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Abstract
Graph convolution is a fundamental building block for many
deep neural networks on graph-structured data. In this paper,
we introduce a simple, yet very effective graph convolutional
network with skip connections for semi-supervised anomaly de-
tection. The proposed layerwise propagation rule of our model
is theoretically motivated by the concept of implicit fairing in
geometry processing, and comprises a graph convolution mod-
ule for aggregating information from immediate node neigh-
bors and a skip connection module for combining layer-wise
neighborhood representations. This propagation rule is derived
from the iterative solution of the implicit fairing equation via
the Jacobi method. In addition to capturing information from
distant graph nodes through skip connections between the net-
work’s layers, our approach exploits both the graph structure
and node features for learning discriminative node representa-
tions. These skip connections are integrated by design in our
proposed network architecture. The effectiveness of our model
is demonstrated through extensive experiments on five bench-
mark datasets, achieving better or comparable anomaly detec-
tion results against strong baseline methods. We also demon-
strate through an ablation study that skip connection helps im-
prove the model performance.

Keywords: Anomaly detection; graph convolutional network;
skip connection; implicit fairing; Jacobi method.

1 Introduction
Anomaly detection is of paramount importance when deploy-
ing artificial intelligence systems, which often encounter unex-
pected or abnormal items/events that deviate significantly from
the majority of data. Anomaly detection techniques are widely
used in a variety of real-world applications, including, but not
limited to, intrusion detection, fraud detection, healthcare, Inter-
net of Things, Industry 4.0 and beyond, surveillance, and social
networks [1–3]. Most of these techniques often involve a train-
ing set where no anomalous instances are encountered, and the
challenge is to identify suspicious items or events, even in the
absence of abnormal instances. In practical settings, the output
of an anomaly detection model is usually an alert that triggers
every time there is a anomaly or a pattern in the data that is
atypical.

Detecting anomalies is a challenging task, primarily because
the anomalous instances are not known a priori and also the

vast majority of observations in the training set are normal in-
stances. Therefore, the mainstream approach in anomaly detec-
tion has been to separate the normal instances from the anoma-
lous ones by using unsupervised learning models. One-class
support vector machines (OC-SVM) are a classic example [4],
which is a one-class classification model trained on data that
has only one class (i.e. normal class) by learning a discrimina-
tive hyperplane boundary around the normal instances. Another
commonly-used anomaly detection approach is support vector
data description (SVDD) [5], which basically finds the smallest
possible hypersphere that contains all instances, allowing some
instances to be excluded as anomalies. Zhang et al. [6] presented
a graph model-based multiscale feature fitting method for unsu-
pervised anomaly detection and localization. Arias et al. [7] in-
troduced an unsupervised parameter-free analytic isolation and
distance-based anomaly detection algorithm, which integrates
both distance and isolation metrics. However, these approaches
rely on hand-crafted features, are unable to appropriately han-
dle high-dimensional data, and often suffer from computational
scalability issues.

Deep learning has recently emerged as a very powerful way
to hierarchically learn abstract patterns from data, and has been
successfully applied to anomaly detection, showing promising
results in comparison with shallow methods [8]. Ruff et al. [9]
extend the shallow one-class classification SVDD approach to
the deep learning setting by proposing a deep learning based
SVDD framework for anomaly detection using an anomaly de-
tection based objective. Deep SVDD is an unsupervised learn-
ing model that learns to extract the common factors of variation
of the data distribution by training a neural network while min-
imizing the volume of a hypersphere that encloses the network
representations of the data. Also, Ruff et al. [10] introduce a
deep semi-supervised anomaly detection (Deep SAD) approach,
which is a generalization of the unsupervised Deep SVDD tech-
nique to the semi-supervised setting. Deep SAD differs from
Deep SVDD in that its objective function also includes a loss
term for labeled normal and anomalous instances. The more di-
verse the labeled anomalous instances in the training set, the bet-
ter the anomaly detection performance of Deep SAD. The key
difference between deep one-class models such as Deep SVVD
and semi-supervised anomaly detection methods such as Deep
SAD lies in the way they are trained and the amount of labeled
data required. The former is an unsupervised anomaly detec-
tion method that requires only normal data during training. It is
trained to learn a representation of normal data, which is then
used to distinguish between normal and anomalous data. Semi-
supervised anomaly detection, on the other hand, is a hybrid
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approach that generally uses both normal and anomalous data
during training. The model is trained using both labeled and
unlabeled data, where the labeled data consists of a small por-
tion of anomalous data and a large portion of normal data. The
main advantage of semi-supervised anomaly detection is that it
can achieve higher accuracy than unsupervised methods, as the
use of labeled data during training provides additional informa-
tion, enabling the model to better distinguish between normal
and anomalous data points.

Owing to the recent developments in deep semi-supervised
learning on graph-structured data, there has been a surge of in-
terest in the adoption of graph neural networks for learning la-
tent representations of graphs [11, 12]. Defferrard et al. [11]
introduce the Chebyshev network, an efficient spectral-domain
graph convolutional neural network that uses recursive Cheby-
shev polynomial spectral filters to avoid explicit computation of
the Laplacian spectrum. These filters are localized in space, and
the learned weights can be shared across different locations in a
graph. An efficient variant of graph neural networks is graph
convolutional networks (GCNs) [12], which is an upsurging
semi-supervised graph-based deep learning framework that uses
an efficient layer-wise propagation rule based on a first-order
approximation of spectral graph convolutions. The feature vec-
tor of each graph node in GCN is updated by essentially apply-
ing a weighted sum of the features of its immediate neighboring
nodes. While significant strides have been made in addressing
anomaly detection on graph-structured data [13], it still remains
a daunting task on graphs due to various challenges, including
graph sparsity, data nonlinearity, and complex modality interac-
tions [14]. Ding et al. [14] design a GCN-based autoencoder for
anomaly detection on attributed networks by taking into account
both topological structure and nodal attributes. The encoder of
this unsupervised approach encodes the attribute information us-
ing the output GCN embedding, while the decoder reconstructs
both the structure and attribute information using non-linearly
transformed embeddings of the output GCN layer. The basic
idea behind anomaly detection methods based on reconstruc-
tion errors is that the normal instances can be reconstructed with
small errors, while anomalous instances are often reconstructed
with large errors. More recently, Kumagai et al. [15] have pro-
posed two GCN-based models for semi-supervised anomaly de-
tection. The first model uses only labeled normal instances,
whereas the second one employs labeled normal and anomalous
instances. Both models are trained to minimize the volume of a
hypersphere that encloses the GCN-learned node embeddings of
normal instances, while embedding the anomalous ones outside
the hypersphere.

Inspired by the implicit fairing concept in geometry pro-
cessing for triangular mesh smoothing [16], we introduce a
graph fairing convolutional network architecture, which we call
GFCN, for deep semi-supervised anomaly detection. In addition
to performing graph convolution, GFCN uses a skip connection
to combine both the initial node representation and the aggre-
gated node neighborhood representation, enabling it to memo-
rize information across distant nodes. While most graph con-
volutions with skip connections are based on heuristics, GFCN
is theoretically motivated by implicit fairing and derived from

the Jacobi iterative method. In contrast to GCN-based meth-
ods that use a first-order approximation of spectral graph con-
volutions and a renormalization trick in their layer-wise prop-
agation rules to avoid numerical instability, our GFCN model
does not require any renormalization, while still maintaining the
key property of convolution as a neighborhood aggregation op-
erator. Hence, repeated application of the GFCN’s layer-wise
propagation rule provides a computationally efficient convolu-
tional process, leading to numerical stability while avoiding the
issue of exploding/vanishing gradients. The proposed frame-
work achieves better anomaly detection performance, as GFCN
uses a multi-layer architecture, together with skip connections,
and non-linear activation functions to extract high-order infor-
mation of graphs as discriminative features. Multi-layer archi-
tectures enable the model to learn hierarchical representations of
the graph, where lower layers capture lower-level features and
higher layers capture higher-level abstractions. Skip connec-
tions allow information to bypass intermediate layers and pre-
serve low-level details, improving the flow of information and
preventing vanishing gradients, and more importantly leading to
more accurate representations, thereby yielding a more effective
detection of anomalies. Moreover, GFCN inherits all benefits of
GCNs, including accuracy, efficiency and ease of training.

In addition to capturing information from distant graph nodes
through skip connections between layers, the proposed GFCN
model is flexible and exploits both the graph structure and node
features for learning discriminative node representations in an
effort to detect anomalies in a semi-supervised setting. Not only
does GFCN outperforms strong anomaly detection baselines,
but it is also surprisingly simple, yet very effective at identi-
fying anomalies. The main contributions of this work can be
summarized as follows:

• We propose a novel multi-layer graph convolutional net-
work with a skip connection for semi-supervised anomaly
detection by effectively exploiting both the graph structure
and attribute information.

• We introduce a learnable skip-connection module, which
helps nodes propagate through the network’s layers and
hence substantially improves the quality of the learned
node representations.

• We analyze the complexity of the proposed model and train
it on a regularized, weighted cross-entropy loss function by
leveraging unlabeled instances to improve performance.

• We demonstrate through extensive experiments that our
model can capture the anomalous behavior of graph
nodes, leading to state-of-the-art performance across sev-
eral benchmark datasets.

The rest of this paper is organized as follows. In Section 2,
we review important relevant work. In Section 3, we outline
the background for spectral graph theory and present the prob-
lem formulation. In Section 4, we introduce a graph convolu-
tional network architecture with skip connection for deep semi-
supervised anomaly detection. In Section 5, we present exper-
imental results to demonstrate the competitive performance of
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our approach on five standard benchmarks. Finally, we conclude
in Section 6 and point out future work directions.

2 Related Work
The basic goal of anomaly detection is to identify abnormal in-
stances, which do not conform to the expected pattern of other
instances in a dataset. To achieve this goal, various anomaly
detection techniques have been proposed, which can distinguish
between normal and anomalous instances [1]. Most mainstream
approaches are one-class classification models [4, 5] or graph-
based anomaly methods [13].

Deep Learning for Anomaly Detection. While shallow
methods such as one-class classification models require explicit
hand-crafted features, much of the recent work in anomaly de-
tection leverages deep learning [2], which has shown remarkable
capabilities in learning discriminative feature representations by
extracting high-level features from data using multilayered neu-
ral networks. Ruff et al. [9] develop a deep SVDD anomaly de-
tection framework, which is basically an extension of the shal-
low one-class classification SVDD approach. The basic idea
behind SVDD is to find the smallest hypersphere that contains
all instances, except for some anomalies. Deep SVDD is an
unsupervised learning model that learns to extract the common
factors of variation of the data distribution by training a neural
network while minimizing the volume of a hypersphere that en-
closes the network representations of the data. The centroid of
the hypersphere is usually set to the mean of the feature repre-
sentations learned by performing a single initial forward pass.
In order to improve model performance, Ruff et al. [10] propose
Deep SAD, a generalization of the unsupervised Deep SVDD to
the semi-supervised setting. The key difference between these
two deep anomaly detection models is that the objective func-
tion of Deep SAD also includes a loss term for labeled normal
and anomalous instances. The idea behind this loss term is to
minimize (resp. maximize) the squared Euclidean distance be-
tween the labeled normal (resp. anomalous) instances and the
hypersphere centroid. However, both Deep SVDD and Deep
SAD suffer from the hypersphere collapse problem due to the
learning of a trivial solution. In other words, the network’s
learned features tend to converge to the centroid of the hyper-
sphere if no constraints are imposed on the architectures of the
models. Cevikalp et al. [17] considered the hypersphere cen-
ters as parameters that can be learned and updated according to
the evolving deep feature representations. Another line of work
uses deep generative models to address the anomaly detection
problem [18,19]. These generative networks are able to localize
anomalies, particularly in images, by simultaneously training a
generator and a discriminator, enabling the detection of anoma-
lies on unseen data based on unsupervised training of the model
on anomaly-free data [20]. However, the use of deep genera-
tive models in anomaly detection has been shown to be quite
problematic and unintuitive, particularly on image data [21].

Graph Convolutional Networks for Anomaly Detection.
GCNs have recently become the de facto model for learn-
ing representations on graphs, achieving state-of-the-art perfor-

mance in various application domains, including anomaly de-
tection [14, 15]. Ding et al. [14] present an unsupervised graph
anomaly detection framework using a GCN-based autoencoder.
This approach leverages both the topological structure and nodal
attributes, with an encoder that maps the attribute information
into a low-dimensional feature space and a decoder that recon-
structs the structure as well as the attribute information using the
learned latent representations. The basic idea behind this GCN-
based autoencoder is that the normal instances can be recon-
structed with small errors, while anomalous instances are often
reconstructed with large errors. However, methods based on re-
construction errors are prone to outliers and often require noise-
free data for training. On the other hand, some of the main chal-
lenges associated with graph anomaly detection is the lack of la-
beled graph nodes (i.e. no information is available about which
instances are actually anomalous and which ones are normal)
and data imbalance, as abnormalities occur rarely and hence a
tiny fraction of instances is expected to be anomalous. To cir-
cumvent these issues, Kumagai et al. [15] propose two semi-
supervised anomaly detection models using GCNs for learning
latent representations. The first model uses only labeled normal
instances, while the second one employs both labeled normal
and anomalous instances. However, both models are trained to
minimize the volume of a hypersphere that encloses the GCN-
learned node embeddings of normal instances, and hence they
also suffer from the hypersphere collapse problem. By con-
trast, our semi-supervised GFCN model does not suffer from
the above mentioned issues. In addition to leveraging the graph
structure and node attributes, GFCN learns from both labeled
and unlabeled data in order to improve model performance.

Graph Neural Networks with Skip Connections. Despite
the success of GNN-based models in learning node represen-
tations, they are prone to over-smoothing, which can negatively
impact their performance. Over-smoothing occurs when stack-
ing multiple graph convolution layers causes node representa-
tions to become indistinguishable, leading to a loss of valu-
able information. To tackle the over-smoothing problem, sev-
eral approaches that leverage skip connections have been pro-
posed. Skip connections can be categorized into four main
types: residual connections, initial connections, jumping con-
nections, and dense connections [22]. JK-Net [23] uses jump-
ing knowledge network connections to connect each layer to
the last one, maintaining the feature mappings in lower layers.
APPNP [24], which approximate PageRank with power itera-
tion, uses initial connection by connecting each layer to the orig-
inal feature matrix. By decoupling feature transformation and
propagation, APPNP can aggregate information from multi-hop
neighbors without increasing the number of layers in the net-
work. GCNII [25] employs initial residual and identity mapping
to mitigate the over-smoothing problem. At each layer, the ini-
tial residual constructs a skip connection from the input layer,
while the identity mapping adds an identity matrix to the weight
matrix. ResGCN [26] is a residual graph convolutional network
that extends the depth of GCNs by using residual/dense connec-
tions and dilated convolutions. In our proposed GFCN model,
we apply a skip connection that reuses the initial node features
at each layer with the goal of combining both the aggregated
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node neighborhood representation and the initial node represen-
tation. While most graph convolutions with skip connections are
based on heuristics, our GFCN model is theoretically motivated
by implicit fairing and its layerwise propagation rule is derived
from the iterative solution of the implicit fairing equation via the
Jacobi method.

3 Preliminaries and Problem Statement
We introduce our notation and present a brief background on
spectral graph theory [27–29], followed by our problem formu-
lation of semi-supervised anomaly detection on graphs.

Basic Notions. Consider a graph G = (V, E), where V =
{1, . . . , N} is the set of N nodes and E ⊆ V × V is the set of
edges. The graph structure is encoded by an N ×N adjacency
matrix A = (Aij) whose (i, j)-th entry is equal to the weight
of the edge between neighboring nodes i and j, and 0 otherwise.
We also denote by X = (x1, ...,xN )⊺ an N × F feature matrix
of node attributes, where xi is an F -dimensional row vector for
node i. This real-valued feature vector is often referred to as a
graph signal, which assigns a value to each node in the graph.

Spectral Graph Theory. The normalized Laplacian matrix is
defined as

L = I−D− 1
2AD− 1

2 , (1)

where D = diag(A1) is the diagonal degree matrix, and 1
is an N -dimensional vector of all ones. Since the normal-
ized Laplacian matrix is symmetric positive semi-definite, it
admits an eigendecomposition given by L = UΛU⊺, where
U = (u1, . . . ,uN ) is an orthonormal matrix whose columns
constitute an orthonormal basis of eigenvectors and Λ =
diag(λ1, . . . , λN ) is a diagonal matrix comprised of the corre-
sponding eigenvalues such that 0 = λ1 ≤ · · · ≤ λN ≤ 2. If G
is a bipartite graph, then the spectral radius (i.e. largest absolute
value of all eigenvalues) of the normalized Laplacian matrix is
equal to 2. The normalized Laplacian matrix has eigenvalues
in the range [0,2], which makes spectral graph analysis algo-
rithms more stable and reliable compared to algorithms that use
the unnormalized Laplacian matrix with eigenvalues that can be
much larger. Moreover, scaling by the inverse square root of the
degree matrix helps reduce the influence of highly connected
nodes.

Problem Statement. Anomaly detection aims at identifying
anomalous instances, which do not conform to the expected pat-
tern of other instances in a dataset. It differs from binary classi-
fication in that it distinguishes between normal and anomalous
observations. Also, the distribution of anomalies is not usually
known a priori.

Let Dl = {(xi, yi)}Nl
i=1 be a set of labeled data points xi ∈

RF and their associated known labels yi ∈ {0, 1} with 0 and
1 representing “normal” and “anomalous” observations, respec-
tively, and Du = {xi}Nl+Nu

i=Nl+1 be a set of unlabeled data points,
where Nl +Nu = N . Hence, each node i can be labeled with a
2-dimensional one-hot encoding vector yi = (yi, 1− yi).

The goal of semi-supervised anomaly detection on graphs is
to estimate the anomaly scores of the unlabeled graph nodes.

Nodes with high anomaly scores are considered anomalous,
while nodes with lower scores are deemed normal.

4 Proposed Method
In this section, we begin by succinctly summarizing some of
the most common spectral filters on graphs. Then, we propose
a graph convolutional network with skip connection using the
concept of implicit fairing on graphs. In particular, we exam-
ine the main components of the proposed architecture and an-
alyze the complexity of the model. In addition, we introduce
an anomaly scoring function defined in terms of the weighted
cross-entropy between the ground-truth labels of the graph test
nodes and the model’s predicted probabilities.

4.1 Spectral Graph Filtering
The idea of spectral filtering on graphs was first introduced
in [30] in the context of triangular mesh smoothing. The goal of
spectral graph filtering is to use polynomial or rational polyno-
mial filters defined as functions of the graph Laplacian (or equiv-
alently its eigenvalues) in an effort to attenuate high-frequency
noise corrupting the graph signal. These functions are usually
referred to as frequency responses or transfer functions. While
polynomial filters have finite impulse responses, their rational
counterparts have infinite impulse responses. Despite the fact
that the Laplacian matrix is commonly used in spectral graph
theory, it does not, however, provide a natural way to normalize
the frequency domain representation of a graph signal, which
can lead to scaling and convergence issues in spectral graph fil-
tering. In contrast, the normalized Laplacian matrix provides
a way to normalize the frequency domain representation of a
graph signal, which can improve the stability and convergence
properties of spectral graph filtering. Specifically, the normal-
ized Laplacian matrix is scaled by the inverse square root of
the degree matrix, which helps normalize the contributions of
each node’s neighbors to the overall graph signal. Applying a
spectral graph filter with transfer function h on the graph signal
X ∈ RN×F yields

H = h(L)X = Uh(Λ)U
⊺
X = U diag(h(λi))U

⊺
X, (2)

where H is the filtered graph signal. However, this filtering pro-
cess necessitates the computation of the eigenvalues and eigen-
vectors of the Laplacian matrix, which is prohibitively expen-
sive for large graphs. To circumvent this issue, spectral graph
filters are usually approximated using Chebyshev polynomi-
als [11, 31, 32] or rational polynomials [33–35].

4.2 Implicit Fairing
Graph fairing refers to the process of designing and computing
smooth graph signals on a graph in order to filter out undesirable
high-frequency noise while retaining the graph geometric fea-
tures as much as possible. The implicit fairing method, which
uses implicit integration of a diffusion process for graph filter-
ing, has shown to allow for both efficiency and stability [16].
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The implicit fairing filter is an infinite impulse response filter
whose transfer function is given by hs(λ) = 1/(1 + sλ), where
s is a positive parameter. Hence, performing graph filtering with
implicit fairing is equivalent to solving the following sparse lin-
ear system:

(I+ sL)H = X, (3)

which we refer to as implicit fairing equation. It is worth point-
ing out that this equation can also be obtained by minimizing
the following objective function

J (H) =
1

2
∥H−X∥2F +

s

2
tr(H

⊺
LH), (4)

where ∥ · ∥F and tr(·) denote the Frobenius norm and trace op-
erator, respectively.

The implicit fairing filter enjoys several nice properties, in-
cluding unconditional stability as hs(λ) is always in [0, 1], and
also preservation of the average value (i.e. DC value or cen-
troid) of the graph signal as hs(0) = 1 for all s. As shown in
Figure 1, the higher the value of the scaling parameter, the closer
the implicit fairing filter becomes to the ideal low-pass filter.

Figure 1: Transfer function of the implicit fairing filter for vari-
ous values of the scaling parameter.

4.3 Spectral Analysis
The matrix I + sL is symmetric positive definite with minimal
eigenvalue equal to 1 and maximal eigenvalue bounded from
above by 1 + 2s. Hence, the condition number κ of I + sL
satisfies

κ ≤ 1 + 2s, (5)

where κ, which is defined as the ratio of the maximum to min-
imum stretching, is also equal to the maximal eigenvalue of
I + sL. Intuitively, the condition number measures how much
can a change (i.e. small perturbation) in the right-hand side of
the implicit fairing equation affects the solution. In fact, it can
be readily shown that the resulting relative change in the solu-
tion of the implicit fairing equation is bounded from above by
the condition number multiplied by the relative change in the
right-hand side.

4.4 Iterative Solution
One of the simplest iterative techniques for solving a matrix
equation is Jacobi’s method, which uses matrix splitting. Since
the matrix I+ sL can be split into the sum of a diagonal matrix
and an off-diagonal matrix

I+ sL = (1 + s)I− sD−1/2AD−1/2, (6)

the implicit fairing equation can then be solved iteratively using
the Jacobi method as follows:

H(t+1) = D−1/2AD−1/2H(t)Θs +XΘ̃s, (7)

where Θs = diag(s/(1+s)) and Θ̃s = diag(1/(1+s)) are F×
F diagonal matrices, each of which has equal diagonal entries,
and H(t) is the t-th iteration of H. Since the spectral radius of
the normalized adjacency matrix is equal to 1, it follows that the
spectral radius of the Jacobi’s iteration matrix

C =
s

1 + s
D−1/2AD−1/2, (8)

is equal to s/(1+s), which is always smaller than 1. Hence, the
convergence of the iterative method given by Eq. (7) holds.

4.5 Graph Fairing Convolutional Network
At the core of graph representation learning is the concept of
propagation rule, which determines how information is passed
between nodes in a graph. It involves updating the current
node features by aggregating information from their neighbor-
ing nodes, followed by a non-linear activation function to pro-
duce an updated representation for the node. Inspired by the
Jacobi iterative solution of the implicit fairing equation, we pro-
pose a multi-layer graph fairing convolutional network (GFCN)
with the following layer-wise propagation rule:

H(ℓ+1) = σ(D−1/2AD−1/2H(ℓ)Θ(ℓ) +XΘ̃(ℓ)), (9)

where Θ(ℓ) and Θ̃(ℓ) are learnable weight matrices, σ(·) is an
element-wise activation function, H(ℓ) ∈ RN×Fℓ is the input
feature matrix of the ℓ-th layer with Fℓ feature maps for ℓ =
0, . . . , L − 1. The input of the first layer is the initial feature
matrix H(0) = X.

Note that in addition to performing graph convolution, which
essentially averages the features of the immediate (i.e. first-
order or 1-hop) neighbors of nodes, the layer-wise propagation
rule of GFCN also applies a skip connection that reuses the ini-
tial node features, as illustrated in Figure 2. In other words,
GFCN combines both the aggregated node neighborhood repre-
sentation and the initial node representation, hence memorizing
information across distant nodes. While most of the existing
graph convolutions with skip connections [23, 34] are based on
heuristics, our graph fair convolution is theoretically motivated
by implicit fairing and derived directly from the Jacobi itera-
tive method. It is important to mention that the convolution op-
eration in the proposed propagation rule involves aggregating
information from a node’s neighbors and combining it with the
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output

convolution convolution

skip connection skip connection

Figure 2: Schematic layout of the proposed GFCN architecture.
Each block comprises a graph convolution and a skip connec-
tion, followed by an activation function, where S denotes the
normalized adjacency matrix. The GFCN model takes as input
the adjacency matrix A and initial feature matrix X = H(0).
At each layer, a node aggregates information from its neighbor-
ing nodes and the initial feature matrix through skip connection.
The aggregated information is then transformed using learnable
weight matrices. The resulting representation is then passed to
the next layer for further propagation. Finally, the output is the
latent graph representation H(L) from the last network layer.

node’s own features to produce a new set of features. As a result,
the normalized adjacency matrix D−1/2AD−1/2 is particularly
useful in this context because it provides a way to normalize the
aggregation of neighbor features, which helps avoid the problem
of over-reliance on highly connected nodes. This normalization
also helps make the convolution operation more stable and bet-
ter conditioned, which can improve the convergence and gener-
alization performance of our mode. The normalized adjacency
matrix considers both the number of neighbors connected to a
node and the number of neighbors connected to each of those
neighboring nodes.

In contrast to GCN-based methods which use a first-order ap-
proximation of spectral graph convolutions and a renormaliza-
tion trick in their layer-wise propagation rules to avoid numeri-
cal instability, our GFCN model does not require any renormal-
ization as the spectral radius of the normalized adjacency matrix
is equal to 1, while still maintaining the key property of convo-
lution as a neighborhood aggregation operator. Hence, repeated
application of the GFCN’s layer-wise propagation rule provides
a computationally efficient convolutional process, leading to nu-
merical stability and avoidance of exploding/vanishing gradi-
ents. It should also be pointed out that similar to GCN, the
proposed GFCN model also does not require explicit compu-
tation of the Laplacian eigenbasis. In addition, the aggregation
of GFCN with skip connections between the initial feature ma-
trix and each hidden layer does not require filtered learning of
the hidden layers. Skip connections are a mechanism that al-
lows our model to directly pass on the information from the ini-
tial feature matrix (input) to the deeper hidden layers, thereby
helping to retain the original node features to prevent loss of
important information during the aggregation process.

4.6 Model Prediction
The layer-wise propagation rule of GFCN is basically a node
embedding transformation that projects both the input H(ℓ) ∈
RN×Fℓ into a trainable weight matrix Θ(ℓ) ∈ RFℓ×Fℓ+1 and the

initial feature matrix X into the skip-connection weight matrix
Θ̃(ℓ) ∈ RF×Fℓ+1 , with Fℓ+1 feature maps. Then, a point-wise
activation function σ(·) such as ReLU(·) = max(0, ·) is applied
to obtain the output node embedding matrix. The aggregation
scheme of GFCN is depicted in Figure 3. Note that GFCN uses
skip connections between the initial feature matrix and each hid-
den layer. Skip connections not only allow the model to carry
over information from the initial node attributes, but also help
facilitate training of multi-layer networks.

skip connections

Figure 3: Illustration of the GFCN aggregation scheme with skip
connections.

The embedding H(L) of the last layer of GFCN contains the
final output node embeddings, which can be used as input for
downstream tasks such as graph classification, clustering, visu-
alization, link prediction, recommendation, node classification,
and anomaly detection. Since anomaly detection can be posed
as a binary classification problem, we apply the point-wise soft-
max function (i.e. sigmoid in the binary case) to obtain an N×2
matrix of predicted labels for graph nodes

Ŷ = (ŷ1, . . . , ŷN )
⊺
= softmax(H(L)), (10)

where ŷi = (ŷi, 1 − ŷi) is a two-dimensional raw vector of
predicted probabilities, with ŷi the probability that the network
associates the i-th node with one of the two classes (i.e. 1 for
anomalous and 0 for normal).

4.7 Model Complexity

For simplicity, we assume the feature dimensions are the same
for all layers, i.e. Fℓ = F for all ℓ, with F ≪ N . The time com-
plexity of an L-layer GFCN is O(L∥A∥0F + LNF 2), where
∥A∥0 denotes the number of non-zero entries of the sparse
adjacency matrix. Note that multiplying the normalized ad-
jacency matrix with an embedding costs O(∥A∥0F ) in time,
while multiplying an embedding with a weight matrix costs
O(NF 2). Also, multiplying the initial feature matrix by the
skip-connection weight matrix costs O(NF 2).

For memory complexity, an L-layer GFCN requires
O(LNF + LF 2) in memory, where O(LNF ) is for storing
all embeddings and O(LF 2) is for storing all layer-wise weight
matrices.

Therefore, our proposed GFCN model has the same time and
memory complexity as GCN, albeit GFCN takes into account
distant graph nodes for improved learned node representations.

6



4.8 Model Training
The parameters (i.e. weight matrices for different layers) of the
proposed GFCN model for semi-supervised anomaly detection
are learned by minimizing the following regularized loss func-
tion

L =
1

Nl

Nl∑
i=1

Cα(yi, ŷi) +
β

2

L−1∑
ℓ=0

(
∥Θ(ℓ)∥2F + ∥Θ̃(ℓ)∥2F

)
,

(11)
where Cα(yi, ŷi) is the weighted cross-entropy given by

Cα(yi, ŷi) = −α yi log ŷi − (1− yi) log(1− ŷi), (12)

which measures the dissimilarity between the one-hot encoding
vector yi of the ith node and the corresponding vector ŷi of
predicted probabilities. This dissimilarity decreases as the value
of the predicted probability approaches the ground-truth label.
The weight parameter α adjusts the importance of the positive
labels by assigning more weight to the anomalous class, while
the parameter β controls the importance of the regularization
term, which is added to prevent overfitting. The regularization
term is the sum of the squared elements of the learnable weight
matrices for each layer. It is important to mention that we only
use the normal class labeled instances to train our model.

We optimize our model using the Adam optimizer [36], which
is a modified version of Stochastic Gradient Descent (SGD) that
uses adaptive moment estimation. The intuition behind the use
of the weighted cross-entropy loss function is to assign a higher
weight to the anomalous nodes than to the normal nodes, so
that the model is encouraged to correctly identify the anomalous
nodes even if they are rare and overshadowed by the large num-
ber of normal nodes. The regularization term, on the other hand,
penalizes large weight values in the learnable weight matrices,
which helps to reduce the complexity of the model and improve
its generalization performance. The strength of the regulariza-
tion is controlled by the value of the hyperparameter β, which is
tuned using grid search.

The weight matrices of our GFCN model are initialized ran-
domly with small values using a normal distribution to ensure
that the variance of the activations and gradients is roughly the
same across all layers of the network. During training, the op-
timizer adjusts the weight matrices to minimize the regularized
loss function. The training process involves choosing the hyper-
parameters, computing the regularized weighted cross-entropy
loss, feeding forward and backpropagating the inputs, and up-
dating the weight matrices using the Adam optimizer. This pro-
cess is repeated for multiple epochs until the model converges
or the validation loss does not decrease after a specified number
of consecutive epochs.

4.9 Model Inference
Once the model is trained, we can use the weighted cross-
entropy errors to assess the abnormality of nodes. To this end,
we define the anomaly score of the ith test node as

si = Cα(yi, ŷi). (13)

Since the range of the weighted cross-entropy is [0,∞] (e.g. in-
finite value when yi = 1 and ŷi = 0), we apply min-max nor-
malization to bring all anomaly scores into the range [0,1] as
follows:

s̃i =
si − smin

smax − smin
, (14)

where smin and smax are the minimum and maximum, respec-
tively, of the anomaly scores in the test set. Nodes with scores
larger than a certain threshold are considered anomalies. Hence,
we can compute a ranked list of anomalies according to their
normalized anomaly scores. In other words, we compute the
anomaly scores of each node in the test set, and then the top-r
nodes with higher scores are identified as anomalies for a user-
specified value of r.

5 Experiments
In this section, we conduct extensive experiments to assess the
performance of the proposed anomaly detection framework in
comparison with state-of-the-art methods on several benchmark
datasets. The source code to reproduce the experimental results
is made publicly available on GitHub1.

5.1 Datasets
We demonstrate and analyze the performance of the pro-
posed model on three citation networks: Cora, Citeseer, and
Pubmed [37], and two co-purchase graphs: Amazon Photo and
Amazon Computers [38]. The summary descriptions of these
benchmark datasets are as follows:

• Cora is a citation network dataset consisting of 2708 nodes
representing scientific publications and 5429 edges repre-
senting citation links between publications. All publica-
tions are classified into 7 classes (research topics). Each
node is described by a binary feature vector indicating the
absence/presence of the corresponding word from the dic-
tionary, which consists of 1433 unique words.

• Citeseer is a citation network dataset composed of 3312
nodes representing scientific publications and 4723 edges
representing citation links between publications. All publi-
cations are classified into 6 classes (research topics). Each
node is described by a binary feature vector indicating the
absence/presence of the corresponding word from the dic-
tionary, which consists of 3703 unique words.

• Pubmed is a citation network dataset containing 19717 sci-
entific publications pertaining to diabetes and 44338 edges
representing citation links between publications. All publi-
cations are classified into 3 classes. Each node is described
by a TF/IDF weighted word vector from the dictionary,
which consists of 500 unique words.

• Amazon Computers and Amazon Photo datasets are co-
purchase graphs [38], where nodes represent goods and

1https://github.com/MahsaMesgaran/GFCN
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edges indicate that two goods are frequently bought to-
gether. The node features are bag-of-words encoded prod-
uct reviews, while the class labels are given by the product
category.

• ogbn-arxiv dataset is a large-scale graph dataset from open
graph benchmark (OGB) representing the citation network
between all computer science (CS) arXiv papers. In this
dataset over 169k nodes and 1.1m edges are contained.
Each node has a 128-dimensional feature vector obtained
by averaging the embeddings of words in the article’s title
and abstract.

Since there is no ground truth of anomalies in these datasets,
we employ the commonly-used protocol [15] in anomaly de-
tection by treating the smallest class for each dataset as the
anomaly class and the remaining classes as the normal class.
Dataset statistics are summarized in Table 1, where anomaly rate
refers to the percentage of abnormalities in each dataset. For all
datasets, we only use the normal class labeled instances to train
the model.

Table 1: Summary statistics of datasets.

Dataset Nodes Edges Features Classes Anomaly Rate (%)

Cora 2708 5278 1433 7 0.06
Citeseer 3327 4732 3703 6 0.07
Pubmed 19717 44338 500 3 0.21
Photo 7487 119043 745 8 0.04
Computers 13381 245778 767 10 0.02
ogbn-arxiv 169343 1166243 128 40 0.02

5.2 Baseline Methods

We evaluate the performance of the proposed method
against various baselines, including one-class support vec-
tor machines (OC-SVMs) [4], imbalanced vertex dimin-
ished (ImVerde) [39], one-class deep support vector data
description (Deep SVDD) [9], deep anomaly detection on
attributed networks (Dominant) [14], one-class deep semi-
supervised anomaly detection (Deep SAD) [10], graph con-
volutional networks (GCNs) [12], GCN-based anomaly detec-
tion (GCN-N and GCN-AN) [15], graph random neural net-
works (GRAND) [40], semi-Supervised node classification on
graph with few labels via non-parametric distribution assign-
ment (GraFN) [41], and re-weighting the influence of labeled
nodes (ReNode) [42]. For baselines, we mainly consider meth-
ods that are closely related to GFCN and/or the ones that are
state-of-the-art anomaly detection frameworks. A brief descrip-
tion of these strong baselines can be summarized as follows:

• OC-SVM [4] is an unsupervised one-class anomaly detec-
tion technique, which learns a discriminative hyperplane
boundary around the normal instances using support vector
machines by maximizing the distance from this hyperplane
to the origin of the high-dimensional feature space.

• ImVerde [39] is a semi-supervised graph representation
learning technique for imbalanced graph data based on a
variant of random walks by adjusting the transition proba-
bility each time a graph node is visited by the random par-
ticle.

• Deep SVDD [9] is an unsupervised anomaly detection
method, inspired by kernel-based one-class classification
and minimum volume estimation, which learns a spheri-
cal, instead of a hyperplane, boundary in the feature space
around the data using support vector data description. It
trains a deep neural network while minimizing the volume
of a hypersphere that encloses the network embeddings
of the data. Normal instances fall inside the hypersphere,
while anomalies fall outside.

• Dominant [14] is a deep autoencoder based on GCNs for
unsupervised anomaly detection on attributed graphs. It
employs an objective function defined as a convex combi-
nation of the reconstruction errors of both graph structure
and node attributes. These learned reconstruction errors are
then used to assess the abnormality of graph nodes.

• Deep SAD [10] is a semi-supervised anomaly detec-
tion technique, which generalizes the unsupervised Deep
SVDD approach to the semi-supervised setting by incorpo-
rating a new term for labeled training data into the objec-
tive function. The weights of the Deep SAD network are
initialized using an autoencoder pre-training mechanism.

• GCN [12] is a deep graph neural network for semi-
supervised learning of graph representations, encoding
both local graph structure and attributes of nodes. It is
an efficient extension of convolutional neural networks to
graph-structured data, and uses a graph convolution that ag-
gregates and transforms the feature vectors from the local
neighborhood of a graph node.

• GCN-N and GCN-AN [15] are GCN-based, semi-
supervised anomaly detection frameworks, which rely on
minimizing the volume of a hypersphere that encloses the
node embeddings to detect anomalies. Node embeddings
placed inside and outside this hypersphere are deemed nor-
mal and anomalous, respectively. GCN-N uses only nor-
mal label information, while GCN-AN uses both anoma-
lous and normal label information.

• GRAND [40] is a semi-supervised learning on graphs
when labeled nodes are scarce. This technique relies on
a random propagation strategy to perform graph data aug-
mentation and employs consistency regularization to opti-
mize prediction consistency of unlabeled nodes across dif-
ferent data augmentations.

• GraFN [41] is a semi-supervised node representation
learning for graphs with few labeled nodes. This technique
exploits the self-supervised loss to ensure nodes that belong
to the same class to be grouped together on differently aug-
mented graphs. GraFN randomly samples support nodes
from the labeled nodes and anchor nodes from the entire
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graph, and non-parametrically compute two predicted class
distributions from two augmented graphs based on the an-
chor supports similarity.

• ReNode [42] is a semi-supervised node classification tech-
nique addressing the the topology-imbalance node repre-
sentation learning as a graph specific imbalance learning
problem. To measure the degree of topology imbalance,
a conflict detection-based metric, Totoro, is used to locate
node position. ReNode adjusts the training weights of la-
beled nodes based on their topological positions.

5.3 Evaluation Metric
In order to evaluate the performance of our proposed framework
against the baseline methods, we use AUC, the area under the re-
ceiving operating characteristic (ROC) curve, as a metric. AUC
summarizes the information contained in the ROC curve, which
plots the true positive rate versus the false positive rate, at vari-
ous thresholds [43, 44]. Larger AUC values indicate better per-
formance at distinguishing between anomalous and normal in-
stances. An uninformative anomaly detector has an AUC equal
to 50% or less. An AUC of 50% corresponds to a random de-
tector (i.e. for every correct prediction, the next prediction will
be incorrect), whereas an AUC score smaller than 50% indicates
that a detector performs worse than a random detector.

5.4 Implementation Details
For fair comparison, we implement the proposed method and
baselines in PyTorch using the PyTorch Geometric library. Fol-
lowing common practices for evaluating performance of GCN-
based models [12, 15], we train our 2-layer GFCN model for
100 epochs using the Adam optimizer [36] with a learning rate
of 0.1. We tune the latent representation dimension by hand, and
set it to 128. The hyperparameters α and β are chosen via grid
search with cross-validation over the sets {10−4, 10−3, . . . , 1}
and {2, 3, . . . , 10}, respectively. We tune hyperparameters us-
ing the validation set, and terminate training if validation loss
does not decrease after 10 consecutive epochs. For each dataset,
we consider the settings where 2.5%, 5% and 10% of instances
are labeled, and we compute the average and standard deviation
of test AUCs over ten runs.

5.5 Anomaly Detection Performance
Tables 2-4 present the anomaly detection results on the five
datasets. The best results are highlighted as bold. For each
dataset, we report the AUC averaged over 10 runs as well as the
standard deviation, at various ratios of labeled instances. As can
be seen, our GFCN model consistently achieves the best perfor-
mance on all datasets, except in the case of the Cora dataset
when 10% of instances are labeled. In that case, GCN-AN
yields a marginal improvement of 0.7% over GFCN, despite the
fact that GCN-AN is trained on both normal and anomalous in-
stances, whereas our model is trained only on normal instances.
In addition, ImVerde, Deep SAD, GCN and GCN-AN all per-
form reasonably well on all datasets at various levels of label

rates, but we find that GFCN outperforms these baselines on al-
most all datasets, while being considerably simpler. An AUC
score of 50% or less indicates that the baseline is an uninforma-
tive anomaly detector.

On the Amazon Computers dataset, Table 2 shows that the
proposed GFCN approach performs on par with GCN-AN, but
outperforms all baselines on the other four datasets. In partic-
ular, GFCN yields 16.2% and 15.7% performance gains over
Deep SAD on the Cora and Photo datasets, respectively. These
gains are consistent with the results shown in Tables 3-4. We
argue that the better performance of GFCN over GCN-N and
Deep SAD is largely attributed to the fact that our model does
not suffer from the hypersphere collapse problem. Interestingly,
the performance gains are particularly higher at the lower label
rate 2.5%, confirming the usefulness of semi-supervised learn-
ing in that it improves model performance by leveraging unla-
beled data. Another interesting observation is that in general
both GCN-AN and GCN-N yield relatively high AUC standard
deviations compared to our GFCN model, indicating that our
model has less variability than these two strong baselines.

Lastly, we examined the training times (in seconds) for GFCN
on Cora when 10% of all instances were labeled. We also
recorded the training times of GFCN, GCN-AN, GCN-N, and
GCN on Cora for which we obtained 3.19, 4.12, 2.31, and 2.06
seconds, respectively. Since GFCN uses the skip connection, it
took more training time than GCNs. However, the experiment
shows the proposed method could learn the abnormalities fast
enough.

5.6 Parameter Sensitivity Analysis

The weight hyperparameter α of the weighted cross-entropy
and the regularization hyperparameter β play an important role
in the anomaly detection performance of the proposed GFCN
framework. We conduct a sensitivity analysis to investigate how
the performance of GFCN changes as we vary these two hyper-
parameters. In Figure 4, we analyze the effect of the hyperpa-
rameter α by plotting the AUC results of GFCN vs. α using
various label rates for all datasets, where α varies from 2 to 10.
We can see that with a few exceptions, our model generally ben-
efits from relatively larger values of the weight hyperparameter.
For almost all datasets, our model achieves satisfactory perfor-
mance with α = 4.

In Figure 5, we plot the average AUCs, along with the stan-
dard error bars, of our GFCN model vs. β using various label
rates for all datasets, and by varying the value of β from 10−4

to 1. Notice that the best performance is generally achieved
when β = 0.01, except in the cases of the Citeseer and Pubmed
datasets, on which the best performance is obtained when β =
0.1. In general, when the regularization hyperparameter in-
creases, the performance improves rapidly at the very beginning,
but then deteriorates after reaching the best setting due to over-
fitting. An interesting observation is that GFCN generally shows
steady increase in performance with the regularization parame-
ter, except on the Citeseer dataset when the label rate is 5%,
whereas the performance on the other datasets degrades after
reaching a certain threshold.
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Table 2: Test AUC (%) averaged over 10 runs when 2.5% of instances are labeled. We also report the standard deviation. Boldface
numbers indicate the best anomaly detection performance.

Dataset

Method Cora Citeseer Pubmed Photo Computers ogbn-arxiv

OC-SVM [4] 50.0±0.1 50.6±0.4 68.9±0.9 51.9±0.6 47.3±0.7 -
ImVerde [39] 85.9±6.1 60.3±6.5 94.3±0.5 89.1±1.4 98.5±0.7 -
Deep SVDD [9] 69.6±6.5 55.3±1.6 73.7±6.3 52.3±1.4 46.6±1.5 -
Dominant [14] 52.3±0.9 53.9±0.6 50.8±0.4 38.1±0.4 46.8±1.2 -
Deep SAD [10] 72.7±6.0 53.8±2.9 91.3±2.4 81.9±5.7 92.2±2.5 -
GCN [12] 84.9±6.9 60.9±6.0 96.2±0.1 90.1±2.5 98.1±0.3 51.2±0.1
GCN-AN [15] 88.8±5.4 65.6±4.7 95.6±0.3 95.4±1.8 98.8±0.3 -
GCN-N [15] 62.6±9.9 56.0±4.4 76.5±4.2 55.1±11 56.9±5.1 -
GRAND [40] 81.3±8.1 56.4±4.5 89.6±1.2 88.7±2.1 91.7±5.5 50.7±1.3
GraFN [41] 58.2±5.8 56.3±3.2 81.4±0.9 97.4±1.5 96.1±3.9 57.3±1.4
ReNode [42] 68.4±6.8 55.1±2.0 82.3±1.5 84.9±3.4 96.3±9.2 50.2±3.1

GFCN 93.9±2.3 68.3±1.1 96.3±0.1 97.6±0.5 98.8±0.4 60.3±0.1

Table 3: Test AUC (%) averaged over 10 runs when 5% of instances are labeled. We also report the standard deviation. Boldface
numbers indicate the best anomaly detection performance.

Dataset

Method Cora Citeseer Pubmed Photo Computers ogbn-arxiv

OC-SVM [4] 50.2±0.1 50.7±0.5 71.0±1.1 51.9±0.6 47.2±0.8 -
ImVerde [39] 91.1±3.2 64.5±4.5 94.9±0.5 92.2±1.2 98.6±0.6 -
Deep SVDD [9] 58.3±2.8 56.0±0.8 79.9±3.4 52.3±0.8 47.0±1.4 -
Dominant [14] 52.5±0.9 53.9±0.7 53.0±0.5 38.1±0.5 47.2±1.2 -
Deep SAD [10] 72.4±5.7 61.1±4.2 91.7±1.7 89.8±3.1 92.8±2.6 -
GCN [12] 89.2±7.6 63.9±4.7 96.6±0.1 92.3±1.2 98.3±0.3 53.0±0.1
GCN-AN [15] 91.8±5.4 68.3±3.8 96.2±0.2 97.0±0.7 99.1±0.3 -
GCN-N [15] 67.1±5.8 57.4±3.1 76.1±4.8 56.2±9.6 58.2±5.8 -
GRAND [40] 84.7±9.1 56.8±3.1 87.8±1.4 98.4±4.1 97.8±5.8 60.2±5.3
GraFN [41] 61.3±12.6 56.1±4.3 83.0±6.1 98.2±5.6 96.6±7.9 59.8±6.1
ReNode [42] 69.9±3.3 56.1±1.6 82.7±1.1 85.7±2.1 97.5±2.1 60.1±1.9

GFCN 92.2±2.3 71.3±1.3 96.7±0.1 98.8±0.4 99.3±0.4 61.1±0.4

Table 4: Test AUC (%) averaged over 10 runs when 10% of instances are labeled. We also report the standard deviation. Boldface
numbers indicate the best anomaly detection performance.

Dataset

Method Cora Citeseer Pubmed Photo Computers ogbn-arxiv

OC-SVM [4] 51.8±1.7 51.1±0.9 73.1±0.8 51.7±0.9 47.4±0.8 -
ImVerde [39] 94.5 ±2.1 68.5 ±6.9 95.5 ±0.4 92.8 ±1.0 99.1 ±0.4 -
Deep SVDD [9] 59.8 ±4.8 56.7 ±1.7 93.2 ±1.0 53.1 ±0.6 47.5 ±1.0 -
Dominant [14] 52.6 ±0.9 53.9 ±0.8 53.1 ±0.4 38.1 ±0.7 46.6 ±1.9 -
Deep SAD [10] 72.9 ±3.3 62.4 ±4.4 96.7 ±0.1 89.5 ±1.9 93.5 ±1.9 -
GCN [12] 94.5 ±4.3 68.6 ±3.3 96.7 ±0.1 93.3 ±0.8 98.3 ±0.3 53.9±0.3
GCN-AN [15] 95.4 ±2.7 72.9 ±4.3 96.6 ±0.1 97.9 ±0.3 99.1 ±0.3 -
GCN-N [15] 72.3 ±7.0 60.1 ±2.1 73.4 ±5.7 53.6 ±3.9 58.5 ±4.6 -
GRAND [40] 86.5 ±1.3 57.8±6.0 88.8±1.1 94.6±0.7 93.1±0.2 59.9±0.5
GraFN [41] 78.7±7.4 60.3±8.1 83.1±6.3 98.7±4.0 97.2±1.7 62.6±3.3
ReNode [42] 68.3±4.2 54.6±0.8 83.4±1.4 90.4±2.3 99.0±0.3 61.2±1.8

GFCN 94.7 ±1.0 76.5 ±1.0 97.3 ±0.1 99.4 ±0.2 99.4 ±0.4 63.0±0.8
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Figure 4: Effect of weight hyperparameter α on anomaly detection performance (AUC).

We also analyzed the effects of the number of layers and la-
tent representation dimension on the performance of our model
using the Cora, Citeseer, and Pubmed datasets (10% of the in-
stances as labeled), and the average AUC results are displayed
in Figure 6. As shown in Figure 6 (left), the performance of
GFCN remains relatively stable as we increase the depth of the
network from 2 to 10 layers. Figure 6 (right) shows the AUC
results with the latent representation dimension varying from 10
to 256. As can be seen, our model typically benefits from larger
latent dimensions, achieving a good performance with a latent
representation dimension equal to 128 for all datasets.

5.7 Visualization

The feature embeddings learned by GFCN can be visualized
using the Uniform Manifold Approximation and Projection
(UMAP) algorithm [45], which is a dimensionality reduction
technique that is particularly well-suited for embedding high-
dimensional data into a two- or three-dimensional space. Fig-
ure 7 displays the UMAP embeddings of GFCN (left) and GCN
(right) using the Cora dataset. As can be seen, the GFCN em-
beddings are more separable than the GCN ones. With GCN

features, the normal and anomalous instances are not discrimi-
nated very well, while with GFCN features these data instances
are discriminated much better, indicating that GFCN learns bet-
ter node representations for anomaly detection tasks.

5.8 Ablation Studies

To validate the influence of our proposed components, we con-
duct additional experiments for ablation studies by removing
components individually. The details and results of our experi-
ments are shown in Table 5, where we report both the average
and standard deviation of AUCs over 10 runs on the Cora, Cite-
seer, and Pubmed datasets. As can be seen, the removal of each
component leads to a deterioration in performance. By adding
skip connections, an improvement in performance can be ob-
served on all datasets. This indicates that reusing the initial node
features in each layer and memorizing information across dis-
tant nodes yield improved results. Consistent with prior work,
skip connections have been shown to mitigate the vanishing gra-
dient problem in deep neural networks, as well as to improve the
accuracy and convergence speed of the network. This has been
demonstrated in a number of previous studies, including the
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Figure 5: Effect of regularization hyperparameter β on anomaly detection performance (AUC).

2 4 6 8 10
Model Depth

0.65

0.70

0.75

0.80

0.85

0.90

0.95

AU
C Cora

Citeseer
Pubmed

16 32 64 128 256
Latent Representation Dimension

0.70

0.75

0.80

0.85

0.90

0.95

AU
C Cora

Citeseer
Pubmed

Figure 6: Effects of number of layers (left) and latent representation dimension (right) on anomaly detection performance of our
GFCN model using the Cora, Citeseer, Pubmed dataset when 10% of instances are labeled. The AUC results are averaged over 10
runs.

original convolutional neural network with deep residual learn-
ing (ResNet) [46] and subsequent work on graph representation
learning such as jumping knowledge network (JK-Net) [23],
residual graph convolutional network (ResGCN) [26], and graph
convolutional networks with initial residual and identity map-

ping (GCNII) [25]. Also, Xu et al. [47] examined the optimiza-
tion dynamics of graph neural networks (GNNs) during their
training process, and showed theoretically that skip connections
implicitly accelerate the training of GNNs.

As reported in Table 5, the importance of the regularization
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Figure 7: UMAP embeddings of GFCN (left) and GCN (right) using the Cora dataset.

term becomes apparent when removing it from the proposed loss
function, resulting in a significant drop in AUC. Regularization
is important to avoid model overfitting by imposing a penalty to
learnable weights. Using regularization term in our loss func-
tion yields 9.2%, 8.7%, and 2.9% performance gains over its
counterpart model without regularization on the Cora, Citeseer,
and Pubmed datasets, respectively.

On the other hand, it is worth pointing out that removing the
skip connection and regularization components yields relatively
high AUC standard deviations compared to the proposed GFCN
model, indicating the robustness of our model.

Table 5: Test AUC (%) averaged over 10 runs when 5% of in-
stances are labeled. We also report the standard deviation.

Method Cora Citeseer Pubmed

Without skip connection 91.2±2.7 64.6±3.8 94.2±0.2
Without regularization 84.7±6.2 59.6±4.1 93.4±0.1

GFCN 93.9±2.3 68.3±1.1 96.3±0.1

6 Conclusion
In this paper, we introduced a graph convolutional network
with skip connection for semi-supervised anomaly detection
on graph-structured data by learning effective node represen-
tations in an end-to-end fashion. The update rule of the pro-
posed graph fairing convolutional network (GFCN) is theoret-
ically motivated by implicit fairing and derived directly from
the Jacobi iterative method. GFCN integrates skip connections
between the initial feature matrix and each hidden layer. This
allows our model to retain and reuse the original node features
throughout the network, enabling better information propaga-
tion. We also showed that GFCN has the same time and mem-
ory complexity as the standard GCN, despite the inclusion of
skip connections for improved node representations. Through
extensive experiments, we demonstrated the competitive or su-
perior performance of our model in comparison with the current
state of the art on five benchmark datasets.While GFCN’s intu-
itive design provides a solid theoretical foundation, it may face

scalability challenges when dealing with very large graphs like
many GCN-based methods. For future work, we plan to ap-
ply our approach to other downstream tasks on graph-structured
data. We also intend to incorporate higher-order neighborhood
information into the graph structure of the model, where nodes
not only receive latent representations from their 1-hop neigh-
bors, but also from multi-hop neighbors.
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ing neural networks with personalized pagerank for classi-
fication on graphs,” in Proc. International Conference on
Learning Representations, 2019.

[25] M. Chen, Z. Wei, Z. Huang, B. Ding, and Y. Li, “Simple
and deep graph convolutional networks,” in Proc. Interna-
tional Conference on Machine Learning, pp. 1725–1735,
2020.

[26] G. Li, M. Muller, A. Thabet, and B. Ghanem, “DeepGCNs:
Can GCNs go as deep as CNNs?,” in Proc. IEEE Inter-
national Conference on Computer Vision, pp. 9267–9276,
2019.

[27] Y. Zhang and A. B. Hamza, “Vertex-based diffusion for
3-D mesh denoising,” IEEE Transactions on Image Pro-
cessing, vol. 16, pp. 1036–1045, 2007.

[28] E. E. Abdallah, A. B. Hamza, and P. Bhattacharya, “Spec-
tral graph-theoretic approach to 3D mesh watermarking,”
in Proc. Graphics Interface, pp. 327–334, 2007.

[29] E. E. Abdallah, A. B. Hamza, and P. Bhattacharya, “Wa-
termarking 3D models using spectral mesh compression,”
Signal, Image and Video Processing, vol. 3, pp. 375–389,
2009.

[30] G. Taubin, “A signal processing approach to fair surface
design,” in Proc. SIGGRAPH, pp. 351–358, 1995.

[31] G. Taubin, T. Zhang, and G. Golub, “Optimal surface
smoothing as filter design,” in Proc. European Conference
on Computer Vision, 1996.

[32] D. Hammond, P. Vandergheynst, and R. Gribonval,
“Wavelets on graphs via spectral graph theory,” Applied
and Computational Harmonic Analysis, vol. 30, no. 2,
pp. 129–150, 2011.

[33] R. Levie, F. Monti, X. Bresson, and M. M. Bronstein,
“CayleyNets: Graph convolutional neural networks with
complex rational spectral filters,” IEEE Transactions on
Signal Processing, vol. 67, no. 1, pp. 97–109, 2018.

14



[34] F. M. Bianchi, D. Grattarola, C. Alippi, and L. Livi,
“Graph neural networks with convolutional ARMA fil-
ters,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 44, no. 7, pp. 3496–3507, 2021.

[35] A. Wijesinghe and Q. Wang, “DFNets: Spectral CNNs for
graphs with feedback-looped filters,” in Advances in Neu-
ral Information Processing Systems, 2019.

[36] D. P. Kingma and J. Ba, “Adam: A method for stochas-
tic optimization,” in International Conference on Learning
Representations, 2015.

[37] P. Sen, G. Namata, M. Bilgic, L. Getoor, and T. Eliassi-
Rad, “Collective classification in network data,” AI Maga-
zine, vol. 29, no. 3, pp. 93–106, 2008.

[38] O. Shchur, M. Mumme, A. Bojchevski, and
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