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ABSTRACT

We propose FlashWorld, a generative model that produces 3D scenes from a
single image or text prompt in seconds, 10 ∼ 100× faster than previous works
while possessing superior rendering quality. Our approach shifts from the conven-
tional multi-view-oriented (MV-oriented) paradigm, which generates multi-view
images for subsequent 3D reconstruction, to a 3D-oriented approach where the
model directly produces 3D Gaussian representations during multi-view genera-
tion. While ensuring 3D consistency, 3D-oriented method typically suffers poor
visual quality. FlashWorld includes a dual-mode pre-training phase followed
by a cross-mode post-training phase, effectively integrating the strengths of both
paradigms. Specifically, leveraging the prior from a video diffusion model, we
first pre-train a dual-mode multi-view diffusion model, which jointly supports
MV-oriented and 3D-oriented generation modes. To bridge the quality gap in
3D-oriented generation, we further propose a cross-mode post-training distilla-
tion by matching distribution from consistent 3D-oriented mode to high-quality
MV-oriented mode. This not only enhances visual quality while maintaining 3D
consistency, but also reduces the required denoising steps for inference. Also, we
propose a strategy to leverage massive single-view images and text prompts during
this process to enhance the model’s generalization to out-of-distribution inputs. Ex-
tensive experiments demonstrate the superiority and efficiency of our method. Our
code is released at https://github.com/imlixinyang/FlashWorld.
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Figure 1: FlashWorld enables fast and high-quality 3D scene generation across diverse scenes.

1 INTRODUCTION

3D generation shows great promise for applications in gaming, robotics, and VR/AR. However,
generating full 3D scenes remains a significant challenge for both quality and efficiency, compared to
generating individual 3D objects. These challenges stem from two core obstacles: the scarcity of
high-quality 3D scene data and the exponential complexity of modeling real-world scenes.

∗Work done during an internship at Tencent.
†Corresponding Authors.
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Figure 2: A brief comparison of different 3D scene generation methods. MV-oriented diffusion
methods (i.e., CAT3D (Gao et al., 2024), Bolt3D (Szymanowicz et al., 2025), Wonderland (Liang
et al., 2025), and Ours w/ MV-Diff) suffer from noisy textures due to multi-view inconsistency.
MV-oriented distillation further exacerbates this flaw (i.e., Ours w/ MV-Dist). 3D-oriented diffusion
methods (i.e., Ours w/ 3D-Diff) suffer from blurry visual effect. Our cross-mode distillation model
(i.e., Ours) simultaneously solves these, making the quality of the novel view close to the input view.
The time cost per scene, tested on a single GPU, is presented at the bottom of each method.

Early methods typically relied on assembling pre-existing 3D assets (Xu et al., 2002; Yu et al., 2011;
Wu et al., 2018; Feng et al., 2023; Çelen et al., 2024; Yang et al., 2024c; Deng et al., 2025) or iteratively
reconstructing scenes from inpainted images and depth maps (Cai et al., 2023; Fridman et al., 2023;
Höllein et al., 2023; Lei et al., 2023; Yu et al., 2024a; Zhang et al., 2024a;b; Chung et al., 2023; Yu
et al., 2025; Shriram et al., 2025; Ni et al., 2025). Yet, without holistic scene-level understanding or
multi-view consistency constraints, these approaches often struggle to produce semantically coherent
and visually realistic scenes. To address this, scalable data-driven approaches have emerged. The
dominant paradigm is a two-stage, multi-view-oriented (MV-oriented) pipeline (Gao et al., 2024; Sun
et al., 2024; Wallingford et al., 2024; Zhao et al., 2025; Szymanowicz et al., 2025; Yang et al., 2025;
Go et al., 2025a;b): a diffusion model first generates multiple views from text or reference images,
and then a 3D reconstruction is performed. However, the lack of explicit 3D constraints during
view synthesis often causes geometric and semantic inconsistencies in generated views, leading to a
noticeable visual quality gap between synthesized views and the reconstructed 3D scene. Moreover,
the considerable computational overhead of both the diffusion and reconstruction stages leads to
generation latencies of several minutes to hours, as shown in Fig. 2. These limitations compromise
the effectiveness and efficiency of current 3D scene generation methods, blocking their applications.

One promising but relatively less explored direction is the 3D-oriented scene generation pipeline (Xu
et al., 2023; Li et al., 2024a;b; Tang et al., 2025; Cai et al., 2024; Zuo et al., 2024). These methods
combine differentiable rendering (Mildenhall et al., 2020; Wang et al., 2021; Kerbl et al., 2023) with
diffusion models, allowing for direct 3D scene generation without additional reconstruction. However,
these generated 3D scenes often suffer from visual artifacts and blurry content. Consequently, they
often require an additional refinement stage, which significantly degrades generation efficiency.

To enhance efficiency of diffusion models, post-training distillation techniques, such as consistency
model distillation (Song et al., 2023) and distribution matching distillation (Yin et al., 2024b;a; Xie
et al., 2024), are often used. However, directly applying distillation amplifies each framework’s
inherent limitations: e.g., it exacerbates multi-view inconsistency in the MV-oriented pipeline.
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In this work, we introduce a novel framework that combines the strengths of both paradigms through
distillation, achieving substantial gains in 3D consistency and visual fidelity while significantly
accelerating inference speed. Our contributions are briefly summarized as follows:

•We introduce a dual mode pre-training strategy built on a video diffusion model to train a multi-view
diffusion model capable of operating in both MV-oriented and 3D-oriented modes.

•We propose a cross-mode post-training strategy, where the MV-oriented mode serves as the teacher
to improve visual quality, while the 3D-oriented mode acts as the student to ensure 3D consistency.

• To improve out-of-distribution generalization ability, we introduce a novel strategy that can leverage
massive unlabeled image data and text prompts with randomly simulated camera trajectories during
post-training, enhancing the model’s adaptability to diverse inputs, as shown in Fig. 1.

2 PRELIMINARY

Diffusion models (Ho et al., 2020) generate data by progressively transforming samples from a
standard Gaussian distribution p(xT ) ∼ N (0, I) into samples from a target data distribution p(x),
which have been widely applied across multiple domains, including image synthesis (Rombach et al.,
2022), multi-view generation (Shi et al., 2023; Tang et al., 2023), video generation (Blattmann et al.,
2023; Wan et al., 2025), and panoramic 3D scenes (HunyuanWorld, 2025). The core methodology
involves training a denoising network with optimizable parameters to reconstruct the original data
by removing the injected Gaussian noise ϵ from x according to a predefined noise schedule. The
forward process is formulated as: xt = F (x, t) = αtx + σtϵ, where αt and σt jointly control the
signal-to-noise ratio at each timestep t. The denoising network can be trained to predict clean data x̂
from noisy input xt by minimizing the following objective:

L = Ex,t,ϵ

[
∥x− x̂θ(xt, t)∥2

]
. (1)

Alternative training objectives include predicting noise ϵ (Ho et al., 2020) or a linear combination
of x0 and ϵ, known as v-prediction (Salimans & Ho, 2022). All predictions can be converted to the
denoised estimate µ(xt, t) and represent the gradient of the log probability of the distribution:

s(xt, t) = ∇xt
log pt(xt) = −

xt − αtµ(xt, t)

σ2
t

. (2)

Distribution matching distillation (DMD) (Yin et al., 2024b;a) is an advanced technique designed to
distill a slow, multi-step teacher diffusion model into a fast, few-step student model with comparable
generation capabilities. The key component is to minimize the approximate KL divergence across
randomly sampled timesteps t and noise inputs z between the smoothed real data distribution preal(xt)
and the student generator’s output distribution pfake(xt) by:

∇LDMD = −Et

(∫
(sreal(F (Gθ(z), t), t)− sfake(F (Gθ(z), t), t))

dGθ(z)

dθ
dz

)
, (3)

where sreal and sfake are approximated scores using diffusion models µreal and µfake trained on their
respective distributions (Eq. 1). DMD uses a frozen pre-trained diffusion model µreal as the teacher,
and dynamically updates µfake while training Gθ, using diffusion loss on samples from the generator.

3 METHOD

The core of our framework lies in leveraging DMD to transfer knowledge from a MV-oriented
multi-view diffusion model, one well-established for high visual quality, to a 3D-oriented few-step
multi-view generator, which is inherently endowed with 3D consistency. However, this paradigm
introduces two key challenges: First, for open-world 3D scene generation, the 3D-oriented few-step
generator requires a sufficiently robust prior and strong generative capacity from the start. Without
this, the training process is prone to collapse. Second, due to the limited quantity and diversity of
high-quality multi-view datasets, it becomes critical to develop a strategy that effectively handles
scenarios with diverse styles, object categories, and camera trajectories. Specifically, To address these
challenges, we first design a dual-mode pre-training strategy as detailed in Sec. 3.1. This strategy
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Figure 3: Method overview. We first pre-train a dual-mode multi-view latent diffusion model using
multi-view datasets, and then employ an cross-mode distillation post-training strategy to accelerate
generation while enhancing visual quality and inheriting 3D consistency.

yields a multi-view diffusion model that operates in two distinct modes: a MV-oriented mode for high
visual fidelity and a 3D-oriented mode for inherent 3D consistency. Subsequently, in Sec. 3.2, we
present a cross-mode post-training framework to bridge these two modes: the MV-oriented mode acts
as the teacher, supplying score distillation gradients to ensure visual quality; the 3D-oriented mode
serves as the student, learning to inherit the teacher’s distribution while preserving 3D consistency.
Furthermore, to explicitly tackle out-of-distribution generalization, in Sec. 3.3, we introduce a strategy
that can leverage single-view image data, text prompts, and pre-defined camera trajectories, boosting
the model’s adaptability to diverse scenarios.

3.1 DUAL-MODE PRE-TRAINING

In this stage, we pre-train a dual-mode multi-view latent diffusion model using multi-view datasets,
as illustrated in Fig. 3 (left). For each training iteration, we sample a batch containing multi-view
images X , their corresponding camera parameters C, and additional conditioning information y (such
as a text prompt or a single-view image). The multi-view images are first encoded into the latent
space to obtain multi-view latents Z = E(X ). A forward diffusion process is then applied to produce
noisy multi-view latents Zt = αtZ + σtϵ at a randomly sampled timestep t.

The noisy latents Zt, together with the camera parameters C and conditioning y, are input to the
denoising network for reverse denoising training. We represent cameras using Reference-Point
Plücker Coordinates (Cai et al., 2024) raymaps. The denoising network is a Diffusion Transformer
(DiT) (Peebles & Xie, 2023) enhanced with 3D attention blocks, and outputs both a denoised estimate
ẐMV and an auxiliary multi-view feature F . For the MV-oriented mode, we optimize:

LMV = EX ,t,ϵ,y,C

[∥∥∥Z − ẐMV

∥∥∥2] . (4)

To enable 3D-oriented generation, we decode 3D Gaussian parameters from the multi-view feature F
using a 3DGS decoder: {τ, q, s, α, c} = DG(F), where τ , q, s, α, and c represent the depth, rotation
quaternion, scale, opacity, and spherical harmonics coefficients of the 3D Gaussians, respectively. The
3DGS decoder DG is initialized from the original latent decoder D, with its first and last convolutional
layers re-initialized to accommodate the additional features and output channels required for the
Gaussian parameters. The predicted depth is then converted to pixel-aligned Gaussian points via
µ = o + τd, where o and d denote the camera origin and ray direction, respectively. For the
3D-oriented mode, we optimize the following loss:

L3D = EX ,t,ϵ,y,C

[
∥Xnovel −R(G, Cnovel)∥2

]
, (5)

where R denotes the rendering operation, G = {µ, q, s, α, c} is the set of 3D Gaussians, and Xnovel,
Cnovel are the ground-truth novel-view images and their associated cameras, respectively. During
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inference, both MV-oriented and 3D-oriented modes can be used for denoising (Li et al., 2024a;b). In
particular, for the 3D-oriented mode, the model predicts the estimated clean multi-view latents as
Ẑ3D = E(R(G, C)).
In contrast to previous methods (Li et al., 2024a;b) that are initialized from image diffusion mod-
els (Rombach et al., 2022), we initialize our framework with a video diffusion model (Wan et al.,
2025). We observe that this video model not only converges more rapidly, but also features a powerful
VAE with a higher compression rate, enabling support for a larger number of views (i.e., 24) and
higher output resolutions (i.e., 480P).

3.2 CROSS-MODE POST-TRAINING

After pre-training, we employ an asymmetric distillation strategy to accelerate generation while
enhancing visual quality and inheriting 3D consistency, as shown in Fig 3 (right). Specifically, we
observe that while the MV-oriented mode exhibits poor consistency, it can generate multi-view images
with high visual quality; thus, we leverage the MV-oriented mode of our dual-mode multi-view latent
diffusion model as the real teacher µreal: this teacher model is frozen, tasked with computing the real
score gradient. Another copy of the model µfake is dynamically updated to estimate the fake score
corresponding to the current distribution of the distilled generator. Meanwhile, our few-step student
model is initialized with the 3D-oriented mode of our dual-mode multi-view latent diffusion model.

The 3D-oriented multi-view generation process alternates between denoising and noise injection
steps to enhance sample quality of the 3D scenes following LCMs (Luo et al., 2023). Specifically,
we first define a schedule of N timesteps, denoted as {t1, t2, · · · , tN}, where N is typically small
(e.g., 4). Starting from a randomly sampled noise Zt1 = z ∼ N (0, I), we alternate between 3D-
oriented denoising updates Ẑti = E(R(Gθ,3D(Zti , ti, y, C), C)) and forward diffusion steps Zti+1

=

αti+1
Ẑti + σti+1

ϵ where Gθ,3D is the 3DGS generator and ϵ ∼ N (0, I), until obtaining the 3D
Gaussians at the final step (i.e., Gθ,3D(ZtN , tN , y, C)). At each step, the multi-view denoising update
is performed based on rendering, thereby ensuring that 3D consistency is maintained throughout the
process.

During distillation training, we adopt the DMD2 algorithm (Yin et al., 2024a), which includes a
DMD objective (i.e., Eq. 3) and a standard non-saturating GAN objective (Goodfellow et al., 2020),
where the logits value required by the GAN loss is obtained by adding an extra classification branch
with several convolutional layers at the end of the fake score network. We adopt the estimated R1
regularization (Lin et al., 2025a) to stabilize the GAN training. The DMD objective and the GAN
objective are employed to optimize both the original and novel views.

We also observe that relying solely on the above strategy can lead to the generation of scenes with
unstable floating artifacts. We hypothesize that this instability arises from the challenges in optimizing
with noisy gradients introduced by Gaussian rendering and latent encoding. To address this, during
post-training, we additionally update an MV-oriented student model at a lower frequency. This model
shares the same DiT backbone as the 3D-oriented student model. To encourage alignment between
the two modes, we introduce a cross-mode consistency loss:

LCMC = Ez,t,ϵ,y,C,i

[
λ ∥E(R(Gθ,3D(Zti , ti, y, C), C))−Gθ,MV(Zti , ti, y, C)∥

2
]
, (6)

where λ is a small weighting factor (i.e., 0.1). Because the MV-oriented mode prediction are less
affected by unstable rendering gradients, this consistency loss regularizes the 3D-oriented mode to
produce more stable and reliable generations.

3.3 OUT-OF-DISTRIBUTION DATA CO-TRAINING.

During pre-training, it is common to jointly train on image and video generation tasks to enhance the
model’s generalization ability. While this approach benefits the DiT backbone, it does not optimize
the 3DGS decoder, potentially limiting the range of inputs the 3DGS decoder can effectively process.
To address this, in the post-training phase, we introduce a strategy to broaden the model’s input
distribution and improve generalization to diverse scenes, even when multi-view data is limited in
quantity and variety. Specifically, we combine image or text conditions sampled from image datasets
with random camera trajectories, which can be drawn either from multi-view sequences or from a
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Figure 4: Image-to-3D scene generation results of different methods.

set of predefined trajectories. Importantly, we omit the GAN loss during this co-training process to
prevent distribution mismatches. This approach not only enhances the model’s generalization to a
wide range of input images and text prompts, but also increases its robustness when encountering
out-of-distribution camera trajectories. The details of this strategy are provided in Appendix A .

4 EXPERIMENTS

In this section, we evaluate the performance of our method on various benchmarks, including image-
to-3D scene generation, text-to-3D scene generation, and WorldScore benchmark. For implementation
details, please refer to Appendix A.

4.1 COMPARISON ON IMAGE-TO-3D SCENE GENERATION

We present a qualitative comparison with state-of-the-art image-to-3D scene generation methods
in Fig. 4. These baselines are MV-oriented, including: CAT3D (Gao et al., 2024), which generates
novel views via multi-view diffusion followed by optimization-based 3D reconstruction; Bolt3D (Szy-
manowicz et al., 2025), which synthesizes both appearance and geometry for novel views and then
applies a feed-forward 3D reconstruction; and Wonderland (Liang et al., 2025), a leading approach
that leverages a powerful video diffusion model and latent-based feed-forward 3D reconstruction.
As these methods are not open-sourced, we utilize the video results provided in their respective
project pages for visualization. We employ ViPE (Huang et al., 2025) to estimate camera poses
and intrinsics from the baseline videos. CAT3D struggles to generate complex scenes, resulting in
blurry outputs and missing geometric details. Bolt3D also exhibits inaccurate geometric details, such
as imprecise tree branches and needle-like leaves. Wonderland suffers from repeated and distorted
Gaussian artifacts, especially under large camera pose changes. Overall, these MV-oriented methods
fail to generate complex scenes, primarily due to insufficient multi-view consistency. In contrast,
our model produces high-fidelity, detailed scenes and successfully recovers intricate structures (e.g.,
leaves, iron fences, and tentacles), highlighting the advantages of our 3D-oriented pipeline.

4.2 COMPARISON ON TEXT-TO-3D SCENE GENERATION

We compare our method against several state-of-the-art text-to-3D scene generation approaches,
including Director3D (Li et al., 2024b), Prometheus (Yang et al., 2025), SplatFlow (Go et al., 2025a),
and VideoRFSplat (Go et al., 2025a). A qualitative comparison is presented in Fig. 5. Director3D
relies on per-scene refinement, which frequently introduces blurry and wave-like artifacts in the
generated results. In contrast, our model produces accurate objects with fine-grained details, such
as animal fur, while preserving realistic backgrounds. Prometheus does not utilize refinement,
and due to the inherent inconsistency of its MV-oriented pipeline, the generated scenes are often
blurry and may exhibit incorrect object geometries (e.g., chair legs). Our approach, however, is
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Figure 5: Text-to-3D scene generation results of different methods.

Method
T3Bench-200 DL3DV-200 WorldScore-200 Time

CostQ-Align
IQA

Q-Align
IAA

CLIP
IQA+

CLIP
Aesthetic

CLIP
Score

Q-Align
IQA

Q-Align
IAA

CLIP
IQA+

CLIP
Aesthetic

CLIP
Score

Q-Align
IQA

Q-Align
IAA

CLIP
IQA+

CLIP
Aesthetic

CLIP
Score

Director3D 3.24 1.95 0.43 4.70 27.84 2.51 1.78 0.34 4.55 26.12 2.55 2.47 0.35 5.32 29.05 7 min
Promtheus 2.34 1.92 0.34 4.76 24.85 2.07 1.99 0.35 4.69 23.49 2.45 2.94 0.37 5.65 28.07 15 sec
Ours 4.12 2.26 0.54 4.49 27.68 3.96 2.27 0.50 4.77 27.63 3.76 2.55 0.49 5.08 29.13 9 sec

Table 1: Quantitative comparison on text-to-3D scene generation. Cell background colors indicate
the method is the best , second best , or third best on this metric.

capable of generating structurally rich and precise objects in complex scenes, even under large
camera movements. SplatFlow and VideoRFSplat also suffer from blurry artifacts and have difficulty
reproducing fine details, such as those found in floors and grass. In comparison, our model generates
realistic details while maintaining semantic consistency with the input text prompt.

We further perform a comprehensive quantitative evaluation for this task. Specifically, we sample
600 text prompts from T3Bench (He et al., 2023), DL3DV (Ling et al., 2024), and WorldScore (Duan
et al., 2025), covering object-centric and general scenes. As all compared methods are based on 3D
Gaussian representations, metrics related to camera control and 3D consistency are not applicable
in this setting. Accordingly, we concentrate on the quality evaluation metrics utilized, including
CLIP IQA+ (Wang et al., 2023), CLIP Aesthetic (Schuhmann, 2022), the text-image alignment score
(CLIP Score) (Hessel et al., 2021), as well as the latest LMM-based Q-Align (Wu et al., 2024) image
quality metric. The quantitative results are summarized in Tab. 1. It is evident that our model achieves
superior performance on the majority of quality evaluation metrics. For CLIP-Aesthetic, we note
that this metric sometimes favor smooth outputs, which may not always align with the detailed and
realistic results produced by our method. Our method also attains the highest CLIP Score for two
subsets, demonstrating the strong text alignment ability of our method. In addition, we report the
average time required to generate a single scene for each method on a single H20 GPU. Our method
demonstrates a substantial speed advantage over other approaches. Remarkably, this efficiency is
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Figure 6: 3D scene generation results of different methods on WorldScore benchmark.

Method 3D
Consistency

Photometric
Consistency

Object
Control

Content
Alignment

Style
Consistency

Subjective
Quality Average Time

Cost

WonderJourney 80.60 79.03 34.81 38.37 67.52 61.49 60.30 6 min
LucidDreamer 90.37 90.20 43.48 59.41 66.41 48.02 66.32 6 min
WonderWorld 86.91 85.56 52.09 56.82 75.92 41.28 66.43 10 sec
Ours 85.87 86.72 49.61 53.96 81.52 54.63 68.72 9 sec

Table 2: Quantitative comparison on WorldScore benchmark. Note that the time cost of the
baselines is tested on 1× H100 GPU, while our time cost is tested on 1× H20 GPU.

maintained even when our method produces results with higher resolution and a greater number of
frames. In addition, our approach leverages a unified model that seamlessly handles both image-to-3D
and text-to-3D tasks without requiring separate training processes. This unified framework not only
simplifies the overall workflow but also substantially reduces the training cost.

4.3 COMPARISON ON WORLDSCORE BENCHMARK

We further conduct a comprehensive evaluation on the recent WorldScore (Duan et al., 2025) bench-
mark. The static subset of WorldScore comprises 2,000 test examples, encompassing a diverse array
of worlds with varying styles, scenarios, and objects. Each test case provides an input image, a text
prompt, and a camera trajectory as conditions for generation. The evaluation protocol is designed
to assess two primary aspects of world generation: controllability and quality. For baselines, we
select three state-of-the-art 3D generation methods: WonderJourney (Yu et al., 2024a), which itera-
tively completes novel-view images and depth maps based on point clouds; LucidDreamer (Chung
et al., 2023), which also performs iterative novel view completion but utilizes 3DGS for rendering;
and WonderWorld (Yu et al., 2025), which improves generation quality through the use of layered
Gaussian surfels. Since our comparison focuses exclusively on 3D generation methods, the “Camera
Control” metric primarily reflects the robustness of the evaluation protocol for each method, and
is thus less informative in this context. Accordingly, we omit this metric from our comparison.
Additionally, the original WorldScore benchmark evaluates most metrics only on anchor frames,
which is suboptimal for 3D world generation tasks that require novel view synthesis. To ensure a
fairer comparison, we re-evaluate these metrics by randomly sampled frames within specific intervals.
Qualitative and quantitative comparisons are shown in Fig. 6 and Tab. 2, respectively. Our method
achieves the highest average score and the fastest inference speed among all compared approaches.
In particular, our model achieves the best “Style Consistency” and secures the second place in “Pho-
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Config.
T3Bench-200 DL3DV-200 WorldScore-200

Q-Align
IQA

Q-Align
IAA

CLIP
IQA+

CLIP
Aesthetic

CLIP
Score

Q-Align
IQA

Q-Align
IAA

CLIP
IQA+

CLIP
Aesthetic

CLIP
Score

Q-Align
IQA

Q-Align
IAA

CLIP
IQA+

CLIP
Aesthetic

CLIP
Score

A 3.11 2.03 0.41 4.36 25.34 2.64 2.09 0.39 4.60 24.49 2.48 2.10 0.35 4.78 27.40
B 2.61 1.68 0.37 4.11 22.92 2.71 1.96 0.40 4.54 22.71 2.74 2.16 0.33 4.83 26.11
C 3.46 2.12 0.45 4.42 26.95 2.99 2.05 0.42 4.57 26.41 3.06 2.18 0.42 4.92 28.71
D 4.12 2.31 0.52 4.52 27.59 4.02 2.35 0.51 4.80 27.90 3.90 2.71 0.51 5.12 29.09
E 3.98 2.50 0.53 4.58 27.04 3.89 2.35 0.50 4.82 27.45 3.66 2.56 0.47 4.95 28.76
F 4.12 2.26 0.54 4.49 27.68 3.96 2.27 0.50 4.77 27.63 3.76 2.55 0.49 5.08 29.13

Table 3: Quantitative ablation studies. The letters A–F correspond to different model variants: (A)
w/ MV-Diff, (B) w/ 3D-Diff, (C) w/ MV-Dist, (D) w/o CMC, (E) w/o OOD, and (F) Full model.

w/ MV-Diff w/ 3D-Diff w/ MV-Dist w/o CMC w/o OOD Full model

Figure 7: Qualitative ablation studies. Prompts: (Top) “A vintage clock hanging on a brick
wall”; (Bottom) “A bright sunflower in a field”.

tometric Consistency”, “Object Control”, and “Subjective Quality”, reflecting a well-balanced and
robust capability across controllability and quality. While our method yields relatively lower scores
in “3D Consistency” and “Content Alignment”, these results can be attributed to methodological
differences: for “3D Consistency”, all baselines utilize monocular depth estimation models that are
closely aligned with the evaluation protocol, whereas our approach relies solely on RGB supervision
without explicit depth guidance; for “Content Alignment”, our method does not directly manipulate
the anchor frame content, in contrast to the baselines. Qualitative analysis further reveals that baseline
methods frequently exhibit unnatural transitions, discontinuous content, and visible holes in the
generated scenes, which may not be fully reflected by the current metrics. Overall, our approach
demonstrates superior consistency and faithful generation over existing methods.

4.4 ABLATION STUDY

In Fig. 2, we show the generation results of various ablation models for image-to-3D scene generation.
The outcomes align well with our expectations: both the MV-oriented diffusion model (w/ MV-Diff)
and the MV-oriented distillation model (w/ MV-Dist) exhibit noisy 3D reconstruction due to multi-
view inconsistency, while the 3D-oriented diffusion model (w/ 3D-Diff) produces blurry visual results.
To further validate the effectiveness of each proposed strategy, we conduct more comprehensive
ablation studies on text-to-3D scene generation. Quantitative and qualitative results are summarized
in Tab. 3 and Fig. 7, respectively. Consistently, the first three ablation models continue to demonstrate
worse visual quality and weaker text alignment. The model without cross-mode consistency loss
(w/o CMC) achieves competitive, and in some cases superior, scores on most quantitative metrics
compared to our full model. However, qualitative analysis reveals that this model is susceptible to
floating and duplicated artifacts. The model without out-of-distribution data (w/o OOD) is more prone
to semantic misalignment (e.g., “field”) and exhibits a drop in quantitative text alignment metrics.
This issue is exacerbated on T3Bench and WorldScore, which differ in distribution from the original
multi-view data, highlighting the importance of incorporating OOD data to improve generalization.

5 CONCLUSION

We propose an efficient yet powerful model for 3D scene generation, named FlashWorld. At
the core of our approach is a novel distillation strategy, which transfers high visual fidelity from a
multi-view-oriented diffusion model to a 3D-oriented multi-view generative model endowed with
perfect 3D consistency. To achieve this, we design a dual-mode pre-training phase and a cross-mode
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post-training phase, and introduce an out-of-distribution data co-training strategy to boost the model’s
generalization. Our method achieves state-of-the-art performance on multiple tasks, while offering
significant advantages in inference speed. The efficiency and effectiveness of our approach are
well-positioned to advance applications of 3D scene generation. Future work includes incorporating
autoregressive generation and extending our framework to dynamic 4D scene generation tasks.

ETHICS STATEMENT

FlashWorld enable fast, high-quality 3D scene generation, lowering barriers for content creation
in fields like gaming, VR/AR, and digital media. This democratization can benefit small studios and
independent creators, but also raises concerns about potential misuse (e.g., fake and harmful 3D envi-
ronments) and dataset bias (e.g., gender and race on human-related subjects). We encourage further
research on detection of AI-generated 3D content and careful consideration of ethical implications in
real-world applications.

REPRODUCIBILITY STATEMENT

We are committed to ensuring the reproducibility of all results reported in this paper, in accordance
with ICLR standards. To this end, we publicly release our codebase, pre-trained model check-
points, and all scripts necessary to reproduce our experiments and main results upon publication.
Comprehensive details regarding model architecture, training procedures, hyperparameters, and
dataset preprocessing are provided in the Appendix A to facilitate independent verification. We also
specify all evaluation metrics and protocols used in our experiments. Furthermore, we will provide
instructions for environment setup and hardware requirements to enable seamless replication.
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A TRAINING DETAILS

Architecture configuration. Our dual-mode multi-view latent diffusion model is initialized with
WAN2.2-5B-IT2V (Wan et al., 2025), with the detailed architecture shown in Fig. 8. For both
pre-training and post-training, we adopt 24 key frames as input views. The spatial downsampling
factor from image space to latent space is set to 16. The auxiliary multi-view feature has a channel
dimension of 1024. The discriminator head is a CNN with several residual blocks (He et al., 2016).

Pre-training configuration. We set the learning rates for both the transformer and 3DGS decoder
to 2× 10−6. We use a weight decay of 1× 10−6 and Adam (Kingma, 2014) optimizer parameters
β1 = 0.9 and β2 = 0.95. The training schedule includes a warm-up phase of 1,000 steps, followed
by a learning rate decay over 10,000 steps, with a total of 20,000 training steps. The training takes
around 3 days.

Post-training configuration. During post-training, the timestep schedule for the few-step generator
is set to {1000, 900, 750, 500}. For each generator update, the fake score network is updated 4 times.
The learning rates are set to 1× 10−6 for the generator and 5× 10−7 for the discriminator, both with
a weight decay of 1× 10−6. We use the Adam optimizer with β1 = 0.9 and β2 = 0.95. The training
schedule consists of a 1,000 step warm-up, followed by a learning rate decay over 5,001 steps, and a
total of 10,000 training steps. The GAN loss weights for both the generator and discriminator are
set to 5× 10−3. The training takes around 2 days. The frequency of different tasks is controlled as
follows: the probability ratio for training on MV-oriented mode, input views of 3D-oriented mode,
and novel views of 3D-oriented mode tasks is 1:3:1. The ratio for sampling multi-view data versus
out-of-distribution data is 2:1.
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We use bf16 precision for both training phases. The batch size is 64, using 64 NVIDIA H20 GPUs.
For distributed training, we adopt the FSDP (Fully Sharded Data Parallel) strategy and activation
checkpointing to improve training efficiency and memory utilization. The prediction of MV-oriented
mode is actually v-prediction, following the original video diffusion model (Wan et al., 2025). We
use the flow matching schedule (Lipman et al., 2023) for both training phases.

Dataset configuration. For both pre-training and post-training, we utilize the following multi-view
datasets: (1) MVImgNet (Yu et al., 2023): an object-centric dataset with a resolution of 480×704; (2)
RealEstate10K (Zhou et al., 2018): an indoor scene dataset with a resolution of 704×480 and frame
stride ∈ [5, 6, 7, 8, 9, 10, 11, 12]; (3) DL3DV10K (Ling et al., 2024): a general-purpose scene dataset
with a resolution of 704×480 and frame stride ∈ [2, 3, 4].

For out-of-distribution data during post-training, we employ: (1) Arbitrary image and text data
paired with RealEstate10K and WorldScore camera trajectories: a general dataset with a resolution
of 704×480. The images and texts are sampled from a proprietary video dataset. (2) Echo4O (Ye
et al., 2025) images with WildRGBD (Xia et al., 2024) camera trajectories: a stylized, object-centric
dataset with a resolution of 480×704.

B DETAILS OF CROSS-MODE POST-TRAINING

In Sec. 3.2, we described the specific process of Cross-mode Post-Training. Here, we provide more
relevant details and pseudocodes.

GAN loss. The GAN loss we introduced during our cross-mode post-training is consistent with that
of DMD2 (Yin et al., 2024a), which is:

LGAN = min
D

max
Gθ

Ex,z,t [logD(F (x, t)) +− log (D(F (Gθ(z), t)))] , (7)

where x is the real data (i.e., multi-view latents X in our case), F is the forwarding process of
diffusion model, and t is a random timestep. The discrimator D share the same DiT network with
the fake score estimator µfake. Therefore, calculating the GAN loss and fake score only requires
a single pass through the DiT network. When using out-of-distribution data for distillation, there
is no corresponding real data. Using GAN loss in this case will lead to distribution misalignment.
Therefore, we ignore GAN loss when working with OOD data during post-training.

Few-step Generation Process. We adapt the multi-step generation process of DMD2 (Yin et al.,
2024a) to our dual-mode generator to formulate the student model. Furthermore, since 3D scene
generation requires the capability of novel view synthesis, our 3D generation process also needs to
support novel render cameras that are different from the input cameras. The specific algorithm is:

Algorithm 1 Few-step Generation Process

Input: random noise z ∼ N (0, 1), target timestep index n, conditions y, input cameras C, render
cameras C′, predefined time scheduler α and σ, MV-oriented generator Gθ,MV, 3D-oriented
generator Gθ,3D, latent encoder E, and generation mode.

Output: generated multi-view latent Gθ(z)
1: Zt1 ← z
2: for i = 1, 2, . . . , n− 1 do
3: # Reversing
4: Ẑti ← E(R(Gθ,3D(Zti , ti, y, C), C))
5: # Forwarding
6: ϵ← N (0, 1), Zti+1

← αti+1
Ẑti + σti+1

ϵ
7: end for
8:
9: if mode = “MV” then

10: Gθ(z) = Ẑtn ← Gθ,MV(Ztn , tn, y, C)
11: else
12: Gθ(z) = Ẑtn ← E(R(Gθ,3D(Ztn , tn, y, C), C′)
13: end if
14:
15: return Gθ(z)
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Cross-mode Post-training Process. Our post-training procedure aligns with that of DMD2, but is
tailored to our specific data and generation pipeline. Specifically, as illustrated in Fig. 3 (right), our
generator can operate in two modes: MV-oriented and 3D-oriented. When using 3D-oriented mode,
we render novel views instead of using input views for loss computation with a certain probability.
Meanwhile, when novel views are not used, we compute the CMC loss (Eq. 6) to stabilize the training
of the 3D-oriented generator. Notably, as the MV-oriented and 3D-oriented modes share the DiT
network, CMC loss computation incurs negligible additional training overhead. For data, we sample
out-of-distribution data with a certain probability during training. In such cases, as no multi-view
ground truth is available, we omit GAN loss computation. The detailed algorithm is:

Algorithm 2 Cross-mode Post-training Process

Input: Regular multi-view data, OOD data, MV-oriented generator Gθ,MV, 3D-oriented generator
Gθ,3D, real and fake score estimators µreal and µfake, discriminator D, latent encoder E

Output: optimized 3D-oriented generator Gθ,3D
1: µreal ← µreal
2: while not converge do
3: mode← RandomChoice([“MV”, “3D”],weights = [1, 4])
4: data← RandomChoice([“Regular”, “OOD”],weights = [2, 1])
5: isnovel← RandomChoice([True,False],weights = [1, 3]) if mode = “3D” else False
6:
7: Sample y, C and Cnovel from data
8: Sample correponding X and Xnovel from data only if data = “Regular”
9: C′ = Cnovel if isnovel else C

10: z ← N (0, 1)
11: n← RandomInt(1, N)
12: Generate Gθ(z) with Algorithm 1
13:
14: # Two Time-scale Update Rule in DMD2
15: if iter % 5 = 0 then
16: Optimize Gθ,MV or Gθ,3D by DMD loss (Eq. 3) with µreal and µfake
17: if not isnovel then
18: Optimize Gθ,MV and Gθ,3D by CMC loss (Eq. 6)
19: end if
20: if data ̸= “OOD” then
21: Optimize Gθ,MV or Gθ,3D by GAN loss (Eq. 7) with D
22: end if
23: else
24: Optimize µfake by diffusion loss (Eq. 1)
25: if data ̸= “OOD” then
26: Optimize D by GAN loss (Eq. 7)
27: end if
28: end if
29:
30: iter← iter + 1
31: end while
32: return Gθ,3D

C RELATED WORKS

Iterative 3D scene generation. Recent advances in diffusion models (Rombach et al., 2022; Podell
et al., 2023; Zhang et al., 2023) have enabled iterative generation of 3D scenes. DiffDreamer (Cai
et al., 2023) improves multi-view consistency by conditioning on both past and future frames.
SceneScape (Fridman et al., 2023), Text2Room (Höllein et al., 2023), and RGBD2 (Lei et al., 2023)
refine mesh-based representations through depth-conditioned diffusion. WonderJourney (Yu et al.,
2024a) leverages point clouds with VLM-guided re-generation. Text2NeRF (Zhang et al., 2024a) and
3D-SceneDreamer (Zhang et al., 2024b) address error accumulation by utilizing NeRF (Mildenhall
et al., 2020) representations. LucidDreamer (Chung et al., 2023), WonderWorld (Yu et al., 2025),
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RealmDreamer (Shriram et al., 2025), and WonderTurbo (Ni et al., 2025) accelerate generation and
enhance fidelity using 3DGS (Kerbl et al., 2023). While iterative generation methods have made
significant progress, they often suffer from cross-view semantic inconsistency. In contrast, data-driven
approaches leverage rich cross-view priors to better maintain semantic coherence.

Multi-view-oriented 3D scene generation. A major class of data-driven methods adopts a two-stage
pipeline: generate multi-view images first, then reconstruct. CAT3D (Gao et al., 2024) synthesizes
novel views via multi-view diffusion, followed by 3D reconstruction. DimensionX (Sun et al., 2024)
generates temporally coherent videos, expands viewpoints through video diffusion, and reconstructs
3D scenes from frames. ODIN (Wallingford et al., 2024) produces trajectory-conditioned novel views
for subsequent reconstruction. GenXD (Zhao et al., 2025) decouples multi-view and temporal features
to jointly generate static and dynamic scenes. Bolt3D (Szymanowicz et al., 2025) outputs colored
3D Gaussians from images and point maps generated by multi-view diffusion. Prometheus (Yang
et al., 2025) leverages the training paradigm of RGBD latent diffusion models. SplatFlow (Go et al.,
2025a) jointly learns camera poses and multi-view image distributions from text. Wonderland (Liang
et al., 2025) generates continues multi-view latents via video diffusion, then reconstructs scenes using
latent-based reconstruction models. AniGS (Qiu et al., 2025) generates multi-view RGB and normal
images and propose a strategy to reconstruct 4DGS with inconsistent views.

3D-oriented 3D scene generation. Another line of work adopts a 3D-oriented pipeline, employing
rendering during denoising steps. DMV3D (Xu et al., 2023) introduces a large reconstruction-based
denoising model based on a triplane NeRF representation, performing denoising through NeRF-based
reconstruction and rendering. Dual3D (Li et al., 2024a) proposes a dual-mode multi-view latent
diffusion model based on pre-trained image diffusion models and neural surface rendering to reduce
training and rendering costs. VideoMV (Zuo et al., 2024) proposes a 3D-aware sampling strategy to
enhance multi-view consistency during denoising. Director3D (Li et al., 2024b) synthesizes pixel-
aligned 3D Gaussians directly from latent space using trajectory-conditioned multi-view diffusion,
followed by SDS++ refinement. DiffusionGS (Cai et al., 2024) presents a diffusion model that outputs
pixel-aligned 3DGS at each timestep to ensure 3D consistency. Cycle3D (Tang et al., 2025) proposes
a unified generation-reconstruction framework, where the 3D reconstruction module is integrated
into the multi-step denoising process to further guarantee 3D consistency.

Distillation for diffusion models. Distillation techniques for diffusion models focus on transferring
knowledge from a pretrained teacher model to a more compact and efficient student model. Denoising
Student (Luhman & Luhman, 2021) achieves this by training a single-step generator to minimize the
RMSE between the outputs of the teacher and student models. Consistency Model (Song et al., 2023)
enables trajectory distillation, allowing the student to mimic the teacher’s denoising process across
multiple steps. Adversarial Diffusion Distillation (ADD) (Sauer et al., 2024b), Latent Adversarial
Diffusion Distillation (LADD) (Sauer et al., 2024a), Adversarial Post-Training (APT) (Lin et al.,
2025a), and Autoregressive Adversarial Post-Training (AAPT) (Lin et al., 2025b) further enhance
distillation by introducing adversarial objectives to improve the student performance. Distribution
Matching Distillation (DMD) (Yin et al., 2024b) formulates the distillation objective as optimizing
the reverse KL-divergence between the student and teacher distributions. DMD2 (Yin et al., 2024a)
extends this framework by incorporating a GAN-based objective and supporting for multi-step
generators, further improving the flexibility and effectiveness of the distillation process.

D LLM USAGE CLARIFICATION

Large Language Models (LLMs) were utilized solely for language refinement in the preparation of
this manuscript. All LLM-generated content has been thoroughly reviewed and validated by the
authors, who assume full responsibility for the entirety of the paper.

E LIMITATIONS

While the proposed FlashWorld demonstrates strong capabilities in generating high-fidelity and
efficient 3D scenes, several limitations remain. First, despite increasing the number of views, the
diversity and scale of generated scenes are still constrained by the coverage of existing datasets.
Second, the model currently struggles with accurately generating fine-grained geometry, mirror
reflections, and articulated objects. These issues may be alleviated by incorporating depth priors (Yang
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et al., 2024a;b; Chen et al., 2025) and more 3D-aware structural information (Jiang et al., 2025; Wang
et al., 2025) to further enhance the quality of our pixel-aligned 3D Gaussians.

F RGBD RENDERING RESULTS

While FlashWorld does not explicitly incorporate depth supervision, the 3DGS outputs inherently
enable the export of depth maps. In this regard, we present several RGBD rendering results in
Fig. 9. This serves to demonstrate that our model is capable of learning meaningful depth geometric
information solely via image supervision.

In Fig. 10, we show a comparison of the depth rendered by our method with that of Director3D
and Prometheus. It can be seen that our model not only produces clearer and more realistic RGB
rendering results, but also achieves more accurate depth results.

G COMPARISON TO CAMERA-CONTROLLABLE VIDEO GENERATION MODELS

In the main paper, all core compared baselines are capable of generating 3D representations. In
Fig. 11, we present a visual comparison of novel view synthesis results between our method and
ViewCrafter (Yu et al., 2024b), a camera-controllable video generation model. It can be observed
that the 3DGS rendering results of FlashWorld are comparable in visual quality to the video
generation results of ViewCrafter. Additionally, FlashWorld achieves better color preservation
of the input image (e.g., the identity of the cat in the left column) and outperforms in certain
details (e.g., the bushes in the right column). Notably, on one A100 GPU, ViewCrafter requires
2 minutes for generation, while FlashWorld only takes 7 seconds. After generating the scene,
FlashWorld can perform rendering at real time, while ViewCrafter needs to re-run the diffusion.

H HANDLING OCCLUDED AND TRANSPARENT OBJECTS

For occlusions, FlashWorld can automatically infer and complete occluded objects by designing
appropriate camera positions. We present an example in Fig. 12 (bottom) where FlashWorld han-
dles a scenario where most of a car is occluded, yet completes it via view synthesis. For transparent
objects, since 3DGS employs volume rendering, transparent objects can generally be modeled using
low opacity values. We show an example in Fig. 12 (top) where FlashWorld handles a scene
inside a semi-transparent fish tank.

I MORE RESULTS

We provide more generation results in Fig. 13, including object-centric, indoor, outdoor, realistic, and
stylized scenes, to demonstrate the strong and generalizable generation ability of our model.

For video rendering results, please kindly refer to this anonymous website: https://anonymous.
4open.science/w/FlashWorld_Page-5FAD/.
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Figure 9: RGBD rendering results.
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Figure 10: RGBD rendering results of different methods.
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Figure 11: Novel view synthesis results compared to ViewCrafter (Yu et al., 2024b).
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Input Output

Figure 12: FlashWorld is capable of handling occluded and (semi-)transparent objects.
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Figure 13: More generation results. All images are rendered with generated 3DGS.
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