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Abstract

Physical adversarial attacks can deceive deep neural networks (DNNs), leading
to erroneous predictions in real-world scenarios. To uncover potential security
risks, attacking the safety-critical task of person detection has garnered significant
attention. However, we observe that existing attack methods overlook the pivotal
role of the camera, involving capturing real-world scenes and converting them
into digital images, in the physical adversarial attack workflow. This oversight
leads to instability and challenges in reproducing these attacks. In this work, we re-
visit patch-based attacks against person detectors and introduce a camera-agnostic
physical adversarial attack to mitigate this limitation. Specifically, we construct
a differentiable camera Image Signal Processing (ISP) proxy network to compen-
sate for the physical-to-digital transition gap. Furthermore, the camera ISP proxy
network serves as a defense module, forming an adversarial optimization frame-
work with the attack module. The attack module optimizes adversarial patches
to maximize effectiveness, while the defense module optimizes the conditional
parameters of the camera ISP proxy network to minimize attack effectiveness.
These modules engage in an adversarial game, enhancing cross-camera stability.
Experimental results demonstrate that our proposed Camera-Agnostic Patch (CAP)
attack effectively conceals persons from detectors across various imaging hardware,
including two distinct cameras and four smartphones.

1 Introduction

Adversarial attacks have emerged as a concerning threat to deep neural network (DNNs)-based
models, casting a shadow over their reliability, particularly as certain attack methods extend beyond
the digital space and prove effective in real-world scenarios [1, 5, 27]. Examples include wearing
specialized glasses to mislead facial recognition models for impersonation attacks [26] or wearing
clothing with adversarial textures to evade machine vision systems [14]. This category of attacks is
commonly known as physical adversarial attacks [33].

Successfully executing physical adversarial attacks presents heightened challenges due to domain
transitions and various dynamic physical factors encountered throughout the process from craft-
ing digital perturbations to launching real-world attacks. Existing attack methods against person
detectors have demonstrated notable advancements [32], and we categorize their efforts into two
main types: (1) Transitioning from the digital to the physical domain, where techniques such as
Non-Printability Scores (NPS) [26] are employed to mitigate color reproduction discrepancies caused
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(a) AdvPatch [29] attack. Successful attack rate: 1/6
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(b) Our CAP attack. Successful attack rate: 6/6

Figure 1: Illustration depicting the impact of camera on attack performance. The bounding boxes
indicate the YOLOv5 [17] detector successfully detects the person. In each setting, we maintain
scene consistency to minimize irrelevant influences. In contrast to the AdvPatch [29] attack, which is
effective only on Samsung devices, our method successfully executes attacks across all six cameras.

by printers [29]. (2) Transformations in the physical domain, which involve using operations like
rotations, scale variations, and others to simulate real-world variations [11, 28], leveraging Thin
Plate Splines (TPS) to model cloth deformation [35], and utilizing fully-cover textures on clothing to
handle multi-angle variations in the real world [13, 14]. Naturally, a question arises: Is it necessary
to explore another transition, namely, transitioning from the physical to the digital domain?

In the journey from the physical scene to digital images, the camera plays a crucial role. This aspect
has been overlooked for an extended period. Therefore, to shed light on the aforementioned question,
we evaluated the camera’s impact on attack performance. Specifically, we captured the same physical
scene using different cameras (Sony, Canon, iPhone, etc.) and observed that the detection results
for non-attack persons remained relatively stable, whereas, for persons with adversarial patches, the
confidence values exhibited considerable variations. Some of the results are shown in Figure 1a.
These experimental results demonstrate that the physical-to-digital domain transition, specifically the
camera imaging pipeline’s transformation of real-world scenes into digital counterparts, constitutes a
crucial factor that significantly impacts adversarial attack performance.

Inspired by this observation, we are committed to designing camera-agnostic physical adversarial
attacks. To maintain stable attack performance across a variety of imaging devices in the real world,
our method introduces a camera simulation into the adversarial patch generation pipeline. Here we
emphasize the significance of the camera ISP, a pivotal component that connects the RAW sensor
data captured by the camera to the ultimate processed image. Our analysis reveals that camera ISP
processing inherently attenuates attack performance, highlighting the camera ISP’s potential defensive
role against adversarial attacks, effectively positioning it as a natural defender. This observation aligns
with Zhang et al. [39], who employed learned ISP pipelines to design an off-the-shelf preprocessing
module for defending against digital adversarial attacks. Consequently, we propose an adversarial
optimization framework to generate camera-agnostic adversarial patches. Specifically, a differentiable
camera ISP proxy network functions as a defense module by adjusting conditional parameters to
reduce the efficacy of adversarial patches. Conversely, the patch optimization module enhances attack
performance by optimizing the patch itself. This adversarial optimization endows the generated
patches with robust effectiveness across diverse camera hardware, as illustrated in Figure 1b.

In summary, our main contributions are as follows:

• A complete modeling of the workflow for physical adversarial attacks that integrates camera
modules previously overlooked in existing research. Our method unveils the significant
impact of the imaging devices and integrates a differentiable camera ISP proxy network into
the attack pipeline.

• A new adversarial patch generation framework gains cross-camera attack capabilities. Our
method leverages the camera ISP module’s defense properties by optimizing conditional
parameters to reduce patch effectiveness, establishing a zero-sum game with the perturbation
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Table 1: Summary of typical patch-based physical adversarial attacks against person detection.
While existing attack methods have partially addressed the Digital-to-Physical transition, none have
systematically investigated the Physical-to-Digital transition. Our proposed CAP attack introduces
a Camera Proxy Network to model this crucial transition and comprehensively evaluates attack
performance across diverse unseen imaging devices.

Categories Method Digital-to-Physical
transition

Physical
transformation

Physical-to-Digital
transition

Black-box camera
evaluation

Stealthiness NAP (2021) [11] % Scale, angle, etc. % %

LAP (2021) [28] NPS Loss Scale, angle, etc. % %

Effectiveness
& Robustness

AdvPatch (2019) [29] NPS Loss Scale, angle, etc. % %

AdvT-shirt (2020) [35] Color Transformer TPS deformation % %

AdvCloak (2020) [34] Rendering Function TPS deformation % %

TC-EGA (2022) [14] % TPS deformation % %

T-SEA (2023) [15] % Patch Cutout % %

CAP (Ours) NPS Loss Scale, angle, etc. Camera ISP Net "

optimization module. This interaction ultimately strengthens the camera-agnostic robustness
of the generated adversarial patch.

• Improved attack efficacy and heightened stability gains over existing methods. Real-world
experiments demonstrate that our approach consistently and effectively achieves attack
objectives across various imaging devices, including two typical cameras (Sony and Canon)
and four smartphone cameras (iPhone, Redmi, Huawei, and Samsung).

2 Related Work

Physical Adversarial Attacks on Vision Tasks Compared to digital adversarial attacks [2, 27, 36],
physical adversarial attacks are more threatening because they can deceive DNNs-based models in the
real world. Sharif et al. [26] achieved the first implementation of physical adversarial attacks, targeting
facial recognition systems. Since then, researchers have been designing attacks for various computer
vision tasks, including classification [1], detection [29], segmentation [22], depth estimation [3], and
image captioning [38]. In general, these methods generate perturbations in the digital domain, then
transform them into tangible physical entities, deploy them in real-world scenarios, capture them
with cameras, and finally return to the digital domain to complete the attack2 In this process, two
domain transitions are experienced. The first, namely digital-to-physical, has been addressed by
some works [16, 26]. However, the second, namely physical-to-digital, has been always overlooked,
resulting in existing attack methods being unstable and difficult to reproduce. Our approach instead
addresses this absence by incorporating a differentiable camera ISP network, thus constructing a
more comprehensive perturbation generation pipeline.

Adversarial Patches for Person Detection Due to the significance of human privacy and secu-
rity, adversarial patches are widely employed for attacking person detection models in real-world
scenarios [32]. We summarize recent work on patch-based physical adversarial attacks targeting
person detection in Table 1. Although existing methods have made significant progress in terms
of effectiveness [29, 34, 35], stealthiness [11, 28], and robustness [14, 15], they all overlook the
widespread scenario of cross-camera attacks in the physical world. They assume a white-box camera
system, which diminishes their effectiveness in real-world scenarios with unseen cameras. Therefore,
we advocate for treating the camera system as a black box and propose a method for designing
camera-agnostic adversarial patches.

Camera Image Signal Processing Pipeline In the journey from the physical scene to digital RGB
images, the camera’s internal Image Signal Processing (ISP) pipeline plays a crucial role. The ISP
pipeline is tasked with converting the RAW measurements captured by camera sensors into high-
quality RGB images that are suitable for further analysis and human perception. It employs a range of
techniques and algorithms, such as demosaicing [7, 18], denoising [9, 37], white balancing [10, 12], to
enhance acquired data, mitigate noise artifacts, and correct for optical aberrations. Intuitively, Zhang

2Refer to Supplementary Material Figure A for an illustration of the workflow of physical adversarial attacks.
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Figure 2: Overview of our adversarial optimization framework. The framework comprises two
mutually adversarial parts: Attacker and Defender. The attacker optimizes adversarial perturbations
to maximize attack effectiveness, while the defender optimizes the conditional input hyperparameter
of the ISP proxy network to minimize attack effectiveness. The two parts cyclically alternate during
the optimization stage.

et al. [39] discovered that the camera’s ISP weakens the effectiveness of adversarial perturbations
and developed an off-the-shelf preprocessing adversarial defense method. Inspired by this insight,
our approach incorporates a differentiable camera ISP network as a defense module, designing an
adversarial optimization framework to ensure attack robustness of generated adversarial perturbations
across different camera ISP configurations.

3 Camera-Agnostic Attack

3.1 Problem Definition

A camera system plays a transformational role in converting the physical scene ISCENE into its digital
counterpart IRGB. Subsequently, the digital image IRGB serves as input for well-trained downstream
DNNs-based models g, producing predictions y that closely align with the ground truth (YGT). Our
goal is to generate adversarial patches P and apply them to ISCENE to attack the model g to cause
incorrect predictions y′. Unlike existing camera-specific physical adversarial attack methods, our
approach aims to maintain stable performance across various cameras. In our attack setting, we
regard the imaging process (from ISCENE to IRGB) as a black box.

3.2 Overall Framework

To enable the generated adversarial patches to adapt to various cameras, we introduce a novel
adversarial optimization framework (see Figure 2). It consists of two mutually adversarial parts:
Attacker and Defender. The attacker has an ISP proxy network on top of existing attacking strategies.
The ISP network maps adversarial perturbations to the RGB space based on conditional input
hyperparameters. The processed adversarial perturbations are subsequently applied to benign samples
and fed into the target detection model to get predictions. The attacker iteratively optimized adversarial
perturbations to deliberately deviate the person detector’s output from the ground-truth labels through
gradient descent [19]. The defender employs the same structure but different optimization strategy.
It optimized the conditional hyperparameters to minimize the attack effectiveness of adversarial
perturbations. During the attacker optimization phase, we freeze the conditional ISP hyperparameters,
and similarly, during the defender optimization phase, we freeze the adversarial perturbations.

3.3 Differentiable Camera ISP Simulation

The camera ISP is responsible for converting the raw measurements of camera sensors into high-
quality RGB images suitable for further analysis and human perception. It consists a range of
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Algorithm 1 The proposed adversarial optimization ( Attacker and Defender)
1: Given source image data X , targeted person detector g, and the trained camera ISP network fISP;
2: Initialize the adversarial patch P and input hyperparameters Θ of fISP;
3: for t = 1, 2, . . . , T do
4: // Optimize the adversarial patch P to maximize attack effectiveness
5: for batch b = 1, 2, . . . ,M do
6: Sample a batch of data Xb from X;
7: Xadv ← apply(Xb, PRGB), PRGB = fISP(P,Θ);
8: Xadv are fed into the person detector g to obtain predictions and compute the loss L;
9: Update the adversarial patch P via Eq. 1;

10: end for
11: // Optimize input hyperparameters Θ to minimize the attack effectiveness
12: for batch b = 1, 2, . . . ,M do
13: Sample a batch of data xb from X;
14: Xadv ← apply(xb, PRGB), PRGB = fISP(P,Θ);
15: Xadv are fed into the person detector g to obtain predictions and compute the loss L;
16: Update the input hyperparameters Θ via Eq. 2;
17: end for
18: end for

techniques and algorithms, such as demosaicing [7, 18], denoising [9, 37], white balancing [10, 12],
to enhance acquired data, mitigate noise artifacts, and correct for optical aberrations.

Traditional ISPs are typically based on hand-crafted modules that are not differentiable [39]. There-
fore, they are not able to be incorporated into the adversarial pattern design. We propose a differ-
entiable camera ISP proxy fISP that can simulate arbitrary parameterized configurations, which is
inspired by the literature of ISP optimization [25, 31]. Specifically, we trained a variant of the U-Net
CNN architecture [24] using data {ISCENE, IRGB,Θ} obtained from traditional ISPs. Our network
took the measurement ISCENE as the input, hyperparameters Θ of the camera ISP as the condition,
and was trained by minimize the reconstruction error between its prediction and IRGB. The training
utilized 2,270 data pairs generated by an open-source undifferentiable camera ISP simulator [23] and
the COCO dataset [20].

Since the hyperparameters of a camera ISP can vary from one implementation to another, and are
often specific to the hardware and software used in a particular camera system [31], we opt for
representative parameters that have a significant impact on the final imaging and attack performance.
We empirically select six parameters from the Color and Tone Correction module and the Denoising
module in the camera ISP. To this end, we represent the camera ISP pipeline as a function fISP
parameterized by the conditional physical parameter Θ =< a, b, γ, c, d, e >. To enable the ISP
proxy network to accommodate conditional input hyperparameters, we normalize the 6-dimensional
hyperparameter to the [0, 1] interval and concatenate them to the feature variables of the encoder.

3.4 Adversarial Optimization

Our objective is twofold: (1) to optimize adversarial perturbations for optimal attack effectiveness
against the target neural network and (2) to optimize the input hyperparameters of the ISP proxy
network for optimal defense effectiveness. Since two optimizations engage in a zero-sum game,
we follow the same training strategy in the GAN framework [8] to simultaneously optimize both
parameter sets. The optimization algorithm is illustrated in Algorithm 1. In practice, we employ
iterative updates to implement alternating training. The process alternates between k1 steps of
optimizing the adversarial perturbation P and k2 steps of optimizing ISP conditional parameters
(< a, b, γ, c, d, e >). We set k1 = k2 = 20. This strategy, validated through experiments, ensures the
optimal optimization of both attack and defense, maintaining proximity to their peak values.

So, the goal can be described as follows:
P ∗ = argmax

i
L(g(IiSCENE, fISP(P ;Θ)), YGT), (1)

where we find optimal adversarial patches P by maximizing the discrepancy L between the predictions
of the model g and the ground truth YGT.

Additionally, we treat fISP as a defense module, with the objective:
Θ∗ = argmin

i
L(g(IiSCENE, fISP(P ;Θ)), YGT), (2)
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Figure 3: Illustration of digital-space attacks under different ISP settings. The bounding boxes
indicate the detector successfully detects the person instances, i.e., the attack fails. Due to space
constraints, we only present one comparative method, T-SEA [15]. For additional results, please refer
to the Supplementary Material.

where we find optimal conditional parameter Θ by minimizing the discrepancy L.

4 Experiments

4.1 Experimental Setup

Datasets We use the INRIAPERSON dataset [4, 30] to evaluate digital-space attacks. For physical-
space attack, aiming to showcase the camera-agnostic nature of our approach, we collected data using
six distinct hardware imaging devices, including two cameras — Sony α7R4 and Canon DS126231
— and four mobile phone cameras — iPhone15, RedmiK20, HuaweiP50, and SamsungS22.

Compared Methods We compare our proposed method with seven mainstream patch-based
methods, including AdvPatch [29], AdvT-shirt [35], AdvCloak [34], NAP [11], LAP [28], TC-
EGA [14], and T-SEA [15]. For a fair comparison, we control the size of these patches to be the
same, set at 0.2 times the height of the person.

Metrics We evaluate attack effectiveness using two primary metrics: Average Precision (AP%) and
Attack Success Rate (ASR%). AP assesses detection model accuracy, where lower values indicate
superior attack performance. ASR is defined as 1− TP′/TP, where TP denotes the number of True
Positive detections without attacks and TP′ represents those with attacks; higher ASR values indicate
better attack performance.

For digital-space evaluation, we utilize the INRIAPerson dataset, which consists of 613 training
images with 3,019 person instances and 288 test images containing 855 person instances. The ASR
in the digital space is therefore calculated based on these 855 person instances across 288 test images.
In the physical-space evaluation, we conducted data collection using 6 cameras across 4 temporal
sessions to minimize confounding factors. For each patch configuration, we captured 5 images per
camera per session, yielding 120 images (6×4×5) per patch. With 6 distinct adversarial patches
evaluated in the physical domain, our analysis encompasses a total of 720 images, forming the basis
for physical-space ASR calculations.

Implementation Details Our implementation utilizes PyTorch on a Linux server equipped with
dual NVIDIA GeForce RTX 3090 GPUs. The adversarial patches are configured with dimensions
of 300×300, and we employ a YOLOv5 [17] model pre-trained on the COCO dataset [20] and
subsequently fine-tuned on INRIAPerson [30] as our victim detector. The detector processes input
images at a resolution of 640×640, and adversarial training proceeds for 100 epochs.
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Table 2: Quantitative results of different attack methods under
various ISP settings in digital space. Our CAP attack surpasses
all existing methods in terms of attack success rate (ASR%). The
reason T-SEA [15] performs well in Average Precision (AP%) but
poorly in ASR is due to the multiple bounding box detections. We
discuss this conflict in Subsection 4.2.

Method
Original ISP 1 ISP 2 ISP 3 ISP 4

AP↓ ASR↑ AP↓ ASR↑ AP↓ ASR↑ AP↓ ASR↑ AP↓ ASR↑
Confidence threshold = 0.001, IoU threshold = 0.6

Random Noise 81.7 7.3 79.3 14.9 80.2 11.0 79.8 10.9 80.1 8.5
AdvPatch [29] 67.7 19.7 60.4 38.3 65.8 30.4 64.5 28.2 68.6 22.9

AdvT-shirt [35] 76.6 14.6 73.0 21.9 76.1 18.8 71.7 21.2 76.5 14.1
AdvCloak [34] 70.5 12.6 65.3 30.4 68.9 23.7 64.3 25.0 68.6 15.8

NAP [11] 81.3 7.4 76.8 16.9 79.1 12.9 76.5 13.8 80.2 8.8
LAP [28] 81.0 5.6 76.3 17.2 78.6 11.6 77.8 12.1 79.4 10.1

TC-EGA [14] 79.9 8.8 71.3 20.3 76.4 14.4 75.6 17.1 76.8 13.3
T-SEA [15] 21.2 44.5 27.0 53.0 22.8 52.7 26.3 44.7 24.7 47.4
CAP (Ours) 37.7 54.4 24.3 64.5 25.7 73.8 37.8 57.4 31.8 68.2

Mean and standard deviation of ASR
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Figure 4: Comparison of ASR
(%). We evaluate various adver-
sarial patches under 50 random
camera ISPs in digital space.
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Figure 5: Quantitative results of different attack methods in physical space. For each adversarial
patch, we evaluate its ASR (%) across six different cameras, including two typical cameras (Sony
and Canon) and four smartphone cameras (iPhone, Redmi, Huawei, and Samsung).

4.2 Camera-Agnostic Attack in Digital Space

To intuitively demonstrate the impact of camera ISP on digital imaging and attack effectiveness,
we selected 4 distinct camera ISP parameters for visualization (see Figure 3). We observe that
different camera ISPs have little effect on the benign image, as the detector successfully detects
person instances at all 4 camera ISP settings with little change in confidence. These results indicate
that the detector is inherently robust, having camera-agnostic detection capabilities. The comparison
method, T-SEA [15], failed to successfully attack all four camera ISPs. However, the confidence of
person instances showed significant fluctuations. For instance, the confidence score of the person
decreased from 0.92 (ISP 2) to 0.71 (ISP 3). In contrast, our method maintains stable attacks across
all ISP settings, successfully concealing the person.

Table 2 reports the AP and ASR results of typical patch-based attack methods. We observe that the
ASR of our CAP attack surpasses that of all comparison methods across all camera ISP settings.
However, in terms of AP, T-SEA shows a more pronounced decrease compared to our method in
most cases. Generally, a greater decrease in AP signifies a poorer detector performance, typically
accompanied by a higher ASR. However, T-SEA deviates from this trend. To explore the reasons, we
visualize the attack results of T-SEA and find a severe multi-box detection issue (refer to Supplemen-
tary Material Section C). A significant number of False Positive samples contribute to the decrease in
AP, rather than effectively concealing person instances.

Furthermore, we present a comparison of the ASR for each adversarial patch in two settings: without
camera ISP and with 50 random camera ISPs as preprocessing (see Figure 4). This comparison
illustrates that our approach mitigates the instability of cross-camera attacks and enhances the attack
efficacy of adversarial patches.

4.3 Camera-Agnostic Attack in Physical Space

Our CAP attack is designed for real-world scenarios where the target system’s camera is unknown.
Therefore, we compare the physical-space attack performance of different adversarial patches across
six hardware cameras, including two typical cameras (Sony and Canon) and four smartphone cameras
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Figure 6: Physical-space attacks across six different cameras. Our method removing the camera
ISP module only achieves successful attacks on specific cameras. Our method removing the adver-
sarial optimization slightly outperforms the former. In contrast, our full method achieves successful
attacks across all six cameras.

(iPhone, Redmi, Huawei, and Samsung). In the capture scenario, one participant carried various
adversarial patches, while another participant, serving as the control, did not carry any adversarial
patches (see Figure 1 and Figure 6). To eliminate interference, we captured 20 images for each
adversarial patch setting and calculated the ASR (%). For further demonstrations of physical-space
attacks, please refer to the Supplementary Material. Here, we only evaluate two comparison methods,
AdvPatch [29] and T-SEA [15], since they primarily target attack performance (as evident from
Table 2), unlike other methods [11, 28] that also consider stealthiness.

Figure 3 presents the quantitative results of the effectiveness of the attack for different adversarial
patches. We observe that random noise-based patches exhibit no attack effectiveness in real-world
scenarios. The attack performance of AdvPatch exhibits significant fluctuations. It achieves an ASR
of 35% on Canon cameras, while it is 0% on iPhone cameras. Unlike its impressive performance
in the digital space, T-SEA shows poor attack performance in the physical space, mostly unable to
execute successful attacks. This is due to the multi-box detection issue. When computing ASR, we
consider a sample as a failed attack if it is detected, even if the detection bounding box only covers
half of the complete body. Our method achieves an ASR of more than 90% in all cameras, reaching
100% ASR on the iPhone and Huawei. These results demonstrate the excellent camera-agnostic
attack performance of our method in physical space.

4.4 Ablation Study

To demonstrate the effectiveness of each component in our attack method, we perform two variants of
our method, i.e. ours w/o the camera ISP module and ours w/o adversarial optimization, as shown in
Figure 6. Note that the latter refers to retaining the camera ISP module in our pipeline but refraining
from optimizing its conditional input parameters. Instead, during the perturbation optimization
process, we randomly adjust the input parameters.

From Figure 6, we observe that (1) “ours w/o camera ISP” exhibits the greatest fluctuation. This is
evident from the confidence scores of the persons with the adversarial patches. It reaches as high as
0.92 on Redmi devices, while it drops below 0.25 on iPhone devices (indicating the disappearance of
detection boxes). (2) The attack effectiveness of “ours w/o adversarial optimization” surpasses that of
the former group. It succeeds in attacking both the Redmi and Samsung devices, with a noticeable
reduction in the confidence fluctuations of the victim person. (3) Our full method achieves successful
attacks across all six cameras. Additionally, Figure 5 presents the quantitative comparison of ASR
across different cameras for three settings. Compared to the two variants, our method achieves a
higher and more stable ASR. These results demonstrate that incorporating the camera ISP module
solely into the adversarial perturbation pipeline offers limited improvement in attack performance,
while our proposed adversarial optimization design enhances cross-camera attack capability and
stability in the real world.
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Table 3: Defenses against CAP attacks. We report the AP in digital space and the ASR in physical
space for three defense strategies: JPEG compression [6], SAC [21], and adversarial training [40].

(a) AP (%) in digital space

Defense strategy
Attack method Non-attack CAP⋆ CAP† CAP

Non-defense 85.0 52.8 45.5 37.7
JPEG compression [6] 84.7 52.7 45.8 36.8
SAC [21] 85.0 56.2 52.2 46.0
Adversarial training-CAP⋆ 84.1 95.7 91.7 94.3
Adversarial training-CAP† 84.0 92.6 95.4 92.8
Adversarial training-CAP 84.6 94.2 91.6 96.3

(b) ASR (%) in physical space

Defense strategy
Attack method CAP⋆ CAP† CAP

Non-defense 70.0 68.3 95.8
JPEG compression [6] 90.8 89.2 93.3
SAC [21] 70.0 68.3 95.8
Adversarial training-CAP⋆ 0.0 4.2 1.7
Adversarial training-CAP† 5.8 0.0 10.8
Adversarial training-CAP 0.0 4.0 0.0

5 Discussions

Defense We compared three types of defense methods against CAP attacks: (1) modifying input
images using JPEG compression [6], (2) adversarial patch detection and removal via SAC [21], and
(3) adversarial training [40]. To understand the effectiveness of existing defenses against our attack,
we evaluated our method and its two variants under three defense strategies. CAP⋆ refers to our
method without the camera ISP module, CAP† refers to our method without adversarial optimization,
and CAP refers to our full method. In Table 3, we report the AP in the digital space and the ASR in
the physical space for each case.

Overall, we observe that JPEG compression is ineffective against all three attack settings. This indi-
cates that minor pixel-level modifications cannot defend against our CAP attacks. SAC demonstrates
some defensive capability in digital space, slightly increasing the AP, but it is ineffective in physical
space. In contrast, adversarial training effectively defends against CAP attacks with minimal loss
in detector accuracy (within 1%). Furthermore, adversarial training shows defensive transferability
in all three attack settings. One of the primary objectives of our study is to enhance the robustness
of person detection models. The above results indicate that adversarial training is a reasonable and
effective method to improve the robustness of detectors against CAP attacks.

Limitations Our study mainly focuses on utilizing a camera ISP proxy network for camera simula-
tion, handling the transition from physical to digital domains. Building a comprehensive, end-to-end
differentiable camera simulator that includes features such as exposure time, aperture size, and ISO is
challenging. Despite this, we believe that the conclusions and insights of this work are generalizable.
This study successfully exposes previous methodological flaws and emphasizes the importance of
considering the camera as a crucial module in the workflow of physical adversarial attacks.

Ethics Statement Our work successfully achieves physical adversarial attacks in person detection
tasks. Given the effectiveness of our attack method across various imaging devices, its real-world
application is feasible. This exposes potential security risks in existing DNNs-based applications,
particularly when the technology is leveraged for malicious purposes. We advocate for the responsible
and ethical use of technology. Furthermore, we offer comprehensive methodological descriptions and
openly address the implications of our work, encouraging discourse within and beyond the scientific
community to contribute to the advancement of trustworthy and dependable AI.

6 Conclusion

In this paper, we have proposed a cross-camera physical adversarial attack, CAP (Camera-Agnostic
Patch) attack, against person detection. Unlike previous methods that overlooked the crucial role
of the camera in the real-world attack workflow, our method incorporates a differentiable camera
Image Signal Processing (ISP) proxy network to compensate for the physical-to-digital transition gap.
Furthermore, leveraging the attenuating effect of camera ISP on attack performance, we construct
an adversarial optimization framework. In this framework, the attack module optimizes adversarial
perturbations, aiming to maximize attack effectiveness, while the defense module optimizes the
input parameters conditionally, aiming to minimize attack effectiveness. The two modules alternate
optimization, encouraging the generated adversarial patches to exhibit stability across camera attacks.
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Extensive experiments conducted in both digital and physical spaces demonstrate that our CAP
attack enhances the effectiveness and reliability in real-world scenarios, encountering diverse camera
configurations. In the future, we will continue to explore the role of cameras, design defense strategies
based on imaging devices, and develop more robust detection models.
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made in the paper.
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reproducibility of experimental results. The source code will be made available upon
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to make their results reproducible or verifiable.
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to reproduce that algorithm.
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the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
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to have some path to reproducing or verifying the results.
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The source code will be made available upon acceptance of the paper.
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• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: This paper provides implementation details.
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• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We initialized the random seed and conducted multiple experiments to average
results in experiments involving randomness.
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• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
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• The factors of variability that the error bars are capturing should be clearly stated (for
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• The method for calculating the error bars should be explained (closed form formula,
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• It should be clear whether the error bar is the standard deviation or the standard error
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• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.
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error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We provide an explanation of the computational resources in the paper.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Our work adheres to the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We discuss relevant aspects in the Ethics Statement section.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [Yes]
Justification: The paper discusses strategies for defending against the proposed CAP attack.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We explicitly mention the assets used and list their associated licenses in the
supplementary material.
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• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of
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• If assets are released, the license, copyright information, and terms of use in the
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license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
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Answer: [Yes]
Justification: We will provide relevant documentation.
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• The answer NA means that the paper does not release new assets.
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