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Abstract

Finding appropriate prompts for the specific
task has become an important issue as the us-
age of Large Language Models (LLM) has
expanded. Reinforcement Learning (RL) is
widely used for prompt tuning, but its inher-
ent instability and environmental dependency
make it difficult to use in practice. In this pa-
per, we propose StablePrompt, which strikes a
balance between training stability and search
space, mitigating the instability of RL and pro-
ducing high-performance prompts. We for-
mulate prompt tuning as an online RL prob-
lem between the agent and target LLM and
introduce Adaptive Proximal Policy Optimiza-
tion (APPO). APPO introduces an LLM anchor
model to adaptively adjust the rate of policy
updates. This allows for flexible prompt search
while preserving the linguistic ability of the
pre-trained LLM. StablePrompt outperforms
previous methods on various tasks including
text classification, question answering, and text
generation. Our code can be found in github.

1 Introduction

From Semantics (Bréal, 1900) to GPT-4 (Achiam
et al., 2023), language models have undergone a
huge evolution. Recently, large language mod-
els (LLM) are not only used in traditional natural
language processing tasks such as text classifica-
tion (Wang et al., 2018) and summarization (Wang
et al., 2019), but are also being applied to a
wider range of tasks including question answer-
ing (Hendrycks et al., 2020), chatting (Ding et al.,
2023), math problem solving (Cobbe et al., 2021),
and planning (Yao et al., 2022). While LLMs per-
form well in these areas, they rely heavily on hand-
crafted prompts. Finding or tuning the prompts au-
tomatically is crucial to use and evaluate the ability
of LLMs in a wider range of applications. Rein-
forcement Learning (RL) is a prominent method for
prompt tuning due to its ability to update prompts

without gradients in the discrete word space. How-
ever, RL is vulnerable to overfitting and is highly
dependent on the environment. This challenge lim-
its the use of RL for a wide variety of LLMs and
tasks Previous methods addressed this by limiting
the prompt length (Deng et al., 2022) or constrain-
ing the action space (Zhang et al., 2022b), but these
approaches reduce the performance of the prompt
due to the restricted search space.

In this paper, we propose StablePrompt that
keeps training stability while ensuring search space
flexibility. We define prompt tuning as an online,
on-policy RL problem for a given dataset and tar-
get LLM. StablePrompt sets the agent model as
the LLM and optimizes the agent model with adap-
tive proximal policy optimization (APPO). APPO
adaptively adjusts the policy update rate by intro-
ducing an anchor model, a snapshot of a point in
time on the training trajectory. This leverages the
strong language understanding capabilities of the
pre-trained LLMs to give the agent model search
space flexibility while maintaining training stabil-
ity. We propose two prompt tuning frameworks
using APPO: StablePrompt and Test-Time Editing
StablePrompt (TTE-StablePrompt). StablePrompt
generates a single prompt appropriate for the entire
dataset, while TTE-StablePrompt generates appro-
priate prompts for each input.

We validate our methods on a variety of tasks
and LLMs. The datasets include text classifica-
tion (Wang et al., 2018), text understanding (Wang
et al., 2019), question answering (Hendrycks et al.,
2020), and instruction induction (Honovich et al.,
2022). For agent and target LLMs, we conduct
experiments on different sizes ranging from 2B to
13B, using various models such as Llama (Tou-
vron et al., 2023), Mistral (Jiang et al., 2023),
Gemma (Team et al., 2024), and Falcon (Al-
mazrouei et al., 2023). To the best of our knowl-
edge, our method is the first RL-based approach
that works on agents LLM larger than 7B. Sta-
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Figure 1: Overview of StablePrompt. We formulate prompt tuning as an RL-framework using LLMs. We use the
target LLM and the given dataset as the world model, and the agent LLM as the policy. We use the response of the
target LLM to the prompt generated by the agent LLM as the reward.

blePrompt achieves State-of-The-Art performance
across various tasks.
Our contributions are summarized as follows:

* We propose StablePrompt, which is an RL-
based prompt tuning method using APPO.
APPO introduces an anchor model and modi-
fies the KL-divergence term to keep training
stable while ensuring the search space is flexi-
ble.

* StablePrompt achieves SoTA performance
on various tasks including text classification,
question answering, and text generation. It
can be also used with various types and sizes
of agents and target LLMs.

* We extend StablePrompt to create an input-
dependent prompt. It achieves high perfor-
mance on tasks that are hard to solve with a
single prompt.

2 Related Work
2.1 Automatic Prompt Tuning

Automatic prompt tuning aims to find the appropri-
ate prompts for a given dataset and target model.
Soft prompt tuning or Continuous prompt tun-
ing (Bailey et al., 2023; Lester et al., 2021) uses
direct gradient descent to search prompts. While it
can find the optimal prompt, the generated prompt
is often not readable and requires a substantial
amount of data to converge. By contrast, discrete
prompt tuning aims to find prompts in the form
of natural language. This approach often operates
like black-box optimization, making it suitable for
API-based LLMs. Discrete prompt tuning methods
can be broadly categorized into generation-based
methods and RL-based methods.

2.2 Discrete Prompt Tuning

Generation-based methods rely on the text gen-
eration abilities of LLMs to find prompts. For
example, APE (Zhou et al., 2022) generates
prompts by using example input-output pairs, Pro-
TeGi (Pryzant et al., 2023) improves prompts
through iterative conversation, and PromptA-
gent (Wang et al., 2023) edits prompts based on a
Monte Carlo tree search. Since these methods rely
on the performance of a pre-trained LLM without
additional tuning, they struggle with tasks that are
outside the scope of pre-training.

RL-based methods formulate prompt tuning as
an online, on-policy RL problem. For example,
GrIPS (Prasad et al., 2022), BoostPrompt (Hou
et al., 2023), and PACE (Dong et al., 2023) use
RL to edit the initial manual prompt. While these
methods are relatively stable in training, they heav-
ily depend on the quality of the manual prompt
and the predefined action space for editing. RL-
prompt (Deng et al., 2022) is a pioneering work
that proposed a method for training agent LLMs
using RL. RLprompt adds an MLP layer to the
agent LLM for training stability and trains only
on this layer. However, as the hidden size of
the agent LLM increases, the computational over-
head increases rapidly. This is impractical for use
in modern LLMs with large hidden sizes. TEM-
PERA (Zhang et al., 2022b) used RL to explore
input-dependent prompting. It adopts an agent
model that shares a stem of the target LLM to gen-
erate input-dependent prompts. However, TEM-
PERA is limited by a predefined action space and
struggles with scalability as the hidden size of the
target LLM increases. StablePrompt is designed
for a scalable and stable RL-based method.
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Figure 2: Training framework of StablePrompt. Generate prompts using the Task agnostic meta-prompt, and
calculate the reward of the generated prompts with training data.
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Figure 3: Illustration comparing APPO to the origi-
nal PPO. The circle represents the constraint of KL-
divergence, and each dot represents the parameter of
the agent model at each time step. APPO is robust to
incorrect rewards because it maintains an anchor model,
while PPO deviates from the optimal prompt as incor-
rect rewards accumulate.

3 Method

3.1 RL Formulation

We formulate the discrete prompt tuning as a prob-
lem of finding the optimal discrete prompt z* for
a given target model Mr and a dataset D. z is
defined in the vocabulary of target model V' and
prompt length L. z satisfies the following equation.

maxycyL R(MT(Z7:B)7y) (D

where R is pre-defined reward function, and input-
output pairz,y € D.

We introduce an agent model M, as LLM that
generates prompts autoregressively from random
input-output pair (z,,y,) € D and task-agnostic
meta prompt. We define this set of inputs as state
s. Detailed meta-prompt can be found in Figure 6.
Agent model generates prompts up to the length [
according to the M, (z|s, z<;). After z is created,
it receives a reward from the R(Mry(z, z),y). The

full training objective function is below:

L
maxpz, R(MT(Zv $)7 y)a Z ~ H Ma(zl|sa Z<l)
=1
()

Original PPO. As a method for training LLM
agents with RL, we improved Proximal Policy Op-
timization (PPO). We refer to the PPO proposed
in Schulman et al. (2017) as the original PPO,
to distinguish it from the version modified for
RLHF Ouyang et al. (2022). To implement PPO
on the LLM agent, we add a value head to the last
layer of the LLM agent, which is trained using
MSE loss to predict reward values for inputs.

Ly = (Vpreds — reward)2 3)

The value expected from the value head is used
with reward to compute advantage A, which uses
Generalized Advantage Estimation (GAE) and
clipped.

A = GAE(vpreds, reward) ()
. 0+ (z]s)

ratio = ———— 5

0i—1(z|s) )

Aclipped = clip(ratio,1 —e,1 +¢€) x A (6)

where 6 is parameter of agent model and ¢ is
timestep.

Then calculate the penalty P which is the KL-
divergence between the previous version of the
agent model and the current version. The full agent
loss is as the follows:

P = KL(0(z5)||0:-1(z]s)) @)
Lagent = Aclipped +P (8)

The final PPO objective is as follows:
LPPO =Ly + Lagent (9)

In practice, we perform parameter-efficient train-
ing using the LoRA (Hu et al., 2021) and update
only the value head and the LoRA adaptor.



3.2 StablePrompt

Anchor Model. Traditional PPO methods limit
updates relative to the previous step, making it dif-
ficult to prevent errors from accumulating. We
introduce an anchor model, which is a copy of the
agent model with validated performance improve-
ments in the training trajectory. The anchor model
starts as a copy of the initial agent and is carefully
updated at a predefined update period u;. If the per-
formance of the current agent model is higher than
an update threshold compared to the anchor model,
the anchor model is updated to the copy of the cur-
rent agent model. Conversely, if the agent model
underperforms the anchor model by less than a roll-
back threshold, the agent model is rolled back to
the anchor model.

This allows the anchor model to adaptively up-
date based on the characteristics of the task. If
the reward signal is stable or requires several up-
date steps to find the optimal prompt, the anchor
model is updated accordingly. On the other hand,
if the reward signal is unstable or does not require
many updates to find the optimal prompt, the an-
chor model is updated in a few steps or not.

Adaptive PPO. The KL-divergence penalty term
(Equation (7)) uses the parameters of the previous
model to prevent the current model from changing
too much. But as the steps get longer, the model can
gradually diverge from the initial. When unstable
reward signals accumulate, this can lead the model
into a local minima.

In RLHF-style PPO (Ouyang et al., 2022),
the penalty term (Equation (7)) is modified by
KL(60:(z|s)||00(z|s)) to prevent the agent model
from deviating too far from the initial version. This
is appropriate for a task like RLHF that needs to
answer a wide variety of questions while not losing
the initial language generation capability. How-
ever, in prompt tuning, RLHF-style PPO limits the
search space of the agent to the initial agent, which
leads to suboptimal prompts.

We propose Adaptive PPO (APPO), which com-
bines the advantages of RLHF-style and original
PPO, achieving both training stability and an exten-
sive search space. We leverage the anchor model
to modify Equation (7) as follows :

Pappo = KL(Qt(Z‘SNyeanchor(z|3)) (10)

This term restricts the agent model from diverg-

ing too far from an anchor model. This approach

allows for more conservative agent updates com-
pared to the original PPO while ensuring a larger
search space compared to RLHF-style PPO. The
full objective of APPO is below:

LaAglznO = Actipped + Pappo (1)
Lappo = Ly + Ligent (12)

agent

Reward Function. We design reward functions
for two tasks: text classification and text generation.
For text classification, we use accuracy and softmax
difference. While accuracy is a good reward func-
tion, it has discrete values, which can lead to many
prompts having the same accuracy. This problem
is often encountered in scenarios with limited train-
ing data, such as few-shot text classification. To
mitigate this, we introduce the softmax difference,
which subtracts the highest value among the incor-
rect options from the value of the correct answer
from the softmax output. The following expres-
sion combines accuracy and the softmax difference,
with coefficients ¢, and ¢, applied respectively.

D = Mr(z,x)i—y — max[Mr(z, )iz, (14)

This metric is used to rank prompts when they have
the same accuracy. The softmax difference is also
widely used in other RL frameworks for classifica-
tion (Han et al., 2023).

For text generation, we use the F1 score directly
as the reward function.

3.3 Test Time Editing StablePrompt.

For tasks that are difficult to solve with a sin-
gle prompt, we expand StablePrompt to generate
prompts that depend on the input query. We call
this extended version as Test-Time Editing Sta-
blePrompts (TTE-StablePrompt).

In TTE-StablePrompt, the input state s consists
of a meta prompt that includes randomly chosen
input-output pairs and the current input. The agent
generates a prompt for the current input. The gen-
erated prompt and current input are fed into the
target model to calculate rewards. Detailed meta
prompt can be found in Figure 6. We keep the same
settings for the other parts of the method.

This approach is different from StablePrompt,
which uses the average value of the training batch
as its reward. The reward of TTE-StablePrompt is
calculated using only the current input. In TTE-
StablePrompt, the instance reward signals train the



Method SST-2 MRPC RTE QNLI MNLI SNLI  Average
FineTunin Fine-Tuning 71.9 59.6 55.7 63.1 411 64.8 59.3
e Soft prompt tuning 78.3 57.1 51.6 89.0 349 55.8 61.1
Manual prompt 89.1 51.0 64.0 73.0 67.0 47.0 65.2
Fixed prompt Zero-shot CoT 57.9 384 81.6 752 71.1 66.3 65.1
Few-shot prompt 55.0 49.0 76.0 82.0 58.0 522 62.0
GrIPS 84.7(+4.6) 55.6(£2.6) 60.9(43.5) 28.9(+12) 4dd(£1.1) 635%2.3) 594
PromptBoosting ~ 65.4(£1.0) 527(£1.1) 71.6(20.9) 71.6(£1.1) 355(:1.4) 52.6(£1.8) 582
APE 83.2(+7.7) 553(£4.9) 78.6(+13) 7T5.0(+2.2) 546(£79) 723 (+4.8)  70.1
Discret prompt tuning ProTeGi 69.2(+8.4) 48.8(+£13) 7T3.2(+6.3) T42AL1T) S56.6(:109) 613(+£123) 640
RLprompt 70.8(£6.5) 56.0 (£1.5) 67.3(£2.5) 62.6(£1.3) 54.6(x1.9) 56.6(£13) 613
Statzggrr:)mpt 92.5(+1.3) 71.3(£3.4) 81.5(+2.8) 759 (£14) 633(*12) T41(£14) 764

Table 1: Result for 6 few-shot text classification datasets. StablePrompt outperforms other discrete prompt tuning
methods. Generated prompts can found in Appendix C.1

Agent Model

Baselines.

Our baselines include supervised fine-

MP G2 G7 M7 L8

55.4 54.9 59.5 62.7 64.9

Target Model

G2 | 51 625 631 625 61.7

Figure 4: Heatmap of few-shot text classification tasks
on diverse target-agent pairs. Reported numbers are
an average of 6 datasets. MP : Manual prompt, G2:
Gemma-2B, G7: Gemma-7B, M7: Mistral-7B, LS:
Llama-3-8B, F11: Falcon-11B. StablePrompt works
well with a variety of LLMs.

agent model to generate prompts optimized for spe-
cific inputs, rather than the entire dataset.

4 Experiment

4.1 Few Shot Text Classification

Datasets. Few-shot text classification is used in
many previous prompt tuning studies, including
Deng et al. (2022); Zhang et al. (2022b). We use
the subsets of GLUE (Wang et al., 2018) and Su-
perGLUE (Wang et al., 2019), including sentiment
analysis datasets (SST-2) and natural language in-
ference datasets (MRPC, MNLI, QNLI, SNLI, and
RTE).

For inference, we use a verbalizer with prede-
fined class label tokens. When determining the pre-
diction of models, we select candidates only from
the set of verbalizers. Detailed dataset statistics
and verbalizer settings can be found in the Table 7.

tuning methods such as LoRA fine-tuning and
soft prompt tuning (Bailey et al., 2023). We also
use fixed prompts including hand-crafted manual
prompts, few-shot prompts, and zero-shot chain
of thought (Zero-Shot CoT) prompts (Wei et al.,
2022).

For direct comparison with StablePrompt, we
use various discrete prompt tuning methods.
These include generation-based methods such as
APE (Zhou et al., 2022) and ProTeGi (Pryzant
et al.,, 2023), and RL-based method such as
GrIPS (Prasad et al., 2022), PromptBoosting (Hou
et al., 2023) and RLprompt (Deng et al., 2022),
which is directly comparable to ours. Therefore,
we conduct experiments on the 330M RoBERTa-
large (Liu et al., 2019) model and include the
results in the Table 8.

Implementation Details. We perform two set-
tings on Few-Shot Text Classification. One is an
experiment with both the target and the agent model
fixed to gemma-1.1-7B-it (Gemma-7B) (Team
et al., 2024) for comparison with the baselines. For
RLprompt, we use GPT2-XL (Radford et al., 2019)
as the agent due to computational overhead.

The other experiment runs StablePrompt on
five target models: gemma-1.1-2B-it (Gemma-2B),
Gemma-7B, Mistral-7B-it-v2.0 (Mistral-7B) (Jiang
et al., 2023), llama3-8B-it (Llama3-8B) (Touvron
et al., 2023), and falcon-11B (Falcon-11B) (Al-
mazrouei et al., 2023), and four agent models:
Gemma-2B, Gemma-7B, Mistral-7B, Llama3-8B.
We report the average accuracy of 6 datasets in Ta-
ble 1.

All experiments are performed with three dis-
tinct random seeds. For the generated prompts, we



Human prompt

Method Human prompt + PACE APE StablePrompt
Agetn Model - - GLM OPT InstructGPT3.5 Mistral
Parameters - - 130B 175B unknown 7B
Antonyms 85.0 87.0 78.0(£0.5)  82.7(£0.7) 81.0(x0.7) 83.7(£0.9)
Cause selection 84.0 85.0 53.3(£0.1) 65.3(£1.0) 72.0(£1.0) 88.7(%+1.0)
Passivization 100.0 100.0 7.3(£0.0)  100.0(£0.0)  100.0(£0.0) 100.0(£0.0)
Second Letter 99.0 100.0 3.3(£0.9) 100.0(£0.0)  100.0(£0.0) 100.0(£0.0)
Sentiment 91.0 92.0 87.7(£0.8) 82.7(£0.9) 88.3(x0.8) 90.7(£0.9)
Translation en-fr 89.0 88.0 79.7(£0.8)  85.3(£0.8) 84.3(10.8) 90.3(£1.0)
Average on 6 tasks 91.3 92.0 51.8 68.6 89.3 92.8
Average on 24 tasks 79.8 80.3 - - 71.5 81.5

Table 2: Result for 6 selected tasks and an average of all 24 tasks in the Instruction induction dataset with
InstructGPT3.5 as the target model. Full results can be found in Table 12.

BBII 1I
Text Text Instruction
Classification Generation Induction
Manual Prompt 51.57 37.61 33.70
PromptAgent 28.50 - -
APE 56.46 49.59 51.94
ProTeGi 56.58 55.61 51.60
StablePrompt 57.75 61.36 65.80
(Ours)

Table 3: Result for BigBench-Hard Instruction Induc-
tion (BBII) and Instruction Induction (II) datasets. For
BBII, we divided it into two parts based on the type of
task. Full results can be found in Table 10 and Table 11.

use the template "[prompt] Input : [input] Output
" for prediction. We use only 16 samples per label
for training. The generated prompts of each step
are queued in pairs with rewards. At the test time,
the top 5 prompts in order of reward are selected for
testing and report the highest performance. This is
the same method as RLprompt. Detailed numbers
are shown in the Table 6.

Results. Table 1 shows the performance of var-
ious baselines and StablePrompt. StablePrompt
achieves State-of-The-Art (SoTA) performance on
all tasks except QNLI. In QNLI, StablePrompt also
achieves the best performance among the discrete
prompt tuning methods. The average score also
outperforms APE and achieves SoTA. We present
the full generated prompt in the Appendix C.1.
Figure 4 illustrates the performance of Sta-
blePrompt across various Agent-Target pairs.
The values in the heatmap are the averages of
six datasets. StablePrompt outperforms man-
ual prompts across all pairs except (Gemma-2B,
Llama3-8B) pair. These results demonstrate that

our method is robust to model sizes, such as a small
agent model of 2B and a large target model of 11B.

Specifically, when comparing Mistral-7B and
Falcon-11B, the manual prompt performance is
higher with falcon-11B, but with appropriate
prompting from StablePrompt, Mistral-7B outper-
forms falcon-11B. This demonstrates that an ap-
propriate prompt allows a small model to easily
understand a task and achieve performance compa-
rable to a large model.

4.2 Induction Task

Datasets. We experiment with an induction task
in which the agent has to provide a rule for
an input-output pair as a prompt. We use the
Instruction Induction dataset (II) (Mishra et al.,
2022) and BigBench-Instruction Induction dataset
(BBII) (Zhou et al., 2022), a subset of BiG-
Bench (Ghazal et al., 2013). These include tasks
such as editing the input sentence or finding an-
swers according to rules. Each task requires
prompts in the form of instructions designed to
help the target model induce the correct answer.

The tasks consist of text classification and text
generation, requiring an understanding of various
fields such as spelling, morphosyntax, and pho-
netics. We conduct experiments on BBII, which
has 20 subsets, and Instruction Induction, which
has 23 subsets. The dataset details can be found
in Appendix A.3.

Implementation Details. We perform experi-
ments with two different target models. One is
the Gemma-7B and the other is InstructGPT3.5.
For the first experiments, due to the large number
of datasets, we use APE and ProTeGi as baselines,
and we include PromptAgent (Wang et al., 2023)



Datasets MMLU OpenbookQA
Subsets STEM Spmal Humanities Other Average Average
Sciences
manual prompt + fewshot ~ 47.1 61.6 554 54.5 53.9 62.6
Zero-Shot CoT 49.2 59.6 54.5 56.0 54.2 -
APE 45.0 59.3 56.4 51.1 52.1 70.7
ProTeGi 45.7 59.7 56.0 55.3 533 71.5
RLprompt 46.5 55.1 56.6 55.7 52.8 63.6
StablePrompt (Ours) 47.8 63.6 58.6 59.0 56.3 72.2
TTE-StablePrompt (Ours)  49.6 65.7 59.6 58.8 57.5 78.7

Table 4: Results for QA tasks. We use MMLU and OpenbookQA datasets with Gemma-7B as the target model. Full

results can be found in Table 13.

which is a Monte Carlo tree search-based genera-
tion method designed for BigBench text classifica-
tion tasks.

In experiments with InstructGPT3.5, we use
APE to reduce the number of steps due to cost.
For APE, we use various agent models such as
(Zhang et al., 2022a; Zeng et al., 2022). We use
PACE (Dong et al., 2023), an RL-based editing
method designed for induction tasks, and a human
prompt from the same paper as the baseline.

For text classification, we use the same reward
function as Section 4.1. For text generation, we use
the F1 score as a reward function. We use the same
template as Section 4.1 for both BBII and II.

Results. Experiments on the Gemma-7B target
model are presented in Table 3. Our method
achieves SoTA on both BBII and II. In particular, it
outperforms the text generation tasks II and BBII.
This shows the effectiveness of the RL framework
on the text generation tasks, where the format of
the output is important.

Table 2 shows the experiments conducted using
InstructGPT3.5. StablePrompt outperforms even
when using the large black-box model Instruct-
GPT3.5 as the target model. This highlights the
benefits of the RL-based method, which works well
when the target model is not publicly accessible.

Note that our method outperforms APE, which
uses models larger than 100B as the agent. In par-
ticular, the 7B model trained by StablePrompt pro-
duces better prompts than the commercial black
box model InstructGPT3.5. This shows that our
method does not rely on the ability of the agent
model and is cost-efficient by using a small model.

4.3 Question Answering

Datasets. We conduct an experiments on a Ques-
tion Answering (QA) task. In this paper, we use
the MMLU (Hendrycks et al., 2020) and Open-
bookQA (Mihaylov et al., 2018) dataset, which re-
quires users to answer questions from various fields.
We report the performance of 57 question topics
from MMLU, categorized into STEM, Humanity,
Social Science, and Others. For OpenbookQA, in
addition to the question, a fact relevant to each
question is provided as a hint, which we include as
a prompt before the question during experiments.
The verbalizer is used in the same way as for text
classification. We present 4 options (A,B,C,D) in
a question and use the alphabet corresponding to
each option as a verbalizer. The reward function
is the same as Section 4.1. Detailed numbers of
datasets can be found in Appendix A.3.

Implementation Details. The target and agent
models are both fixed with Gemma-7B. For the
prompt, we use the template "/ Prompt] Question :
[Question] Choice : [Choice] Output :". We train
the model using 20 question-answer pairs from the
validation dataset for each topic.

Results. Table 4 shows the performance of var-
ious baselines. StablePrompt achieves the high-
est performance among the baselines. In particu-
lar, StablePrompt shows comparable results with
STEM while outperforming all other methods.
There are many different questions on the same
topic that are difficult to solve with a single prompt.
TTE-StablePrompt, which gives different instruc-
tions depending on the input within the same sub-
ject, is more effective than StablePrompt, which
only uses a single prompt. TTE-StablePrompt also



Choice

A : This feature has a strong effect on the model

B : This feature does not have a strong effect on the model
C : It is not possible to comment on the importance of this
feature without additional information

D : Nothing can be determined.

Question

In building a linear regression model for a
particular data set, you observe the coefficient
of one of the features having a relatively high
negative value.

This suggests that :

APE StablePrompt TTE-StablePrompt

Remember the bias-—
variance trade-off in
model building.
Consider whether a high
negative coefficient

**Instructions:** Look
at the input and try to
understand what
information is being
presented. Consider the

Carefully read the
statement and consider
the available choices.
Based on you
understanding of the
information ..

Figure 5: Generated prompts and input in machine learning subset of MMLU dataset. We truncate the latter part of
the generated prompt for readability. The full prompt can be found in Appendix C.5

Original ~ RLHF-style APPO target model to Gemma-7B.
PPO PPO (Ours)

SST2 91.5(07) 91.1(£1.0) 92.5(:1.3) Results. Table 5 shows the performance of PPO
MRPC @( 19.0)  70.6(+22) 713(+3.4) variants. APPO outperforms on average across all
RTE 80.2(+£2.1) @( 120) 81.5(+2.8) tasks by leveraging the strengths of both the origi-
QNLI 70.2(£2.1) ﬁ( £1.6) 75.9(+14) nal PPO and RLHF-style PPO through adaptive an-
MNLI 66.2(+2.5) 61.0(x1.2) @( +1.2) chor model updates. APPO can either behave like
SNLI 69.5(£1.9) 70.4(+3.3) m(j:IA) the RLHF-style PPO, with no updates, or like the

— original PPO, with updates in each update period.
Average 73.3 742 76.4 In particular, when the performance gap between

Table 5: Result for ablation study of PPO components
on few-shot text classification tasks. We report the av-
erage and standard deviation of experiments from 5
distinct random seeds.

performs better than Zero-Shot CoT, which uses the
same multi-step reasoning and is known to perform
well on maths and science tasks.

Figure 5 shows question-choice pairs from the
machine learning dataset in MMLU, along with
the prompts generated by APE, StablePrompt, and
TTE-StablePrompt. APE and StablePrompt gen-
erate almost semantically similar prompts which
can be generally used for all questions in subject.
However, TTE-StablePrompt generates prompts
appropriate to the given question (emphasized with
underlining). This shows that a simple TTE exten-
sion effectively creates an input-dependent prompt.

4.4 Ablation Study

Experiment Settings. We conduct an ablation
study for APPO. We use the same settings as few-
shot text classification. We fix the agent and the

the original PPO and RLHF-style PPO is signifi-
cant, APPO adapts to the better-performing model.
This pattern is observed in tasks like MRPC, QNLI,
and MNLI. Additionally, in tasks such as SNLI,
APPO can identify more appropriate prompts than
either the original or RLHF-style PPO alone. This
shows that APPO takes advantage of PPO and
RLHF-style PPO and reaches a better convergence
point.

5 Conclusion

In this paper, we propose a novel RL-based prompt
tuning method, StablePrompt. StablePrompt de-
fines prompt tuning as an online, on-policy RL
problem and introduces APPO. We validate that
StablePrompt outperforms than other methods
across various target models and tasks. To the
best of our knowledge, this is the first RL-based
prompt tuning method for models larger than 7B.
StablePrompt demonstrates the potential to inte-
grate existing RL methodologies into prompt tun-
ing, and we believe there is a capacity for further
expansion of RL-based prompt tuning approaches.



Limitation

The limitations of this study can be summarized
as follows: (1) This paper does not cover exper-
iments that are significantly beyond the scope of
prior learning, such as medical and legal domains;
however, since it is a training-based method, it is
expected to be scalable in future work. (2) This
paper can be used to abuse LLM for specific pur-
poses. This is a particular threat to commercial
LLMs in the API format because they are based on
black-box optimization.
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A Experiment Details

A.1 RL parameters

We summarize the RL-related hyperparameters
used in our experiments in the Table 6. We used
the same hyperparameters for all tasks.

A.2 Meta Prompt

We show the meta-prompt used as input to Sta-
blePrompt in Figure 6.

A.3 Dataset Details

Few-shot Text Classification Detailed number
and verbalizer settings can be found in Table 7.

Induction Task BIG-Bench Instruction Induc-
tion (BBII) is a subset of 21 tasks with clear and
human-written instructions that can be applied to
all examples in the dataset (Zhou et al., 2022). The
detailed type and metric for each dataset can be
found in Table 10.

Instruction Induction is conducted with 24 in-
duction tasks proposed in (Honovich et al., 2022).
The tasks span many features of language under-
standing, from simple phrase structure to similarity
and causality identification. The detailed metric for
each dataset can be found in Table 11.



HyperParameters Stableprompt
Learning Rate 1.00E-05
Value loss Coefficient 0.1
Gamma 1

GAE Lambda 0.95
cliprange 0.2

Ut 5

Update Threshold(%) 0.05
Rollback Threshold(%) 0.1
Prompt per Batch 4
Maximum Prompt Length 150

Cq 10

Cs 0.1

Table 6: Detail parameters used in StablePrompt.

Dataset Type ICl ITrainl=IDevl [Testl Verbalizer
SST2  sentiment 2 32 1.8k [yes,no]
MRPC NLI 2 32 1.7k [yes,no]
RTE NLI 2 32 0.3k [yes,no]
QNLI NLI 2 32 9.8k [yes,no]
MNLI NLI 3 48 10k  [yes,maybe,no]
SNLI NLI 3 48 9.8k [yes,maybe,no]
MMLU QA 4 - - [A,B,C,D]

Table 7: Details of the datasets for few-shot classifica-
tion.

Question Answering The MMLU QA dataset
consists of 15,908 questions. The dataset is divided
into subsets according to 57 subjects. We use the
validation set of all subsets as the training set. The
total number of validation sets is 1,540. Each sub-
set has a minimum of 100 test samples, with a total
of 14,079 test questions.

A.4 Baseline Details

APE For a fair comparison, we scale the num-
ber of prompts generated by APE to be the same
as the number that StablePrompt generates during
training. Also, unlike the original APE, we use the
entire validation set to determine the final prompt.
This setting is more favorable than the original APE
and improves performance.

ProTeGi We use additional settings same as APE
and limited the number of consecutive conversa-
tions to two.

RLprompt For RLprompt, as the hidden size of
the agent model increases, the size of the MLP
layer increases as well, making it difficult to train

Meta prompt Template

I gave a friend an instruction and five inputs.
The friend read the instruction and wrote an output for
every one of the inputs.
Here are the input-output pairs:

Input : [Q4] Output : [44]
Input : [Q;] Output : [4;]

The instruction was :

Meta prompt Template - TTE

Look at the instruction and current input,
rewrite instruction for current input.
Here are the input-output pairs:

Input : [Q4] Output : [44]
Input : [Q;] Output : [4,]

Current Input Here : [Q¢]
The Rewritten instruction was :

Figure 6: Detail template of meta prompt used in Sta-
blePrompt and TTE-StablePrompt

the model. Therefore, we use GPT2-XL (Radford
et al., 2019) 1.5B, which is the largest model in the
official implementation.

PromptAgent We utilize the official repository
and only used it for the text classification prob-
lem as no evaluation metric was specified for text
generation. PromptAgent is known to work well
on high-performance LLMs such as GPT-4. How-
ever, in our experiments, we found that using small
7B-level models as agents significantly degrades
performance.

A.5 Training Details

We experiment on a single A100 GPU. For text
classification, we use 100 epochs and need 2-3
GPU hours per task. For question-answering and
induction tasks, we use 30 epochs and need 1-2
GPU hours per task. Training time can be changed
by the average length of inputs.

B Additional Experiments
B.1 Text Classification in Small Target Model

Implementation Details To compare the perfor-
mance of our methods with traditional prompt tun-
ing baselines, we perform text classification again
on a relatively smaller target model. The target
model is fixed as RoOBERTa-Large (330M). We re-
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Figure 7: Training curve of mean reward and value loss
by steps.

place the MRPC dataset with the MR dataset from
glue. Note that the MR dataset is a sentiment clas-
sification task, not NLI. For RLprompt, the agent
model is GPT-2, as specified in the original paper.
For StablePrompt, the agent model used is Mistral-
7B.

Results The experimental results are shown in
Table 8. StablePrompt demonstrates the highest
performance across all datasets except MR. Even
in MR, it shows comparable performance to TEM-
PERA, which uses Test-Time Editing for multi-step
reasoning, thereby proving the high performance
of our model.

B.2 Ablation Study

Training curve  Figure 7 shows the mean reward
and value loss by steps. We experiment on the few-
shot text classification task with the SST2 dataset.
This shows a steady increase in reward, indicating
that our method is training well. In addition, value
loss, the MSE loss of the reward expected by the
value head, also falls steadily over time. This shows
that the value head is also aligned with the reward
model.

Reward Function Ablation Table 9 shows an
ablation study for reward function. We use the
same setting as section 4.1, but change the agent
and target model to Mistral-7B. For text generation,
we use only the f1 score. The continuous value
of the f1 score is proper for the reward function.
But in text classification, we introduce softmax dif-
ference. A smaller batch size will result in many
prompts with the same accuracy, which will con-
fuse the model. To avoid this, softmax difference
ranks prompts with the same accuracy. In practice,
not using softmax difference results in a perfor-
mance penalty.

C Generated Prompt

We attach the generated prompts below, which we
can not show on the page. For each task, we post
one of the best-performing prompts.

C.1 Few-Shot Text Classification

SST2 **Write yes or no for each input, based
on whether the input describes a movie that would
be reasonably entertaining or not.** **Input 1:¥*
Reasonably entertaining sequel **Output:** yes
**Input 2:** Familiar and predictable, and 4/5ths
of it **Output:** no

MRPC **Write "Yes" or "No" for each sentence
pair, based on whether the second sentence is a
paraphrase of the first sentence.** **Here are the
outputs:** - Sentencel : The woman was hospital-
ized June 15 , Kansas health officials said . Sen-
tence2 : Missouri health officials said he had not
been hospitalized and is recovering . **QOutput:**
No - Sentencel : CS ’s other main division , Finan-
cial Services , made a 666 million franc net profit
, six percent below the prior quarter . Sentence?2 :
CS Financial Services made a 666 million franc net
profit , six percent less than in the fourth quarter
of last year . **Output:** Yes - Sentencel : It has
been named Colymbosathon ecplecticos , which
means " astounding swimmer with a large penis "
. Sentence? : He and colleagues named it Colym-

bosathon ecplecticos , which means " swimmer
with a
RTE **For each input-output pair:** * Carefully

read the premise. * Consider the relationship be-
tween the premise and the hypothesis. * Based on
the information provided, determine whether the
output (yes/no) is consistent with the premise and
hypothesis. * Provide your reasoning and explana-
tion for your answer.

QNLI **Given a question and a sentence, de-
termine whether the sentence provides evidence
that the statement in the question is true or false.**
From the input-output pairs, it can be observed
that your friend has a correct understanding of the
instruction. They correctly identified whether the
given sentence provides evidence to support the
claim in the question for each of the five inputs.

MNLI **Step 1: Analyze the premise** - Care-
fully read the given premise. - Identify the main
points mentioned. - Understand the emotional tone
or sentiment expressed. **Step 2: Consider the



SST2 MR RTE QNLI MNLI SNLI
Fine-Tuning Fine-Tuning 80.4(£3.9) 674(£9.7) 58.6(£3.9) 60.2(+47) 47.8(£7.5) 54.6(£9.7)
Continous oromp; St POMPLTURING  T3.8(110.9)  88.6(114.6) 547(£10.9) 49.7(£02) 33.2(£0.0) 36.1(+14.6)
PIOMPY  Blackbox-Tuning  89.1(£0.9)  932(£13)  52.6(£0.9) 48.8(+£0.6) 42.9(+2.0) 46.6(+1.3)
Manual Prompt 82.8 80.9 516 50.8 517 311
In-Context Demo  85.9(+£0.7)  80.6(x1.4) 60.4(+0.7) 53.8(104) 534(£1.5) 47.1(+1.4)
Discrete sromt GtIPS $7.1(£1.5)  80.0(x2.5 48.6(:1.0) 50.4(£04) 352(:03) 33.3(£0.0)
PrOMPL promptBoosting  89.8(+1.1)  86.0(+3.5)  S57.2(£27) 56.9(+2.1) 43.8(:1.1) 53.6(+3.3)
APE 82.5(£4.7)  82.8(£4.7)  573(:4.1) S545(£32) 45.6(£1.8) 49.6(£3.5)
RLprompt 90.1(£1.8)  86.7(£2.4) S50.2(£3.1) 33.3(£0.0) 35.0(£0.4) 32.1(£0.2)
Test-time editing tempera 91.9(£2.0) 88.0(£1.1) 60.3(£2.2) STA(ELS) 452(+£2.0) 56.4(+3.2)
Discrete prompt Stableprompt 92.8(+£0.8) 87.4(£0.1) 62.9(:0.8) 59.1(£0.6) 49.1(£2.6) 55.3(£0.9)

(Ours)

Table 8: Mean and standard deviation of accuracy on three random seeds of the few-shot text classification task on

the roberta-large (330M) target model setting.

Dataset SST2
Ours 94.6(+0.6)
w/o softmax difference 93.31(40.8)

Table 9: Ablation study of reward function terms on
sst2 dataset.

hypothesis** - Examine the proposed hypothesis.
- Determine the reasoning behind it. - Identify the
evidence or logic supporting it. **Step 3: Predic
the output** - Based on your understanding of the
premise and hypothesis, predict the likely output.

SNLI Imagine you're given some information
about a scene, like a sentence describing what’s
happening. Your job is to analyze the information
and predict whether the provided hypothesis is true
or false based on the given premise. For exam-
ple: **Premise:** A dog catches a disk in the air.
**Hypothesis:** A dog is eating kibble out of a
red bowl. **QOutput:** No Remember to carefully
analyze the details of the scene and consider how
they relate to the hypothesis

C.2 BigBench-Hard Insstruction Induction
We choose random 3 tasks from the BBH-II dataset.

Causal Judgment For each input, write an out-
put indicating whether the person intentionally ob-
tained the item in question. From the outputs, we
can see that: **Input 1:** Joe intentionally did
not want the commemorative cup, despite being
offered it. **Input 2:** Professor Smith intention-
ally took the pen despite knowing it was only for
administrative assistants. Therefore, both outputs

indicate that the people intentionally obtained the
items they received.

Navigate **Write True or False based on the
following statement:** "If you always face forward
and take an even number of steps, you will end up
at the same starting point." **The outputs shows
that the statement is True for all of the input except
for the last one.** Therefore, the answer is **B :
False. **

Tense Change each sentence given into the Past
Perfect Tense. **The provided input-output pairs
are all correct.** **Here are the sentences in Past
Perfect Tense:** 1. She had washed her hands
before she cooked the dinner. 2. The weather
changed, but the team had planned its next move.
3. The girl bought the telescope her teacher had
recommended to her. 4. I had finished the meal. 5.
Raj had read a novel.

C.3 Instruction Induction

We choose random 3 tasks from the II dataset.

Negation For each of the following statements,
simply negate the main clause. **Here are the
corrected outputs:** **] ** Fritschel said the
man’s sleep was disturbed by dreams. **Output:**
Fritschel did not say the man’s sleep was disturbed
by dreams. **2.*%* In terms of most populous coun-
ties in the United States the lowest ranking is River-
side. **Qutput:** In terms of most populous coun-
ties in the United States the lowest ranking is not
Riverside.

Num to Verbal **Write the word form of the
given number for each input.** The outputs are



correct for all the inputs. **Input :** 87 **Out-
put:** Eighty-seven **Input :** 75 **QOutput:**
Seventy-five **Input :** 77 **QOutput:** Seventy-
seven **Input :** 88 **Output:** Eighty-eight
**Input :** 82 **Output:** Eighty-two

Taxonomy Animal **For each input, write the
three most common animals from the input.**
**Here are the outputs:** **1. sock, helicopter,
dolphin, cat, shirt, lion** - Dolphin, cat, lion **2.
motorway, truck, octopus, dress, fly, tortoise** -
Fly, octopus, tortoise **3. lizard, dolphin, nurse,
goat, white, gold** - Goat, lizard, dolphin **4.
kiwi, bat, gray

C.4 Question Answering
We choose random 4 subjects from MMLU.

Moral Scenarios Look at these input-output
pairs. Each pair consists of a scenario and a judg-
ment about whether the main character in the sce-
nario does something clearly morally wrong, ac-
cording to ordinary moral standards in the US as
of 2020. Try to understand the logic behind each
judgment. Can you guess the output for the next
scenario, based on the patterns you’ve identified?

Machine Learning **For each input-output
pair:** 1. **Look at the input carefully.** Iden-
tify the key terms, concepts, or characteristics. 2.
**Consider the output.** What does it suggest
about the relationship between the input and the de-
sired result? 3. **Reflect on your knowledge** of
related concepts and theories. Identify any connec-
tions between the input and output. 4. **Make an
educated guess** about the output based on your
understanding of the input and the relationships
you identified.

High School Biology **For each question:** -
Carefully read the input information. - Identify
the main idea or central detail in the input. - Con-
sider the available options and think about which
one best matches the input. - Select the option
that aligns with the information given in the in-
put. Remember to take your time and focus on
understanding the input before making your guess.

College Chemistry **For each input-output
pair:** 1. **Analyze the input:** Carefully re-
view the given information about the elements or
the chemical compound. Look for any relevant
properties or characteristics. 2. **Consider the
possibilities: ** Recall the different options given

in the choices (A, B, C, D). 3. **Apply your knowl-
edge:** Use your understanding of the relevant
concepts or principles to determine which option
is most likely to be the correct output. 4. **Check
your reasoning:**

C.5 Full prompt of Figure 5

Question question : In building a linear regres-
sion model for a particular data set, you observe the
coefficient of one of the features having a relatively
high negative value. This suggests that

Choices choices : A : This feature has a strong
effect on the model (should be retained) B : This
feature does not have a strong effect on the model
(should be ignored) C : It is not possible to com-
ment on the importance of this feature without addi-
tional information D : Nothing can be determined.

APE For each input-output pair provided, care-
fully read the statement and consider the available
choices. Based on your understanding of the in-
formation presented, choose the option that best
aligns with the given output. Remember to analyze
the statements, identify key concepts, and apply
your knowledge to make an informed guess about
the correct answer

StablePrompt **Instructions:** Look at the in-
put and try to understand what information is being
presented. Consider the possible outputs based on
the input characteristics. Choose the most likely

TTE-StablePrompt Remember the  bias-
variance trade-off in model building. Consider
whether a high negative coefficient for a feature
might indicate that the model is overly tuned to
the training set (high variance) or truly capturing
meaningful information from the feature.

D Full Experiment Results

D.1 Question Answering

We show the performance on the entire QA dataset
in the Table 13.

D.2 Instruction Induction

We show the performance on the BBH-II and II
full datasets in the Table 10 and Table 11. We also
show the results for APE, StablePrompt, and hu-
man prompt for both the Target and Agent models
using InstructGPT3.5.



task name type Metric fewshot manual APE ProTeGi PromptAgent StablePrompt
causal judgment Multiple Choice  Accuracy 58.75 52.50 58.13  56.69 31.65 58.75
disambiguation qa Multiple Choice  Accuracy 64.29 52.19 64.00 61.40 2.54 64.04
epistemic reasoning Multiple Choice  Accuracy 43.69 57.16 5840  63.79 13.92 61.47
hyperbaton Multiple Choice  Accuracy 47.89 56.52  75.60  76.06 56.96 75.60
implicatures Multiple Choice  Accuracy 83.33 83.12 8095  73.59 55.70 79.00
logical fallacy detection ~Multiple Choice  Accuracy 58.19 63.50 56.50  58.23 37.97 58.34
movie recommendation ~ Multiple Choice =~ Accuracy 49.36 37.66 5530 67.23 22.78 55.30
navigate Multiple Choice  Accuracy 69.22 49.79 5228  54.02 35.44 53.30
presuppositions as nli Multiple Choice  Accuracy 42.55 40.82 4156  41.42 0.00 43.40
ruin names Multiple Choice  Accuracy 12.44 30.14  32.53  27.99 21.52 37.08
snarks Multiple Choice  Accuracy 35.79 4238 5099  50.99 0.00 52.32
sportsunderstanding Multiple Choice  Accuracy 52.37 59.38  56.50  55.98 2.00 60.12
dyck languages Generation Exact Match 0.00 0.00 0.00 0.00 - 0.00
gender inclusive Generation ExactMatch 930 8600 67.13  93.77 - 89.70
sentences german

object counting Generation Exact Match ~ 7.13 0.00 1429  33.33 - 15.71
operators Generation Exact Match ~ 5.53 4945 57.14  50.00 - 64.29
tense Generation Exact Match ~ 15.29 93.85 96.76  100.00 - 98.43
word sorting Generation Exact Match ~ 0.00 20.14  96.43  75.00 - 100.00

Table 10: Results of full experiment of BigBench-Hard Instruction Induction datasets with Gemma-7B as target

model.

taskname Metric fewshot manual APE  ProTeGi StablePrompt
antonyms Exact Match 0 0.43 0.625 0.25 0.75
word in context Exact Match 0.55 0.46 0.375 0.5 0.8125
rhymes Exact Match 0 0.03 0.0625 0.25 0.0625
num to verbal Exact Match 0 0.61 0.9375 1 1
cause and effect Exact Match 0 0.24 0.6 0 0.7
larger animal Exact Match 0 0.03 0.5625 0.25 0.9375
second word letter Exact Match  0.12 0.08 0.0625 0.25 0.1875
taxonomy animal Exact Set 0 0 0.375 0.375 0.5
negation Exact Match 0 0.16 0.6875 0.5 0.75
common concept F1 0.03 0.04 0.5 0.5 0.75
diff Exact Match ~ 0.02 0.99 1 1 1
translation en-es Exact Match 0 0.15 0.25 0.25 0.4375
orthography starts with  Exact Set 0 0.375 0.125 0 0.375
sentiment Exact Match 0.5 0.83 0.6875 1 1
informal to formal F1 0 0.27384 0.425  0.2422 0.4641
sum Exact Match 0 0.99 1 1 1
singular to plural Exact Match 0 0.75 0.9375 1 1
active to passive Exact Match 0 0.53 1 1 1
translation en-de Exact Match 0 0.1 0.1875 0.5 0.3125
sentence similarity Exact Match 0 0.2 0.315 0.25 0.5
translation en-fr Exact Match 0 0.07 0.06 0.5 0.315
letters list Exact Match 0 0 0.6875 0.5 0.875
first word letter Exact Match 0.03 0.73 0.8775 1 0.9375
synonyms Contains 0 0.02 0.125 0.25 0.125

Table 11: Results of full experiment of Instruction Induction datasets with Gemma-7B as target model.



InstructGPT3.5 APE Human Human+ PACE StablePrompt(Ours)

larger animal 95.0 93.0 95.0 93.0
antonyms 80.0 85.0 87.0 85.0
common concept  11.9 15.0 16.0 24.4
sentence similarity  10.0 38.0 35.0 31.0
synonyms 27.0 15.0 17.0 43.0
word in context 57.0 54.0 58.0 60.0
second letter 100.0  99.0 100.0 100.0
cause selection 80.0 84.0 85.0 92.0
passivization 100.0  100.0 100.0 100.0
Translation en-fr 87.0 89.0 88.0 90.0
sentiment 89.0 91.0 92.0 90.0
diff 100.0  100.0 100.0 100.0

first word letter 100.0  100.0 100.0 100.0
informal to formal  50.1 64.0 67.0 58.0
letters list 100.0  100.0 100.0 100.0
negation 76.0 79.0 83.0 84.0
num to verbal 99.0  100.0 100.0 99.0
ortho starts with 68.0 72.0 71.0 66.0
rhymes 100.0 61.0 61.0 95.0
singular to plural ~ 96.0  100.0 100.0 99.0
sum 100.0  100.0 100.0 100.0
taxonomy animal  70.0 98.0 96.0 75.0
Translation en-es  91.0 90.0 89.0 89.0
Translation en-de  83.0 89.0 88.0 83.0

Table 12: Detail accuracy of 24 tasks of instruction induction datasets with InstructGPT3.5 as target model



Fewshot+

Type Subject Manual CoT APE ProTeGi StablePrompt ggliePrompt
Prompt
abstract algebra 30.00 33.00 31.00 35.00 32.00 33.94
anatomy 50.37 51.85 49.63 52.95 54.81 56.46
astronomy 57.89 64.47 5395 56.58 64.47 60.00
college biology 66.67 67.36 5698 65.80 64.58 68.75
college chemistry 38.00 34.00 39.00 40.00 43.00 39.29
college computer science 41.00 48.00 32.80 37.00 40.00 43.75
college mathematics 32.00 34.00 33.00 33.00 34.00 40.19
college physics 39.22 3431 3233 3529 36.27 35.71
computer security 70.00 67.00 62.20 67.00 67.00 66.07
STEM conceptual physics 51.06 55.31 51.06 49.79 49.36 49.58
electrical engineering 51.72 55.17 4621 40.00 53.10 56.34
elementary mathematics 38.89 60.05 38.10 37.30 39.15 44.01
high school biology 70.65 64.52 65.81 69.81 71.94 70.94
high school chemistry 52.71 5271 5222 4582 49.26 51.44
high school computer science 61.00 58.00 54.00 51.00 55.00 55.00
high school mathematics 36.30 33.70 38.52 3296 34.81 37.13
high school physics 26.49 31.13 3245 33.77 32.45 43.50
high school statistics 45.37 43.52 46.76 50.46 45.83 45.83
machine learning 35.71 46.43 39.29 35.71 41.07 44.67
econometrics 32.46 3421 3246 31.58 32.46 40.63
high school geography 66.67 61.11 56.57 59.69 73.74 76.46
high school government and politics  74.09 76.17 67.88 70.89 77.72 73.64
high school macroeconomics 54.10 55.13 50.00 56.15 58.97 57.75
high school microeconomics 55.46 55.46 53.36 56.15 63.03 64.58
high school psychology 76.33 73.58 71.19 72.66 75.78 81.64
Social Science high school psychology 76.33 73.58 71.19 72.66 75.78 81.64
human sexuality 62.60 52.76  61.07 58.78 64.89 63.19
professional psychology 51.80 53.43 49.51 48.09 54.11 55.72
public relations 60.00 5455 63.64 59.09 55.67 63.39
security studies 50.20 48.57 5224 4735 50.20 50.20
sociology 66.17 67.19 65.17 70.65 71.64 67.79
us foreign policy 75.00 69.00 76.00 73.00 73.00 78.00
formal logic 37.30 38.10 36.51 33.33 38.10 39.84
high school european history 63.64 57.58 6242 6545 68.48 64.84
high school us history 62.75 56.86 6520 55.39 70.59 70.59
high school world history 68.35 67.51 7123 64.14 75.00 77.59
international law 61.98 65.29 6446 66.12 71.07 67.97
jurisprudence 57.41 63.89 62.04 62.04 56.48 66.97
Humanities logical fallacies 63.19 65.03 68.10 66.87 64.42 64.74
moral disputes 49.71 51.16 5896 55.49 57.23 59.94
moral scenarios 24.36 2793 2726 29.27 30.50 26.67
philosophy 56.91 54.66 54.66 57.23 57.23 58.75
prehistory 60.49 52.16 58.64 56.17 58.95 58.96
professional law 40.61 38.53 32.01 41.98 38.98 43.05
world religions 73.68 69.59 7193 74.27 74.27 75.00
business ethics 47.00 63.00 55.00 51.00 55.00 55.36
clinical knowledge 54.34 56.60 51.20 51.70 62.26 60.69
college medicine 54.34 53.17 46.87 49.71 58.96 58.96
global facts 32.00 39.00 32.00 35.00 36.00 37.50
human aging 56.50 55.61 58.74 58.30 58.30 61.19
management 61.17 64.08 63.11 60.19 68.93 74.17
Others marketing 75.64 80.34 7692 77.35 84.19 83.33
medical genetics 54.00 55.00 55.00 57.00 56.00 58.04
miscellaneous 73.31 7420 7241 72.80 72.80 74.14
nutrition 59.15 53.59 56.86 62.09 61.11 60.00
professional accounting 40.07 41.48 4645 4290 55.72 45.03
professional medicine 55.15 4522 0.50  50.73 4433 48.53
virology 46.39 47.22 48.80 50.00 53.61 47.16

Table 13: Full results of MMLU QA datasets.
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