Under review as a conference paper at ICLR 2025

MUTUAL INFORMATION PRESERVING NEURAL
NETWORK PRUNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Model pruning is attracting increasing interest because of its positive implications
in terms of resource consumption and costs. A variety of methods have been
developed in the past years. In particular, structured pruning techniques discern
the importance of nodes in neural networks (NNs) and filters in convolutional
neural networks (CNNs). Global versions of these rank all nodes in a network and
select the top-k, offering an advantage over local methods that rank nodes only
within individual layers. By evaluating all nodes simultaneously, global techniques
provide greater control over the network architecture, which improves performance.
However, the ranking and selecting process carried out during global pruning can
have several major drawbacks. First, the ranking is not updated in real time based
on the pruning already performed, making it unable to account for inter-node
interactions. Second, it is not uncommon for whole layers to be removed from a
model, which leads to untrainable networks. Lastly, global pruning methods do
not offer any guarantees regarding re-training. In order to address these issues,
we introduce Mutual Information Preserving Pruning (MIPP). The fundamental
principle of our method is to select nodes such that the mutual information (MI)
between the activations of adjacent layers is maintained. We evaluate MIPP on an
array of vision models and datasets, including a pre-trained ResNet50 on ImageNet,
where we demonstrate MIPP’s ability to outperform state-of-the-art methods. The
implementation of MIPP will be made available upon publication.

1 INTRODUCTION

It is well-established that to limit a model’s resource requirements while maintaining its accuracy, it is
preferable to prune and re-train a large model of high accuracy rather than train a smaller model from
the beginning (LeCun et al., 1989; 1998; Liet al., 2017; Han et al., 2015). Pruning can be categorized
into unstructured (LeCun et al., 1989; Han et al., 2015; Li et al., 2017; Singh & Alistarh, 2020) and
structured (Li et al., 2017; Zhang et al., 2021; Wang et al., 2020; Wang & Fu, 2023). Unstructured
pruning selects individual weights to retain; while this offers maximum control it produces models
that are not hardware-compatible and can only be deployed as sparse matrices (Han et al., 2015; Wen
et al., 2016). Structured pruning, on the other hand, typically involves pruning nodes in multilayer
perceptrons (MLPs) or filters in convolutional neural networks (CNNs). Unlike unstructured pruning,
structured approaches generate neural networks (NNs) that can be compactly stored at the time of
deployment, thereby reducing resource consumption.

Research into structured pruning methods can be categorized into two complementary approaches.
One focuses on enhancing the method used to determine node importance (LeCun et al., 1998;
Hassibi & Stork, 1992; Han et al., 2016; Li et al., 2017; Nonnenmacher et al., 2022), while the other
aims to refine the regularization technique used to reduce the value of the pruned nodes activations to
zero (Wang et al., 2020; Zhang et al., 2021; Wang et al., 2021; Wang & Fu, 2023). Generally, existing
methods of node selection require that the nodes are ranked, and then the top-% are maintained while
the remainder are pruned (Wang et al., 2022). These steps can be carried out globally or locally. The
former involves ranking all nodes across all layers (Liu et al., 2017; Wang et al., 2019), whereas
local methods only consider a given layer (Zhao et al., 2019; Sung et al., 2024). Global methods are
preferred because they allow control over the neural architecture, thereby improving performance
(Blalock et al., 2020); however, this control over the architecture is not devoid of issues. Namely,
entire layers can get pruned, creating untrainable bottlenecks. Additionally, simply ranking and

Under review as a conference paper at ICLR 2025

selecting the top-k nodes, whether locally or globally, fails to consider the impact of pruning on the
relative importance of the remaining nodes. Inspired by the success of iterative magnitude pruning
(IMP) (Frankle & Carbin, 2019), SynFlow, an unstructured pruning method, adopted an iterative
approach that efficiently resolved these issues simultaneously (Tanaka et al., 2020). In contrast,
structured solutions require multiple re-training iterations, making them computationally impractical
for large models (Licbenwein et al., 2020).

In this paper, we introduce Mutual Information Preserving Pruning (MIPP), a structured activation-
based pruning technique. MIPP ensures that the mutual information (MI) shared between activations
in adjacent layers is preserved during pruning. Rather than ranking nodes and selecting the top-k,
MIPP uses the transfer entropy redundancy critereon (TERC) to dynamically prune nodes whose
activations do not transfer entropy to the downstream layer (Westphal et al., 2024). Pruning in
this fashion affords MIPP the following major advantages: first, maintaining the MI between the
activations in adjacent layers ensures that there exists a function such that the activations of the
downstream layer can be approximated using those of the pruned upstream layer, thus preserving
re-trainability. Second, MIPP has the ability to consider not only long-range and local interactions but
can also dynamically update these considerations in real-time depending on the nodes that have been
pruned. Finally, using this dynamic method of node selection, we maintain maximum control over
the network structure, preventing the rigid structure associated with local pruning and the vanishing
layers associated with global techniques. To summarize, the contributions of this work are as follows:

* We develop MIPP, an activation-based pruning method that preserves MI between the
activations of adjacent layers in a deep NN. We prove that perfect MI preservation ensures
the existence of a function, discoverable by gradient descent, that can approximate the
activations of the downstream layer from the activations of the preceding pruned layer.
Consequently, MIPP implies re-trainability.

» We show that MIPP only selects nodes if they transfer entropy to the subsequent layer. This
dynamic method of node selection natively considers long- and short-range interactions,
while concurrently establishing per-layer pruning ratios (PRs) that avoid layer collapse.

* Through comprehensive experimental evaluation, we demonstrate that MIPP can effectively
prune networks, whether they are trained or not.

2 RELATED WORK

MIPP is a structured, activation-based pruning method that is resistant to layer collapse. In the
evaluation of MIPP, we aim to compare our approach to state-of-the-art structured pruning tech-
niques, as well as to algorithms specifically designed to avoid layer collapse that are not structured.
Consequently, we also review research dedicated to applying unstructured pruning techniques in a
structured manner.

Structured activation-based pruning. Activation-based pruning methods commonly view the
activations as features and the outputs as targets, before ranking and selecting the top-%£ nodes in a
global or local manner (He et al., 2017; Lin et al., 2020; Sui et al., 2021; He et al., 2017; Liu et al.,
2018). Rather than considering the outputs as the target, some methods reconstruct the activations
of the following layer from the preceding layer (Ding et al., 2019; Lin et al., 2017). The advantage
of this is that the function that generates layer [+ 1 from layer [can be approximated using fewer
parameters than that which generates the outputs from layer /. One such method, ThiNet, greedily
selects nodes if they minimize the error in reconstructing the activations of the next layer (L.uo
et al., 2017). Adding nodes in this fashion will prevent the model’s performance from degrading;
however, the condition for removal is too restrictive, as it does not consider the effects of re-training.
Furthermore, unlike MIPP, ThiNet is unable to establish layer-wise PRs. Licbenwein et al. (2020)
developed an activation-based pruning scheme with the ability to establish layer-wise PRs. However,
this method is not well adopted as it employs prohibitively expensive iterative re-training.

Establishing layer-wise pruning ratios. When pruning globally, the fraction of nodes removed from
each layer is rarely consistent. This updates the network structure, which has been shown to improve
performance (Blalock et al., 2020). However, at higher levels of sparsity, many methods experience
layer collapse, resulting in an untrainable network (Lee et al., 2019; 2020). In Tanaka et al. (2020),
the authors hypothesized that the iterative nature of IMP in Frankle & Carbin (2019) prevented layer

Under review as a conference paper at ICLR 2025

collapse. Building upon these foundations, they developed SynFlow, a computationally efficient
iterative pruning technique that is known to avoid layer collapse. However, SynFlow is data-
independent, which, while improving its generalizability, can lead to a reduction in performance.
Tanaka et al. (2020) demonstrated that GraSP (Wang et al., 2022) was also resistant to layer collapse.
Unlike SynFlow, it is data-dependent, making it a more effective pruning method, outperforming
classic techniques such as SNIP (Lee et al., 2019).

From unstructured to structured pruning. In structured pruning, the aim is to prune nodes or
filters rather than all trainable parameters (LeCun et al., 1989; Frankle & Carbin, 2019). The simplest
method to convert from unstructured to structured is to average the importance assigned to all the
weights associated with a given node. However, this may lead to a loss in information, particularly as
influential weights can be both highly positive and highly negative. As a result, research has aimed to
define functions that combine weight importances in a minimally lossy manner. In particular, the
L1- and L2-norms - related to the euclidean distance - lead to minimal information loss and have
proven effective for structured magnitude pruning (Han et al., 2015; Li et al., 2017; Wang & Fu,
2023). Magnitude-based pruning, while effective, lacks rigor: it does not account for long-range
interactions, information redundancy, and so on. That said, the information preserving functions,
such as L1- and L2-norm, are agnostic to the measure of weight importance used and have also
successfully been applied to weight gradients (LeCun et al., 1998; Molchanov et al., 2017), and
Hessian matrices (Hassibi & Stork, 1992; Peng et al., 2019; Wang et al., 2019; Nonnenmacher et al.,
2022). For instance, SOSP ranks nodes based on an L1-normalized combination of both the first- and
second-order derivatives of the weights with respect to the loss. This method has produced state-of-
the-art structured pruning results, although we will demonstrate that SOSP is prone to layer-collapse
at high levels of sparsity.

3 MUTUAL INFORMATION PRESERVING PRUNING AT A GLANCE

NNs can be represented as nested functions. More formally, if the input to a NN is given as g, and
we use f; to represent the function of the [-th layer, then the output tensor can be derived as follows:
x}] = (frofp_jofp_so0...fy)(xf) = F(z{). In addition, the function f; for layer can be described
by: fi(x}") = xj; = a(W ;" "z} + b]"). In the above, a is an activation function, W;"*" is a
weight matrix and 7' is the input to that layer (LeCun et al., 1998; Goodfellow et al., 2016).

Structured pruning is the process of discovering binary mask vectors (m}'), associated with each
layer, [, that zero out weight matrix elements corresponding to a node or filter index. Under such
circumstances the pruned layer function can be written: f/(x}") = x|, = a(W " "z}m} + b]").
We will use prime ’ to indicate a pruned layer (Fahlman & Lebiere, 1990). By randomly sampling from
the space of possible inputs and applying the function described by the NN, we realize not only the
inputs as random variables but also all subsequent activations. We define X/ as the random variable
associated with the activations of node i in layer I. Meanwhile, the set X} = {X? X}!... XV}
contains a random variable for all of the N neurons in layer [. If a pruning mask is incorporated into
the weights, the activations associated with pruned nodes remain zero, which can otherwise be seen
as information theoretically null. We denote the set associated with a pruned layer as X}

We propose MIPP, a method that aims to preserve the MI between adjacent layers for all layers in a
network, while maximizing sparsity. To do this, we aim to isolate masks m}', which, as previously
mentioned, combine with the weights to produce updated layers that have certain activations equal
to zero. These null activations should not lead to a reduction in the MI between the activations of
these adjacent layers. More formally, this can be expressed as follows: M = {m}Vvl € [0,L — 1] :
I(X); Xy1) = 1(X5 Xiga))

4 MUTUAL INFORMATION PRESERVING PRUNING

In this section, we will introduce MIPP, by explaining first how isolating the masks defined in Section
3 preserve re-trainability. Then, we will discuss TERC with MI ordering, a method that selects
features if they transfer entropy to the target. To follow, we will illustrate how we estimate the MI
in high-dimensional spaces. We will then describe how it is possible to use TERC to preserve MI

Under review as a conference paper at ICLR 2025

between a pair of adjacent layers. Having discussed the MI process for two layers, we will generalize
the proposed solution to the whole network.

4.1 MOTIVATION

We consider one-shot pruning with retraining: the objective is to reduce the number of nodes of the
NN such that, after retraining, the pruned NN will achieve the same performance as the original. We
will now argue that one way to achieve this would be to select a subset of nodes from each layer in
such a way that there exists a function which, when applied to this subset, can still reconstruct the
activations of the subsequent layer. We will then prove that the existence of this function preserves
the MI between the activations of these layers.

To illustrate this, we guide the reader through the following example. Consider the case in which we
generate the expected outputs of our NN from the activations of the last layer. More formally, we
write X, = textupfr,_1(XL—1). We now wish to prune the activations preceding the outputs. This
entails minimizing the number of nodes, or the cardinality of the set X _,, in such a manner that
there exists a function that can reliably re-form X’,. Furthermore, this function should be discoverable
by gradient ascent. More formally, we would like to derive X7, such that X7, = supye g(X7_,).
While this formulation reveals little in the way of a potential pruning operation, using the following
theorem, we relate it to the MI-based objective presented in Section 3.

Theorem 1: There exists a function g such that the activations of the subsequent layer can be
re-formed from the pruned layer iff the MI between these two layers is not affected by pruning. More
formally: X1, = sup,c 7 g(X) & [(X] 3 XL) = I(Xp—1; XL).

Proof. See Appendix C.

Consequently, in this work we aim to select a set of masks (M) that increase sparsity while preserving
MI between layers. This ensures that, for each pruned layer, there exists a function, discoverable
by gradient descent, that effectively reconstructs the activations of the subsequent layer using those
of the pruned layer. Therefore, MIPP ensures re-trainability in a manner that is more rigorous than
competing techniques for node-importance assignment.

4.2 PRELIMINARIES

4.2.1 TRANSFER ENTROPY REDUNDANCY CRITERION WITH MI ORDERING

Before describing the practical method, we now provide a summary of TERC and its application to
pruning, through the incorporation of an additional step for MI-based ordering.

TERC. As stated in Section 3, we aim to preserve the MI between the layers in our network. The
problem of MI preservation is one well-studied in the feature selection community (Battiti, 1994; Peng
et al., 2005; Gao et al., 2016). Thus, we are able to deploy an out-of-the-box solution. In particular
we use TERC, as not only does it preserve the MI with the target, but its temporal complexity is also
linear in time with respect to the number of features (Westphal et al., 2024), a key property when
working in highly dimensional feature spaces. In our case, rather than selecting features to describe
a target, we are selecting nodes that best describe the following layer. Within this context, TERC
can be summarized as follows: to begin, all nodes in the layer are assumed to be useful (and added
to the non-pruned set). We then sequentially evaluate whether the reduction in uncertainty of the
subsequent layer’s activations is greater when a specific node is included in the un-pruned set rather
than excluded. More formally, for a node, X li, to remain in the set of un-pruned nodes, it must satisfy
the following condition: I(X}; Xj4+1) — I(X\X}; Xi41) > 0. Otherwise, it is pruned. This process
is sequentially repeated for all nodes in the layer. As shown in Westphal et al. (2024), this simple
technique will preserve the MI between layers.

MI Ordering. Before applying TERC, we sort the nodes in the pruning layer in descending order of
MI with the target. For further clarification, please see Algorithm 2 in Appendix B. This adjustment
ensures that we check last whether the more informative nodes transfer entropy to the activations of
subsequent layers. This makes it less likely that they will be erroneously removed during the early
stages of TERC when their information can be represented on aggregate by the large number of nodes
still remaining in the un-pruned set.

Under review as a conference paper at ICLR 2025

4.2.2 MUTUAL INFORMATION ESTIMATION

Unless restricting oneself to scenarios inapplicable to real-world data (e.g. discrete random variables),
verifying the condition in Section 4.2.1 is computationally intractable. Consequently, we must
estimate whether the condition is verified by estimating the MI, for which many methods have been
developed (Moon et al., 1995; Paninski, 2003; Belghazi et al., 2018; van den Oord et al., 2019; Poole
et al., 2019).

For the purposes of pruning, our MI estimates need to only be considered for comparisons. Rather
than a method that gives highly accurate estimates slowly (Franzese et al., 2024), we require one that
emphasizes consistency and speed. For these reasons, we adopt the technique presented in Covert
et al. (2020), in which the authors demonstrate that the MI between two random processes (X and
Y’) can be approximated as the reduction in error estimation caused by using X to predict Y. More
formally: I(X;Y) =~ E[I(f(0),Y)] — E[I(f(X),Y)], where f is some function approximated via loss
L. If the variables are discrete, and a cross entropy loss is used, then this value is exactly equal to
the ground truth MI (Gadgil et al., 2024). Even if the variables are continuous and a mean squared
error loss is used, the above value approaches the MI under certain circumstances (Covert et al.,
2020). To approximate the condition described in Section 4.2.1, we estimate all MIs five times before
calculating confidence intervals. We then only keep nodes for which we are more than x% sure, that
they transfer entropy to the subsequent layer (I(X;; Xj11) > I(X\X/}; Xi41)). The value of 2%
naturally becomes the hyper-parameter we tune to affect the PR. For example, if % is low, 50%,
one only needs to be 50% sure that I(X}; Xj41) > I(X\X}; Xi+1), and thus, we prune sparingly.
On the contrary, if it is high (for example, © = 99%), we prune more aggressively. For a detailed
description of the method we used to determine x, please refer to Appendix D.1.

4.3 PRESERVING THE MUTUAL INFORMATION BETWEEN ADJACENT LAYERS IN PRACTICE

In this Section, we apply the methods discussed above and describe how to use TERC to preserve MI
between a pair of adjacent layers. As discussed, TERC with MI ordering dictates that, to remove a
node, the following should be satisfied: I(X7_1\Xt ;X)) = I(X_1;XL). In Section 4.2.2, we
describe the method we use to estimate MI. By combining these representations, we can update the
condition we wish to approximate:

I(X; X)) = I(A\X}; Xi41) (original condition as in TERC),

E[L(f(0), Xi1)] — E[l(&(X0), Xi41)] = E[(F(D), Xiy1)] — EQ(h(X \ X7), Xig1)], ey
E[l(g(X), Xi51)] = E[I(h(&; \ X}), X141)] (estimated condition).

Equation 1 demonstrates the simplification possible when I(X;Y) ~ E[I(f(0),Y)] — E[I(f(X),Y)]
is substituted into 1 (X; Xj4+1) = I(X\X}; X+1). Our condition becomes a simple comparison of a
loss function with and without a node. To calculate the updated function h and evaluate the loss 1, we
use a simple MLP.

Using this updated condition, we apply TERC with MI ordering, which can be described as follows:
initially, we order the nodes in descending order of the loss achieved when using just this variable to
predict the downstream layer. Then, we train an MLP to reconstruct the activations of the downstream
layer from the entirety of the upstream layer’s activations. Like Gadgil et al. (2024), we sequentially
mask individual upstream nodes and re-train this MLP (although, not to the same extent as in the
first instance) to determine whether the loss function drops back below its original value. If it fails
to recover, this implies that, without the activations of this node, we are unable to reconstruct the
activations of the downstream layer. In this case, the variable is considered informative and should be
retained in the network and in the set Xl’ . Otherwise, the node is removed.

In the introduction, we outlined the challenges of ranking neurons. Such methods overlook the
impact that removing a node has on the importance of those remaining, while also causing layer
collapse. MIPP, overcomes these two problems respectively due to the following mechanistic features.
Firstly, MIPP performs per-node function discovery. Some new function (labeled h in Equation 1) is
discovered for each node removed, implying a non-static ranking, where the removal of all previous
nodes is considered when evaluating whether to remove future nodes. Secondly, MIPP also exploits
adjacent layer dependence. MIPP only removes nodes that are not essential for reconstructing the
next layer. As more nodes are pruned, those remaining become increasingly vital in the reconstruction,
preventing layer collapse.

Under review as a conference paper at ICLR 2025

Image Deformation 1 Image Deformation 2 Image Deformation 3

R 2 s 3 5

Trained LeNet5 - Training Trained LeNet5 - Test Untrained LeNet5 - Training Untrained LeNet5 - Test
100 -

1007.“.. ”3)&» 1007‘...........,{.*.’.‘ 100 -
x BT JOR B W P ¢ IR X XK
S 95- XX t% 95- XX *% 95 - 95 -
@ Fe * x %
3 9 x 90 - XA 90- X 90 -
|5} x x
< x x
85 x 85 - 85 - x X 85 -
x % X ®
' ' ' ' ' ' ' ' ' ' ' ' ' '
70 80 90 100 70 80 90 100 60 80 100 60 80 100
Average Neuron Reduction Average Neuron Reduction Average Neuron Reduction Average Neuron Reduction
X MIPP Deformed MNIST MIPP MNIST Unpruned Accuracy - MNIST ===+ Unpruned Accuracy - Deformed MNIST

Figure 1: Top. Deforming MNIST for increased image complexity. These transformations were
applied randomly with equal probability and then kept consistent during training, pruning, and
re-training. Bottom. Changes in pruning ability of MIPP caused by image deformation.

4.4 PRESERVING THE MUTUAL INFORMATION FROM OUTPUTS TO INPUTS

Thus far we have explicitly described how we use TERC with MI ordering and the estimation
techniques described in Section 4.2.2, to preserve MI between the activations of adjacent layers. This
process is repeated for each pair of layers. However, to prune the entire model, by preserving the
MI between pairs of layers, one could start from the input layer and move to the output layer or
vice versa. In this section, like Luo et al. (2017), we argue for the second option, providing both
theoretical and practical arguments.

Theoretical argument. In a NN, because each layer is a direct function of its predecessor, these
pairs share perfect MI. In this case I(X}; Xj4+1) = H(X+1) (Cover, 1999). Therefore, the networks
layers can only reduce in entropy from inputs to outputs (Tishby & Zaslavsky, 2015; Shwartz-Ziv &
Tishby, 2017). Suppose we take the first approach, pruning from inputs to outputs. Our goal is to
prune the first layer (X}), such that the result can be used to reconstruct the activations of the second
layer (X>). Since the second layer has not yet been pruned, it may retain superfluous information,
which is then maintained in the activations of the first layer during pruning. In contrast, if we take
the second approach, we begin by pruning the activations in layer X'7,_;. The information in X} _,
(its pruned version) has been preserved due its ability to reconstruct exclusively the outputs. Upon
moving onto the next pair, we prune layer X7,_, based on the entropy in the layer X} _;. Notably
though, this has already been reduced by the first pairwise pruning step. By this recursive logic, it
is clear how even when pruning the first layer, we are still only preserving the entropy required to
reproduce the outputs, and only the outputs.

Practical argument. We now present the more practical reason to prune from outputs to inputs rather
than vice versa. Under this scheme we aim to evaluate the condition I(X}; &},) = I(Ay; &),),
rather than I(X}; Xj41) = I(A&); Xj41) which would be appropriate forward pruning was conducted.
In the former case, we apply our MLP to predict a layer whose dimensionality has already been
reduced. This increases efficiency by mitigating the effects of the curse of dimensionality (Bellman &
Kalaba, 1959). We have now presented the steps used to explain MIPP. In Algorithm 1, we synthesize
this information more formally. Notably, the utility of MIPP can extend beyond just pruning. By
verifying which pixels transfer entropy to the activations of the pruned first layer, MIPP also possesses
the ability select features. We present the corresponding experiments in Appendix E.1.

5 EVALUATION

Models, datasets and baselines. CNNs are characterized by multivariate filters in addition to
univariate nodes. In Appendix E.2 we discuss how our method can be adapted so that it preserves
information between filters. We begin by applying our method to the simple LeNet5 architecture
detecting variations of the MNIST dataset (L.eCun et al., 1998). We then assess its ability to prune
VGGI11, ResNet18 and ResNet34 networks trained on the CIFAR10 dataset (He et al., 2016). We

Under review as a conference paper at ICLR 2025

a) LeNet5 Results: MNIST

Training - Trained Network Test - Trained Network Training - Untrained Network Test - Untrained Network
100 - 99.0 - 100 - 99.0 -
3 98 97.5 - 98 - 97.5 -
£ g- 96.0 - 96 - 96.0 -
Q - -
g o 0 o 0
92, ‘ 915- : : y 927 ‘ , 915- : :
80 90 100 80 90 100 80 90 100 60 80 100

b) VGG11 Results: CIFAR10

.. 100 - 93 - 100 - 90.0 -
8 95- 90 - 95 - 87.5 -
3 o0- 87 - 90 - 85.0 -
< g5- 84 - 85 - 825 -
60 80 100 60 80 100 40 60 80 100 40 60 80 100
c) ResNet18 Results: CIFAR10
102 - 95 - 102 - 95 -
3+ - i
5 85 -
g - 80 - 84 - 80 -
< 78- 75 - 78 - 75 -
2- : ‘ : ‘ ‘ ‘ L oT2- : : : ‘ ‘ ‘ ‘
70 8 90 100 70 8 90 100 70 80 90 100 70 80 90 100

d) ResNet34 Results: CIFAR10

: 96 - i -
> 100 100 93
T 95- 92 - 95 - 0 -
3 - 88 - 90 - 87 -
< 85- 84 - 85 - ol
81 -
70 80 9 100 70 80 9 100 70 80 90 100 70 80 90 100

e) VGG19 Results: CIFAR100

72 - -
> 90 - 90 - 66
8 64 - 60 -
5 75 - - 75 - 54 -
g 6o- 48 - 60 - 48 -
45 20 - 45 - 42 -
60 80 60 80 40 60 80 40 60 80
f) ResNet50 Results: CIFAR100
80 - 70 -
290~ 72- 2 - 64 -
® 5. 64 - -
s 75 . 75 56 -
S 60 - 60 - -
< 48 - 48
45 - 40 - 45 - 40 -
60 80 60 80 60 80 60 80

Average Neuron Reduction Average Neuron Reduction Average Neuron Reduction Average Neuron Reduction

GraSP SynFlow ThiNet SOSP-H Ours Re-initialized

Figure 2: Pruning results for ours and other methods as applied to multiple datasets and models.

then evaluate more complex models, specifically ResNet50 and VGG19 on the CIFAR100 dataset
(Krizhevsky, 2009; Simonyan & Zisserman, 2015). Finally, we examine our method’s effectiveness
in pruning a pre-trained ResNet50 model on the ImageNet dataset (Deng et al., 2009). For models
trained on datasets smaller than ImageNet, we compare the performance of our method to SynFlow
(Tanaka et al., 2020), GraSP (Wang et al., 2022), ThiNet (Luo et al., 2017) and SOSP-H (Non-
nenmacher et al., 2022), due to memory limitations we only compare to ThiNet on larger datasets.
SOSP-H was not designed for untrained networks and so, for these experiments, we instead use a
re-initialized baseline. Both GraSP and SynFlow are unstructured; in order to make them structured,
we apply L1-normalization to all the weights associated with a node. MIPP selects nodes based on
whether their activations transfer entropy to those of the subsequent layer. This approach inherently
establishes a unique PR for each run, which we adopt as the global PR for our baseline methods.
ThiNet cannot determine layer-wise PR; therefore, we apply a uniform PR across all layers.

Under review as a conference paper at ICLR 2025

a)Applied to pretrained networks

LeNet5 on mnist VGG11 on CIFAR10 ResNet18 on CIFAR10 ResNet34 on CIFAR10 VGG19 on CIFAR100 ResNet50 on CIFAR100
100 - 100 - 100 - 100 - 100 - 100 -
(8}
pur}
=
0- 1 1 0- 1 1 0- 1 1 0- 1 1 0- 1 1 0- 1 1
80 100 50 100 80 100 80 100 75 100 50 75
b)Applied to untrained networks
100 - 100 - 100 - 100 - 100 - 100 -
6]
pur}
=
0-; L . 0- g o 0 o 0-] 0-; i
50 100 80 100 80 100 80 100 50 75 50 75

Average Neuron Reduction Average Neuron Reduction Average Neuron Reduction Average Neuron Reduction Average Neuron Reduction Average Neuron Reduction

GraSP SynFlow SOSP-H Ours
Figure 3: The percentage of runs that led to untrainable layer collapse. Specifically, we bin runs by

the percentage of neurons removed, where one bin contains all the runs within a 5% increment. We
then calculate the percentage of these runs that lead to layer collapse.

a)Applied to pretrained networks

LeNet5 on mnist VGG11 on CIFAR10 ResNet18 on CIFAR10 ResNet34 on CIFAR10 VGG19 on CIFAR100 ResNet50 on CIFAR100
1 1 1 1 1 1 1 1 1 1 1 o, -
i oo o et o 11 Lablesls .-4""1. "‘.';'~
1 1 1 1 1- Lo Lue I B R 11171111 | P 1- BTkl
- " TV T e PEhR i
1T 1] A 1 1L HIEFIE 1
0-""] T - o o g o
1 2 3 12345678 1 4 7 10 13 16 1 7 1319 256 31 1 4 7 10 13 16 1 10 19 28 37 46
b)Applied to untrained networks
1 1 1 1 1 . 1 1 wnede 8 1 1 1 1
. ol W T 1 1| 1171 T ™ [n '“*Illf i
1- . 3! 1 CTT o (] (1] 1 Pl " fl
- Lo 0] tad| 1 W 1= (] N
I 1] A 1 1L | Leer 1
I 1] A 1 1L 1 ||||||
0 0 0 0 0 - R o - (REIRTEAERIEENE o - R o - AR R AR o -
1 2 3 12345678 1 4 7 10 13 16 1 7 1319 256 31 1 4 7 10 13 16 1 10 19 28 37 46
Layer 1toL Layer 1toL Layer 1toL Layer 1toL Layer1toL Layer 1toL

Figure 4: These experiments demonstrate the per-layer PR selected by MIPP. For the different
layer-wise PRs we divide them by the average of all the layers in order to normalize. We omit results
on ImageNet for space and clarity.

LeNetS on MNIST. We evaluate our method’s ability to prune a LeNet5 architecture trained on
MNIST, and an untrained LeNet5 with MNIST acting as inputs. For both the trained and untrained
networks, as shown in Figure 2 a), we observe that MIPP consistently selects nodes and filters that
lead to competitive results. In Figure 3, we demonstrate that MIPP is the method most robust to layer
collapse, producing trainable models even at sparsity levels above 95 %.

LeNet5 on deformed MNIST. MIPP effectively preserves and compresses the information encoded
in network activations. In untrained networks, these activations solely reflect the information present
in the input data. If these inputs are characterized by information relevant to the classification task,
MIPP remains applicable. For instance, in the MNIST dataset, the informative pixels assist the
classification task, while the remaining pixels, on the outskirts of the image, are constantly black
and contain no information. In such cases, our method selectively preserves the neurons whose
activations correspond to informative pixels. On the other hand, the converse is also true; our method
is inapplicable to models whose input data contains information not relevant for the classification task.
Consequently, if the input data is complex, MIPP’s ability to prune at initialization is reduced. To
demonstrate this effect, in Figure 1 we present experiments that investigate the effects of deforming
MNIST. In alignment with our hypothesis, we observe a reduction in our ability to prune an untrained
network but not a trained network. When MIPP is applied to trained networks, it can successfully
prune to high sparsity levels, regardless of whether the dataset has been deformed. The same is not
true for untrained models, where we observe an early drop in the deformed dataset classification
accuracy.

VGG11 on CIFAR10. We now investigate our method’s ability to prune a VGGI11 trained
on CIFAR10. These results are presented in the left-most two graphs of Figure 2 b).
We observe that MIPP leads to a better performing model at train-time, and test time.

Under review as a conference paper at ICLR 2025

Moreover, MIPP is more resistant to layer collapse effects in un-
trained networks. In Figure 3, even at a sparsity level above 90
%, untrainable bottlenecks remain rare. For the untrained net-
work MIPP remains competitive but is slightly out-performed
by both GraSP and reinitialize baselines.

ResNet18 on CIFAR10. In Figure 2 c), we provide a com-
parison of the pruning performance between MIPP and the
baseline methods on a ResNet18 model trained with CIFAR10.
We observe that our method outperforms the baselines when
applied to pre-trained networks and is competitive for newly
initialized models. As illustrated in Figure 3, MIPP only causes
layer collapse at sparsity levels much higher than competing
techniques. This occurs due to MIPP’s adjacent layer objective.
ResNet34 on CIFAR10. For this example we again observe
the advantages of using our method, particularly at high spar-
sity levels. Nonetheless, SOSP-H does outperform MIPP at
test time if pruning at lower sparsity levels - between 80-90%.
SOSP-H’s generalizability is due to its ability to establish per-
formant layer-wise PRs, aggressively pruning the later layers.
However, at ultra-high sparsity levels, these same layers col-
lapse, causing the results in Figure 3. In Figure 4 we observe
block-based PRs. This is particularly apparent for the untrained
model. However, in this case there is also the presence of
intra-block PR patterns: in the last three blocks, layers alternate
between more and less pruned. This occurs due to the effect of
the skip connections in a residual network, acting to stabilize
the activations and increasing the PR. In Figure 5 we provide
a pictorial explanation of the ResNet structure, from which it
is possible to understand why this intra-block structure has a
periodicity of two.

VGG19 on CIFAR100. In the two left-most graphs of Figure 2
b) it can be observed that MIPP outperforms the baselines. As
discussed, increasing the complexity of the dataset decreases

ResNet 50 ResNet 34
1x1 conv, 64,
3x3cony, 64, |(x3) —% 3x3cony,64, 3
1x1 conv, 256, axacony, 64, |9
- 1x1 cony, 128, -
=% 3@cony, 128, | (x4) q” 3x3 cony, 128, (x4)

1x1 cony, 512, 3x3 cony, 128,

'_
=/ oo 256, ':rr=
= = l 3x3 conv, 256,
=5 3x3conv, 256, | (x6) Bxacony, 256, | 06)

1x1 cony, 1024,

— xlcony,512,

= 3a3conv,512, (x3) (x3)

_, 3x3 cony, 512,
{ 3x3cony, 512,
1x1 cony, 2048,
l. ~— Blockend
= Skip connection

Figure 5: ResNet34 and ResNet50
structures, explaining the periodic-
ity of the per-layer PRs established
using our method.

oo - ResNet50 - ImageNet

;\3 Ours
\; 90 - _— I _ ThiNet
S g I
S
3
Q 70 - pa—
9] =
2 I
60 -]
N N} 3
&' AQS A0S &
o N e_“a\o e e
8 & S o
((é\“\ < a 1(3“\ <t

Figure 6: Performance evaluation
on ImageNet, with an average PR
of 71.1 £0.81% and 55.6 +0.62 on
the pre-trained and not pre-trained
networks respectively.

the ability to prune untrained models using MIPP. For these

reasons, GraSP (designed to be used at initialization) and re-initialization marginally outperform
MIPP at high sparsity levels on untrained networks.

ResNet50 on CIFAR100 and ImageNet. In Figure 2 f) we observe that, despite noisy results,
MIPP generally outperforms baselines, particularly on untrained networks. In Figure 4, we observe
intra-block pruning patterns. This is a simple consequence of the ResNet50 structure, presented in
Figure 5. Specifically, one in every three layers is pruned more aggressively as one in every three
layers is more overparameterized. From the results on ImageNet in Figure 6, it is clear that we are
able to prune even on large datasets and models. MIPP generally outperforms ThiNet at test time
due to its ability to establish layer-wise PRs. This is because CNNs are known to generalize better
when their remaining nodes are concentrated in the early layers. Overall, these experimental results
demonstrate the ability of MIPP to surpass state-of-the-art performance when pruning trained NNs
and to establish layer-wise PRs that encourage generalizability, as evidenced in Figure 2.

6 CONCLUSION

Current node selection methods rank nodes before selecting the top-k. These static ranking systems
not only fail to consider the effect of removing nodes on the current potential ranking but also often
lead to layer collapse, motivating the need for a more dynamic node selection method. Consequently,
we have introduced MIPP, an activation-based pruning method that removes neurons or filters from
layers if they fail to transfer entropy to the subsequent layer. Consequently, MIPP preserves MI
between the activations of adjacent layers. We have applied the proposed method to a variety of
datasets and models. Our experimental evaluation has demonstrated the effectiveness of MIPP in
pruning trained and untrained models characterized by differing complexities.

Under review as a conference paper at ICLR 2025

REFERENCES

Roberto Battiti. Using mutual information for selecting features in supervised neural net learning.
IEEE Transactions on Neural Networks, 5(4):537-550, 1994.

Ishmael Belghazi, Sai Rajeswar, Aristide Baratin, R. Devon Hjelm, and Aaron Courville. Mine:
Mutual information neural estimation. In ICML’18, 2018.

Richard Bellman and Robert Kalaba. A mathematical theory of adaptive control processes. Proceed-
ings of the National Academy of Sciences, 45(8):1288-1290, 1959.

Davis Blalock, Jose Javier Gonzalez Ortiz, Jonathan Frankle, and John Guttag. What is the state of
neural network pruning? In MLSys’20, 2020.

Thomas M. Cover. Elements of Information Theory. John Wiley & Sons, 1999.

Ian Covert, Scott M. Lundberg, and Su-In Lee. Understanding global feature contributions with
additive importance measures. In NeurIPS’20, 2020.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Fei-Fei Li. Imagenet: A large-scale
hierarchical image database. In CCVPR’09, 2009.

Terrance DeVries and Graham W. Taylor. Improved regularization of convolutional neural networks
with cutout. In arXiv preprint arXiv:1708.04552, 2017.

Xiaohan Ding, Guiguang Ding, Yuchen Guo, Jungong Han, and Chenggang Yan. Approximated
oracle filter pruning for destructive cnn width optimization. In ICML’19, 2019.

Scott E. Fahlman and Christian Lebiere. The cascade-correlation learning architecture. NeurIPS’90,
1990.

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural
networks. In ICLR’19, 2019.

Giulio Franzese, Mustapha Bounoua, and Pietro Michiardi. MINDE: Mutual information neural
diffusion estimation. In /ICLR’24, 2024.

Soham Gadgil, Ian Covert, and Su-In Lee. Estimating conditional mutual information for dynamic
feature selection. In ICLR’24, 2024.

Shuyang Gao, Greg Ver Steeg, and Aram Galstyan. Variational information maximization for feature
selection. In NeurIPS’16, 2016.

Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. Deep Learning. MIT Press,
2016.

Song Han, Jeff Pool, John Tran, and William J. Dally. Learning both weights and connections for
efficient neural networks. In NeurIPS’15, 2015.

Song Han, Huizi Mao, and William J. Dally. Deep compression: Compressing deep neural networks
with pruning, trained quantization and Huffman coding. In /CLR’16, 2016.

Babak Hassibi and David Stork. Second order derivatives for network pruning: Optimal brain surgeon.
In NeurlPS’92, 1992.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In CCVPR’16, 2016.

Yihui He, Xiangyu Zhang, and Jian Sun. Channel pruning for accelerating very deep neural networks.
InICCV’17,2017.

Alex Krizhevsky. Learning multiple layers of features from tiny images. PhD thesis, University of
Toronto, 2009.

Yann LeCun, John Denker, and Sara Solla. Optimal brain damage. In NeurIPS’89, 1989.

10

Under review as a conference paper at ICLR 2025

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278-2324, 1998.

Nambhoon Lee, Thalaiyasingam Ajanthan, and Philip H.S. Torr. SNIP: Single-shot network pruning
based on connection sensitivity. In /CLR’19, 2019.

Namhoon Lee, Thalaiyasingam Ajanthan, Stephen Gould, and Philip H. S. Torr. A signal propagation
perspective for pruning neural networks at initialization. In /CLR’20, 2020.

Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. Pruning filters. In
ICLR’17,2017.

Lucas Liebenwein, Cenk Baykal, Harry Lang, Dan Feldman, and Daniela Rus. Provable filter pruning
for efficient neural networks. In NeurIPS’20, 2020.

Ji Lin, Yongming Rao, Jiwen Lu, and Jie Zhou. Runtime neural pruning. NeurIPS, 2017.

Mingbao Lin, Rongrong Ji, Yan Wang, Yichen Zhang, Baochang Zhang, Yonghong Tian, and Ling
Shao. Hrank: Filter pruning using high-rank feature map. In CVPR’20, 2020.

Zhuang Liu, Jianguo Li, Zhigiang Shen, Gao Huang, Shoumeng Yan, and Changshui Zhang. Learning
efficient convolutional networks through network slimming. In /ICCV’17, 2017.

Zhuang Liu, Mingxing Tan, Bo Zhuang, Jie Liu, Yuqing Guo, Quoc Wu, Junjie Huang, and Jie Zhu.
Discrimination-aware channel pruning for deep neural networks. In NeurIPS’18, 2018.

Jian-Hao Luo, Jianxin Wu, and Weiyao Lin. Thinet: A filter level pruning method for deep neural
network compression. In ICCV’17,2017.

Pavlo Molchanov, Stephen Tyree, Tero Karras, Timo Aila, and Jan Kautz. Pruning convolutional
neural networks for resource efficient inference. In ICLR’17, 2017.

Young-Il Moon, Balaji Rajagopalan, and Upmanu Lall. Estimation of mutual information using
kernel density estimators. Physical Review E, 52(3):2318-2321, 1995.

Manuel Nonnenmacher, Thomas Pfeil, Ingo Steinwart, and David Reeb. SOSP: Efficiently Capturing
Global Correlations by Second-Order Structured Pruning. In ICLR’22, 2022.

Liam Paninski. Estimation of entropy and mutual information. Neural Computation, 15(6):1191-1253,
2003.

Hanchuan Peng, Fuhui Long, and Chris Ding. Feature selection based on mutual information criteria
of max-dependency, max-relevance, and min-redundancy. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 27(8):1226—-1238, 2005.

Hanyu Peng, Jiaxiang Wu, Shifeng Chen, and Junzhou Huang. Collaborative channel pruning for
deep networks. In ICML’19, 2019.

Ben Poole, Sherjil Ozair, Aaron Oord, Alexander Alemi, and George Tucker. On variational bounds
of mutual information. In /ICML’19, 2019.

Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V Le. Regularized evolution for image
classifier architecture search. In AAAI’19, 2019.

Ravid Shwartz-Ziv and Naftali Tishby. Opening the black box of deep neural networks via information.
arXiv preprint arXiv:1703.00810, 2017.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. In ICLR’15, 2015.

Sidak Pal Singh and Dan Alistarh. Woodfisher: Efficient second-order approximation for neural
network compression. In NeurlPS’20, 2020.

Yang Sui, Miao Yin, Yi Xie, Huy Phan, Saman Aliari Zonouz, and Bo Yuan. Chip: Channel
independence-based pruning for compact neural networks. NeurIPS’21, 2021.

11

Under review as a conference paper at ICLR 2025

Yi-Lin Sung, Jachong Yoon, and Mohit Bansal. ECoFLaP: Efficient Coarse-to-Fine Layer-Wise
Pruning for Vision-Language Models. In ICLR 24, 2024.

Hidenori Tanaka, Daniel Kunin, Daniel L Yamins, and Surya Ganguli. Pruning neural networks
without any data by iteratively conserving synaptic flow. In NeurlPS’20, 2020.

Naftali Tishby and Noga Zaslavsky. Deep learning and the information bottleneck principle. In
ITW’15, 2015.

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predictive
coding. In arXiv:1807.03748, 2019.

Chaoqi Wang, Roger Grosse, Sanja Fidler, and Guodong Zhang. EigenDamage: Structured pruning
in the Kronecker-factored eigenbasis. In ICML’19, 2019.

Chaoqgi Wang, Guodong Zhang, and Roger Grosse. Picking winning tickets before training by
preserving gradient flow. In ICLR’22, 2022.

Haibin Wang, Ce Ge, Hesen Chen, and Xiuyu Sun. Prenas: Preferred one-shot learning towards
efficient neural architecture search. In ICML’23, 2023.

Huan Wang and Yun Fu. Trainability preserving neural pruning. In /CLR’23,2023.

Huan Wang, Xinyi Hu, Qiming Zhang, Yuehai Wang, Lu Yu, and Haoji Hu. Structured pruning for
efficient convolutional neural networks via incremental regularization. IEEE Journal of Selected
Topics in Signal Processing, 14(4):775-788, 2020.

Huan Wang, Can Qin, Yulun Zhang, and Yun Fu. Neural pruning via growing regularization. In
ICLR’21,2021.

Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. Learning structured sparsity in
deep neural networks. In NeurIPS’16, 2016.

Charles Westphal, Stephen Hailes, and Mirco Musolesi. Information-theoretic state variable selection
for reinforcement learning. arXiv preprint arXiv:2401.11512, 2024.

Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David Lopez-Paz. mixup: Beyond empirical
risk minimization. In /ICLR’18, 2018.

Yulun Zhang, Huan Wang, Can Qin, and Yun Fu. Learning efficient image super-resolution networks
via structure-regularized pruning. In ICLR’21, 2021.

Chenglong Zhao, Bingbing Ni, Jian Zhang, Qiwei Zhao, Wenjun Zhang, and Qi Tian. Variational
convolutional neural network pruning. In CVPR’19, 2019.

12

Under review as a conference paper at ICLR 2025

A NOTATION

Table 1: Summary of Notational Conventions

Type Notation
Vectors x”
Matrices xmxn
Random Variables X
Instances of Random Variables T

Sets of Jointly Sampled Random Variables X
Functions X

Nested Functions X

B ALGORITHMS

In this section, we present not only the overall MIPP algorithm but also TERC with MI ordering
algorithm, which maintains the MI between adjacent layers in a network.

Algorithm 1 MIPP.
Input: Activations of all layers: Aj. Output: M (a desirable set of node
masks).

1: Initialize empty set of masks: M = ().
2: forl € [L—1,0]do

3: X/ = Algorithm 2(X}, Xj41)

4: forie[0,I]do

. W O ifXi =0,
> mi' (i) = {1 otherwise.
6 end for
7. M=MUm}

8: end for
9: return M

Algorithm 2 TERC with MI ordering.
Input: Activations of layers L and L — 1: X1, and Xf,_;. Output: X]_, (a desirable subset of
nodes).

1: Initialize X} _; = sortgesc (Xr—1, (X} _15XL))

2: for X};71 € Xr_1 do

3: lfI(Xifl\X}J,l,XL) :I(XL,UXL) then

4 Xy =X\ X4
5: endif
6
7

: end for
. /
: return A7

C PROOF OF THEOREM 1

In this section we prove Theorem 1. To begin, we remind the reader that we aim to preserve the MI
between layers such that:

I(X ;X)) = I(Xp_1; AL), (2)

13

Under review as a conference paper at ICLR 2025

which, given the relationship I(X;Y) = sup; (E[f(X | Y] — log E[e/(*)]), becomes:

sup (E[Q(XL—I) | XL] — log]E[eg(XL_l)D =Ssup (E[f(Xi—ﬂ | XL] — IOgE[ef(XL”)}) - 3
g f

However, we know that there exists a function g such that g(X,_1) = X,. Therefore, we can rewrite
the above such that:

(51, | 2] ~log Ble™]) =sup (EL/(X]1) | A1)~ log Ele¥-])

, @
x, ~ log B[] =sup (E[f(X]_,) | Xz] ~ log Ele/*i0)]) .
f

The only circumstances under which Equation 4 holds is if f(X; _,) = A, thereby proving Theorem
1.

D FURTHER EXPERIMENTAL SETTINGS

D.1 SELECTION OF THE PRUNING RATIO

MIPP selects a node if it transfers entropy to the subsequent layer. This prevents us from defining a
pruning ratio and selecting the top-k variables in a global fashion. Despite this, for our study we still
affected the pruning rate by changing the confidence required to remove a node (x%). For example, if
2% = 99% one must be very confident that entropy is transferred to the following layer to maintain a
node in the NN, promoting an aggressive pruning strategy. In this section, we explain how we derived
values of %.

Specifically, we had 20 different values of 2:% for each set of experiments. The lowest possible value
being % = 50%, where we would then generate 20 different values of x,,% (where n € [0, 20])
using the following equation: @, = zo + Y ., (1 — x;_1) - , where 7 = 0.5 and z9p = 50. Using
this method we generate 20 values of x that approach 100% confidence at a decreasing rate.

D.2 DATA AUGMENTATION TECHNIQUES

For the CIFAR-10 dataset, we applied standard data augmentation techniques, which included random
cropping with padding and random horizontal flipping. These augmentations are commonly used to
enhance model generalization by introducing variations in the training data. In the case of CIFAR-100,
we employed additional augmentation methods beyond the standard techniques. Specifically, we used
mixup (Zhang et al., 2018), which creates virtual training examples by combining pairs of images and
their labels, and cutout (DeVries & Taylor, 2017), which randomly masks out square regions of an
image to simulate occlusion and encourage the network to focus on more distributed features. These
advanced techniques were included to further enhance performance due to the increased complexity
of the CIFAR-100 dataset.

D.3 HYPERPARAMETERS
D.3.1 VISION TRAINING AND RE-TRAINING
Please refer to Table 2.

Table 2: Comparison of training parameters across datasets.

Dataset MNIST CIFAR10/100 ImageNet

Solver SGD (0.9, le-4) SGD (0.9, 5e-4) SGD (0.9, 1e-4)

Batches 100 CIFAR10: 128, others: 256 1024

LR le-2, [30,60], #epochs:90 le-1, [100,150], #epochs:200 1le-1, [30,60], #epochs:90

LR (re- 1le-2,[30,60], #epochs:90 1e-2, [60,90], #epochs:120 le-2, [30,60], #epochs:75
train)

14

Under review as a conference paper at ICLR 2025

D.3.2 PRUNING

As explained in the main paper, our method consists of using an MLP to predict the activations of
a layer based on its predecessor. We then mask the features and re-train the MLP to see if the loss
will drop back below the original. We therefore require the number of iterations and the size of the
MLP fit initially and the number of iterations required for re-training. For all layers and models
we fit three MLPs with two hidden layers with 256 nodes. For the initial training step we used
1500 iterations. For the re-training steps once the mask has been applied we use 20 iterations for
VGG based models and 150 iterations for others. At the start of our algorithm, we also rank the
features based of their MI. For this calculation we again use the same MLP structure but only for 35
iterations due to time constraints. We use our method to prune all linear and convolutional layers. We
prune the batch-normalization nodes associated with nodes in linear/convolutional layers, while skip
connections in ResNets remain unaffected.

E FURTHER EXPERIMENTS

E.1 FEATURE SELECTION EXPERIMENTS

In this Section, we investigate MIPP’s ability to select features, specifically reviewing the pixels it
identifies from the MNIST dataset. MIPP selects features in the exact same manner it selects nodes,
by verifying whether entropy is transferred from these variables to those of the subsequent layer. In
this case, the subsequent layer is the first layer in the network. In Figure 7, we observe what appears
as a significantly stochastic pixel selection. However, a tendancy to select features from the right hand
side of the image can be observed. This aligns with experiments done by Covert et al. (2020), which
revealed there are more pixels correlated with the dataset labels in this area. Despite this signal, it is
non-intuitive to observe pixels in the right-most column being selected while those in the center of
the image are not. In spite of this, we observe good performance, MIPP is able to achieve state-of-the
art test accuracy in the scenarios in which 90% and 75% of neurons and pixels have been removed,
respectively. In Figure 8, we present the average accuracy achieved when we prune models using
MIPP and our baselines. Meanwhile, in Figure 9 we present the layer collapse rates. Unlike the main
body of the paper, in both of these figures we have also used MIPP to select pixels. In both figures
we observe that MIPP outperforms the baselines. This is because, unlike any of the baselines, the
features are selected in a manner that is dependent on the pruned model. MIPP can compress both
features and the underlying model simultaneously such that the results are compatible, preventing
ML practitioners from having to use different methods for feature and model compression. Often,
combining compressed input and compressed models can lead to performance degradation. SOSP-H
is often close to state-of-the-art when pixels have not been selected; however, in these experiments it
performs poorly. This is because the gradients calculated with respect to the input are more sparse.

E.2 COMPARING FEATURE COLLAPSE FUNCTIONS

Vision models, being vastly overparameterized, have become of key importance when evaluating
pruning algorithms (Real et al., 2019; Wang & Fu, 2023; Wang et al., 2023). Unlike the nodes of
MLPs, filters in CNNs are multivariate. To preserve the MI between layers, we have two options:
we can either flatten the square filters into an array of random variables, which retains all possible
information but is computationally expensive, or collapse each filter into a single value using a
function. Given the complexity of the former approach, we opt for the latter, showing that, despite the
potential loss of information, MIPP remains highly effective. To find the function that preserves the
most information, we compare L1, L2, mean and std functions, for the exact form of these functions
please refer to Table 4 (Molchanov et al.,, 2017; Liu et al., 2017).

If Figure 10, it can be observed that for whichever function is chosen, MIPP remains performant.
However, the L1-normalization function consistently demonstrates an ability to prune to high sparsi-
ties while layer collapse remains rare. For this reason, we adopted this function throughout when
collapsing convolutions.

15

Under review as a conference paper at ICLR 2025

a) Pixels selected - trained LeNet5 MNIST b) Pixels selected - untrained LeNet5 MNIST
5.6% FS 16.2% FS 56.1% FS 5.2% FS 15.3% FS 45.7% FS

S101H|S10]4

Figure 7: Visual representation of the features selected using MIPP at different sparsities (blue implies
selected).

Trained LeNet5 - Training Trained LeNet5 - Test Untrained LeNet5 - Training Untrained LeNet5 - Test
100 - 100 - 100 - 100 -
— - = — = == I I
I 80- == __ s0- I I s0- €T T _ 0- I I
T I B g *
& 60- g 60- & 60 g 60-
5 T T é I 3 g
£ 40- B 40- S 40- B 40-
K e] e
= 20- 20 - = 20- 20
0- 0 0- . . 0
@ Q & > & Q Ky o > & Q Y S » & Q KN & »
& & & & & & & ¢ & & oS F & ¢ oS F &
[< & R < P & S < & & & ,@‘\@\
Method Method < <
Method Method

Figure 8: Average accuracy at train and test time using each method when features have been selected.

Trained LeNet5 on MNIST Untrained LeNet5 on MNIST
100 - 100 -
X N
O 50- O 50-
— -
0- ; ; 0- ; ;
80 90 100 80 90 100
Average Neuron Reduction (%) Average Neuron Reduction (%)
SOSP-H GraSP SynFlow Ours

Figure 9: % of runs that lead to layer collapse when features have been selected.

E.3 LAYER WISE PRUNING RATIOS ESTABLISHED USING OTHER METHODS

In the main paper, we present the per-layer PRs MIPP obtains. In Figure 11, we present these results
for the other methods taken into consideration.

F COMPARISON OF BASELINE CHARACTERISTICS

In an attempt to help the reader better understand the relationships between MIPP and the existing

literature, we present Table 4, which compares different characteristics of our method with the chosen
baselines.

16

Under review as a conference paper at ICLR 2025

Table 3: Summary of Collapse Methods. x can be interpreted as one realization of the random

variable X li, while Olhxw’i is a matrix of filter activations associated with the same filter or node as
xt.
l

Collapse Method =~ Mathematical Notation
| AW ,
Mean ri = i Z Z ’Ofxw’z
h=1w=1
| MW 9
- i hxw,i
Standard Deviation z; = oW }Z_:l wZ;l (‘Ol — uh,w)
4 H W 2
L2-Norm zl = Z Z (O?XW’Z)
h=1w=1
H W
i hXw,i
L1-Norm = Z Z ‘Ol X
h=1w=1

Trained LeNet5 - Training Trained LeNet5 - Test Untrained LeNet5 - Training Untrained LeNet5 - Test

100 - 00

100 -~H——sese-Hee RSSO RO) D - 100 -—iSptems meummns S scese ey S Fa

¥ X RARA T e T e e LR T
5
3 98 - ni 98 - x

98 - % 98 -
- % %
3 x x x x
£ 9 96 - o 96
3 x x
8
< 94 - 94 - 94 - 94 -

x
x
92 - 92 - 92 - -
75 80 8 90 95 100 75 80 8 90 95 100 50 6 70 80 90 100 50 60 70 80 9 100

Average Neuron Reduction

Average Neuron Reduction

Average Neuron Reduction

Average Neuron Reduction

Unpruned Accuracy - MNIST noox R mean x std
Trained LeNet5 on MNIST Untrained LeNet5 on MNIST
100 - 100 -
] (@]
2 50- < 50-
R R
90 92 94 96 98 100 90 92 94 96 98 100

Average Neuron Reduction Average Neuron Reduction

Figure 10: Top. Comparing functions used to collapse filter activations on their ability to promote

succesful pruning. Bottom. Comparing functions used to collapse filter activations on their ability to
avoid layer collapse.

Table 4: Comparison of Pruning Methods.

Feature MIPP (Ours) ThiNet SOSP-H GraSP SynFlow
Activation-Based X X X
Adjacent Layer-Based X X X
Structured X X
Able to establish layer-wise PRs X

Layer Collapse Resistant X

Data Dependent X

At Initialization X

17

Under review as a conference paper at ICLR 2025

918
919
920
921

N

Per-layer PR

(=3
-

Per-layer PR

Per—layer PR

o
'

10 19 28 37 46

Per—layer PR

10 19 28 37 46

i — 1

Per-layer PR
'

\
————— .

[

e ——————
o
(52
'
----.l_.l_,_-

1

1

1

1

- 1
0.5 H
1

1

1

922
923
925
926
928
929
931
a) GraSP a plled to trained networks
932 eNet on mnist VGG11 on CIFAR10 ResNeMs on CIFAR10 ResNemon CIFAR10 VGG19 on CIFAR100 ResNet50 on CIFAR100
I
1
1
934 |
935
R | R e i
937 GraSP applled to untrained networks
1 1 1 1
938 2 I : . :
I 1- 1 1 !
) ﬂ |' | ! || Il
940 -_ II_OII N I | alllly (A
941 12345678 147101316 7 13 19 25 31 14 7 101316 110 19 28 37 46
943 1o b 1-
944 05- 0.5- 0.5 - 0.5-
945 . |
946 Tiasase7s 701316 1713192551 14 7101316
948 1- ol 1-
949 o
05- I 05- 05- al 05-
951] 0-.. 0-......0-
952 e) SOSP applled to trained networks
953
1
1
955 i i
956 0- . ' 0- 0-, il
957 Layer number Layer number Layer number Layer number Layer number Layer number
958
960 run.
961
963
964
966
967
969
970

924
927
930
1 1 1
933 : : - i .
1 1 :
| [¥ | ||||| il | il -
-— | ln.l ||| ”I 0 L
936 12345678 147101316 713192531 1 4 7 10 13 16 1 10 19 28 37 46
939
942 c) SynFIow applled to trained networks
947 d) SynFIow applled to untrained networks
950
12345678 1 7101316 713192531 1 4 7 10 13 16
954
1
[R] ' ' D ' 0- O
1 2 3 12345678 1 4 7 1013 16 1 7 1319 25 31 1 4 7 10 13 16 11019283746
T

959 Figure 11: Layer-wise pruning ratios. Normalized by division of the average PR achieved for that
962
965
968
971

18

	Introduction
	Related Work
	Mutual Information Preserving Pruning at a Glance
	Mutual Information Preserving Pruning
	Motivation
	Preliminaries
	Transfer Entropy Redundancy Criterion with MI Ordering
	Mutual Information Estimation

	Preserving the Mutual Information Between Adjacent Layers in Practice
	Preserving the Mutual Information from Outputs to Inputs

	Evaluation
	Conclusion
	Notation
	Algorithms
	Proof of Theorem 1
	Further Experimental Settings
	Selection of the Pruning Ratio
	Data Augmentation Techniques
	Hyperparameters
	Vision Training and Re-training
	Pruning

	Further Experiments
	Feature Selection Experiments
	Comparing Feature Collapse Functions
	Layer Wise Pruning Ratios Established Using Other Methods

	Comparison of Baseline Characteristics

