanced, ensuring that each sample is
distinctly assigned to one of the clusters. This regularization method helps prevent trivial solutions
and produces well-structured clustering outcomes that effectively capture the underlying structure
of the data.

2.2 ANCHOR GRAPH-BASED MULTI-VIEW CLUSTERING

Anchor graph-based methods are widely adopted in multi-view clustering due to their ability to
reduce computational complexity while maintaining performance. These methods select a smaller
set of anchor points from the original data, constructing an n × m anchor graph that improves
efficiency, especially in large datasets (Li et al., 2023). The concept of anchor points in multi-view
clustering was first introduced by Liu et al. (2010), laying the groundwork for later advancements.
Building on this, Li et al. (2015) proposed methods that replace the original data matrix with an
anchor graph for each view and apply spectral clustering.

Further developments have expanded the use of anchor graphs in more sophisticated ways. Li et al.
(2024c) introduced tensor-anchor graph factorization, which combines tensor structures with anchor
points to capture more complex multi-view relationships. This method leverages both tensors and
anchor points to enhance the clustering process. Li et al. (2023) proposed a depth tensor factor-
ization method, building on matrix factorization techniques to uncover deeper, hidden information
within anchor graph tensors. While this approach improves the ability to capture underlying data
structures, its computational efficiency remains suboptimal when compared to other methods that
more effectively leverage multi-view data.However, the reliance on anchor graphs rather than raw
data provides only limited gains in computational efficiency. Yu et al. (2023) introduced a proba-
bilistic bipartite graph by combining original and anchor data to directly derive a consensus matrix
from the anchor label matrix. Although this method reduces computational complexity by using an-
chor points, it fails to fully exploit the complementary information between different views, which
can limit overall clustering performance.

3 PROPOSED SCHEME

In this section, we introduce the motivation behind our proposed scheme, the detailed formulation of
the objective function, and the optimization strategy employed to solve the problem. The notations
used in the scheme are summarized in Table 1. Throughout this paper, matrices are denoted by bold
uppercase letters (e.g., X), vectors by bold lowercase letters (e.g., a), and tensors by bold uppercase
letters (e.g., F ).

3
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3.1 MOTIVATION AND OBJECTIVES

Multi-view clustering aims to enhance clustering accuracy and robustness by leveraging comple-
mentary information from multiple data representations. However, many existing methods lack
interpretability, making it difficult to understand how clusters are formed, especially when deal-
ing with complex datasets. In addition, traditional methods often suffer from high computational
complexity and require extensive post-processing, particularly for large-scale data.

To address these challenges, we propose a method that uses probability transition matrices com-
bined with anchor label matrices to directly generate membership matrices. This approach not only
simplifies the clustering process but also provides more straightforward and interpretable results by
clearly showing how the anchor points relate to the final clusters, eliminating the need for complex
post-processing.

Our method begins by selecting anchor points for each view from the original data matrix Xv ∈
Rn×pv , where n is the number of data points and pv is the dimensionality of the v-th view. The
anchor points Uv ∈ Rm×dv , with m ≪ n, are a subset of representative points that capture the
data distribution in a more compact form, thereby reducing computational complexity. By selecting
a smaller set of anchors, we efficiently approximate the full dataset while retaining its structural
properties.

Next, using the method in Nie et al. (2023), we construct bipartite similarity graphs that map the
relationships between the data points in Xv and the anchor points in Uv . The bipartite graph is
characterized by the similarity matrix Bv ∈ Rn×m, which encodes the relationships between the
n data points and the m anchors for each view. Specifically, the bipartite graph is constructed as
follows:

bij =

{
d(i,k+1)−d(i,j)

kd(i,k+1)−
∑k

j=1 d(i,j)
∀j ∈ Φi

0 j /∈ Φi

(3)

Here, bij represents the similarity between the data point xi and the anchor point uj , where Φi

contains the indices of the k nearest anchors of xi, and d(i, j) denotes the distance between xi and
uj . This approach ensures that the matrix Bv captures the probability transition between the data
points and anchor points for each view.

To formalize, let Bv ∈ Rn×m denote the probability transition matrix for the v-th view, where n is
the number of data points and m is the number of anchor points. The entries of Bv represent the
probability of each data point being associated with each anchor point. We also define the anchor
assignment matrix Zv ∈ Rm×c, where c is the number of clusters. The entries of Zv indicate the
assignment of anchor points to clusters.

By directly transferring the labels from the anchor points to the samples, we define the membership
matrix for the v-th view as:

F v = BvZv

s.t. Zv1 = 1, Zv ≥ 0, F v1 = 1, F v ≥ 0,
(4)

where F v ∈ Rn×c represents the probability of each data point belonging to each cluster. We en-
force the constraints F v1 = 1 and F v ≥ 0, ensuring that the cluster affiliations are valid probability
distributions, which are non-negative and sum to one for each data point.

To avoid trivial solutions, as described in Section 2.1, we impose a nuclear norm constraint on the
affiliation matrix F v . The nuclear norm encourages a clear separation of clusters by maximizing
the rank of the affiliation matrix, ensuring that samples are well-distributed across clusters. This
prevents scenarios where the clustering process results in overly concentrated or dispersed clusters,
promoting a balanced allocation of samples and avoiding trivial solutions. The overall optimization
problem can be formulated as follows:

min
Zv,F v

V∑
v=1

(
∥BvZv − F v∥2F − λ∥F v∥∗

)
s.t. Zv1 = 1, Zv ≥ 0, F v1 = 1, F v ≥ 0,

(5)
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In to effectively integrate the complementary information from all the views, we form a tensor F of
the membership matrices of each view in the same way as in Li et al. (2024c). Schatten p-norm is
applied to the entire tensor, capturing the interactions and complementary information across views.
The tensor is a tensor of the members of the view, and apply the Schatten p-norm (Gao et al., 2020b):

min
Zv,F

V∑
v=1

(
∥BvZv − F v∥2F − λ∥F v∥∗

)
+ β∥F∥pω,Sp

s.t. Zv1 = 1, Zv ≥ 0, F v1 = 1, F v ≥ 0,

(6)

Here, β is a parameter that controls the balance between global consistency and individual recon-
struction accuracy, fostering a coherent yet flexible integration of multiple views.

Table 1: Notations and Descriptions

Notation Description

Xv ∈ Rn×pv Data matrix for the v-th view, where n is the number of
samples and pv is the dimension of the feature space in
the v-th view

Bv ∈ Rn×m Probability transition matrix for the v-th view, repre-
senting the relationship between data points and anchor
points, where m is the number of anchor points.

Zv ∈ Rm×c Anchor label matrix for the v-th view, where c is the num-
ber of clusters

F v ∈ Rn×c Membership matrix for the v-th view, indicating the prob-
ability of each sample belonging to each cluster

F ∈ Rn×c×V Tensor consisting of F v matrices from all V views
J ,W ∈ Rn×c×V Auxiliary tensor variables used in the optimization pro-

cess
ρ Penalty parameter

λ, β Regularization parameters

3.2 OPTIMIZATION FRAMEWORK

To solve the optimization problem in Eq. equation 6, we introduce auxiliary variables J and La-
grange multipliers W , with the dimensions of J ,W ∈ Rn×c×V , matching those of the membership
tensor F . These variables allow us to transform the constrained problem into an unconstrained one
that can be solved iteratively using the Augmented Lagrange Multiplier (ALM) method.

The overall optimization problem is reformulated as:

min
Zv,F v,J ,W

V∑
v=1

(
∥BvZv − F v∥2F − λ∥F v∥∗

)
+ β∥J ∥pω,Sp +

ρ

2
∥F −J +

W
ρ

∥2F

s.t. Zv1 = 1, Zv ≥ 0, F v1 = 1, F v ≥ 0,

(7)

In this reformulation, J represents the auxiliary variable, and W represents the Lagrange multi-
pliers. The penalty parameter ρ controls the convergence of the ALM method. The optimization
process is iteratively carried out until convergence, with each step involving updates to the variables
F v , Zv , J , and W .

In the following, we describe the optimization process. For each variable, we optimize it while
fixing the others, iterating through all variables until convergence.

Optimization of F v: After fixing the other variables, the optimization problem 7 for F v is as
follows:

min
F v

V∑
v=1

(
∥BvZv − F v∥2F − λ∥F v∥∗

)
+

ρ

2
∥F −J +

W
ρ

∥2F

s.t. F v1 = 1, F v ≥ 0

(8)
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The Frobenius norm term in equation 8 can be expanded as:

∥BvZv − F v∥2F = Tr((F v)TF v)− 2Tr((F v)TBvZv) + Tr((BvZv)TBvZv) (9)

The term Tr((BvZv)TBvZv) is constant and can be ignored during optimization. The nuclear
norm term contributes a subgradient:

Dv =
∂∥F v∥∗
∂F v

= F v((F v)TF v)−
1
2 (10)

The ADMM penalty term is:

ρ

2
∥Fv −

(
J v − Wv

ρ

)
∥2F =

ρ

2
Tr((F v)TF v)− ρTr

(
(F v)T

(
J v − Wv

ρ

))
+ Tr

((
J v − Wv

ρ

)T (
J v − Wv

ρ

)) (11)

Based on this, we can rewrite equation 8 as follows:

min
F v1=1,F v≥0

V∑
v=1

dv(∥BvZv − F v∥2F − λTr((Dv)TF v)) +
ρ

2
∥F −J +

W
ρ

∥2F

⇔ min
F v1=1,F v≥0

dvTr(F vTF v − 2F vTBvZv)− λTr(F vTDv) +
ρ

2
Tr(F vTF v)

− ρTr(F vT (J v − Wv

ρ
))

⇔ min
F v1=1,F v≥0

Tr((dv + ρ)F vTF v − F vT (2dvBvZv + ρ(J v − Wv

ρ
)))− λTr(F vTDv)

⇔ min
F v1=1,F v≥0

∥∥∥∥∥F v −
BvZv + λ

2D
v + ρ(J v − Wv

ρ )

dv + ρ

∥∥∥∥∥
2

F
(12)

Problem 12 can be solved by the solution in Yu et al. (2023).

Optimization of Zv: After fixing the other variables, the optimization problem can be formulated
as:

min
Zv1=1,Zv≥0

∥BvZv − F v∥2F (13)

This problem can be rewritten as:

min

∥∥∥∥[bv Br]

[
zv

Zr

]
− F v

∥∥∥∥2
F

⇔min ∥bvzv +BrZr − F v∥2F

⇔min

∥∥∥∥zv − (BrZr − F v)T bv

(bv)T bv

∥∥∥∥2
2

(14)

where zv denotes the i-th row of Zv and bv denotes the i-th column of Bv . Problem 14 is similar
to Problem 12 can be solved by the solution in Yu et al. (2023).

Optimization of J v:After fixing the other variables, the optimization problem 7 for Zv is as fol-
lows:

min
J v

ρ

2
∥F −J +

W
ρ

∥2F + β∥J ∥pω,Sp

s.t. J v ≥ 0

(15)

after completing the square regarding J , we can deduce

J ∗ = argmin
1

2

∥∥∥∥H+
Y2

ρ
−J

∥∥∥∥2
F

+
λ

ρ
∥J ∥pSp

(16)
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Based on Zhao et al. (2024), the optimal solution for Eq.15 is given by:

J ∗ = Γ β
ρ

(
F +

W
ρ

)
(17)

Here, Γ β
ρ

is a generalized shrinkage operator that applies the Schatten p-norm regularization to the

tensor F + W
ρ . This operator helps control the rank of J , improving the robustness of the solution.

Update of Wv:

Finally, the Lagrange multipliers Wv are updated to ensure consistency between J v and F v:
Wv = Wv + ρ(F v −J v) (18)

The optimization procedure is outlined in Algorithm 1.

Algorithm 1 Fast Tensor-Based Multi-View Clustering with Anchor Probability Transition Matrix
(FTMVC-APTM)

input: Multi-view data {XV }Vv=1, anchor number c, regularization parameters λ, β
output: Clustering labels for each sample
1: Initialize variables Zv , F v , J v , Wv , µ = 1.6
2: Compute anchor graph matrix Bv for each view
3: while not converged do
4: for each view i = 1 to V do
5: Update F v using Eq. 12
6: Update J v using Eq. 17
7: Update Zv using Eq. 14
8: Update Wv using Eq. 18
9: Update ρ = min(µρ, 1013)

10: end for
11: end while
12: Compute final clustering labels based on F =

∑V
v=1 F

v/V
13: return Clustering result(The position of the largest element in each row of the indicator matrix

is the label of the corresponding sample).

3.3 COMPLEXITY ANALYSIS

The proposed FTMVC-APTM algorithm consists of several stages: (1) Compute the similar bipartite
graph Bv;(2) updating the anchor label matrix Zv; (3) updating the membership matrix F v for each
view and the auxiliary variable J ;

Bv needs to be computed only once and its computational complexity is O(nmV ).In the update
phase, let the number of iterations be t. The first step is to update the anchor label matrix Zv . This
step has a complexity of O(nmcV ), where n is the number of data points and m is the number
of anchor points. Next, the update of the membership matrix F v requires matrix multiplications,
resulting in a complexity of O(nm2cV ). The auxiliary variable J , used for the Schatten p-norm
regularization, adds an additional complexity of O(2V nclog(V c)+V 2cn), due to the computations
involving the norm regularization.Considering that V, c are small constants, m ≪ n,thus the com-
putational complexity of the scheme MVCt should be O(t(nm2cV + nmcV + V 2cn)), which is
proportional to the magnitude of n, showing the efficiency of the FTMVC-APTM.

The appendix includes a comparison of the computational complexity and running time of the
FTMVC-APTM with the comparison methods to demonstrate the efficiency of our method again.

4 EXPERIMENTS

4.1 DATASET

We evaluate the performance of the proposed method on eight widely adapted multi-view learn-
ing benchmark datasets, which are Yale(Yale University, 2001), BBCSport(Greene & Cunning-

7
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ham, 2006), MNIST (Deng, 2012), Uci-digit, NGs(Hussain et al., 2010),WebKB(Blum & Mitchell,
1998),MSRC(Winn & Jojic, 2005) and SentencesNYU v2 (RGB-D)(Silberman et al., 2012). De-
tailed information on dataset specifications is provided in Table 2.

4.2 COMPARISON METHODS

We have selected nine representative multi-view clustering (MVC) algorithms for comparison:
GMC (Wang et al., 2019) and MvLRSSC (Brbić & Kopriva, 2018) are graph-based methods that
use graph structures to capture relationships between views. MVC-DMF-PA (Zhang et al., 2021)
applies matrix factorization, while MVC-DNTF and Orth-NTF (Li et al., 2024b) utilize tensor fac-
torization with anchor points to reduce computational complexity. FastMICE (Huang et al., 2023)
and FPMVS-CAG (Wang et al., 2021) also rely on anchor points to accelerate clustering. Finally,
RMSL (Li et al., 2019) and MVFCAG (Zhao et al., 2024) incorporate probabilistic models, with
MVFCAG using probabilistic matrices to refine clustering.

4.3 EXPERIMENTAL SETUP

All experiments were executed on a desktop with an Intel(R) Core(TM) i5-13400 CPU and 32 GB
of RAM, using MATLAB 2023a. Data normalization was performed as a preprocessing step for
all datasets to ensure consistent input quality. We assessed the clustering quality using Accuracy
(ACC), Normalized Mutual Information (NMI), and Purity (PUR). Each experiment was replicated
5 times, and the best result was selected to avoid the impact of randomness.

Table 2: Dataset specifications

Dataset Views Dimension Samples Clusters

BBCSport 2 3283/3183 544 5
Yale 2 1024/4096 165 11
Minst4 3 30/9/30 4000 4
Uci-digit 3 216/76/64 2000 10
NGs 3 2000/2000/2000 500 5
WebKB 2 1840/3000 1051 2
MSRC 5 24/576/512/256/254 210 7
RGB-D 2 2048/300 1449 13

Table 3: Clustering performance comparison in terms of ACC, NMI, and PUR on Yale, BBCSport,
Minst4, and Uci-digit datasets.

Datasets Yale BBCSport MNIST Uci-digit
Metrics ACC NMI PUR ACC NMI PUR ACC NMI PUR ACC NMI PUR
FastMICE 65.46 66.06 47.04 41.91 46.00 7.90 48.77 33.56 47.57 84.05 86.25 85.95
MvLRSSC 58.79 39.20 66.09 76.63 72.36 76.63 54.52 24.67 43.25 80.36 76.78 81.89
RMSL 78.78 78.23 79.39 76.63 72.36 76.63 54.92 25.03 46.32 51.90 52.05 55.95
GMC 54.55 62.44 54.55 80.70 76.00 79.43 88.17 73.81 79.14 83.90 87.41 86.35
FPMVS-CAG 50.31 59.32 51.52 42.10 15.09 51.84 65.15 11.91 40.92 75.30 75.87 75.35
MVFCAG 51.52 55.47 40.38 38.79 9.51 38.68 91.87 79.82 85.76 84.01 85.09 83.48
MVC-DMF-PA 15.75 16.10 20.00 73.34 52.68 76.28 59.04 39.05 49.73 73.20 75.26 70.44
Orth-NTF 78.18 81.90 80.00 89.15 79.49 89.52 94.07 85.65 89.39 93.75 90.27 89.35
MVC-DNTF 84.24 86.39 82.42 98.05 87.85 94.85 95.15 86.87 91.00 89.10 85.06 82.49
OURS 97.57 96.95 95.15 98.34 94.87 96.78 98.75 95.38 97.54 98.15 96.19 96.40

4.4 EXPERIMENT RESULTS

The clustering performance of our proposed method was evaluated against nine representative multi-
view clustering (MVC) algorithms across several benchmark datasets. We report the results in terms
of Accuracy (ACC), Normalized Mutual Information (NMI), and Purity (PUR). The experimental
results are shown in Table 3 and Table 4, where the best results are bolded and the second-best
results are underlined.
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Table 4: Clustering performance comparison in terms of ACC, NMI, and PUR on NGs, WebKB,
MSRC, and RGB-D datasets.

Datasets NGs WebKB MSRC RGB-D
Metrics ACC NMI PUR ACC NMI PUR ACC NMI PUR ACC NMI PUR
FastMICE 38.40 48.00 26.63 95.62 94.63 0.66 86.67 86.67 77.73 41.81 32.61 49.53
MvLRSSC 90.26 88.82 91.72 92.58 58.19 92.58 78.57 68.55 78.57 39.00 32.40 50.59
RMSL 9.60 86.11 94.60 60.42 1.93 78.12 27.62 8.18 31.90 12.63 2.85 26.98
GMC 97.80 92.93 97.80 84.02 25.78 84.02 24.29 6.91 26.19 40.23 33.06 46.51
FPMVS-CAG 73.80 59.23 73.80 94.96 69.91 94.96 42.86 37.68 42.86 34.50 38.73 45.47
MVFCAG 27.60 6.01 36.52 79.16 0.695 73.94 90.74 81.84 90.74 33.33 23.68 24.76
MVC-DMF-PA 86.80 80.27 86.80 89.43 50.89 89.43 91.43 85.36 91.43 16.83 72.25 33.12
Orth-NTF 95.40 89.73 95.40 96.57 73.25 96.57 98.09 96.02 98.09 59.07 65.78 75.56
MVC-DNTF 97.60 93.73 97.60 95.81 71.55 95.81 97.61 95.30 97.61 63.21 71.28 82.95
OURS 99.40 97.91 98.80 100.00 100.00 100.00 99.04 97.84 98.09 78.60 82.88 81.66

In Table 3, our method demonstrates superior clustering performance on most datasets. For example,
on the Yale, BBCSport, MNIST, and Uci-digit datasets, our proposed method achieves ACC values
of 97.57%, 98.34%, 98.75%, and 98.15%, respectively, significantly outperforming other methods.
The NMI and PUR metrics also reflect a similar trend, where our method consistently achieves
higher scores, illustrating the effectiveness of our approach in accurately capturing multi-view data
characteristics.

Similarly, in Table 2, our method continues to lead on the NGs, WebKB, MSRC, and RGB-D
datasets, obtaining almost perfect results in terms of ACC and NMI. Specifically, on the WebKB
dataset, our method achieves 100% in all three metrics, showcasing its robustness and ability to han-
dle diverse datasets. Even for more challenging datasets, such as RGB-D, our method still shows a
clear advantage over the other approaches, achieving ACC of 78.60% and NMI of 82.88%, which
are considerably higher than those achieved by the other methods.

The overall results show that our method not only effectively utilizes the complementary informa-
tion between multiple views, achieves good interpretability and efficiency, but also maintains quite
impressive clustering results. As a result, it achieves remarkable clustering accuracy across various
types of datasets, further proving the robustness and versatility of the proposed approach.

4.5 PARAMETER ANALYSIS

We conducted experiments to evaluate the influence of key parameters on our clustering method.
Specifically, we analyzed how varying the Schatten p-norm parameters β and p, as well as the
anchor rate and the nuclear norm regularization parameter λ, affects clustering performance.

As shown in Figure 1, the clustering accuracy remains relatively stable across different values of β
and p, demonstrating the robustness of our method to these parameters. However, we observe that
the optimal performance is generally achieved when p is between 0.4 and 0.6.

In Figure 2, we examine the impact of the anchor rate and λ on clustering accuracy. The results
indicate that the accuracy is not significantly affected by changes in the anchor rate, highlighting
the robustness of our method to this parameter. For the BBCSport, MSRC, and Yale datasets, the
optimal performance is achieved when λ is between 0.5 and 1.0. In contrast, the WebKB dataset
achieves optimal results when λ is between 1.75 and 2.25.

4.6 ABLATION STUDY

To evaluate the impact of the nuclear norm and Schatten p-norm constraints in our proposed method,
we performed ablation experiments under four different settings. In case 1, only the nuclear norm is
applied, while in case 2, only the Schatten p-norm is applied. We compare these cases to a baseline
where neither constraint is used and to the full model where both constraints are incorporated.

The results, as shown in Table 5, indicate that without either constraint (baseline), the model yields
poor performance across all datasets, with accuracy ranging from 36.99% to 41.72%. When only
the Schatten p-norm is applied (case 2), the accuracy improves slightly for certain datasets, such as
Yale and RGB-D, but remains low overall. This suggests that while the Schatten p-norm helps cap-
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(a) BBCSport (b) MSRC (c) Yale (d) WebKB

Figure 1: The influence of the Schatten p-norm and β on clustering results for the BBCSport, MSRC,
Yale, and WebKB datasets.

(a) BBCSport (b) MSRC (c) Yale (d) WebKB

Figure 2: The influence of the anchor rate and λ on clustering results for the BBCSport, Sonar, Yale,
and RGB-D datasets.

Table 5: ACC(%) of ablation experiments

Datasets
case1 case2 MSRC Yale RGB-D BBCSport

× × 39.52 38.18 36.99 41.72
× ✓ 46.66 64.24 41.75 39.52
✓ × 76.19 52.72 42.09 61.76
✓ ✓ 99.04 97.57 78.60 98.34

ture complementary information across views, it struggles to produce coherent and well-structured
clustering results on its own. In contrast, applying only the nuclear norm (case 1) significantly
boosts performance across most datasets, with accuracy reaching 76.19% on MSRC and 61.76% on
BBCSport, highlighting its importance in ensuring robust and non-trivial clustering structures. Fi-
nally, the full model, combining both constraints, delivers the best performance on all datasets, with
accuracies close to or above 97%, demonstrating the synergy of using both regularization terms.

5 CONCLUSION

In this paper, we proposed a Fast Tensor-Based Multi-View Clustering with Anchor Probabil-
ity Transition Matrix (FTMVC-APTM), which simplifies the clustering process by directly using
anchor-based probability transition matrices. This eliminates the need for complex post-processing
and improves computational efficiency. By integrating nuclear norm and Schatten p-norm regular-
ization, the method ensures well-defined clusters while fully utilizing complementary information
from multiple views. Extensive experiments show that FTMVC-APTM consistently outperforms ex-
isting methods in terms of both accuracy and speed, particularly on large datasets. Future work may
focus on further optimizing the method towards a parameter-free approach, reducing the reliance
on manual parameter tuning and improving its adaptability across diverse datasets. In conclusion,
FTMVC-APTM provides an efficient and scalable solution to multi-view clustering, making it suit-
able for various practical scenarios.
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