Under review as a conference paper at ICLR 2021

POST-TRAINING WEIGHTED QUANTIZATION OF
NEURAL NETWORKS FOR LANGUAGE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

As a practical model compression technique, parameter quantization is effective
especially for language models associated with a large memory footprint. Neural
network quantization is usually performed to reduce quantization loss assuming
that quantization error of each parameter equally contributes to the overall training
loss. The importance of each parameter, however, may highly differ such that for
the same number of quantization bits, certain parameters lead to higher training
loss than the others after quantization. In this paper, we consider a non-uniform
quantization scheme, specifically binary-coding-based quantization, for high com-
pression ratio and efficient computations while avoiding large accuracy degradation
by uniform quantization (e.g., INTS8). Then, we derive quantization optimization
methods to take into account the importance of each parameter. We demonstrate
that for post-training quantization, weight magnitude can represent importance and
improve model accuracy significantly compared to the previous schemes lacking
importance considerations. For various language models including BERT, Dis-
tiIBERT, AWD-LSTM, and Transformer, we achieve 2-4 bits per weight by our
proposed post-training quantization with reasonable accuracy degradation.

1 INTRODUCTION

Training techniques for deep neural networks (DNNs) have been developed in ways to incur a lot of
parameter redundancy to expedite seeking local minima (Denil et al., 2013} Jonathan Franklel 2019).
As a result, various model compression techniques including parameter pruning (Han et al.,|2015; He
et al.|[2017), quantization (Courbariaux et al.,[2015} |Rastegari et al., 2016)), low-rank approximation
(N. Sainath et al.| 2013; |Prabhavalkar et al.,|2016), and knowledge distillation (Hinton et al.,[2015}
Polino et al., 2018)) are proposed to lower storage requirements and improve inference performance.
Several compression techniques can be combined in a synergistic way to enhance compression ratio
(Han et al., | 2016;|Zhu et al.,|2017). In this work, we consider parameter quantization that maintains
structured model formats and presents high compression ratio. Note that due to limited hardware
resources, quantization is an essential method for any inference systems. In general, quantization
is classified into uniform quantization based on fixed-point parameter representations (Jacob et al.,
2018;|[Han et al.,[2016) and non-uniform quantization associated with the binary codes (Zhou et al.,
2017; |Rastegari et al.|[2016) or codebooks (Choi et al., 2017} [Stock et al., 2020)).

Most DNN quantization methods are performed based on the principle of minimizing the mean
squared error (MSE) of quantized parameters (Rastegari et al., 2016} Xu et al., 2018} Zhou et al.,
2017). Optimizing the MSE is also an underlying principle of low-rank approximation techniques
such as the singular value decomposition (SVD) (Prabhavalkar et al.,[2016; |N. Sainath et al.,|2013).
Note that, however, minimizing the MSE implies that each parameter is equally important (i.e.,
squared errors from parameters are accumulated without considering importance of each weight). In
practice, the impact of each parameter perturbation from quantization on training loss can be vastly
different and such impact needs to be analyzed through a sensitivity study of each parameter toward
a change in training loss value. In other words, minimizing the MSE (or the Euclidean distance
between original parameters and quantized parameters) may not correspond to minimizing training
loss function after quantization.

Robustness to quantization error of each parameter can be expressed as sensitivity. Sensitivity of
i-th parameter w; is the amount of change in the loss function when wj is perturbed. A parameter

Under review as a conference paper at ICLR 2021

associated with high sensitivity would require relatively smaller quantization error if quantization is
performed in a group manner. Several previous works acknowledge distinct sensitivity of each param-
eter to improve quantization quality. Note that because exact sensitivity estimation of each parameter
toward loss function is highly complicated, various heuristic techniques have been introduced. For
example, Hessian-weighted k-means clustering is used for codebook-based implementations (Choi
et al.l |2017) or Taylor series expansion to bound loss function difference is conducted to decide
the optimal quantization bits of each weight (Khoram & Lil 2018)). The Hessian matrix can be
used to assign different numbers of quantization bits for each layer (Dong et al.,[2019;|Shen et al.,
2019). Minimizing the reconstruction error on the output activations after each layer quantization is
performed in (Stock et al., 2020).

In this paper, we propose a weighted quantization framework where quantized parameters follow the
structure of the binary codes so as to achieve high compression ratio and high computational efficiency
(Rastegari et al.| 20165 Jeon et al.||2020). Specifically, given that an importance of each parameter is
represented as a real number between 0 and 1, we extract an optimal quantization solution modified
from the previous binary-coding-based quantization methods that employ equal parameter importance.
Similar to previous attempts, we also find that calculating accurate importance of each parameter
is challenging. As a successful approximation of importance, we suggest that magnitude-based
importance estimation is especially effective for post-training non-uniform quantization.

2 POST-TRAINING PARAMETER QUANTIZATION FOR LANGUAGE MODELS

The number of parameters for language models is dramatically increasing (e.g., GPT-3 (Brown
et al., [2020) requires 175 billion parameters). Correspondingly, model compression for language
models is becoming a mandatory process to reduce response time and inference energy. We devise a
compression method considering the followings:

e Recent language models are usually memory-bound because of small batch size and lacking
layers of high reuse (e.g., conv layers). Thus, reducing memory footprint is critical.

e Compression algorithms should be supported by dedicated kernels, designed specifically
for language models if possible.

e Compression-aware training is challenging and expensive if hyper-parameters are added to
already huge language models (hence, we choose a post-training method.)

Fixed-point inference using uniform quantization is not desirable for language models because of
noticeable accuracy degradation (Shen et al.,|2019; Jeon et al., | 2020) while the advantage of small
computational units (e.g., INT8 MAC) is insignificant for memory-bound applications. Thus, we
adopt float-based parameter quantization (i.e., expected values of quantized parameters remains to
be of full precision) that induce a lot smaller number of quantization bits compared to fixed-point
quantization (Xu et al.|[2018; Stock et al.| 2020).

Recently, a kernel library, called BiQGEMM (Jeon et al., [2020), was introduced to support binary-
coding-based quantization techniques to accelerate quantized neural networks. Using lookup tables,
BiQGEMM enables byte-level memory accesses and achieves 8.3 x run-time memory footprints and
3.5x speed up with a mobile CPU for Transformer (Chung et al., [2020). As a result, binary-coding-
based quantization has become a practical approach to quantizing language models. As such, we
restrict our interests to binary-coding-based quantization technique in this paper.

Quantization-aware training is an active research area to improve model accuracy (Courbariaux:
et al 2015} |Lee et al., [2018)). We note that in the case of language models, however, there are
numerous occasions when retraining for quantization is not available. For example, quantization-
aware training requires in-depth knowledge on model compression while model designers may not
have such expertise. On the other hand, the original training code or the entire training data may not
be shared with model compression engineers. Also, modifying the original DNN models to be aware
of quantization would increase model design efforts and training time significantly. Since language
models already demand significant training time and cost, adding additional training complexity
by quantization-aware training would not be a practical option. As such, post-training quantization
without retraining is gaining increasing attention (Zhao et al.,[2019; Nagel et al., 2019).

Under review as a conference paper at ICLR 2021

3 WEIGHTED QUANTIZATION BASED ON THE BINARY CODES

As discussed, we choose post-training binary-coding-based quantization as our strategy to compress
language DNN models efficiently. Following the Binary-Weight-Networks (Rastegari et al., 2016)
introducing the binary codes as a quantization format, a weight vector w is approximated to be
ab by using a scaling factor € R and a binary vector b (€ {—1,+1}"), where n is the vector
size. A real number scaling factor is shared by multiple weights such that binary vector b occupies
most of the weight storage requirements. Binary codes eliminate the need for dequantization for
inference, leading to reduced on-chip memory size for weights. In this section, we study general
weighted quantization methodologies when quantization follows the format of the binary codes and
and quantization error recognizes sensitivity information.

3.1 GREEDY METHOD AND ALTERNATING METHOD WITHOUT IMPORTANCE
CONSIDERATIONS

In general, non-uniform weight quantization methods (in the form of the binary codes) strive to
minimize ||w — ab||?. In the case of 1-bit quantization, we obtain the following analytical solution:
, w'b*

b* = sign(w), o = — ()

On the other hand, in the case of multi-bit quantization, there is no analytical solution (Rastegari et al.|
2016; | Xu et al.,2018)). As a result, various approximated methods exist for multi-bit quantization.

Greedy Method As a computationally simple method, 1-bit quantization shown in Eq. can be
extended to multi-bit (g-bit) quantization (Guo et al., 2017). Specifically, i*"-bit (i > 1) quantization
is performed by minimizing the residue of (i — 1)*"-bit quantization as following:

i—1
min [|r;—1 — aibi||2, where r;_1 = w — Z ajbj, 1 <i<q. 2)
a;,b; °
Jj=1
The optimal solution of Eq. (Z)) is then given as
b

n

by =sign(r;_1), o) =

3)

Alternating Method Greedy method described above is non-iterative. In order to reduce ||w —
1 aib; ||? further than Greedy method, iterative methods would be necessary while increasing the
number of iterations tends to lower quantization error. Once initial « and b values are calculated by

Greedy method, one can notice that {c; 3:1 can be refined (Guo et al., 2017) as
_ T
a1,y ag] = ((BqTBq) 1B(jw) , when By = [by,....b,] € {—1,+1}"9. (@)

Then, B, can be refined as well by binary search given a new refined {c; }7_,. As aresult, {a;}7_,
and B, are refined alternatively. Alternating refinements of {ai}?zl and By, are repeated until
there is no noticeable improvement in quantization error. Such iterative quantization procedure is
introduced as Alternating multi-bit method (Xu et al., 2018).

3.2 IMPORTANCE-AWARE WEIGHTED QUANTIZATION

Let us assume that the importance of the ¢-th parameter is normalized and given as m; (0 < m; < 1).
Then, we minimize the weighted quantization loss Y ;- (m;(w; — @;)?) where w; is quantized to be
w; = Z?:l (cjb;). Before studying how to estimate importance values, we are interested in finding
modified versions of Greedy method and Alternating method when importance values are given. For
1-bit quantization, weighted quantization also has the following analytical solution:

b* =sign(w), o = 7Zizln(mi|wi|). 5)

D i1 M

Under review as a conference paper at ICLR 2021

Note that if all importance values are equal (e.g., m; = 1 for all i), then Eq. (3) becomes the same
as Eq. (I). Correspondingly, Eq. (I)) can be regarded as a special case of Eq. (3). Compared to the
conventional Greedy method, our proposed importance-aware Greedy method demands modifications
to a; calculations as af = Y i (mylri—1])/ Doy M.

For the importance-aware Alternating method, we first conduct the importance-aware Greedy method.
Then, Eq. @) is to be transformed to employ importance. Let us define an n-by-n diagonal matrix
M = diag(my, ..., m,,), where each diagonal element is an importance value m,. By solving linear
least squares, « values are refined as

_ T
[0, ooy 0] = ((BqTMBq) 1BqTM'w) , when By = [b1,....,b,] € {~1,+1}"%9, (6)

while refining By is still performed by binary search using refined scaling factors. Accordingly,
Eq. {@) is a particular case of Eq. (6) when M is an identity matrix.

Overall, our proposed importance-aware quantization scheme is comprehensive to include previous
methods as a subset. In the rest of this paper, we investigate simple and efficient schemes to estimate
importance metrics applicable to post-training non-uniform binary-coding-based quantization.

4 IMPORTANCE ESTIMATION USING WEIGHT MAGNITUDE

Sensitivity or importance of each parameter can be estimated by evaluating the loss function change
induced by parameter perturbation. Such estimation, however, is computationally demanding since
each parameter’s perturbation requires computations of entire feedforward paths while the number of
parameters is ever increasing in recent DNN designs. Moreover, it is difficult to decide an appropriate
amount of perturbation of parameters. In this section, we propose an efficient importance estimation
method based on weight magnitude for fast and high-accurate post-training weight quantization.

4.1 WEIGHT MAGNITUDE AS IMPORTANCE

As an effort to study a factor affecting importance, we introduce Optimal Brain Damage (OBD)
(LeCun et al.| [1990). OBD approximates the loss function by the Taylor series and a perturbation of
the loss function d L by weight perturbations is presented as

v oL 1 v) 1 v v ,
0L = 2 a—wiéwi + 3 izzlhi,i(Swi + 3 ;; hi jow;ow; + O(||ow||”), (7)
J#i

where v is the number of weights and h; ; is an element of the Hessian matrix. Note that at a
local minimum, the first term is eliminated while all the h; ; are non-negative. Using “diagonal”
approximation and “quadratic” approximation (LeCun et al,[1990), Eq. (7) is simplified as

1 w—)
0L~ 5 Zl hi i6w?. (8)

As described in Eq.[8] diagonal elements of the Hessian matrix can be used as effective importance
metrics for loss-aware training algorithms for quantization (Hou et al.,|2017; [Hou & Kwokl, |2018]).
Note that for post-training quantization, unfortunately, the first or the second partial derivatives
(i.e., the gradient or the Hessian) are not available. Thus, for post-training quantization, importance
is required to be given as a function of weight magnitude. In other words, we are interested
whether Hessian-based importance can be replaced with magnitude-based importance. The goal of
this work is then to empirically show that magnitude-based importance is indeed practical for
post-training binary-coding-based quantization.

To verify our basic assumption that large weights would present higher importance for binary-coding-
based quantization, we controlled scaling factors (i.e., o values of the minimum MSE are multiplied
by ‘Scaling Factor Multiplier’) of a layer in an LSTM model using PTB dataset (see details of models
and dataset in Appendix) as shown in Figure [I] Indeed, when scaling factors become larger than the
ones obtained by minimizing MSE present, test perplexity is enhanced for both layers.

Under review as a conference paper at ICLR 2021

150 150
—— Perplexity 0.09 1 —— Perplexity
0.0307 | MSE 4. |\ MSE
/140 0.08 1 /140
i Conventional // | Conventional ,,’l
0.025 (Minimizing MSE) 7 [130 . 0.074 (Minimizing MSE) /|
2 g ' g
2] F120 = @ 0.06 2
= 0.020 1 g = 2
5 120 5
110 0.05 1
0.015 N i
N 100 0.044 ™ 110
0.010 : : 20 0.031 : : 100
0.50 1.00 1.50 2.00 0.50 1.00 1.50 2.00
Scaling Factor Multiplier Scaling Factor Multiplier

Figure 1: Quantization error (MSE) and test perplexity when one selected layer of an LSTM model
using PTB dataset is quantized to be 1-bit. (Left): Embedding layer. (Right): LSTM layer.

4.2 HYPER-PARAMETERS FOR IMPORTANCE METRICS

The underlying principle of our importance estimation methodology is that relatively smaller quanti-
zation errors are supposed to be applied to weights of larger magnitude. To fine-tune our proposed
importance estimation scheme, we propose the following three hyper-parameters: 1) an exponent
to control a correlation between importance and magnitude of a weight, 2) a parameter to clip
importance in order to handle outliers in magnitude distributions, and 3) a pruning parameter to
exclude weights of low magnitude during quantization optimization.

E (Exponent) A basic form to calculate normalized importance of each weight is presented as
E

; €))

Wy

wmax
where w4, 1S the maximum weight magnitude in a given layer (i.e., m; is computed in a layer-wise
manner) and the weight of the largest magnitude is considered to be the most important. A value
between 0.0 and 1.0 for E is primarily adopted in our experiments to yield sub-linear importance
increase as weight magnitude increases. £/ = 0 results in the conventional quantization method with
m; = 1 for all w;.

C (Clipping Importance) For a given distribution of weight magnitude, a few large outliers
may distort the entire distribution of m, obtained by Eq. (9). In other words, because of a few
exceptionally large weights, most weights may exhibit small importance values. A conventional
quantization technique to prevent outliers in a distribution is to clip weights/activations and/or
gradients (Choi et al.,[2018; Zhao et al.,|2019; |Goodfellow et al.,|2016). For Eq. @), Wynae 18 decided
to be the weight magnitude at the (C' x 100)-th percentile when 0 < C' < 1. If m; exceeds 1.0, then
my; is forced to be 1.0 (note that w; is not clipped).

P (Pruning for Quantization) Due to regularization effects, a lot of weights employ small magni-
tudes and a weight distribution usually follows a Gaussian distribution (Goodfellow et al.,[2016). As
a result, a large number of small weights (with less importance as in Eq. (§)) may take a large portion
of total quantization error unless m; values of those weights are extremely small. Note that even
though pruning prior to quantization is an effective method to improve quantization quality (L1 & Liul
2016} Zhu et al.| 2017), pruning would yield one additional bit per weight for masking information or
sparse matrix formats with low parallelism for DNN inference. In our work, 1) we exclude weights
of magnitude smaller than the (P x 100)-th percentile from the quantization optimization, 2) find the
scaling factors and the binary codes using weights larger than the (P x 100)-th percentile, and 3) all
of the excluded small weights are assigned to a binary code with the smallest magnitude available
from combining scaling factors (while each sign information is maintained). Accordingly, while we
adopt a parameter pruning idea for quantization, additional pruning mask data is not necessary. In
short, small weights are not considered while obtaining the binary codes, and then, replaced with the
smallest weight in the binary codes.

Under review as a conference paper at ICLR 2021

Table 1: Post-training (3 bits per weight) quantization comparison on MSE (quantization error),
average scaling factor values, training loss, and training model accuracy. For importance metrics,
E =1.0is used while P and C are not considered.

Quant. Err. Average Training Training

Model Method (MSE) Scaling Factors Loss Accuracy (%)
Greedy (No Importance) 1.13e-04 0.021 0.405 83.70
BERT | Greedy (E£=1.0) 1.01e-04 0.028 0.370 84.71
(MRPC) | Alter. (No Importance) 6.79e-05 0.029 0.693 80.81
Alter. (E£=1.0) 1.05e-04 0.035 0.212 93.13
Greedy (No Importance) | 1.14E-04 0.021 0.726 76.32
BERT | Greedy (£=1.0) 1.02E-04 0.029 0.418 86.93
(MNLI) | Alter. (No Importance) 6.84E-05 0.028 0.349 89.75
Alter. (£=1.0) 1.07E-04 0.035 0.282 91.85

3e-04

lose 1.060-04
3e-04
F0.84

1.05e-04
to.82 2e-04
<2}

Q a
[0-80 Q =4 gge-04 0.84

2e-04
r0.78

Lo.76 1.03e-04 0.83 1e-04

r0.74

T : T : 0.
00 02 04 06 08 10 0.9960 0.9970 0.9980 0.9990 1.0000 00 01 02 03 04 05
E (C=1.0,P=0.0) C (E=1.0,P=0.0) P (E=0.0,C=1.0)

Figure 2: Test accuracy and quantization error (MSE) of fine-tuned BERT-base model on MRPC
when weights are quantized into 3 bits by our proposed method while one of E, C, or P varies.

4.3 EMPIRICAL OBSERVATION

To verify basic operations of our proposed method, we perform post-training weighted quantization
using fine-tuned models of BERT-base (Devlin et al., |2018) on MNLI and MRPC dataset within
a GLUE benchmark (Wang et al., 2018). In the case of fine-tuned BERT models, we quantize
all weights except those of a segment embedding layer and a classification layer which show a
tiny storage footprint. For conventional or weighted Alternating quantization methods, we conduct
iterative refinements of o and B values 20 times over which no further noticeable quantization error
improvement is recognized. Given a weight matrix or tensor, & and B are computed for each row,
independently (hence, we study row-wise quantization in this work). Due to the space limit, see
Appendix for additional experimental results with various models not included in this section.

We first analyze how a simple weighted quantization scheme (with £=1.0, C'=1.0, and P=0.0) adds
distinguished features to the conventional quantization methods. Table|l|presents comparisons on
quantization error (MSE), average scaling factor values, training loss, and training accuracy. Note
that for Alternating weighted quantization, despite larger quantization MSE (i.e., >, (w; — w;)?),
training loss and training model accuracy are improved such that it is confirmed that minimizing
S (mi(w; — w;)?) is preferred to minimizing MSE for post-training quantization. It is interesting
to see that for the Greedy method, quantization MSE is reduced by weighted quantization. We
conjecture that for weight distributions in DNNs, Eq. (3] is probably a better approximation compared
to Eq. (I)) even to minimize quantization MSE. For both Greedy and Alternating methods, scaling
factors increase by weighted quantization due to the context of magnitude-based importance design.

Let us study the impact of our proposed weighted quantization on model accuracy when FE, C,
and P can vary for fine-tuning. Figure [2]describes test accuracy and quantization error of a fine-
tuned BERT-base model on MRPC when we sweep only one of F, C, or P across all layers. It is
clear that all hyper-parameters for importance metrics enable new search space for model accuracy
that is somewhat uncorrelated to quantization error. Using various combinations of E, C, and P,
Table[2] describes test model accuracy of fine-tuned BERT and DistilBERT models using Greedy and

'See Appendix for detailed descriptions of models and dataset selected for our experiments.

Under review as a conference paper at ICLR 2021

Table 2: Test score after post-training quantization with various £, C' and P choices when the
quantization bit is 3.

BERT-base DistilBERT-base
MRPC MNLI SQUAD || MRPC MNLI SQUAD
Method || E- O Pl ey (Aco) (1) || (Ace) (Aco) (f1)
No Importance 78.2 73.4 56.3 70.0 58.9 50.4
Greedy 1 1.0 0.0 77.0 79.4 75.2 76.7 59.5 62.0
1 0.99 0.0 82.1 79.3 78.9 78.7 58.5 64.1
No Importance 76.0 81.2 81.9 75.5 68.2 77.1
1.0 1.0 0.0 85.0 81.6 83.7 76.5 75.1 77.8
1.0 099 0.0 83.1 81.3 83.3 73.0 71.7 77.1
1.0 09999 0.0 86.0 81.6 84.3 74.5 74.3 76.8
0.5 1.0 0.0 81.1 82.7 84.7 79.4 75.1 79.6
0.2 1.0 0.0 76.7 82.8 83.5 76.2 71.6 78.1
Alter. 0.5 09999 0.0 79.9 82.4 84.1 78.9 74.4 79.5
0.0 1.0 0.02 75.0 81.4 82.8 76.0 66.9 77.0
0.0 1.0 0.05 76.0 81.6 82.7 75.5 66.3 77.3
1.0 1.0 0.02 85.0 81.5 83.5 77.0 75.3 77.7
1.0 1.0 0.05 85.2 81.5 83.7 77.7 75.6 76.7
1.0 1.0 0.10 84.1 81.0 83.5 78.7 74.7 74.8
Full-Precision (ours) 87.7 84.5 88.6 85.3 82.1 86.9

Alternating quantization methods. Even though numerous hyper-parameter combinations outperform
Greedy and Alternating methods without importance, the best set of hyper-parameters varies for
each model, and hence, an automated hyper-parameter search process is desirable. Note that in order
to enable such an automated process, we need to investigate whether a set of hyper-parameters for
importance searched by using training dataset is also valid for test dataset. We extensively explored
hyper-parameter combinations (using E, C', P) with different number of refinement iterations using
BERT on MRPC and MNLI and confirmed that training model accuracy achieved by our weighted
quantization is highly correlated with test model accuracy such that our proposed hyper-parameters
maintain a generalization capability (see Fig.[d]in Appendix).

Increasing the number of scaling factors (by decreasing the number of parameters sharing a scaling
factor) enhances model accuracy despite increased memory footprint and computation overhead
during inference. Our proposed weighted quantization obtains larger accuracy improvements when
less number of scaling factors is utilized (see Table[/|in Appendix that compares model accuracy
with different number of scaling factors when Alternating method is applied to BERT on MRPC.)

5 EXPERIMENTAL RESULTS

We observed that an optimal set of hyper-parameters needs to be achieved empirically. Unfortunately,
optimizing F, C, and P for post-training quantization to obtain the best model accuracy is chal-
lenging because 1) trained models present a variety of weight distributions and 2) hyper-parameters
are correlated. As an effort to automate the hyper-parameter search process, we adopt Bayesian
optimization (BO) that is implemented by a publicly available code introduced in (Nogueiral [2014—).
Once we perform a rough and fast grid search for hyper-parameters (as shown in Table[2), then BO
conducts fine-tuning of hyper-parameters. As a result, we achieve quick post-training quantization
even when optimal hyper-parameters vary for each layer. For BO experiments, training dataset Dy is
used during hyper-parameter search, and then test dataset D,, validates the optimization procedure
(refer to Table 4). In other words, given a hyper-parameter vector denoted by x = {E,C, P} € R3,
BO tries to find the optimal x* to be arg maxy f(x; D;), where f measures accuracy of the model.
Then, test model accuracy is measured as f(x*; D).

To the best of our knowledge, our work is the first post-training binary-coding-based quantization
considering weight importance. As a result, we compare our results with the conventional Greedy
algorithm and Alternating algorithm. We consider three different search methods for our proposed
scheme: 1) (manual search) we investigate prearranged 16 sets of hyper-parameters for importance

Under review as a conference paper at ICLR 2021

+ E c - P
1.2 1 1.21
1.0 - 1.01 | f 1.0 1
0.8 1 0.8 1 0.81
0.5 1 0.5 1 0.5 1
0.2 0.2 1 0.2
0.0 1 0.0 0.0
0 20 40 60 0 20 40 60 0 20 40 60
MRPC MNLI SQUAD

Figure 3: F, C, and P values searched by layer-wise BO for BERT-base on MRPC, MNLI, and
SQUAD. X-axis shows layer index and y-axis shows hyper-parameters optimized differently for each
layer. BO is necessary to efficiently and quickly find such diversified E, C, and P values.

Table 3: Quantization results on various language models (see Appendix for details on model
descriptions). Alternating quantization scheme significantly improves test scores when combined
with our proposed importance metrics (described as ‘Ours’) that are searched by layer-wise BO.

Quant. Test Score
Model Dataset Bits Metric FP Alter. | Ours

AWD-LSTM PTB 2 PPL 56.4 79.3 | 62.6 (-16.7)

(fine-tuned) 3 PPL 56.4 61.2 | 571 (4.1)

BERT MRPC 3 ACC 87.7 76.0 | 84.3 (+8.3)

base MNLI 3 ACC 84.5 81.2 | 82.9 (+1.7)

SQUAD 1.1 3 F1 88.6 819 | 85.2 (+3.3)

.. MRPC 3 ACC 85.3 75.5 | 83.3 (+7.8)
DISEIBERT MNLI 3 [ACC | 82.0 | 682 [799 (+11.7)

ase SQUAD 1.1 3 Fl 869 | 77.1 | 81.2 (+4.1)

Longformer SQUAD 1.1 4 F1 89.2 85.8 | 86.6 (+0.8)
Transformer | newstest2017(en2de) 3 BLEU | 26.95 | 25.09 | 25.23 (+0.14)

metric (described in Table E]), 2) (model-wise BO) for all layers, the same values of E, C, and
P are explored and applied for quantization, and 3) (layer-wise BO) hyper-parameters are locally
searched for each layer, and the fixed before proceeding to the next layer (hence, BO for quantization
is performed in layer-by-layer manner). For all model-wise or layer-wise BO for various models,
the same 16 sets of hyper-parameters (given in Table[3)) are explored first as initial samples. BO
outperforms our manual search while layer-wise BO improves test score further as presented in
Table 8] (BERT-base), 9] (DistilBERT-base), [[T| (Longformer), [T3| (AWD-LSTM), and [T4] (Transformer
NMT). Among three methods considered, layer-wise BO is the best because the optimal set of
hyper-parameters turns out to be vastly different for each layer as shown in Figure [3] 5} [6] [8] and 9}

Table 3] presents the overall comparison on test scores of various language models that are quantized
by conventional Alternating quantization and our proposed weighted quantization. Compared to
conventional Alternating quantization (that is our baseline for post-training binary-coding-based
quantization) of equal importance for each parameter, ours improves test scores for all language
models in Table 3] We note that weighted quantization yields relatively different amounts of
improvements on test scores depending on a given model. Even though thorough analysis of such
different accuracy enhancement would entail in-depth sensitivity analysis of parameters toward test
scores, pruning weights in the context of magnitude (without retraining) provides approximated
correlation between importance and magnitude for a given weight distribution (see Figure [7] in
Appendix). Indeed, the pruning rate of the Longformer is a lot lower compared to the other models (as
shown in Figure[/) that can partly explain challenges to enhance Longformer quantization. We also
note that our proposed method highly depends on the target objective function. As such, Transformers
show different quantization results depending on the target selection of perplexity (PPL) or BLEU
score due to somewhat low correlation between PPL and BLEU score (Appendix C.3).

Under review as a conference paper at ICLR 2021

We applied our weighted quantization scheme to ResNet models on CIFAR-10 and ImageNet (refer
to Appendix D) for which model accuracy is also significantly enhanced similar to language models.

6 CONCLUSIONS AND FUTURE WORK

In this paper, we propose a weighted quantization framework employing importance metrics that
are useful when each parameter shows a different sensitivity toward a loss function change. For the
binary-coding-based quantization that is our choice for language models because of existing efficient
kernel designs (e.g., B1QGEMM) and high compression ratio, we extract modified Greedy method and
Alternating method assuming that each importance value is represented as a real number between 0
and 1. Using various DNN models, we demonstrate that a magnitude-based importance metric is
effective for post-training quantization in the form of the binary codes. To fine-tune model accuracy,
we also propose three hyper-parameters that need to be empirically investigated since an optimal
set of hyper-parameters varies depending on each model design. As such, we suggest Bayesian
optimization as an effective technique to automate hyper-parameter search process. Our proposed
hyper-parameters can be independently optimized to each layer to further improve compression
ratio and/or model accuracy. It would be interesting to study additional hyper-parameters effective
for post-training quantization. Since our weighted quantization framework is general (rather than
depending on a particular approximation such as the Hessian), if proper importance metrics are found,
our proposed quantization techniques can be extended to a quantization-aware training method.

REFERENCES

Iz Beltagy, Matthew E Peters, and Arman Cohan. Longformer: The long-document transformer.
arXiv preprint arXiv:2004.05150, 2020.

Eric Brochu, Vlad M Cora, and Nando De Freitas. A tutorial on bayesian optimization of expensive
cost functions, with application to active user modeling and hierarchical reinforcement learning.
arXiv preprint arXiv:1012.2599, 2010.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler,
Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott
Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. Language models are few-shot learners. arXiv:2005.14165, 2020.

Jungwook Choi, Zhuo Wang, Swagath Venkataramani, Pierce I-Jen Chuang, Vijayalakshmi Srinivasan,
and Kailash Gopalakrishnan. Pact: Parameterized clipping activation for quantized neural networks.
arXiv:1805.06085, 2018.

Yoojin Choi, Mostafa El-Khamy, and Jungwon Lee. Towards the limit of network quantization. In
International Conference on Learning Representations (ICLR), 2017.

Insoo Chung, Byeongwook Kim, Yoonjung Choi, Se Jung Kwon, Yongkweon Jeon, Baeseong Park,
Sangha Kim, and Dongsoo Lee. Extremely low bit Transformer quantization for on-device neural
machine translation. arXiv preprint arXiv:2009.07453, 2020.

Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. BinaryConnect: Training deep neural
networks with binary weights during propagations. In Advances in Neural Information Processing
Systems, pp. 3123-3131, 2015.

Misha Denil, Babak Shakibi, Laurent Dinh, Nando De Freitas, et al. Predicting parameters in deep
learning. In Advances in neural information processing systems, pp. 2148-2156, 2013.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training of deep
bidirectional transformers for language understanding. arXiv:1810.04805, 2018.

Zhen Dong, Zhewei Yao, Amir Gholami, Michael W. Mahoney, and Kurt Keutzer. HAWQ: Hessian
aware quantization of neural networks with mixed-precision. arXiv:1905.03696, 2019.

Under review as a conference paper at ICLR 2021

Mark Ebden. Gaussian processes: A quick introduction, 2015.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016. http:
//www.deeplearningbook.org.

Yiwen Guo, Anbang Yao, Hao Zhao, and Yurong Chen. Network sketching: exploiting binary
structure in deep CNNSs. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 4040-4048, 2017.

Song Han, Jeff Pool, John Tran, and William J. Dally. Learning both weights and connections for
efficient neural networks. In Advances in Neural Information Processing Systems, pp. 1135-1143,
2015.

Song Han, Huizi Mao, and William J. Dally. Deep compression: Compressing deep neural networks
with pruning, trained quantization and Huffman coding. In International Conference on Learning
Representations (ICLR), 2016.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp.
770-778, 2016.

Yihui He, Xiangyu Zhang, and Jian Sun. Channel pruning for accelerating very deep neural networks.
In Proceedings of the IEEE International Conference on Computer Vision, pp. 1389-1397, 2017.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. In
NIPS Deep Learning and Representation Learning Workshop, 2015.

Lu Hou and James T. Kwok. Loss-aware weight quantization of deep networks. In International
Conference on Learning Representations (ICLR), 2018.

Lu Hou, Quanming Yao, and James T. Kwok. Loss-aware binarization of deep networks. In
International Conference on Learning Representations (ICLR), 2017.

Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang, Andrew Howard, Hartwig
Adam, and Dmitry Kalenichenko. Quantization and training of neural networks for efficient
integer-arithmetic-only inference. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 2704-2713, 2018.

Yongkweon Jeon, Baeseong Park, Se Jung Kwon, Byeongwook Kim, Jeongin Yun, and Dongsoo Lee.
Bigqgemm: Matrix multiplication with lookup table for binary-coding-based quantized dnns. arXiv
preprint arXiv:2005.09904, 2020.

Michael Carbin Jonathan Frankle. The lottery ticket hypothesis: Finding sparse, trainable neural
networks. In International Conference on Learning Representations (ICLR), 2019.

Soroosh Khoram and Jing Li. Adaptive quantization of neural networks. In International Conference
on Learning Representations (ICLR), 2018.

Guillaume Klein, Yoon Kim, Yuntian Deng, Vincent Nguyen, Jean Senellart, and Alexander Rush.
OpenNMT: Neural machine translation toolkit. In Proceedings of the 13th Conference of the

Association for Machine Translation in the Americas (Volume 1: Research Papers), pp. 177-
184, Boston, MA, March 2018. Association for Machine Translation in the Americas. URL
https://www.aclweb.org/anthology/W18-1817.

Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical report, 2009.

Taku Kudo and John Richardson. Sentencepiece: A simple and language independent subword
tokenizer and detokenizer for neural text processing. arXiv preprint arXiv:1808.06226, 2018.

Yann LeCun, John S. Denker, and Sara A. Solla. Optimal brain damage. In Advances in Neural
Information Processing Systems, pp. 598—605, 1990.

Dongsoo Lee, Parichay Kapoor, and Byeongwook Kim. Deeptwist: Learning model compression via
occasional weight distortion. arXiv:1810.12823, 2018.

10

http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://www.aclweb.org/anthology/W18-1817

Under review as a conference paper at ICLR 2021

Fengfu Li and Bin Liu. Ternary weight networks. arXiv:1605.04711, 2016.
Daniel James Lizotte. Practical bayesian optimization. University of Alberta, 2008.

Mitchell P. Marcus, Mary Ann Marcinkiewicz, and Beatrice Santorini. Building a large annotated
corpus of English: The Penn Treebank. Comput. Linguist., 19(2):313-330, 1993.

Mark D. McDonnell. Training wide residual networks for deployment using a single bit for each
weight. In International Conference on Learning Representations (ICLR), 2018.

Stephen Merity, Nitish Shirish Keskar, and Richard Socher. Regularizing and optimizing Istm
language models. arXiv preprint arXiv:1708.02182, 2017.

Tara N. Sainath, Brian Kingsbury, Vikas Sindhwani, Ebru Arisoy, and Bhuvana Ramabhadran. Low-
rank matrix factorization for deep neural network training with high-dimensional output targets. In
ICASSP, pp. 6655-6659, 2013.

Markus Nagel, Mart van Baalen, Tijmen Blankevoort, and Max Welling. Data-free quantization
through weight equalization and bias correction. arXiv:1906.04721, 2019.

Fernando Nogueira. Bayesian Optimization: Open source constrained global optimization tool for
Python, 2014—. URL https://github.com/fmfn/BayesianOptimization.

Antonio Polino, Razvan Pascanu, and Dan Alistarh. Model compression via distillation and quantiza-
tion. In International Conference on Learning Representations (ICLR), 2018.

Matt Post. A call for clarity in reporting bleu scores. arXiv preprint arXiv:1804.08771, 2018.

Rohit Prabhavalkar, Ouais Alsharif, Antoine Bruguier, and Ian McGraw. On the compression of
recurrent neural networks with an application to LVCSR acoustic modeling for embedded speech
recognition. In ICASSP, pp. 5970-5974, 2016.

Carl Edward Rasmussen and Christopher KI Williams. Gaussian processes for machine learning.
MIT press Cambridge, MA, 2006.

Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. XNOR-Net: Imagenet
classification using binary convolutional neural networks. In ECCV, 2016.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang,
Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei. ImageNet
Large Scale Visual Recognition Challenge. International Journal of Computer Vision (IJCV), 115
(3):211-252, 2015. doi: 10.1007/s11263-015-0816-y.

Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. DistilBERT, a distilled version
of BERT: smaller, faster, cheaper and lighter. arXiv:1910.01108, 2019.

Sheng Shen, Zhen Dong, Jiayu Ye, Linjian Ma, Zhewei Yao, Amir Gholami, Michael W. Ma-
honey, and Kurt Keutzer. Q-BERT: Hessian based ultra low precision quantization of BERT.
arXiv:1909.05840, 2019.

Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical bayesian optimization of machine
learning algorithms. In Advances in neural information processing systems, pp. 2951-2959, 2012.

Pierre Stock, Armand Joulin, Rémi Gribonval, Benjamin Graham, and Hervé Jégou. And the bit goes
down: Revisiting the quantization of neural networks. In International Conference on Learning
Representations, 2020. URL https://openreview.net/forum?id=rJehVyrKwH.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel Bowman. GLUE:
A multi-task benchmark and analysis platform for natural language understanding. In Proceedings
of the 2018 EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for
NLP, November 2018.

11

https://github.com/fmfn/BayesianOptimization
https://openreview.net/forum?id=rJehVyrKwH

Under review as a conference paper at ICLR 2021

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick von
Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama
Drame, Quentin Lhoest, and Alexander M. Rush. Huggingface’s transformers: State-of-the-art
natural language processing. ArXiv, abs/1910.03771, 2019.

Chen Xu, Jiangiang Yao, Zhouchen Lin, Wenwu Ou, Yuanbin Cao, Zhirong Wang, and Hongbin Zha.
Alternating multi-bit quantization for recurrent neural networks. In International Conference on
Learning Representations (ICLR), 2018.

Wojciech Zaremba, Ilya Sutskever, and Oriol Vinyals. Recurrent neural network regularization.
arXiv:1409.2329, 2014.

Ritchie Zhao, Yuwei Hu, Jordan Dotzel, Christopher De Sa, and Zhiru Zhang. Improving neural
network quantization without retraining using outlier channel splitting. arXiv:1901.09504, 2019.

Shuchang Zhou, Yuzhi Wang, He Wen, Qinyao He, and Yuheng Zou. Balanced quantization: An
effective and efficient approach to quantized neural networks. Journal of Computer Science and
Technology, 32:667-682, 2017.

Chenzhuo Zhu, Song Han, Huizi Mao, and William J. Dally. Trained ternary quantization. In
International Conference on Learning Representations (ICLR), 2017.

12

Under review as a conference paper at ICLR 2021

A MODELS AND DATASETS

A.1 LSTM MODELS

1-Layer LSTM model (in Fig.[I) (Zaremba et al.,[2014): One layer LSTM model with 300 hidden
states E] is used to predict PTB dataset. We compress the a LSTM layer and an embedding layer of
the pre-trained language model to draw the Figure[I] A scaling factor is extracted for each raw, e.g.,
for the (10000, 300) embedding layer, there exist 10,000 scaling factors as a result of quantization.

AWD-LSTM (Merity et al.,[2017): We use a 3-layer AWD-LSTM model. The embedding size is
400 and the hidden vector size within LSTM layers is 1550. We train the original model during
500 epochs and then fine-tune during additional 300 epochsﬂ We compress both models including
embedding and softmax layers by our post-training quantization method.

Dataset: To evaluate our quantization method, we use the test dataset of Penn Treebank (PTB)
dataset (Marcus et al.,|1993) for the LSTM language models. To find the quantization parameters
with BO, we use valid dataset.

A.2 HUGGINGFACE LANGUAGE MODELS

To evaluate recently developed language models, we utilize the t ransformers library (PyTorch
version) developed by huggingface (Wolf et al., 2019). For all bert-based models, the last
classification layer and the sequence embedding layer are not quantized because the sizes of weights
are relatively smaller than other weights.

BERT (Devlin et al., 2018) / DistilBERT (Sanh et al.;, 2019): We fine-tune the pre-trained BERT-
base and DistilBERT-base models to evaluate our method. BERT-base model consists of 12 encoder
blocks with 768 hidden size and DistilBERT-base model consists of 6 encoder blocks with 768 hidden
size. We follow fine-tuning recipes found in the t ransformers repository El For the MRPC and
MNLI tasks, the initial learning rate is 2e-5 and the training epoch is 3. For the SQUAD task, the
initial learning rate is 3e-5 and the training epoch is 2.

Longformer (Beltagy et al., 2020): To evaluate the Longformer model, we choose the pre-trained
longformer-base model that has 12 blocks of Longformer encoder with 768 hidden size. We fine-tune
the pre-trained modeﬂ for SQUAD v1.1 dataset with the same recipe.

Dataset: We use three language tasks: MRPC, MNLI and SQUAD(v1.1). To search quantization
parameters (F, C and P), we use a randomly sampled fraction of t rain dataset when the evaluation
time is too time-consuming. For the MRPC task, we use the whole t rain dataset because the
train dataset is small enough to use. For the MNLI task, we use only 10% of t rain dataset. For
the SQUAD task, we use only 6.7% of t rain dataset for bayesian optimization while dev dataset
is used for testing because there is no published test dataset.

A.3 OPENNMT TRANSFORMER

We use the pre-trained transformer model for Neural Machine Translation task (Klein et al.,|2018) E]
The transformer model consists of 6 encoder blocks, 6 decoder blocks and embedding layers. Note
that the embedding layers are not shared, e.g. embedding weights are not tied. The vocabulary size is
50k and the size of the hidden vector is 512.

Dataset: We evaluate the pre-trained model in a translation direction: English to German (en2de).
We use valid dataset in newstest2017 for BO processes and test dataset for the test evaluation.
All datasets are pre-processed by SentencePiece (Kudo & Richardson, [2018)). All the translation
scores are BLEU scores by sacrebleu script (Post, 2018) as the beam size is 1.

2 Available at https://github.com/pytorch/examples/tree/master/word_language_model
3The detailed parameters are described in https:/github.com/salesforce/awd-lstm-Im
*https://github.com/huggingface/transformers

3 Avaliable at https://huggingface.co/allenai/longformer-base-4096

8 Available at https://opennmt.net/Models-py/

13

Under review as a conference paper at ICLR 2021

A.4 RESNET FOR IMAGE CLASSIFICATION

We conduct experiments using ResNet32 on CIFAR10 (Krizhevskyl 2009) and ResNet18 (He et al.,
2016) on ImageNet (Russakovsky et al.,2015). For convolution tensors, o and B are computed for
each channel. We maintain full-precision on the first and last layers of ResNet models because those
layers are very small while a lot of quantization bits are required (McDonnell, [2018).

For ResNet-18, we use ImageNethE]training dataset, which is a small subset of ImageNet dataset,
for fast hyper-parameter search, while test accuracy is still measured by the entire ImageNet test
dataset. To obtain the same accuracy for the same set of hyper-parameters, the training dataset is not
randomly manipulated (e.g., by cropping and flipping).

B BAYESIAN OPTIMIZATION FOR WEIGHTED QUANTIZATION

BO is one of automated machine learning (AutoML) techniques to search optimal hyper-parameters
for target networks. Given a black box function f, BO aims to find the optimal x* to be
arg max, f(x). Suppose observations are described as y=[f(x1), f(X2), ..., f(x5)]T and y. is an
output of any unobserved x., then under the assumption that f(x) is drawn from Gaussian Process,
the distribution of y, |y follows N (K. K 'y, K., — K.K~*KZ), where

k(Xth) k(X1,Xn)
K= yKo=[k (x4, x1) - k(Xe, X)), and Ky =k(X4,%4). (10)
k(x1,x1) - k(x1,%xp)

The kernel function k(x, x’) is one of the hyper-parameter for BO and measures a similarity between
x and x’ (i.e., the output is high when they are close). There are various kernel functions (Rasmussen
& Williams,, 2006), and we use squared-exponential kernel that is one of the popular choices for
regression (Ebden, [2015)). To identify which of the unobserved data to be taken as x,1, the
acquisition function needs to be specified. In general, the expected improvement acquisition function
ag (Lizotte, 2008) (see Eq.) is most commonly used and is selected for our experiments.

apr(x:]y) = (Z2(Z) + $(2))o(x.), (11)
where
M(X*)—f(x+)—€ lfO'(X*) > 0
o {0) ifo(x.) =0 and f(*) = 11%152(“.]0()(). (12

The parameter ¢ is the trade-off factor between exploitation and exploration. In our experiments, we
set & to 0.2, which implies that exploitation has more influence on determining x,, 4. After computing
apy for unobserved random sampled data x.s, X,, 41 is computed as arg maxx, agy(x.|y). Further
details of BO can be found in (Brochu et al.l 2010 Nogueiral, 2014—; |Snoek et al., [2012]).

7 Available at: https://s3.amazonaws.com/pytorch-tutorial-assets/imagenet_1k.zip

14

Under review as a conference paper at ICLR 2021

: 0.83]
- B
0.85 Y] 052
9 wadi G Wi die
&} oS0ep o ° &) o %
= 0.80 et 2081 ¥
% mote % s
] oA & 0.80 1 .
0.75 1 ﬁ’-._ > K |
J e 0794 °
0.75 080 085 090 095 0.88 0.90 0.92 0.94

Training ACC. Training ACC.

Figure 4: Relationship of training accuracy achieved by weighted quantization and test accuracy
using BERT on MRPC (LEFT) and BERT on MNLI (RIGHT).

Table 4: Dataset usages and maximum iterations for Bayesian optimization. In the case of large
training dataset (such as MNLI and SQUAD v1.1), we use samples.

Dataset Maximum iterations for BO
BO Process Test Evaluation || Model-wise | Layer-wise
Penn Treebank valid test 1000 250
MRPC train test 1000 50
MNLI 10% of train test 1000 50
SQUAD vl.1 6.7% of train dev 1000 50
valid test

newstest2017 (detokenized) (detokenized) 1000 30
CIFARI10 train test 2000 100
ImageNet train of ImageNetlK test 2000 200

C RESULTS ON LANGUAGE MODELS

Table 5: 16 sets of hyper-parameters selected for our manual search of importance metric.

Set1l Set2 Set 3 Set 4 Set 5 Set 6 Set 7 Set 8
P=0.0 (default) | F 1.0 1.0 1.0 1.0 0.5 0.2 0.5 0.5
C | 0.99 0.999 0.9999 1.0 1.0 0.999 0.9999
Set9 Set10 Set1l Setl12 | Set13 Setl4d Setl5 Setl6
C=1.0 (default) | £ [0.0 0.0 0.0 0.0 1.0 1.0 1.0 1.0
P | 0.02 0.05 0.1 0.2 0.02 0.05 0.1 0.2

C.1 FINE-TUNED BERT, DISTILBERT AND LONGFORMER

15

Under review as a conference paper at ICLR 2021

Table 6: Test score after post-training quantization with various £, C and P choices when the
quantization bit is 4.

BERT-base DistilBERT-base
MRPC MNLI SQUAD || MRPC MNLI SQUAD
Method || B € Pl hce) (Aco) (1) || (Aco) (Aco) (f1)
No Importance 76.2 78.1 70.7 77.7 64.7 66.6
Greedy 1 1.0 0.0 72.3 80.1 79.0 73.0 73.4 80.7
1 0.99 0.0 80.1 81.0 81.8 76.0 75.2 81.2
No Importance 78.4 82.8 86.2 77.0 77.0 834
1.0 1.0 0.0 86.0 83.8 88.0 84.1 81.4 85.9
1.0 099 0.0 84.3 83.5 87.9 82.3 80.9 85.2
1.0 0999 00 86.3 83.6 87.8 83.3 814 85.7
1.0 09999 0.0 86.5 83.7 88.0 84.1 81.6 85.7
0.5 1.0 0.0 85.0 83.9 88.1 83.3 80.9 85.2
0.2 1.0 0.0 82.6 83.3 87.0 81.6 78.9 84.4
0.5 0999 00 85.0 83.6 87.8 82.1 79.7 84.9
Alter. 0.5 09999 0.0 85.5 83.5 87.9 82.4 80.2 85.1
0.0 1.0 0.02 78.9 82.8 86.4 78.4 77.1 83.8
0.0 1.0 0.05 79.9 82.9 86.3 79.7 77.4 83.8
0.0 1.0 0.1 80.4 83.0 86.4 79.4 77.2 83.6
0.0 1.0 0.2 81.6 82.8 86.2 79.9 77.4 83.5
1.0 1.0 0.02 86.5 83.9 88.0 84.6 81.6 85.8
1.0 1.0 0.05 86.3 83.7 88.0 84.1 81.7 85.6
1.0 1.0 0.1 85.8 83.7 87.9 84.1 81.4 85.4
1.0 1.0 0.2 84.3 83.7 87.5 83.8 81.3 84.9
Full-Precision (ours) 87.7 84.5 88.6 85.3 82.1 86.9

Table 7: Model accuracy of BERT on MRPC quantized into 3 bits per weight by Alternating method
with different number of parameters sharing a scaling factor.

of parameters sharing one o
E c P 48 96 192 384 768
No Importance 8529 85.05 79.41 7696 75.74

1 1 0 85.05 8529 8529 8431 84.80
1 0.95 0 85.05 84.31 8554 83.09 79.90
1 0.99 0 85.05 8431 85.05 82.84 81.62
1 0.999 0 84.80 84.56 85.78 84.07 83.82
I 0.9999 0 84.56 84.07 85.05 84.56 82.35
0.5 1 0 85.78 86.03 8529 83.09 79.90
0.2 0 86.03 85.05 8235 80.64 75.25

1
0 1 0.05 || 8431 84.80 7525 7598 76.00
1 1 0.05 || 84.07 85.05 84.56 83.84 84.12

Table 8: Hyper-parameter search results of BERT-base (quantized into 3 bits per weight) using manual
search, model-wise BO, and layer-wise BO.

Hyper-parameter search method | train ACC. | test ACC. | Parameters(&,C,P)
Manual (by Table|5) - 86.0 (1.0, 0.9999, 0.0)
MRPC Model-wise BO 93.8 86.5 (0.693, 0.999, 0.045)
Layer-wise BO 94.5 84.3 Fig.
Manual (by Table l - 82.8 0.2,1.0,0.0)
MNLI Model-wise BO 93.7 82.4 (0.534, 0.9999, 0.002)
Layer-wise BO 94.5 82.9 Fig.
Manual (by Table|5) - 84.7 (0.5, 1.0, 0.0)
SQUAD Model-wise BO 90.0 84.8 (0.560, 1.0, 0.0)
Layer-wise BO 90.7 85.2 Fig.

16

Under review as a conference paper at ICLR 2021

Table 9: Hyper-parameter search results of DistiIBERT-base (quantized into 3 bits per weight) using
manual search, model-wise BO, and layer-wise BO.

Hyper-parameter search method | train ACC. | test ACC. | Parameters(¥,C,P)
Manual (by Table|5) - 78.9 (0.5, 0.9999, 1.0)
MRPC Model-wise BO 85.2 79.7 (0.679, 1.0, 0.0)
Layer-wise BO 90.3 83.3 Fig.
Manual (by TableE[) - 75.6 (1.0, 1.0, 0.05)
MNLI Model-wise BO 80.7 75.4 (0.687, 1.0, 0.048)
Layer-wise BO 86.9 79.9 Fig.[3]
Manual (by Table 5) - 79.6 (0.5,1.0,0.0)
SQUAD Model-wise BO 86.6 79.6 (0.430, 1.0, 0.0)
Layer-wise BO 88.4 81.2 Fig.
+ C - P
1.2 1.2
1.0 1.0 1.04
0.8 1 0.8 0.8
0.5 0.5 1 0.51
0.2 0.2 0.2
0.0{ =+ » . 0.04 7 ~4 0.0 i
0 10 20 30 0 10 20 30 0 10 20 30
MRPC MNLI SQUAD

Figure 5: F, C, and P values searched by layer-wise BO for DistilBERT-base on MRPC, MNLI, and
SQUAD. X-axis shows layer index and y-axis shows hyper-parameters optimized differently for each
layer.

Table 10: F1 scores of Longformer on SQUAD vl1.1 after post-training quantization (4 bits per
weight) with various E, C' and P choices.

Method || FE C P 4bit 5Sbit

No Importance 85.8 88.0

1.0 1.0 0.0 || 835 882

1.0 099 0.0 || 83.8 883

0.5 1.0 0.0 || 852 883

0.2 1.0 0.0 || 859 87.8

05 0999 0.0 || 854 883

Alter. 0.5 09999 0.0 || 854 884

0.0 1.0 0.02 || 86.0 88.1

0.0 1.0 0.05 || 86.0 87.7

0.0 1.0 0.1 854 8177

1.0 1.0 0.02 || 83.6 88.0

1.0 1.0 0.05 || 83.0 88.1

1.0 1.0 0.1 814 88.1
Full-Precision 89.2 |

Table 11: Hyper-parameter search results of Longformer using manual search, model-wise BO, and
layer-wise BO.

Hyper-parameter search method | val ACC. | test ACC. | Parameters(F,C',P)
Manual (by Table|5) - 86.0 (0.0, 1.0, 0.05)
4-bit Model-wise BO 88.9 86.5 (0.11, 1.0, 0.0)
Layer-wise BO 89.6 86.6 Fig. [f]

17

Under review as a conference paper at ICLR 2021

+ FE x C - P
1.0 3 K
0.8 1
0.5 1
0.2 1
0.0 1 4 . 4
0 20 40 60 80 100

Longformer on SQUAD

Figure 6: E, C, and P values searched by layer-wise BO for Longformer on SQUAD v1.1. X-axis
shows layer index and y-axis shows hyper-parameters optimized differently for each layer.

=
5!
=
E
w0 | distilBERT-MRPC
A ool distilBERT-MNLI
g | distilBERT-SQUAD
| BERT-MRPC
 0.604 BERT-MNLI
S | po BERT-SQUAD

0501 Longformer-SQUAD

—— Transformer
Finetuned-AWDLSTM
0.40 . ; | | Ly -
0.0 0.1 0.2 0.3 0.4 0.5

Pruning Rate

Figure 7: Test score degradation by (post-training) pruning weights (based on the magnitude) using
various pre-trained language models. Weights of a layer are pruned by the same target pruning rate.
For the same pruning rate, the Longformer presents sharper score degradation that partly explains the
difficulty of improving test scores by our proposed weighted quantization method compared to the

conventional Alternating quantization.

18

Under review as a conference paper at ICLR 2021

C.2 AWD-LSTM ON PTB DATASET

Table 12: Perplexity of AWD-LSTM model on PTB test dataset after post-training quantization with
various E, C and P choices.

Trained Fine-tuned
Method E C P 2bit 3bit 4bit 2bit 3bit 4bit
No Importance 93.25 66.57 61.84 | 79.32 61.21 58.11
1.0 1.0 0.0 71.01 62.16 5997 | 68.38 59.19 57.14
1.0 0.99 0.0 68.47 6229 6046 | 65.66 59.14 57.23
1.0 0.999 0.0 69.13 62.01 60.04 | 6691 59.08 57.19
1.0 09999 0.0 69.95 62.10 59.99 | 67.73 59.16 57.14
0.5 1.0 0.0 7238 63.04 60.50 | 65.04 59.05 57.65
0.2 1.0 0.0 8196 64.76 61.14 | 71.28 60.07 57.82
0.5 0.999 0.0 72.52 63.07 60.58 | 6505 59.05 57.68
Alter. 0.5 09999 0.0 7232 63.05 60.5 64.99 59.03 57.59
0.0 1.0 0.02 91.84 6642 61.86 | 7832 61.13 58.14
0.0 1.0 0.05 89.70 6622 61.85 | 76.84 6095 58.16
0.0 1.0 0.1 86.41 6578 61.76 | 74.70 60.66 58.20
0.0 1.0 0.2 81.01 64.67 6145 | 71.80 5991 57.96
1.0 1.0 0.02 || 11422 6221 5996 | 68.75 59.27 57.14
1.0 1.0 0.05 || 11441 6224 5996 | 69.57 59.31 57.14
1.0 1.0 0.1 11491 62.32 5998 | 111.77 59.46 57.14
1.0 1.0 0.2 116.81 62.46 60.1 114.6 60.02 57.30
Full-Precision 59.13 56.43

Table 13: Hyper-parameter search results of fine-tuned AWD-LSTM (quantized into 2/3/4 bits per
weight) using manual search, model-wise BO, and layer-wise BO.

Hyper-parameter search method | val ACC. | test ACC. Parameters(£,C, P)
Manual (by Table j - 64.99 (0.5, 0.9999, 0.0)
2-bit Model-wise BO 67.76 65.2 (0.9934, 0.8454, 0.0)
Layer-wise BO 64.80 62.63 Fig. [§]
Manual (by Table - 59.03 (0.5, 0.9999, 0.0)
3-bit Model-wise BO 61.34 58.97 (0.9643, 0.9989, 0.0)
Layer-wise BO 60.52 58.21 Fig.
Manual (by Table - 57.14 (1.0, 1.0, 0.02)
4-bit Model-wise BO 59.55 57.19 (1.0148, 0.9810, 0.029)
Layer-wise BO 59.40 57.11 Fig.

C.3 TRANSFORMER

Table 14: Quantizing Transformer by using 3 bits per weight with different quantization schemes and
the metric to be optimized by BO.

Method Target || valid PPL | valid BLUE || test PPL | test BLEU
Pre-trained - 1.00373 25.85 1.00398 26.95
Alternating (No Importance) | MSE 1.00646 24.17 1.00678 25.09
Model-wise BO PPL 1.00339 19.20 1.00368 20.38
Layer-wise BO PPL 1.00283 23.40 1.00291 24.67
Model-wise BO BLEU 1.00651 24.24 1.00676 25.05
Layer-wise BO BLEU 1.00494 24.30 1.00498 25.23

19

Under review as a conference paper at ICLR 2021

+ FE x C P

1.2
1.0 1 1.0 1 1.0 #
0.8 0.8 0.8
0.5 0.5 0.5
0.2 1 0.2 1 0.2 1
0.0{- - 1] 0.0 0.0

0 2 4 6 0 2 4 0 2 4

2bit 3bit 4bit

Figure 8: F, C, and P values searched by layer-wise BO for fine-tuned AWD-LSTM model. X-axis

shows layer index and y-axis shows hyper-parameters optimized differently for each layer.

+ E x

1.2 T
1.0 A i :;& 1 : i
08] x| i
0.5
0.2 1 y Wi j
0.0 Tty A e

0 20 40 60 80 100

ppl optimized

1.2

1.0 1

0.8 1

0.5 1

0.2

0.0 1

20

40 60
bleu optimized

80

100

Figure 9: E, C, and P values searched by layer-wise BO for Transformer. BO is performed to
optimize PPL (Left) or BLEU (Right). X-axis shows layer index and y-axis shows hyper-parameters

optimized differently for each layer.

20

Under review as a conference paper at ICLR 2021

D RESULTS ON RESNET MODELS

Table 15: Post-training quantization comparison on quantization MSE, average scaling factor values,
training loss, and training model accuracy. For importance metrics, £=1.0 is used while P and C'
are not considered.

Quant. Err. Average Training Training
Model Method (MSE) Scaling Factors Loss Accuracy (%)
Greedy (No Importance) | 4.35E-04 0.035 0.783 12.54
ResNet-32 | Greedy (E=1.0) 3.02e-04 0.051 0.693 84.12
(CIFAR-10) | Alter. (No Importance) 2.27e-04 0.051 0.324 90.72
Alter. (E'=1.0) 3.79e-04 0.062 0.309 91.68
Greedy (REF) 4.98E-05 0.010 7.075 0.20
Greedy (E=1.0) 3.47e-05 0.015 4.853 12.87
Alter. (REF) 2.39e-05 0.016 2419 47.62
ResNet-18 | Alter. (E=1.0) 4.43e-05 0.023 3.033 37.01
(ImageNet) | Alter. (£=2.0) 2.89¢e-05 0.012 1.674 59.94
Alter. (£'=3.0) 2.62e-05 0.019 1.992 54.19
Alter. (E=5.0) 2.48e-05 0.018 2.024 54.16
Alter. (£=7.0) 2.42e-05 0.017 2.282 49.53

Table 16: Model accuracy(%) on test dataset after post-training quantization with various £ and C'
choices. g is the number of quantization bits.

ResNet-32 (CIFAR-10) | ResNet-18 (ImageNet)
Method E C P q=3 q=4 q=3 q=4
No Importance 12.7 24.4 0.2 0.4
Greedy 1 1.0 0.0 || 79.9 84.2 12.0 44.2
1 0.99 0.0 || 71.5 81.8 14.0 42.6
No Importance 84.9 91.2 43.3 60.1
1 1.0 0.0 85.5 91.7 32.8 61.1
1 0.95 0.0 85.9 91.7 44.5 61.5
1 0.99 0.0 87.2 91.5 35.8 60.9
1 0.999 0.0 85.5 91.6 36.2 64.5
1 0.9999 0.0 85.5 91.7 32.0 60.6
0.5 1.0 0.0 87.6 91.9 53.4 61.8
0.33 1.0 0.0 87.6 914 48.4 63.0
Alter. 0.2 1.0 0.0 86.5 91.6 48.6 63.5
0.5 0.99 0.0 86.7 91.6 50.6 63.4
0.5 0999 0.0 87.3 91.9 53.4 61.5
0.0 1.0 0.02 || 84.6 90.6 44.3 60.6
0.0 1.0 0.05 || 84.2 90.8 43.5 59.3
0.0 1.0 0.10 || 85.7 90.9 33.8 57.9
0.0 1.0 0.20 || 86.8 90.7 41.4 62.0
1.0 1.0 0.02 || 85.6 91.8 325 59.8
1.0 1.0 0.05 || 859 91.7 31.5 59.6
1.0 1.0 0.10 || 88.3 91.8 31.2 59.4
1.0 1.0 0.20 || 86.0 91.7 29.3 61.6
Full-Precision 92.8 69.2

21

Under review as a conference paper at ICLR 2021

Table 17: The optimal hyper-parameters searched by Bayesian optimization when Alternating
quantization method is utilized and ¢ is the number of quantization bits.

Alternating Proposed weighted quantization
Test E C P Train Test
9 Acc.(%) [0.2,1.2] [0.7,1.0] [0.0,0.3] | Acc.(%) | Acc.(%)

3 43.3 0.4490 1.0000 0.0121 62.3 54.0

) Layer-wise (Fig. |10| 66.4 56.5

ResNet-18 4 60.1 0.5253 0.9501 .1780 73.0 64.2

(ImageNet)) Layer-wise (Fig. |10 74.8 65.3

5 66.8 0.5311 0.9783 .0085 76.3 68.1

’ Layer-wise (Fig.[10) 774 68.5

3 84.9 0.4482 1.0000 0.1846 96.96 89.36

ResNet-32) Layer-wise 98.33 90.60

(CIFAR-10) 4 91.2 1.0500 1.0000 0.2290 99.80 92.01

) Layer-wise 99.85 92.32

+ E C - P
1.2 1.2 10
1.0 & % * * 1.0 081
0.8 0.8 0.61
0.5 0.5 0.44
0.2 0.2 0.24
0.0 1 0.0 0.0 1
0 5 10 15 0 5 10 15 0 5 10 15
3bit 4bit 5bit

Figure 10: E, C, and P values searched by layer-wise BO for ResNet18 on ImageNet. X-axis shows
layer index and y-axis shows hyper-parameters optimized differently for each layer.

22

	Introduction
	Post-Training Parameter Quantization for Language Models
	Weighted Quantization Based on the Binary Codes
	Greedy Method and Alternating Method without Importance Considerations
	Importance-aware Weighted Quantization

	Importance Estimation Using Weight Magnitude
	Weight Magnitude as Importance
	Hyper-parameters for Importance Metrics
	Empirical Observations

	Experimental Results
	Conclusions and Future Work
	Models and Datasets
	LSTM Models
	Huggingface Language Models
	OpenNMT Transformer
	ResNet for Image Classification

	Bayesian Optimization for Weighted Quantization
	Results on Language models
	Fine-tuned BERT, DistilBERT and Longformer
	AWD-LSTM on PTB dataset
	Transformer

	Results on ResNet models

