
Rethink DARTS Search Space and Renovate a New Benchmark

Jiuling Zhang 1 2 Zhiming Ding 2 1

Abstract
DARTS search space (DSS) has become a canon-
ical benchmark for NAS whereas some emerg-
ing works pointed out the issue of narrow accu-
racy range and claimed it would hurt the method
ranking. We observe some recent studies already
suffer from this issue that overshadows the mean-
ing of scores. In this work, we first propose and
orchestrate a suite of improvements to frame a
larger and harder DSS, termed LHD, while retain-
ing high efficiency in search. We step forward
to renovate a LHD-based new benchmark, tak-
ing care of both discernibility and accessibility.
Specifically, we re-implement twelve baselines
and evaluate them across twelve conditions by
combining two underexpolored influential fac-
tors: transductive robustness and discretization
policy, to reasonably construct a benchmark upon
multi-condition evaluation. Considering that the
tabular benchmarks are always insufficient to ad-
equately evaluate the methods of neural archi-
tecture search (NAS), our work can serve as
a crucial basis for the future progress of NAS.
https://github.com/chaoji90/LHD

1. Introduction
DARTS relaxes categorical selection through a convex com-
bination of the architecture parameters and operation out-
puts. In the search phase, architecture parameters α and
operation weights ω are alternately optimized on validation
set and training set respectively through a bilevel optimiza-
tion objective. Henceforth, we collectively refer to the line
of works explicitly parameterize architecture search by re-
laxing the categorical operation selection to a differentiable
operation distribution as DARTS and specify the method
pioneered by Liu et al. (2019) as vanilla DARTS. We also

1University of Chinese Academy of Sciences, Beijing, China
2Institute of Software, Chinese Academy of Sciences, Beijing,
China. Correspondence to: Zhiming Ding <zhiming@iscas.ac.cn,
zhangjiuling19@mails.ucas.edu.cn>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

Table 1. Scores of the benchmark on DSS.

METHODS
CIFAR-10 IMAGENET-1KERROR (%) #param (M)

MILENAS (HE ET AL., 2020) 2.51±0.11 3.87 24.7
PC-DARTS (XU ET AL., 2020) 2.57±0.07 3.6 25.1
GAEA-ERM (LI ET AL., 2021) 2.50±0.06 3.7 24.3
DRNAS (CHEN ET AL., 2021B) 2.54±0.03 4.0 24.2
GIBBSNAS (XUE ET AL., 2021) 2.53±0.02 4.1 24.6
SP-DARTS (ZHANG & DING, 2021) 2.50±0.07 3.5 24.4
DARTS- (CHU ET AL., 2021) 2.59±0.08 3.5 24.8
β-DARTS (YE ET AL., 2022) 2.53±0.08 3.83 24.2

use the name of search space to refer to the benchmark
on that space when the context is unambiguous. Research
community has established a benchmark surrounding DSS
which has been extensively used to evaluate NAS meth-
ods (Mehta et al., 2022). Given a current benchmark, two
desiderata are discernibility and accessibility. Li & Tal-
walkar (2020) studied the indeterministic training of the
methods and demonstrated that empirically, validation ac-
curacy (val acc) fluctuates over multiple trials, sometimes
exceeding 0.1%, for the same finalnet (search result) under
the same seed. Accordingly, we refer to the case where the
accuracy margin in rank is less than 0.1% as narrow range
ranking (NRR). Table 1 illustrates current scores on DSS
where the average accuracy margin between adjacent items
of the method ranking (AMAR) is only 0.012% on CIFAR-
10 which is 8.3× smaller than 0.1%. Some studies (Yang
et al., 2020; Garg et al., 2020; Yu et al., 2020b; Wang et al.,
2020) have pointed out that the narrow accuracy range of
DSS causes baselines indiscernible and impairs the validity
of the benchmark (more related works in Appx.A).

Yang et al. (2020) systematically studied the evaluation
phase on DSS and incrementally quantified the contribution
of different modules (Auxiliary Towers, Drop Path, Cutout,
Channels, AutoAugment, Epochs) to the final scores. They
emphasized that introducing new tricks in evaluation has a
much greater impact on performance than employing dif-
ferent NAS methods. By contrast to their work focused on
the manifest influential factors, we observe more subtleties,
i.e. several minute deviations of the evaluation protocol
are introduced by succeeding studies, including different
drop-path rate, learning rate decay target, batch size, seed,
minor revise of operations (batch normalization after pool-
ings). These minutiae are partially inherited by subsequent
researches (Xue et al., 2021; Li et al., 2021; Zhang & Ding,

1

https://github.com/chaoji90/LHD

Rethink DARTS Search Space and Renovate a New Benchmark

2021; Chen et al., 2021b) but are intractable unless carefully
investigating every released code. We combine the above
minutiae and re-evaluate the finalnet (search result) reported
by vanilla DARTS and obtain +0.14% (2.76→2.62) im-
provement which is much larger than 0.012% and gives us
reason to believe that the cumulative effect of these modifi-
cations must be non-trivial in light of the NRR of Table 1.

To sum up, margin in rank is critical for the confidence of
a benchmark. For this, we find some previous studies use
t-test to measure the confidence of the score comparisons
(Hooker et al., 2019; Yu et al., 2020b; Pourchot et al., 2020).
So in this paper, we utilize both AMAR and the average t-
test (Welch, 1947) margin between adjacent items of ranking
(TMAR) as the measurements of discernibility. For a list of
methods L, we can i) Sort L in terms of accuracies (rank);
ii) Get pair-wise margins (accuracy gap for AMAR, t-test
for TMAR) of adjacent items of the sorted L; iii) Average
all margins to get AMAR or TMAR. AMAR measures
the absolute margin of accuracies and TMAR takes both
accuracy and variance into account when examining the
t-test value. We can also see from the 4th column in Table 1
that the narrow range is likely to be an intrinsic feature of the
search space and will not be rectified by simply evaluating
on more challenging data. This observation is also verified
on other datasets by Yang et al. (2020).

In general, a good space of NAS is expected to exclude
human bias and be flexible enough to cover a wide vari-
ety of candidates (He et al., 2021). Most of the previous
search spaces were proposed as the byproducts of methods.
To challenge the art scores, these studies always have an
incentive to introduce as many artifacts as possible to make
their space easier to traverse so that the methods are less
error-prone. However, this design motive is diametrically
opposite to the discernible objective of benchmark thereby
leads to the problem of NRR we are observing now. On
the contrary, AutoML-Zero (Real et al., 2020) specifically
pointed out that the accuracy of a large enough search space
should be sparse which is very the critical character of a
discernible benchmark. Even further, too many artifacts
also cause the search space easy to be overfitted. He et al.
(2020) observed that the parameter scale (#param) is closely
related to val acc and outperforms art zero-shot estimators
on DSS (Ning et al., 2021). FLOPs and #param remain
highly correlated and exhibits consistent correlation with
val acc on both DSS and our LHD, so in this paper we focus
on inspecting #param. We believe that the approach to get
better score on benchmark by just looking for larger capac-
ity operations is definitely not our expectation for NAS. The
space of a benchmark should be both large and difficult,
so that the methods are not prone to attain higher scores
by opportunistically overfitting the space. In this work, we
propose some improvements to overhaul DSS and formulate
a larger and harder new DSS, namely LHD.

Based on LHD, we step ahead to newly construct a multi-
condition evaluation benchmark in which we focus on com-
bining the evaluation of both transductive robustness and
discretization policies. The ‘transductive’ here refers to
search and expect to find the optimal architecture in-situ
on the search dataset. The benefits of the multi-condition
evaluation is three-fold: i) Further enhance discriminability,
even if some methods perform close under a single condi-
tion, we can compare them by taking all conditions into
account; ii) Make benchmark more challenging, claiming
superior across multiple conditions is much harder than on
a single condition; iii) Uncover many more methodological
characteristics and preferences that are unobservable within
current counterpart that solely provides a few scores. Our
contributions can be summarized as follows:

1. We propose i) Node aggregation enhancement: input-
softmax; ii) New searchable blocks: searchable polynary
operations, searchable cell outputs of sum and concatena-
tion; iii) Primitive refinement: unified convolution primitive.
We orchestrate all to construct a new search space that is
demonstrably larger and harder than DSS. Through this
work, we succeed in weakening the correlation between
#param and val acc from 0.52 (KD τ) on DSS (Ning et al.,
2021; Yang et al., 2020) to 0.29/0.26/0.20 on three valid
spaces of LHD.

2. We renovate a new benchmark on LHD involves assess-
ing the transductive robustness of twelve baselines over
four discretization policies across three datasets. No sin-
gle method outperforms others under all conditions and the
overall ranks are rather unstable across conditions both of
which demonstrate that our benchmark is more challenging
for methods to show generalizability and claim superior.

2. New Search Space
Preliminary: DSS formulates a cell-based search space
with N nodes X = {xn|n ∈ [1..N]} where [1..N] :=
[1, N] and E compound edges G = {gei,j |e ∈ [1..E], i ∈
[1, j − 1], j ∈ (ni, N]} where ni refers to the number
of cell inputs. Compound edge gi,j connects node i to
j and associates three attributes: candidate operation set
Oi,j = {omi,j |m ∈ [1..M]}, corresponding operation param-
eter set Ai,j =

{
αm
i,j |m ∈ [1..M]

}
, probability distribution

of the parameters ai,j = softmax(Ai,j). Every interme-
diate node is connected to all its predecessor through an
edge gi,j(xi) = ⟨ai,j , Oi,j(xi)⟩ where i < j. Typically, a
unified set of operation candidates O = {om|m ∈ [1..M]}
is defined for all edges. Each edge subsumes all operation
candidates to express the transformations between nodes.
Every node aggregates the outputs of all incoming edges
into the new feature maps. The network that encodes all
architecture candidates is called supernet. We use primitive
to describe an indivisible substructure of operations and de-

2

Rethink DARTS Search Space and Renovate a New Benchmark

0

1

2

3

3

L-SL-S L-S

Σ

3

L-SL-S L-S

S

3

S

DARTS PC-DARTS

Supernet Cell

Input-softmax

0.4 and 0.2 can not be compared due to normalized
by different local-softmax in DARTS;

0.40.2 0.2 0.4

0.6 0.1

PC-DARTS uses 0.2×0.6 vs 0.4×0.1 through
dual normalization after the local-softmax.

0

1

2

3

0

1

2

3

Figure 1. Zoom in on the input end of the node 3 to illustrate the
differences. L-S denotes the local-softmax in DARTS.

𝑥2 𝑥3 𝑥4

softmax

×
×

×

∑

Sum s/e block (SSB)

output

𝒂
=
[𝑎

2
,𝑎

3
,𝑎

4
]

𝑎2

𝑎3

𝑎4

𝛼2 𝛼3 𝛼4

×

𝑥2 𝑥3 𝑥4

concatenation

𝑎2 𝑎3 𝑎4

Concatenation s/e block

output

si
g
m

o
id

𝛼2 𝛼3 𝛼4

× ×

1×1 channel mix

𝑥2 𝑥3 𝑥4

softmax/sigmod

×
×

×

Polynary s/e block

output

𝑎2

𝑎3

𝑎4

𝛼2 𝛼3

polynary operation

CSB

Figure 2. Polynary s/e block on the left and its two instances on the
right. One parameter attach to each path to express the significance
that can be optimized through SGD. Parameters are first squashed
by softmax or sigmoid and then weight the feature maps passed
through the paths. LHD uses s/e blocks on the right as cell outputs.

note block as a substructure containing nodes, edges, paths
which can be searchable (s/e) or unsearchable (u/e). We use
rounded and solid rectangle, dashed box to represent cell,
block and primitive respectively.

Design principle: We first propose a suite of improvements
and new searchable blocks. For clarity, we separately delin-
eate their motivations, problem solved, and solutions. We
then orchestrate them all to frame the new LHD. An ablation
of these improvements are provided in Section 3. Finally, we
give a number of features of the new search space. For the
overall design principle, we enlarge search space and trim
artifacts while keeping its empirical memory cost roughly
the same. Artifacts refer to the unsearchable structures in
macro design and the over-designed primitives of operation
candidates, both of which introduce human bias, limit the
flexibility of space, make the space easy to traverse and less
error prone. We realize beforehand that some similar ideas
were proposed and examined separately (Wu et al., 2021b;
Jiang et al., 2019) but not collectively. All these researches
are far from framing a generally applicable new space to
replace DSS. We formulate LHD in Appx.B.

2.1. New modules to frame LHD

Input-softmax: Motivation: DSS suffers from the limit of
sub-graphs due to the absence of a mechanism to compare
the significance of operations across edges. As shown in Fig-
ure 1, the softmax is applied on each compound edge with-

Convolution (conv) primitives in DSS

3×3/5×5 depthwise (d/w) conv

1×1 channel mix conv

depth-wise non-dilated primitive

ReLU

Batch Normalization (BN)

3×3/5×5 d/w conv

channel mix 1×1 conv

ReLU

BN

3×3/5×5 dilate d/w conv

channel mix 1×1 conv

dilated conv primitive

ReLU

BN

3×3/5×5 d/w conv

channel mix 1×1 conv

d/w non-dilated conv primitive

ReLU

BN

channel mix 1×1 conv

unified d/w conv primitive

ReLU

BN

unified conv primitive

ReLU

BN

channel mix 1×1 conv

channel mix 1×1 primitive

ReLU

BN

Step 1 Step 2

trim lighter part to
simplify the primitive

accommodate
dilated primitives

accommodate
1×1 conv

Conv primitives in LHD

3×3/5×5 (dilate) d/w conv 3×3/5×5 (dilate) d/w conv
or channel mix 1×1 conv

Figure 3. Refinement and unification aim to simplify and unify the
structure of convolution primitives to trim redundant artifacts, the
operations are still conducted separately not merged (Wang et al.,
2021c).

0

1

2

output

3

0

1

2

3

0

1

3

S

S

S

S

0

2

3

S

0

2

3

0

2

3

4

×

×

×

×

4

output

2

Fixed output connection in DSSSupernet

Input softmax S/E output blockOps selection

Searchable output path in LHD

S

1

S

S S

1 1

Output softmax Fixed output path

Figure 4. Fixed output path in DSS on the left compared to s/e
output block and removable intermediate nodes in LHD on the
right. By orchestrating input-softmax and polynary s/e block,
the intermediate node on the rightmost can be removed from the
finalnet (search result) in the following two cases: i) Node is
neither selected by the cell output nor selected by any subsequent
nodes like node 2; ii) Node is neither selected by the cell output
nor any its succeeding node is selected by the output like node 1.

out considering their connection pattern in graph, namely
local-softmax by I-DARTS (Jiang et al., 2019). Node ag-
gregation in DSS is simply sums up all the feature maps of
incoming edges as xj =

∑
i<j gi,j(xi). PC-DARTS par-

tially solves this by employing path normalization pi,jgi,j
to double normalize the significances from different edges
depicted in Figure 1. Solution: We address this limitation
by placing softmax directly before aggregation on the node
input end instead of edges to simultaneously normalize ele-
ments across all incoming edges shown on the rightmost of
Figure 1. This way, the significance of any operation omi,j to-
ward node j can be fairly compared through the value of ami,j
for all the combinations of m ∈ [1,M] and i ∈ [1, j − 1].

Search Polynary Operation: Motivation: Innovative use of
the polynary operations is often a key improvement in hand-
crafted regime, e.g. addition in ResNet (He et al., 2016) and
concatenation in DenseNet (Huang et al., 2017). However,
parameters only attach on unary operations (single input
single output) on each edge in DSS. Solution: Generaliz-

3

Rethink DARTS Search Space and Renovate a New Benchmark

ing the merit of DARTS to search polynary operations is
straightforward by associating parameter with each path
to express its significance that can be optimized through
gradient descent. Figure 2 conceptually visualizes the s/e
block of polynary operation on the left. The path parameters
are first squashed and then weight and aggregate the feature
maps over all paths.

Unified Convolution Primitive: Motivation: As shown
in Figure 3, the convolution primitives are designed to be
rather complicated and the non-dilated primitives are de-
liberately deeper than the dilated counterparts in DSS. For
trimming artifacts to reduce human bias, solution: we first
unify the dilated and non-dilated depth-wise (d/w) primi-
tives specified as step 1 to form the unified d/w primitive.
We step forward to incorporate the d/w primitive and 1×1
channel mixer into an unified structure of the primitive. The
unified primitive ultimately accommodates all convolution
candidates and ensures their similar structures in the space.

Orchestration to Build LHD: Motivation: DARTS is in-
capable to search none (zero) operation directly. So all
intermediate nodes are densely connected to the cell out-
put and unsearchably attend in finalnet as shown on the
left of Figure 4. The valid size of space is thus severely
restricted to solely depends on the number of edges M be-
cause the search on DSS is limited to only the operation
selection inside edges without considering their intercon-
nection topology. Solution: We relax the connection path
between intermediate nodes and cell output and let methods
search the inter-cell connection pattern through optimizing
the path significance in the search phase. Our goal is to
make the intermediate nodes removable thereby decouple
the finalnet from the design of supernet in Figure 4.

Motivation: Artifacts of the u/e cell and fixed skip connec-
tion in the macro design of DSS as shown on left of Figure 5.
As a design choice, we regard the path of SSB as an selec-
tion with exclusivity in contrast to the non-exclusive path
selection of CSB. So we normalize the output path of CSB
and SSB by gating and softmax respectively as detailed on
the right of Figure 2. Solution: Detailed in the caption of
Figure 5. By pruning the fixed inter-cell skip connections
highlighted in red in Figure 5, LHD expects NAS method
to learn the appropriate gradient path by themselves in the
search phase such that the methods cannot obtain better
score by simply choosing larger capacity architecture.

2.2. Characteristics of LHD

Case study: SSB normalizes the output path by softmax
allude to that at least the strongest path will be reserved.
Meanwhile, the sigmoid gating in CSB have a potential
to close all path that leads to finalnet reduces to a single-
input single-output structure as shown in Figure 6a. The
cell output is a feature maps aggregation by summation that

DSS macro design

Searchable (s/e) cell

Unsearchable (u/e) cell

U/e cell

S/e cell

New s/e cell

Two s/e outputs

Feature maps concatenation

channel mix 1×1 conv

SSBCSB

LHD macro design

ou
tp

ut
 o

f
th

e
u/

s
ce

ll

be
fo

re
 th

e
la

st
 p

re
ce

de
nt

DSS:
• Cell interconnection: u/e
• No. of intermediate nodes: u/e
• 1×1 channel mixer: u/e
• Operation on edge: s/e
• Complexity: 1058

• Cost: 5.2 hours (50 epochs)

Input node Input node

Sum u/s output

Two inputs

Intermediate nodes

One u/s output

Two s/e outputs

SSBCSB

Input node Input node

Intermediate nodes

Two inputs
New s/e cell

Two s/e outputs

SSBCSB

Input node Input node

Intermediate nodes

Two inputs
New s/e cell

S/e cell

Search polynary
operation

Search polynary
operation

Space summary

LHD:
• Cell interconnection: s/e
through CSB and SSB;
• No. of intermediate nodes: s/e
through input-softmax and CSB
and SSB;
• 1×1 channel mixer: s/e
through Unified Convolution
Primitive and CSB;
• Operation on edge: s/e
• Complexity: ≥ 1084

• Cost: 3.1 hours (50 epochs)

Figure 5. Macro design of DSS involves two major artifacts: i) u/e
cell for concatenation and channel mix; ii) fixed skip connections
between cells. We trim artifact ‘i’ by instantiating a polynary s/e
block as a concatenation s/e block (CSB) and use CSB as an output
of s/e cell to replace the u/e cell in DSS as shown by the black
arrow. We then trim ‘ii’ but retain dual inputs of the s/e cell and
instantiate another sum s/e block (SSB) as the second output to
match the number of inputs of s/e cell as shown on the right.

.

Cell

Op

Op

Sum

Op

Concatenation

Op

Cell

Skip connection

Cell

Skip

Conv

Sum

Cell

Op

Op

Sum

Op

Concatenation

Op

a b

c

d

Figure 6. Three corner cases (a,b,d) accommodated by LHD but
absent in DSS shows the versatility and inclusivity of LHD.

coincides with the building block of ResNet in Figure 6c. In
another case shown by Figure 6b, SSB selects only one out-
put path from the intermediate node that reads feature maps
only from the cell input through a skip connection. The cell
input and output are straight through without transformation
that of course won’t bring any reasonable performance but
will be a meaningful failure case. NAS methods can also
find cell with two parallel branches as shown by Figure 6d
and the representations are thus learned independently.

Computation and memory overhead: We strike a balance
between the space augmentation and the search acceleration.
For vanilla DARTS, primitive refinement reduces the size
of superent by 70% (1.93M→0.56M) and gives rise to a
memory surplus to increase intermediate nodes from four
to five. Furthermore, replacing the u/s cell in DSS with
the CSB allows us to increase the batch size of the search
phase by 15% (152→176). On the whole, the depth of the
supernet is reduced by two-thirds and the time overhead of
the search phase of vanilla DARTS on CIFAR-10 is 40%
lower than that on DSS (5.2h→3.1h on RTX 3090, like-for-
like comparison after aligning all other conditions).

4

Rethink DARTS Search Space and Renovate a New Benchmark

Table 2. Outline specific characteristics of baselines in the benchmark. Penultimate column lists the benchmarks used for evaluation in
original papers. NB201 is NAS-BENCH-201 (Dong & Yang, 2020), NB1S1 is NAS-BENCH-1Shot1 (Zela et al., 2020), S1∼S4 are
proposed by (Arber Zela et al., 2020). (T) denotes the tabular benchmark. PC denotes partial channels. SP denotes sparse a distribution
and OS denotes operation shortcut. GAEA-B refers to GAEA-Bilevel and GAEA-E refers to GAEA-ERM (Li et al., 2021). β-DARTS
added an additional term in loss to regularize architecture parameters.

Baseline Optimization Relaxation Gradient SP PC OS Evaluations adopted Codebase

DARTS (Liu et al., 2019) bilevel joint softmax normal no no no DSS quark0/darts
MiLeNAS (He et al., 2020) mixlevel joint softmax normal no no no DSS chaoyanghe/MiLeNAS
DrNAS (Chen et al., 2021b) bilevel joint dirichlet normal no no no DSS, NB201 (T) xiangning-chen/DrNAS
GAEA-B (Li et al., 2021) bilevel joint softmax exponentiated no no no DSS, NB201 (T) liamcli/gaea release
GAEA-E (Li et al., 2021) silevel joint softmax exponentiated no no no DSS, NB201 (T), NB1S1 (T) liamcli/gaea release
GDAS (Dong & Yang, 2019) bilevel sampling gumble-softmax normal yes no no DSS, NB201 (T) D-X-Y/AutoDL-Projects
SP-DARTS (Zhang & Ding, 2021) bilevel joint low-temp softmax normal yes no no DSS, NB201 (T), S1∼S4 chaoji90/SP-DARTS
PC-DARTS (Xu et al., 2020) bilevel joint softmax normal no yes no DSS yuhuixu1993/PC-DARTS
SurgeNAS (Luo et al., 2022) silevel joint softmax normal no no yes NB201 (T) -
DARTS- (Chu et al., 2021) bilevel joint softmax normal no no yes DSS, NB201 (T), S1∼S4 Meituan-AutoML/DARTS-
β-DARTS (Ye et al., 2022) bilevel joint softmax normal no no no DSS, NB201 (T) Sunshine-Ye/Beta-DARTS

Table 3. Comparisons of discretization policies.

Search
space

Discretization
policy

Operation
selection

Output path
selection Complexity

DSS original top-2 fixed, unsearchable 1018

LHD

Base top-2 threshold control 1031

1M as Base as Base as Base
3ops top-3 as Base 1041

4out as Base top-4 1028

Complexity of the continuous DAGs: We increase the
complexity from 1058 of DSS to ≥ 1084 of LHD. Analysis
is detailed in Appx.C. The valid subspace is determined by
the discretization policy actually used in Table 3.

3. LHD Benchmark
Appropriate benchmark grounds existing method and in-
spires further research. Our work is not to frame a new
space and try every existing method to bring us a good ar-
chitecture. To some extent, we actually embarrass existing
methods by removing their dependent artifacts, enlarging
search space, searching upon different conditions. Nonethe-
less, we will show the potentiality of some search results in
the last part. We assess twelve baselines over four discretiza-
tion policies across three standard benchmark datasets tot
twelve organized conditions to validate the transductive ro-
bustness and exhibit the impact of the discretization policies
on ranking. Baselines are curated with specific characteris-
tics that are highlighted in Table 2 from which we can see
that DSS is almost compulsory for the adequate evaluation
of NAS methods. We do our best to fully understand the
codebases released on DSS and migrate them to LHD.

Transductive robustness in search: NAS aims to automate
the general network design. Robustness of the search phase
is critical since tuning hyperparameters on each space for
each dataset is prohibitive and unsustainable. We can first
reasonably assume that all baselines’ settings have been
specially tuned on DSS on CIFAR-10 (DSS&C10). We ex-

pect to achieve reasonable performance by directly applying
these settings on LHD&C10. After that, we transfer these
settings of the search phase to LHD&CIFAR-100 (C100)
and LHD&SVHN to evaluate the transductive robustness
across datasets (model settings are detailed in Appx.D). In
our benchmark, we adopt the latest and most intuitive search
protocol from (Li et al., 2021; Dong & Yang, 2020; He et al.,
2020; Xue et al., 2021) which can be summarized as follows:
i) Uniformly sample n seeds from 1 to 100,000; ii) Search
n times with the seeds independently; iii) Evaluate n results
separately and take the average val acc. Our benchmark set
n to five, the maximum value of previous studies, greater
than three trials in (Dong & Yang, 2020; Ying et al., 2019)
and four trials in (He et al., 2020; Xue et al., 2021).

Discretization policies: We propose four discretization poli-
cies in Table 3. Base closely follows the top-2 operation
selection in DSS while 3ops acts as a straightforward alter-
native to select top-3 operations on each input-softmax. For
the s/e cell outputs, Base thresholds SSB by 0.2 (starting
point of the five s/e paths) and CSB by the mean gating level
of all paths. 4out is a variant of this by simply selecting top-
4 out of five paths for both SSB and CSB so that the cells are
densely interconnected. We discuss the tuning-based path
selection method (Wang et al., 2021b) in detail in Appx.F.

DARTS expects the gradient-based optimization to select
the appropriate operation. This selection subsequently af-
fects the network scale as shown in Table 1 but leaves the
question of whether the performance gaps come from differ-
ent #param rather than architectural merit. (Tay et al., 2022)
also identifies that models operate well in one scale does not
guarantee its performant in another. In practice, networks
are widely scaled by increasing depth and width. We there-
fore come up policy 1M that adopts the same architecture
as Base, but first scale it up by increasing the stacked cells
from 20 to 25 and then align #param through augmenting
init channels until the finalnet attains 1.5M #param.

Complexity of the valid search space: Original policy of

5

Rethink DARTS Search Space and Renovate a New Benchmark

Table 4. We report mean and standard deviation of val acc as the main scores. We also report the averaged #param (M) to uncover the
preference of baselines in the perspective of model capacity. We report additional top-1 and top-3 scores because some methods are
trapped in rare failure cases. Evaluation results on C10 are shown here, results on C100 and SVHN are provided in Appx.E.

C10 Base 1M 3ops 4out
Method val acc (%) #param top-1/top3 val acc (%) #param top-1/top3 val acc (%) #param top-1/top3 val acc (%) #param top-1/top3

DARTS 93.58±4.11 0.67 96.40/96.02 93.89±4.42 1.54 96.92/96.41 92.24±4.01 0.74 95.53/94.49 91.73±4.82 0.90 96.54/94.44
DrNAS 94.14±2.03 0.57 95.97/95.28 94.48±2.20 1.55 96.39/95.77 94.52±1.12 0.64 95.63/95.12 92.75±3.80 0.86 94.83/94.72
GAEA-B 95.93±0.46 0.68 96.52/96.18 96.20±0.59 1.56 96.73/96.56 95.70±0.83 0.77 96.40/96.19 96.17±0.43 0.96 96.64/96.40
GAEA-E 94.74±0.56 0.91 95.25/95.08 94.88±0.48 1.60 95.47/95.22 94.97±0.53 1.13 95.32/95.25 94.89±0.44 1.03 95.25/95.14
GDAS 94.90±0.22 0.55 95.24/95.04 95.62±0.28 1.53 96.28/95.79 95.24±0.42 0.61 95.58/95.53 95.92±0.31 0.98 96.28/96.12
MiLeNAS 95.60±0.43 0.66 96.11/95.82 95.99±0.55 1.53 96.86/96.30 95.46±0.81 0.78 96.31/95.94 95.67±0.37 0.98 96.21/95.91
PC-DARTS 95.11±0.52 0.71 95.86/95.42 95.45±0.56 1.56 96.22/95.76 95.42±0.52 0.83 96.04/95.77 95.40±0.51 1.09 96.09/95.73
Random 95.09±0.69 0.64 95.75/95.51 95.58±0.63 1.56 96.34/95.98 95.60±0.11 0.77 95.75/95.68 95.48±0.29 0.92 95.79/95.67
SP-DARTS 95.83±0.39 0.64 96.22/96.08 96.12±0.52 1.55 96.84/96.43 95.53±0.78 0.76 96.22/96.07 94.10±2.18 0.94 96.01/95.40
DARTS- 92.84±2.77 0.66 96.48/94.56 93.14±2.72 1.54 96.98/94.70 93.57±1.91 0.75 96.28/94.76 91.69±2.52 0.84 95.85/93.01
β–DARTS 95.01±0.75 0.60 95.84/95.26 95.16±0.98 1.52 96.03/95.47 93.80±1.14 0.71 94.95/94.19 92.11±4.47 0.92 95.22/94.26
SurgeNAS 94.38±0.99 0.78 95.07/94.95 94.66±1.01 1.55 95.60/95.36 94.77±1.24 0.96 95.40/95.33 94.64±0.56 0.98 95.27/94.97

Table 5. Discernibility measurements of the ranks under different conditions. Larger values of AMAR and TMAR in LHD imply greater
margins between items in rank, thereafter yield more discernible ranking to alleviate NRR in DSS.

Condition C10&DSS C10&Base C10&1M C10&3ops C10&4out C100&Base C100&1M C100&3ops C100&4out SVHN&Base SVHN&1M SVHN&3ops SVHN&4out

AMAR/ top3 (%) 0.012/0.005 0.29/0.17 0.28/0.10 0.32/0.09 0.41/0.25 1.60/0.74 2.18/1.03 1.12/1.12 2.45/1.01 0.27/0.017 0.27/0.027 0.20/0.078 0.31/0.114
TMAR/ top3 0.30/0.08 0.50/0.64 0.43/0.30 0.43/0.24 0.67/1.07 0.78/0.24 0.60/0.43 0.72/0.45 1.12/0.77 0.79/0.18 0.98/0.25 0.96/1.30 1.18/1.47

CIFAR-100 (C100)

Figure 7. Distributions of the search results on the coordinate frame of val acc versus depth. We specifically put the results on C100 here
because the performance ceiling is noticeably positively correlated with the finalnet (search result) depth, which is not obvious on C10
and SVHN (see Appx.E). Methods prefer deeper or shallower structures thereby struggle to achieve consistent scores across conditions.

CIFAR-100 (C100)CIFAR-100 (C100)

Figure 8. (left) Compare baseline val accs on four policies respectively along x axis. Some whiskers are truncated for the clarity in the
main scope. (right) Exhibits the differences in val accs between Base and other policies to illustrate the effect of the discretization on
different methods. Each bar contains the scores of five trials. Results on C10 and SVHN and are provided in Appx.E due to space limit.

DSS allows
∏4

k=1 C
2
k+1 × 72 =

∏4
k=1

(k+1)k
2 × 72 ≈ 109

possible valid cell after discretization and the total com-
plexity of the normal and reduction searches is approximate
1018. Possible discretized valid cell in LHD can be obtained
through ((

∑N−1
i=1 Ci

N)2
∏N+1

j=2 Ck
Mj)

2 with M operation
candidates and N intermediate nodes. k is the specified
top-k operation selection on each input-softmax.

Contribution ablation: From the complexity of 1018 on

DSS, contribution of each improvement can be ablated: i)
For N=4 and fixed path single cell output, input-softmax
enlarges valid search space by one order of magnitude to
1019; ii) Combining dual cell s/e outputs with input-softmax
to yield removable intermediate node augments another six
orders of magnitude from step ‘i’ to the valid search space
1025; iii) Increasing intermediate nodes from four to five
accounts for another six orders of magnitude to the final

6

Rethink DARTS Search Space and Renovate a New Benchmark

�
�
�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

����������

��������

������

��������

��������

���������

�������

���������

���������

���������

�������

���������

���������

�
�
�
�
��
��
�
�

���

���

���

���

���

Figure 9. Small KD corresponds to low rank correlation. Method
performs well on one condition does not guarantee its precedence
on others. Single condition evaluation to claim superior could be
misleading and not generalizable.

valid complexity 1031 of Base as shown in Table 3.

Evaluation protocol: To refrain the additional cost added
by multi-condition evaluation, we choose a relatively lower
#param regime (≤1M or 1.5M) than DSS (≥3.5M). We
employ seed 0 which is the same as DSS for all evaluations
on LHD and propose a i-value based heuristic regularization
protocol (more in Appx.G) to tackle the diversity of search
results. Nevertheless, we believe that our benchmark is
friendly and accessible to any practitioner since the entire
pipeline can be delivered on a single GPU.

3.1. Results of the Benchmark

The main scores are reported in Table 4. Figure 7 illus-
trates the distribution of the search results in terms of depth,
val acc and #param. Figure 8 shows the results grouped
by policies on the left and shows the performance differ-
ences between policies on the right. Kendall’s Tau (KD τ) is
widely used to study the rank correlations on NAS (Yu et al.,
2020b; Park et al., 2020; Zhang et al., 2020). Figure 9 illus-
trates a heatmap of KD to show a pairwise correlation of the
twelve baselines’ ranking over twelve conditions. We also
demonstrate the improvements of discernibility in Table 5.

Observations from the results (1∼5): 1. If a method
prefers a deep and large cell, such as GAEA-ERM and PC-
DARTS, it is often more difficult to learn the proper gradient
path that deteriorates performance while scaling up from
Base to 1M; 2. In contrast, if a method prefers simple and
shallow architecture, such as SP-DARTS and GDAS, it is
likely to fail to yield good performance on the conditions
prefer deeper structures, e.g. on C100; 3. It’s hard to balance
the preferences at the same time, e.g. SP-DARTS is one
of the top performant art on both C10 and SVHN but is

1.3%

Figure 10. Random samples (RS) and random search (ASHA five
trials) on C10&Base. ASHA has been proven to be an art partial
training method that outperforms leading adaptive search strategies
for hyperparameter optimization (Li et al., 2020). Results on
C10&3ops, C10&4out and more details are provided in Appx.I.

poor on C100. PC-DARTS is just the opposite that works
well on C100. But this dilemma is our very intention in
designing LHD and balancing the contradictory is also our
expectation of the superior method; 4. Both transductive
robustness and discretizations have a significant impact on
methods ranking as illustrated in Figure 9; 5. We notice that
even with the improved discernibility of the space, there
are still local indiscernible in ranks, e.g. AMARs of the
top-3 methods are ≤ 0.1 under some conditions in Table 5.
Multi-condition evaluations compensate this that if a method
claims superior, it should prove that across most conditions
(if not all) rather than upon a single condition with marginal
score differences. We specify more observations on the
characteristics of methods in Appx.H.

3.2. Random Sampling and Random Search

We conduct further studies on LHD and observe (1∼5): 1.
(Yang et al., 2020) evaluated 200+ samples on DSS and
observed “all within a range of 1% after a standard full train-
ing on C10” i.e. narrow accuracy range. We evaluate 250+
random samples on C10&Base which exhibit a much larger
accuracy gap in Figure 10; 2. More than 25% of the random
samples have train acc<val acc after full 600 epochs of
training which also occurs in some NAS methods that favor
deep and large cell, both of which imply an absence of appro-
priate gradient path and highlight the deliberate harder part
of LHD. 3. The correlation between #param and val acc is
0.29/0.26/0.20 for random samples on BASE/3ops/4out on
C10 as opposed to 0.52 on C10&DSS (Ning et al., 2021),
demonstrating that LHD breaks the tight correlation (He
et al., 2020) under even lower #param regime. LHD thereby

7

Rethink DARTS Search Space and Renovate a New Benchmark

Table 6. Evaluate different settings. RA denotes RandAug-
ment (Cubuk et al., 2020) and CM denotes CutMix (Yun et al.,
2019). i controls the drop-path rate which is also positively corre-
lated with the cells’ interconnection density.

Dataset Architecture Evaluations
#param (M) Settings val acc (%)

C10
SpC10-B 0.49 i=0.04, RA+CM 96.79

Rs3ops 0.8/2.5/3.5 i=0.06/0.07/0.08 96.84/97.51/97.70
2.5/3.5 i=0.05/0.06, RA 97.69/97.82

SVHN SpSVHN-B 0.58 different recipe 96.64

SpC10-B
SpSVHN-B

Rs3ops

Figure 11. High performant normal cells with simple connection
patterns searched by SP-DARTS on C10&Base and SVHN&Base,
named SpC10-B and SpSVHN-B respectively. Learned gradient
paths are evident and highlighted in red. The Rs3ops is much more
complex that comes from random sampling on C10&3ops.

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
params (M)

60

62

64

66

68

70

72

74

to
p-

1
(%

)

SpC10-B
SpSVHN-B
Rs3ops
ConvMixer
MobileNet-V3
GhostNet
DiCENet
RegNetX
ShuffleNet-V2
Mobile-Former
CondenseNet
SqueezeNext
FE-Net
FBNet-B
DARTS
MobileNet-V2
ESPNet-V2

Figure 12. Comparisons on ImageNet-1k under mobile regime.

makes method more difficult to obtain high scores through
overfitting #param and the validity of the architecture per
se is more important; 4. As marked by Figure 10, the
mean accuracy of the top-3 methods outperforms random
sampling by a large margin (1.3%) on C10&Base in con-
trast to many previous studies pointing to only a trivial gap
(<0.5%) between art NAS methods and random sampling
on C10&DSS (Yu et al., 2020c; Yang et al., 2020; Garg et al.,
2020; Lindauer & Hutter, 2020), in particular underpins the
discernable improvement in proposal. 5. Random search is
conducted by combining ASHA which is previously stud-
ied on DSS (Li & Talwalkar, 2020) and shows competitive
results. The NAS method only needs one-shot 3-hour train-
ing to obtain search results for all policies (Base/3ops/4out)
whereas ASHA must be applied separately, so we provide
both 1-hour and 3-hour results for ASHA in Figure 10.

4. Beyond the Benchmark
We visualize three high performant normal cells in Figure 11.
Both SpC10-B and SpSVHN-B retain only three out of five
intermediate nodes in the space due to removable search in
proposal. Furthermore, method can obtain one input/output
structure like SpSVHN-B that underscores the effectiveness
of the s/e output blocks in finding inter-cell connection
patterns. Additionally, We can easily recognize the learned
gradient paths in Figure 11 that replace the fixed inter-cell
skip connections in DSS. Beside the simple cells, LHD
is also capable to encode rather complicated connection
patterns as shown by Rs3ops on the bottom pane.

We try to ablate the evaluation settings and ultimately deliver
a strong scores 96.79% on C10 with only 0.49M #param in
Table 6. For comparison, ConvMixer (Trockman & Kolter,
2022) equipped with RA+CM+Mixup+Random Erasing at-
tains the best 95.19% (0.594M) and 95.88% (0.707M) in
their ablations. Besides, Rs3ops yields on par or superior
val acc with 30% lesser #param comparing with the optimal
results on DSS in Table 1. We also test another drastically
different recipe where DenseNet40 k12 delivers 96.22%
with similar #param but 2× more MACs under the same
recipe on SVHN1. To evaluate the transferability on Ima-
geNet (224×224), we closely follow the evaluation recipe
on DSS that moderately increase the capacity to accommo-
date higher resolution inputs. Our scores are competitive
against a wide range of baselines shown in Figure 12.

5. Compare with Queryable Benchmark
Tabluar benchmark has an unquestionable efficiency upside.
However, its downside also comes from the efficiency that
makes methods easier to be tuned and overfit. We have
witnessed a fair number of studies claimed to stably achieve
the global optimal on NB201 (Dong & Yang, 2020), but
none of these methods yield that level of superior on DSS
or LHD; The recent NAS-Bench (NB) study (Mehta et al.,
2022) underscores the similar point in studying non-one-
shot methods on more benchmarks. Mehta et al. (2022) even
appealed to stop focusing much on smaller NB201 (Dong
& Yang, 2020) and NB101 (Zela et al., 2020; Ying et al.,
2019) and rather embrace larger and novel new NBs. One-
shot methods can be applied on four NBs in (Mehta et al.,
2022) and three of which, including NB201 and NB101, are
tabular benchmarks in addition to DSS. Since evaluating
NAS only on tabular benchmarks is always considered in-
adequate, our work is one crucial complement rather than
an exclusivity to the counterparts, in particular for one-shot
methods and topology search. On the other hand, tabular
benchmarks hardly provide effective insight for other re-
lated fields due to their limited size of spaces. In contrast,

1longrootchen/densenet-svhn-classification-pytorch

8

Rethink DARTS Search Space and Renovate a New Benchmark

more practical DSS has inspired follow-up researches in
various forms (Shu et al., 2020; Han et al., 2022; Knyazev
et al., 2021). Surrogate benchmark (Siems et al., 2020) is
another type of queryable NB that predicts space statistics
by pre-training tens of thousands of architectures. Surrogat-
ing twelve conditions in our case requires pre-training about
one million samples which it’s currently unrealistic.

Acknowledgements
This work is supported by the National Key R & D Program
of China (2022YFF0503900)

6. Conclusion
In this paper, we dig into hardening and enlarging the canon-
ical benchmark space DSS under limited resources, taking
care of both discernibility and accessibility. We conduct a
comparative study to establish a multi-condition evaluation
benchmark and focus on comparing the unique contribu-
tion of each method but leaving their possible combinations
for the future work. In particular, we provide abundant art
baselines and all the scores can be used out of box with-
out laborious repetition. For fair comparison, we strongly
recommend practitioners to only tune on one condition and
transfer the exact settings to others. The results after tuned
can be provided separately if necessary. We believe that the
benefits of our study are multifaceted as we provide a basis
for the further research, including a versatile and inclusive
search space, a more revealing and all accessible benchmark
and the research progress of the fair comparison of methods.

References
Arber Zela, T. E., Saikia, T., Marrakchi, Y., Brox, T.,

and Hutter, F. Understanding and robustifying differ-
entiable architecture search. In International Conference
on Learning Representations, volume 3, pp. 7, 2020.

Chen, M., Wu, K., Ni, B., Peng, H., Liu, B., Fu, J., Chao,
H., and Ling, H. Searching the search space of vision
transformer. Advances in Neural Information Processing
Systems, 34, 2021a.

Chen, X. and Hsieh, C.-J. Stabilizing differentiable ar-
chitecture search via perturbation-based regularization.
In International Conference on Machine Learning, pp.
1554–1565. PMLR, 2020.

Chen, X., Wang, R., Cheng, M., Tang, X., and Hsieh,
C.-J. Drnas: Dirichlet neural architecture search. In
International Conference on Learning Representations,
2021b. URL https://openreview.net/forum?
id=9FWas6YbmB3.

Chu, X., Zhou, T., Zhang, B., and Li, J. Fair darts: Elim-

inating unfair advantages in differentiable architecture
search. In European Conference on Computer Vision, pp.
465–480. Springer, 2020.

Chu, X., Wang, X., Zhang, B., Lu, S., Wei, X., and Yan,
J. Darts-: Robustly stepping out of performance col-
lapse without indicators. In International Conference on
Learning Representations, 2021.

Cubuk, E. D., Zoph, B., Shlens, J., and Le, Q. V. Ran-
daugment: Practical automated data augmentation with a
reduced search space. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition
Workshops, pp. 702–703, 2020.

Dong, C., Wang, G., Xu, H., Peng, J., Ren, X., and Liang, X.
Efficientbert: Progressively searching multilayer percep-
tron via warm-up knowledge distillation. In Findings of
the Association for Computational Linguistics: EMNLP
2021, pp. 1424–1437, 2021.

Dong, X. and Yang, Y. Searching for a robust neural
architecture in four gpu hours. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 1761–1770, 2019.

Dong, X. and Yang, Y. Nas-bench-201: Extending the
scope of reproducible neural architecture search. In Inter-
national Conference on Learning Representations, 2020.

Duan, Y., Chen, X., Xu, H., Chen, Z., Liang, X., Zhang, T.,
and Li, Z. Transnas-bench-101: Improving transferabil-
ity and generalizability of cross-task neural architecture
search. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 5251–
5260, 2021.

Garg, A., Saha, A. K., and Dutta, D. Revisiting neural
architecture search. arXiv preprint arXiv:2010.05719,
2020.

Han, D., Yoo, Y., Kim, B., and Heo, B. Learning features
with parameter-free layers. In International Conference
on Learning Representations, 2022.

He, C., Ye, H., Shen, L., and Zhang, T. Milenas: Efficient
neural architecture search via mixed-level reformulation.
In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pp. 11993–12002,
2020.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pp. 770–778, 2016.

He, X., Zhao, K., and Chu, X. Automl: A survey of the
state-of-the-art. Knowledge-Based Systems, 212:106622,
2021.

9

https://openreview.net/forum?id=9FWas6YbmB3
https://openreview.net/forum?id=9FWas6YbmB3

Rethink DARTS Search Space and Renovate a New Benchmark

Hooker, S., Courville, A., Clark, G., Dauphin, Y., and
Frome, A. What do compressed deep neural networks
forget? arXiv preprint arXiv:1911.05248, 2019.

Huang, G., Liu, Z., Van Der Maaten, L., and Weinberger,
K. Q. Densely connected convolutional networks. In
Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 4700–4708, 2017.

Huang, S.-Y. and Chu, W.-T. Searching by generating: Flex-
ible and efficient one-shot nas with architecture generator.
In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pp. 983–992, 2021.

Jiang, Y., Hu, C., Xiao, T., Zhang, C., and Zhu, J. Improved
differentiable architecture search for language modeling
and named entity recognition. In Proceedings of the 2019
Conference on Empirical Methods in Natural Language
Processing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP), pp.
3585–3590, 2019.

Knyazev, B., Drozdzal, M., Taylor, G. W., and Romero So-
riano, A. Parameter prediction for unseen deep archi-
tectures. Advances in Neural Information Processing
Systems, 34:29433–29448, 2021.

Lee, H., Hyung, E., and Hwang, S. J. Rapid neural architec-
ture search by learning to generate graphs from datasets.
In International Conference on Learning Representations,
2021.

Li, L. and Talwalkar, A. Random search and reproducibility
for neural architecture search. In Uncertainty in Artificial
Intelligence, pp. 367–377. PMLR, 2020.

Li, L., Jamieson, K., Rostamizadeh, A., Gonina, E., Hardt,
M., Recht, B., and Talwalkar, A. Massively parallel
hyperparameter tuning. arXiv preprint arXiv:1810.05934,
5, 2018.

Li, L., Jamieson, K., Rostamizadeh, A., Gonina, E., Ben-
Tzur, J., Hardt, M., Recht, B., and Talwalkar, A. A system
for massively parallel hyperparameter tuning. Proceed-
ings of Machine Learning and Systems, 2:230–246, 2020.

Li, L., Khodak, M., Balcan, M.-F., and Talwalkar, A.
Geometry-aware gradient algorithms for neural architec-
ture search. In International Conference on Learning
Representations, 2021. URL https://openreview.
net/forum?id=MuSYkd1hxRP.

Lindauer, M. and Hutter, F. Best practices for scientific re-
search on neural architecture search. Journal of Machine
Learning Research, 21(243):1–18, 2020.

Liu, H., Simonyan, K., and Yang, Y. Darts: Differentiable ar-
chitecture search. In International Conference on Learn-
ing Representations, 2019.

Luo, X., Liu, D., Kong, H., Huai, S., Chen, H., and Liu,
W. Surgenas: A comprehensive surgery on hardware-
aware differentiable neural architecture search. IEEE
Transactions on Computers, 2022.

Mehta, Y., White, C., Zela, A., Krishnakumar, A., Zabergja,
G., Moradian, S., Safari, M., Yu, K., and Hutter, F. Nas-
bench-suite: Nas evaluation is (now) surprisingly easy. In
International Conference on Learning Representations,
2022.

Ning, X., Tang, C., Li, W., Zhou, Z., Liang, S., Yang, H.,
and Wang, Y. Evaluating efficient performance estimators
of neural architectures. Advances in Neural Information
Processing Systems, 34:12265–12277, 2021.

Park, D. S., Lee, J., Peng, D., Cao, Y., and Sohl-Dickstein,
J. Towards nngp-guided neural architecture search. arXiv
preprint arXiv:2011.06006, 2020.

Peng, H., Du, H., Yu, H., LI, Q., Liao, J., and Fu, J. Cream of
the crop: Distilling prioritized paths for one-shot neural
architecture search. Advances in Neural Information
Processing Systems, 33, 2020.

Pourchot, A., Ducarouge, A., and Sigaud, O. To share or not
to share: A comprehensive appraisal of weight-sharing.
arXiv preprint arXiv:2002.04289, 2020.

Radosavovic, I., Johnson, J., Xie, S., Lo, W.-Y., and Dollár,
P. On network design spaces for visual recognition. In
Proceedings of the IEEE/CVF international conference
on computer vision, pp. 1882–1890, 2019.

Real, E., Liang, C., So, D., and Le, Q. Automl-zero: Evolv-
ing machine learning algorithms from scratch. In Interna-
tional Conference on Machine Learning, pp. 8007–8019.
PMLR, 2020.

Ren, P., Xiao, Y., Chang, X., Huang, P.-Y., Li, Z., Chen, X.,
and Wang, X. A comprehensive survey of neural architec-
ture search: Challenges and solutions. ACM Computing
Surveys (CSUR), 54(4):1–34, 2021.

Shen, J., Khodak, M., and Talwalkar, A. Efficient archi-
tecture search for diverse tasks. In Oh, A. H., Agarwal,
A., Belgrave, D., and Cho, K. (eds.), Advances in Neural
Information Processing Systems, 2022. URL https:
//openreview.net/forum?id=TEmAR013vK.

Shu, Y., Wang, W., and Cai, S. Understanding architec-
tures learnt by cell-based neural architecture search. In
International Conference on Learning Representations,
2020.

Siems, J., Zimmer, L., Zela, A., Lukasik, J., Keuper, M.,
and Hutter, F. Nas-bench-301 and the case for surrogate
benchmarks for neural architecture search. arXiv preprint
arXiv:2008.09777, 2020.

10

https://openreview.net/forum?id=MuSYkd1hxRP
https://openreview.net/forum?id=MuSYkd1hxRP
https://openreview.net/forum?id=TEmAR013vK
https://openreview.net/forum?id=TEmAR013vK

Rethink DARTS Search Space and Renovate a New Benchmark

Stamoulis, D., Ding, R., Wang, D., Lymberopoulos, D.,
Priyantha, B., Liu, J., and Marculescu, D. Single-path nas:
Designing hardware-e# 14; cient convnets in less than 4
hours. In European Conference on Machine Learning
and Principles and Practice of Knowledge Discovery in
Databases, 2019.

Tay, Y., Dehghani, M., Abnar, S., Chung, H. W., Fedus,
W., Rao, J., Narang, S., Tran, V. Q., Yogatama, D., and
Metzler, D. Scaling laws vs model architectures: How
does inductive bias influence scaling? arXiv preprint
arXiv:2207.10551, 2022.

Trockman, A. and Kolter, J. Z. Patches are all you need?
arXiv preprint arXiv:2201.09792, 2022.

Tu, R., Khodak, M., Roberts, N., and Talwalkar, A. Nas-
bench-360: Benchmarking diverse tasks for neural archi-
tecture search. arXiv preprint arXiv:2110.05668, 2021.

Wang, D., Li, M., Gong, C., and Chandra, V. Attentive-
nas: Improving neural architecture search via attentive
sampling. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 6418–
6427, 2021a.

Wang, L., Zhao, Y., Jinnai, Y., Tian, Y., and Fonseca, R. Neu-
ral architecture search using deep neural networks and
monte carlo tree search. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 34, pp. 9983–
9991, 2020.

Wang, R., Cheng, M., Chen, X., Tang, X., and Hsieh, C.-J.
Rethinking architecture selection in differentiable nas. In
International Conference on Learning Representations,
2021b.

Wang, X., Xue, C., Yan, J., Yang, X., Hu, Y., and Sun, K.
Mergenas: Merge operations into one for differentiable
architecture search. In Proceedings of the Twenty-Ninth
International Conference on International Joint Confer-
ences on Artificial Intelligence, pp. 3065–3072, 2021c.

Welch, B. L. The generalization of ‘student’s’problem
when several different population varlances are involved.
Biometrika, 34(1-2):28–35, 1947.

Wortsman, M., Farhadi, A., and Rastegari, M. Discovering
neural wirings. In Proceedings of the 33rd International
Conference on Neural Information Processing Systems,
pp. 2684–2694, 2019.

Wu, B., Li, C., Zhang, H., Dai, X., Zhang, P., Yu, M.,
Wang, J., Lin, Y., and Vajda, P. Fbnetv5: Neural architec-
ture search for multiple tasks in one run. arXiv preprint
arXiv:2111.10007, 2021a.

Wu, Y., Liu, A., Huang, Z., Zhang, S., and Van Gool, L.
Neural architecture search as sparse supernet. In Proceed-
ings of the AAAI Conference on Artificial Intelligence,
volume 35, pp. 10379–10387, 2021b.

Xie, S., Kirillov, A., Girshick, R., and He, K. Exploring
randomly wired neural networks for image recognition. In
Proceedings of the IEEE/CVF International Conference
on Computer Vision, pp. 1284–1293, 2019.

Xu, Y., Xie, L., Zhang, X., Chen, X., Qi, G.-J., Tian, Q.,
and Xiong, H. Pc-darts: Partial channel connections for
memory-efficient architecture search. In International
Conference on Learning Representations, 2020.

Xue, C., Wang, X., Yan, J., Hu, Y., Yang, X., and Sun, K.
Rethinking bi-level optimization in neural architecture
search: A gibbs sampling perspective. In Proceedings
of the AAAI Conference on Artificial Intelligence, vol-
ume 35, pp. 10551–10559, 2021.

Yang, A., Esperança, P. M., and Carlucci, F. M. Nas evalua-
tion is frustratingly hard. In International Conference on
Learning Representations, 2020.

Ye, P., Li, B., Li, Y., Chen, T., Fan, J., and Ouyang, W.
b-darts: Beta-decay regularization for differentiable ar-
chitecture search. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pp.
10874–10883, 2022.

Ying, C., Klein, A., Christiansen, E., Real, E., Murphy, K.,
and Hutter, F. Nas-bench-101: Towards reproducible
neural architecture search. In International Conference
on Machine Learning, pp. 7105–7114. PMLR, 2019.

Yu, J., Jin, P., Liu, H., Bender, G., Kindermans, P.-J., Tan,
M., Huang, T., Song, X., Pang, R., and Le, Q. Bignas:
Scaling up neural architecture search with big single-
stage models. In European Conference on Computer
Vision, pp. 702–717. Springer, 2020a.

Yu, K., Sciuto, C., Jaggi, M., Musat, C., and Salzmann, M.
Evaluating the search phase of neural architecture search.
In International Conference on Learning Representations,
2020b.

Yu, K., Suito, C., Jaggi, M., Musat, C.-C., and Salzmann,
M. Evaluating the search phase of neural architecture
search. In ICRL 2020 Eighth International Conference
on Learning Representations, number CONF, 2020c.

Yun, S., Han, D., Oh, S. J., Chun, S., Choe, J., and Yoo,
Y. Cutmix: Regularization strategy to train strong clas-
sifiers with localizable features. In Proceedings of the
IEEE/CVF international conference on computer vision,
pp. 6023–6032, 2019.

11

Rethink DARTS Search Space and Renovate a New Benchmark

Zela, A., Siems, J., and Hutter, F. Nas-bench-1shot1:
Benchmarking and dissecting one-shot neural architec-
ture search. In International Conference on Learning
Representations, 2020.

Zhang, J. and Ding, Z. Robustifying darts by eliminating
information bypass leakage via explicit sparse regulariza-
tion. In Proceedings of the IEEE International Confer-
ence on Data Mining, pp. 877–885, 2021.

Zhang, Y., Lin, Z., Jiang, J., Zhang, Q., Wang, Y., Xue, H.,
Zhang, C., and Yang, Y. Deeper insights into weight
sharing in neural architecture search. arXiv preprint
arXiv:2001.01431, 2020.

Zoph, B., Vasudevan, V., Shlens, J., and Le, Q. V. Learning
transferable architectures for scalable image recognition.
In Proceedings of the IEEE conference on computer vi-
sion and pattern recognition, pp. 8697–8710, 2018.

12

Rethink DARTS Search Space and Renovate a New Benchmark

A. Related Works
As much of the related works were already mentioned in the introduction, we highlight several fields of the closely related
works separately in this section.

Topology search: A handful of previous studies focused on the search space some of which pointed out that the search
space is underdeveloped compared to the rapid progress of NAS methods. Xie et al. (2019) underscored that the success
of many hand-designed networks comes from the innovation of the connection pattern. They demonstrated the network
topology generated by different random strategies can clearly affect performance. Shu et al. (2020) made the point that the
connection pattern rather than the operation selection significantly affects the landscape of the gradient and thereby affect
the convergence speed of the network. They claimed that this observation can be used as a guideline for the network design
in the future. Besides, one of the most prominent difference between hyperparameter optimization and NAS is that NAS can
search connection topology among different operations and layers (Zoph et al., 2018; Garg et al., 2020) which is also the
key ingredient to increase the capacity of search space and find efficient networks (Real et al., 2020; Wortsman et al., 2019).

Single path (slimmable) search spaces: As another line of the gradient-based methods came up with single-path MBConv-
based search spaces that are usually built on searching a combination of channel numbers, input resolutions, network depths,
expansion ratio (width multipliers) where the interconnectivity patterns between operations are largely constrained (Yu
et al., 2020a; Wang et al., 2021a; Dong et al., 2021; Stamoulis et al., 2019; Peng et al., 2020; Huang & Chu, 2021; Wu
et al., 2021a; Shen et al., 2022). Single-path NAS regularly involves two-stage decoupled optimization (Ren et al., 2021)
in which the training of supernet on ImageNet generally employ at least eight GPUs and costs hundreds of GPU hours
at a minimum (Chen et al., 2021a). In contrast, DSS is mostly conducted by searching operation selections and their
interconnection patterns simultaneously and costs only a few hours on a single GPU under low sample sizes. In summary,
DSS is important for NAS, not only for the search of the connection topology, but also for the accessible benchmark. Still,
how to design a more general, flexible and free of human bias search space will remain challenging and advantageous for
the NAS community for a long time (He et al., 2021).

Benchmark on DSS: We notice some of the most recent studies of benchmark dedicated to the evaluation of multitask
and transferability. These studies are often limited by the size of the search space (Duan et al., 2021), or use non-standard
benchmark datasets resulting in few available baselines (Tu et al., 2021). Our benchmark is evaluated on the most commonly
used standard benchmark datasets (CIFAR-10, CIFAR-100, SVHN) so that it is easy to find a large number of available
baselines (handcrafted and NAS) within the latest literatures. Another irreplaceability of the DSS is that there are already
extensive methods that are finetuned, provide their implementations or report their scores on DSS (He et al., 2020; Xu et al.,
2020; Li et al., 2021; Chen et al., 2021b; Xue et al., 2021; Zhang & Ding, 2021; Wang et al., 2021b; Chu et al., 2021; Dong
& Yang, 2019; Chen & Hsieh, 2020; Chu et al., 2020; Arber Zela et al., 2020; Lee et al., 2021), which can be used directly
as the competitive baselines for DSS-based evaluations without requiring the researchers to re-implement or even re-execute
the experiments. If the scores are not available out of the box, expecting researchers to reimplement multiple art baselines on
a new codebase is often labor-intensive or even unachievable that also tend to get caught up in unfair comparison controversy
without adequate tuning in this case. For these reasons, our study follows the configuration of the DSS benchmark to the
greatest extent possible (tasks, datasets, search and evaluation protocols) so that our claim of transductive robustness is
sufficiently convincing. Second and most importantly, we provide the evaluation scores of established baselines (Liu et al.,
2019; He et al., 2020; Chen et al., 2021b; Li et al., 2021; Dong & Yang, 2019; Zhang & Ding, 2021; Xu et al., 2020; Chu
et al., 2021; Luo et al., 2022; Ye et al., 2022) so that the researches can use the benchmark almost out of the box by only
implementing their own methods and compare with the scores we provided in the main text . Our work is not to construct a
new search space and try every existing method to see which can bring us the good arch to challenge the architecture. On
the contrary, our work actually embarrasses existing methods by removing their dependent artifacts, enlarging search space,
searching upon different reasonable conditions. Similar to our work, Arber Zela et al. (2020) pioneered to tailor DSS into
four search spaces S1∼S4 which are specially customized to embarrass DARTS and widely used to validate the robustness
of the regularization methods.

Tabular and surrogate benchmarks: NAS-BENCH-101 (Ying et al., 2019) is inappropriate as our counterpart since NB101
cannot be used by one-shot NAS methods including DARTS and its variants. NAS-BENCH-1Shot1 (Zela et al., 2020)
made this issue very clear and proposed to map NB101 to three available search spaces. Nevertheless, NB1S1 was still
rarely used for evaluation by current NAS methods, especially compared to its concurrent tabular work NAS-BENCH-201
(Dong & Yang, 2020), due to some internal limitations e.g. i) few available ops (only three); ii) no explicit methods
ranking in the paper main text; iii) unfriendly to implement new methods. Besides, NB101 (NB1S1) is a tabular benchmark

13

Rethink DARTS Search Space and Renovate a New Benchmark

Table 7. Softmax attends on edge in DSS as opposed to it attends on aggregation within input end of nodes in LHD i.e. the origin of
input-softmax.

Search space Inputs of s/e cell St Outputs of St and U t Node xj aggregation Edge gi,j(xi) operation

DSS F t−1
U , F t−2

U

F t
S =

{
xt
j |j ∈ (ni..N]

}
where ni = 2, F t

U = M1×1
⊕ (F t

S)
xj =

∑
i<j gi,j(xi)

gi,j(xi) = ⟨ai,j , Oi,j(xi)⟩
where ai,j = softmax(Ai,j)

LHD F t−1
+ , F t−1

⊕

F t
+ =

〈
pt
+,x

t
〉

where

pt
+ = softmax(P t

+), P
t
+ =

{
[β+]

t
j |j ∈ (ni..N]

}
F t
⊕ = M1×1

⊕
(
pt
⊕ ◦ xt

)
where

pt
⊕ =

{
sigmoid([β⊕]

t
j)|j ∈ (ni..N]

}
,

xt =
{
xt
j |j ∈ (ni..N]

}
and ni = 2

xj = ⟨aj , gj⟩ where
aj = softmax(Aj),

Aj =
{
αm
i,j |i ∈ [1..j),m ∈ [1..M]

}
,

gj = {gi,j(xi)|i ∈ [1..j)}

gi,j(xi) = Oi,j(xi)
= {om (xi) |m ∈ [1..M]}

Table 8. Hyperparameter settings of baselines in search. DARTS settings are closely follow the released code on DSS. Specific settings of
other baselines follow their released code on DSS as well. All settings keep consistent across C10, C100, SVHN.

method batch size learning rate learning rate min momentum weight decay epochs init channels layers arch learning rate arch weight decay additional

DARTS 176 0.025 3e-4 0.9 3e-4 50 16 8 3e-4 0 -

MiLeNAS - - - - - - - - - - λ = 1

DrNAS - - - - - - - - - - -

GAEA-B - - - - - - - - 0.1 - -

GAEA-E - - - - - - - - 0.1 - -

GDAS 256 0.05 - - - - - - - -
tau min=0.1,
tau max=10

SP-DARTS - - 0.025 - - - - - - -
warmup=5,
temp=0.0015

PC-DARTS 576 0.1 - - - - - - 6e-4
warmup=15,
k=4

DARTS- - - - - - - - - -
β=1
decay scheme
:linear (β →0)

β-DARTS - - - - - - - - -
weight scheme
=0→100

SurgeNAS - - - - - - - - -
β=1
decay scheme
:linear (β →0)

Table 9. Hyperparameter settings of evaluation. All baselines strictly follow the same.

batch size learning rate learning rate min momentum weight decay epochs init channels stacked cells data augmentations (cutout, flip, crop)

64 0.025 3e-4 0.9 3e-4 600
36 for Base,

3ops and 4out
25 for 1M,

20 for others true for C10 and C100, false for SVHN

and the evaluation on tabular benchmarks is never enough for NAS methods due to the highly limited search space (105

compared to 1058 of DSS and 1084 of our LHD). Furthermore, tabular benchmarks hardly provide effective insight for the
practical network design. In contrast, we have seen that more realistic DSS has inspired several studies (Shu et al., 2020;
Knyazev et al., 2021). NAS-BENCH-301 (Siems et al., 2020) adopts a surrogate-based methodology on DSS that predicts
performances with the performances of about 60k anchor architectures.

B. Formulations of LHD
We formalize LHD in Tabel 7 where β is the path parameter and ◦ denotes Hadamard product. F represents the cell outputs
and subscripts U and S refers to s/e and u/e. Subscripts + and ⊕ represent summation and concatenation. We omit the cell
index t within node and edge columns and don’t distinguish coessential set and vector for brevity.

C. Complexity of the Continuous DAGs
In LHD, cell accommodates five intermediate nodes with 2+3+4+5+6=20 inter-connection compound edges each of which
factors in 7 operations thus a total of 27 combinations. For a single CSB cell output, the substructure complexity of the

14

Rethink DARTS Search Space and Renovate a New Benchmark

Table 10. Evaluation results on CIFAR-100 and SVHN on LHD.

C100 Base 1M 3ops 4out
Method val acc (%) #param top-1/top3 val acc (%) #param top-1/top3 val acc (%) #param top-1/top3 val acc (%) #param top-1/top3

DARTS 69.18±3.85 0.62 72.68/71.97 70.38±4.37 1.55 74.17/73.54 70.27±2.51 0.71 73.18/72.01 70.82±2.20 0.9 72.87/72.41
DrNAS 53.92±14.67 0.5 66.90/64.16 49.65±18.55 1.54 68.89/62.56 61.69±3.59 0.53 63.77/63.38 47.21±6.21 0.85 54.69/51.35
GAEA-B 71.51±3.64 0.63 75.28/73.47 73.59±2.93 1.53 76.71/75.14 73.58±1.67 0.69 75.57/74.43 74.14±1.52 1 76.23/75.06
GAEA-E 67.81±1.03 0.86 69.12/68.47 67.06±1.95 1.54 69.90/68.26 71.07±0.40 1.06 71.51/71.35 68.10±1.13 1.21 69.34/68.86
GDAS 62.99±1.60 0.51 64.26/64.15 65.97±0.91 1.53 66.85/66.63 61.89±4.31 0.58 66.45/64.36 65.07±2.04 0.98 67.31/66.44
MiLeNAS 68.98±0.97 0.65 70.00/69.61 70.32±0.98 1.57 71.25/70.88 69.17±1.79 0.74 70.58/70.35 69.77±0.47 0.91 70.48/70.02
PC-DARTS 71.03±5.32 0.77 74.04/73.73 71.52±5.64 1.54 74.86/74.75 71.78±5.18 0.9 74.95/74.38 72.12±4.63 1.05 75.65/74.91
Random 69.14±2.79 0.7 72.08/70.93 69.34±5.78 1.54 74.46/73.13 70.66±2.24 0.79 73.18/72.17 70.71±4.17 0.97 74.84/73.64
SP-DARTS 68.99±1.13 0.52 70.69/69.60 70.97±0.71 1.55 71.89/71.44 66.88±0.92 0.55 68.08/67.47 69.15±1.60 0.84 70.90/70.06
DARTS- 68.96±2.55 0.65 71.44/70.75 67.82±3.67 1.54 72.53/70.20 61.26±6.03 0.74 67.82/64.58 57.67±6.85 0.9 65.41/62.11
β–DARTS 70.03±4.28 0.62 73.60/72.25 72.35±3.68 1.54 75.52/74.45 71.35±2.28 0.68 73.44/72.97 72.33±2.31 0.93 74.90/73.96
SurgeNAS 69.42±3.59 0.88 73.00/71.26 69.88±3.94 1.56 74.04/72.01 69.74±1.78 1.01 71.02/70.83 69.78±2.52 1.11 72.91/71.20

SVHN Base 1M 3ops 4out
Method val acc (%) #param top-1/top3 val acc (%) #param top-1/top3 val acc (%) #param top-1/top3 val acc (%) #param top-1/top3

DARTS 95.77±0.70 0.58 96.36/96.26 95.94±0.59 1.55 96.52/96.35 96.00±0.50 0.68 96.43/96.34 95.58±0.58 0.87 96.20/95.96
DrNAS 96.58±0.26 0.67 96.81/96.77 96.65±0.18 1.55 96.83/96.78 96.66±0.12 0.81 96.78/96.75 96.61±0.10 1.09 96.71/96.68
GAEA-B 96.85±0.10 0.54 96.98/96.90 97.01±0.10 1.57 97.17/97.07 96.78±0.06 0.68 96.84/96.83 97.06±0.08 0.98 97.19/97.11
GAEA-E 96.68±0.07 0.87 96.76/96.73 96.63±0.02 1.54 96.66/96.64 96.58±0.07 1.06 96.67/96.64 96.63±0.06 1.05 96.68/96.67
GDAS 96.81±0.17 0.8 97.07/96.92 96.95±0.10 1.54 97.08/97.03 96.67±0.46 0.91 97.10/96.92 96.62±0.48 1.02 97.21/96.95
MiLeNAS 96.71±0.20 0.51 96.92/96.83 96.89±0.18 1.57 97.03/97.00 96.67±0.22 0.67 96.85/96.83 96.76±0.19 1 97.00/96.88
PC-DARTS 96.69±0.08 0.82 96.82/96.73 96.87±0.13 1.53 97.03/96.94 96.68±0.17 0.97 96.91/96.80 96.82±0.07 1.08 96.88/96.86
Random 96.81±0.24 0.64 97.09/96.97 96.93±0.20 1.52 97.16/97.07 96.54±0.62 0.73 96.99/96.92 96.66±0.35 0.96 97.05/96.89
SP-DARTS 96.78±0.16 0.55 97.04/96.88 97.00±0.21 1.57 97.29/97.12 96.93±0.12 0.71 97.12/96.99 96.90±0.15 0.96 97.04/97.00
DARTS- 94.45±0.59 0.54 95.17/94.86 94.66±0.47 1.56 95.15/94.96 95.23±0.24 0.63 95.59/95.37 94.70±0.46 0.85 95.17/94.96
β–DARTS 93.87±1.92 0.52 95.90/93.87 94.06±2.07 1.56 95.94/94.06 94.78±1.10 0.58 95.73/94.78 93.65±1.21 0.78 94.98/93.65
SurgeNAS 96.86±0.11 0.84 96.96/96.89 96.90±0.06 1.57 97.01/96.94 96.77±0.06 0.93 96.84/96.82 96.83±0.08 1.05 96.98/96.87

continuous space is 27×20 = 2140 ≈ 1042 without considering graph isomorphism. Two searchable cells, normal and
reduction, account for the total complexity at least 1042×2 = 1084 for LHD. Softmax in DSS is applied on edge implying
at least one operation will be selected. We subtract the case where no operation is selected on each edge and get the total
complexity of DSS as

(
27 − 1

)14×2 ≈ 1058. We have to note that the post-search discretization will introduce a large
amount of inductive bias and determine the valid subspace smaller than the total capacity of the continuous DAG.

D. Baseline Settings in Search and Evaluation
Hyperparameter settings in search across baselines and the consistency settings of evaluation are provided in Table 8 and
Table 9 respectively. Same settings are strictly followed on all conditions.

We provide the full source code in the repository and we also report some implementation details here for self-contained.
Most of the implementation of baselines are search space agnostic, so our implementations are overall closely follow the
released code from their authors listed at the last column of Table 3 in the main text.

For DARTS on LHD, we closely follow the source code released on DSS. The only special clarification needed is that
the parameters of the output path of both CSB and SSB are initialized sampling from N(0, 1) and scaling the sample by
e-3 which is in line with the initialization of the architecture parameters that representing the significance of operations
in DARTS. The implementation of MiLeNAS is directly based on DARTS, except that the architecture parameters are
updated by the cumulative gradients on the both training and validation sets rather than the validation set alone in DARTS.
GAEA-Bilevel modifies the general gradient of DARTS to the exponential version, GAEA-ERM goes one step further and
trains architecture parameters and operation weights simultaneously without splitting a validation set from training set.
GDAS replaces torch.softmax with gumble-softmax in DARTS. On the other hand, DrNAS replaces torch.softmax with
torch.dirichlet. We directly use the scheduler of the temperature coefficient of softmax in SP-DARTS on the LHD. We
also follow the channel sampling implementation in DSS of PC-DARTS and migrate it directly to the LHD. For random
sampling, we discretize the randomly sampled parameters of the operation significance and the output paths of CSB and
SSB are selected randomly and independently according to the Bernoulli distribution. If the obtained network is invalid
(open circuit), repeat the sampling process until a valid architecture is obtained. We use the linear decay from 1 to 0 which
is the default setting in DARTS- for the shortcut of each edge within DARTS- and for the individually shortcut of each
operation within SurgeNAS. The weight scheme of β-DARTS (0→100) is also consistent with the released code on DSS
and NB201.

15

Rethink DARTS Search Space and Renovate a New Benchmark

CIFAR-100 (C100)

CIFAR-10 (C10)

SVHN

Figure 13. Distributions of the search results on val acc versus depth coordinate frame. Depth refers to the number of sequential
convolution layers within the longest path without counting stem. Depth has little effect on C10 performance, but deeper networks tend to
achieve better C100 performance, whereas upper bound of the performance on SVHN is some kind negatively correlated with depth.

E. Additional Results of the Benchmark
We report mean and std of val accs in Table 10 as the main scores. We also report the average size of finalnets to uncover
the preference of baselines in the perspective of parameter scale. We observe that some methods are trapped in rare failure
cases (see DARTS and DrNAS on C10, GAEA-Bilevel and PC-DARTS on C100), so we report additional top-1 and top-3
scores in Table 10. Figure 13 illustrates the distribution of the search results in terms of depth, val acc and parameter scale
under the twelve conditions that the column and row of the picture group correspond to the policies and datasets respectively.
The first column of Figure 14 compares baseline val accs on each policy and the second column exhibits the differences in
val acc between Base and other policies for each baseline to illustrate the effect of the policy on different methods.

Software version for search and evaluation of the benchmark: torch 1.9, cuda 11.1, cudnn 8.2, driver version 460.67. But we
also test the search and evaluation codes and verify the empirical memory overhead on more recent version: torch 1.10,
cuda 11.3, cudnn 8.3 and driver 495.44. The total number of evaluated finalnets is 540 and the footprint of both search and
evaluation is about 500 GPU days.

F. Path Tuning (PT) based Result Selection
Wang et al. (2021b) proposed a new finalnet selection method based on a separated PT phase after searching to replace
parameter-value-based one-off pruning. We carefully investigate the paper as well as released code2 and have the following
findings:

1. PT needs to mask and evaluate operations one-by-one in the PT phase. The idea of PT is largely NAS method agnostic

2https://github.com/ruocwang/darts-pt

16

Rethink DARTS Search Space and Renovate a New Benchmark

CIFAR-100 (C100)CIFAR-100 (C100)

CIFAR-10 (C10) CIFAR-10 (C10)

SVHN SVHN

Figure 14. Baseline performances grouped by policies (left); val acc gaps between Base and other policies (right).
.

but highly specific to the search space and entangled to the space design;

2. Owe to “method agnostic”, we recognize that the PT can be apply to all the baselines in our benchmark but inevitably
incurs non-trivial additional time overhead (See “4”), thus unfair to compare with parameter-value-based one-off pruning
selection (See “5”);

3. Due to “space entangled”, it’s non-trivial to determine many implementation details because of the difference between
DSS and LHD. For example, if we need to tune the cell output, or just the operation selections? If the output path needs to
be tuned, whether the tuning is done jointly with the operation selections, or separately?

4. PT needs to mask operations on each edge in forward pass to calculate the val acc loss, so its computational cost is closely
related to the number of operations, nodes and edges in the search space. When the space is enlarged, the computational
cost will also increase linearly;

5. Apart from “4”,PT has to tune supernet and select result individually for each valid space (Base, 3ops, 4out) like random
search, but one-time pruning only needs to search once without any extra-search time overhead. Therefore, the overhead of
PT will even exceed the search phase when it is applied to three valid spaces respectively.

For above reasons, we eliminate PT in current benchmark and leave its verification to the future work.

17

Rethink DARTS Search Space and Renovate a New Benchmark

Figure 15. Distributions of the search results on MACs versus depth coordinates. The size of finalnets span a wide range of gap with a
maximum 7× in terms of MACs, depth and parameters. By comparison, the depth and size are typically no more than 1.5× and 0.5×
differences respectively of the search results on DSS.

G. Heuristic Regularization in Evaluation
DSS tightly couples search results and search space gives rise to that the gaps of depth and parameter scale of the finalnets
released with source code never exceed 1.5× and 0.5× respectively. They elaborated a single recipe to evaluate all results
on C10. In contrast, we observe a large variety of the search results in the lens of depth, flops, parameter scale due to the
removable intermediate node of LHD and multiple discretization policies as shown in Figure 15 of our benchmark. This
opens a new question did not appear on DSS, how to fairly evaluate search results with large differences in architecture.

Elaborating evaluation recipe for each finalnet is not our goal and quickly becomes intractable for a comprehensive evaluation.
We aim to obtain reasonable and inter-comparable scores of the diverse results in the evaluation phase. Empirically, we
observe that the regularization strength is the paramount factor affecting the performance of diverse architectures.

Similar to (Yang et al., 2020; Arber Zela et al., 2020) we choose to overall closely follow the evaluation recipe of DSS across
different datasets similar to previous practice in addition to which we propose a (tunable and adaptive) simple protocol to
adjust the intensity of regularization heuristically for various conditions. The regularization in evaluation recipe of DSS
mainly involves data augmentation (Crop, flip, cutout) and drop path.

For evaluation phase of our benchmark, we adopt the same data augmentation on C10 and C100 and exclude it on SVHN.
We come up a protocol rDP = ic to adapt the drop path rate rDP under different conditions where c is the number of
connections between intermediate nodes and concatenation output in the finalcell. i is a tunable parameter across datasets
and discrete policies. We first set i as 0.01 for Base, 3ops and 4out on C10 and increase it by 50% for 1M due to the larger
finalnet capacity. We double the value of i on C100 and SVHN due to fewer samples per class and the exclusion of data
augmentation respectively which make them both more likely to be overfitted.

H. Observations of Methodological Characteristics from the Results of Benchmark
Based on the benchmark results, we can make the following observations of the methods:

1. Search results of many baselines show clustering in the depth versus val acc coordinates indicating the fixed preferences
of the different methods in Figure 13.

2. We can actually get rich observations for each baseline from the left column of Figure 14. For example, GAEA-ERM

18

Rethink DARTS Search Space and Renovate a New Benchmark

Figure 16. Random sampling and random search on C10&3ops (i) and C10&4out (ii). (iii) and (iiii) illustrate that val acc is weakly
correlated with depth and #param in all three valid spaces of LHD.

Base 3ops 4out
policy

90

91

92

93

94

95

96

va
l_a

cc

method
RS (train_acc >= val_acc)
RS (train_acc < val_acc)

Figure 17. Base and 4out have a wider range of val acc with a considerable proportion of hard-to-train samples. In comparison, 3ops can
largely avoid failure cases and hard-to-train samples but the overall val acc range is narrower.

shows stable performance over different seeds, MiLeNAS non-trivially reduces the val acc variance on 4out, PC-DARTS is
policy-insensitive on C100, DARTS is more susceptible to the initialization seeds and always have greater performance
fluctuations under all conditions compared to most baselines;

3. Right column of Figure 14 shows that the baselines perform diversely on different policies. For example on C10, 4out
severely deteriorates a number of baselines. GDAS, by contrast, shows remarkably superior scores on 4out than that on
Base. Similarly, DrNAS and GAEA-ERM prefer 3ops but perform quite different on 4out;

4. As shown by Figure 13 and Table 10, both GAEA-ERM and PC-DARTS prefer larger and deeper cell while GDAS and
SP-DARTS are just the opposite. For example on C10&Base, the average parameter scale of GAEA-ERM is 65% larger
than that of GDAS, but the performance of GAEA-ERM is worse which highlights the challenging part of LHD that the
methods are requisite to learn the appropriate gradient pathways autonomously rather than depending on hand-crafted skip
connection;

5. SP-DARTS is one of the most performant methods on both C10 and SVHN but is poor on C100. PC-DARTS is just the
opposite that performs well on C100. Failure cases are not uncommon among baselines. Both observations underpin the
necessity to validate the search robustness across multiple datasets.

6. Silevel optimization is effective on stabilizing the training process shown by both GAEA-ERM and SurgeNAS.
Additionally, optimizing on mixlevel can be seen as an meaningful regularization to perform consistent across different
discretization policies for DARTS.

I. Random sampling and Random search
Li et al. (2018) showed ASHA to be a state-of-the-art, theoretically principled, bandit-based partial training method that

19

Rethink DARTS Search Space and Renovate a New Benchmark

90919293949596
val_acc

0.0

0.2

0.4

0.6

0.8

1.0

cu
m

ul
at

iv
e

pr
ob

Base
3ops
4out

Figure 18. EDFs manifest the differences between search spaces through the curve gaps of the cumulative probability versus val acc over
random samples. 4out is close to 3out when the val acc is >94%, and close to Base when the val acc is <93%. We refer to (Radosavovic
et al., 2019) for more information about EDFs.

outperforms leading adaptive search strategies for hyperparameter optimization. Li & Talwalkar (2020) demonstrated when
implemented properly, ASHA-based random search can deliver fairly competitive baselines against NAS methods after
aligning the search cost. Our experiments are based on the codebase released by Li & Talwalkar (2020)3 where we run
ASHA with a starting resource per architecture of r = 1 epoch and a maximum resource of 100 epochs w.r.t a promotion
rate of η = 4 which indicating the top- 14 of architectures will be promoted in each round and trained for 4× more resources.
We refer to Li & Talwalkar (2020) for more details of the random search.

The results of random sampling (RS) and random search (ASHA) on C10&3ops and C10&4out are provide in Figure 16(i)
and (ii). We also illustrate all random samples on val acc versus depth coordination in Figure 16(iii) and val acc versus
#param coordination in Figure 16(iiii) respectively. Figure 17 exhibits the proportion of sample accuracy distribution in
different search spaces in which hard-to-train samples (train acc<val acc) are particularly identified. Radosavovic et al.
(2019) proposed to characterize the distributions of architecture spaces through empirical distribution functions (EDFs) in a
cumulative probability versus val acc coordination as shown in Figure 18.

3https://github.com/liamcli/randomNAS release

20

