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Abstract

The history of metaphor research marks the evo-001
lution of knowledge infusion research. With002
the continued advancement of deep learning003
techniques in recent years, the natural language004
processing community has shown great inter-005
ests in applying knowledge to successful results006
In metaphor detection task. Although there has007
been a gradual increase in the number of ap-008
proaches involving knowledge injection in the009
field of metaphor detection, there is a lack of a010
complete review article on knowledge injection011
based approaches. Therefore, the goal of this012
paper is to provide a comprehensive review of013
research advances in the application of deep014
learning for knowledge injection In metaphor015
detection task. In this paper, we systemati-016
cally summarize and generalize the mainstream017
knowledge and knowledge injection principles,018
as well as review the datasets, evaluation met-019
rics, and benchmark models used In metaphor020
detection task. Finally, we explore the current021
issues facing knowledge injection methods and022
provide an outlook on future research.023

1 Introduction024

Metaphors are essentially cognitive mechanisms025

present in the human mind used to construct con-026

ceptual frameworks (Lakoff and Wehling, 2012).027

This phenomenon works by extracting familiar con-028

cepts in the target domain to understand vague and029

abstract concepts in the source domain (Lakoff030

and Johnson, 2008). As an important linguistic031

phenomenon, automatic detection of metaphors032

is crucial for many practical language processing033

tasks, including information extraction (Tsvetkov034

et al., 2013), sentiment analysis (Cambria et al.,035

2017), machine translation (Babieno et al., 2022),036

and seamless human-computer interaction (Rai and037

Chakraverty, 2021). In the philosophical account038

articulated in (Maloney, 1983), metaphor compre-039

hension involves three distinct phases: comprehen-040

sion of the literal interpretation, discovery of incon-041

sistencies with the literal interpretation, and reason- 042

ing to recover the intended non-literal interpreta- 043

tion. It is important to emphasize that the focus of 044

this study is to reveal the kinds and ways in which 045

knowledge is integrated in a metaphor detection 046

task, and does not deal with metaphor paraphrase 047

generation. Therefore only the first two stages of 048

metaphor comprehension will be explored. 049

Metaphor detection based on deep learning 050

knowledge injection aims to fuse deep learning 051

models and external knowledge to automatically 052

identify metaphorical phenomena in text and im- 053

prove model performance and generalization. Re- 054

cently, researchers have been exploring the appli- 055

cation of knowledge in metaphor detection. Mao 056

et al. (2019) utilized generalized corpus informa- 057

tion as the context with detected words using 058

Metaphor Identification Program (MIP) (Group, 059

2007) and Selectional Preference Violation (SPV) 060

(Wilks et al., 2013). Le et al. (2020) attempted 061

to apply dependency tree knowledge to metaphor 062

detection by constructing graph network adjacency 063

matrices to utilize the dependency tree structural 064

information. Su et al. (2020) used a cueing ap- 065

proach to transform metaphor detection into read- 066

ing comprehension and introduced local text infor- 067

mation. Choi et al. (2021) applied MIP and SPV 068

to pre-trained models. Recently, Zhang and Liu 069

(2023) achieved the state-of-the-art results for the 070

current metaphor detection task by introducing se- 071

mantic knowledge through adversarial learning and 072

multi-task learning. However, current knowledge 073

injection methods ignore the issue of the timeli- 074

ness of metaphors, i.e., how to inject knowledge 075

in different contexts and eras, what kind of knowl- 076

edge to use, and the criteria for defining the mean- 077

ing of metaphors. These issues are crucial for the 078

metaphor detection task. 079

Although several research surveys on metaphor 080

detection have existed in the past. Rai and 081

Chakraverty (2021); Ptiček and Dobša (2023) pro- 082
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vided an overview of metaphor theory and compu-083

tational processing methods, Abulaish et al. (2020)084

surveyed six technical approaches to metaphori-085

cal language, and Tong et al. (2021) delved into086

metaphor processing methods and their applica-087

tions. However, none of these surveys has taken088

the principle of knowledge infusion as a primary089

research focus. Against this background, our sur-090

veys aim to fill the gap in this research area. First,091

we systematically sorted out the mainstream knowl-092

edge methods and knowledge injection principles,093

and used an innovative categorization method to094

organically integrate these studies. Second, we con-095

ducted an exhaustive review and analysis of the cur-096

rent major metaphor datasets, including their differ-097

ent variants, assessment metrics, and benchmarks.098

Finally, we provided insights into the strengths and099

limitations of different knowledge injection meth-100

ods, and offered suggestions and outlooks for fu-101

ture metaphor detection research.102

2 Knowledge103

In this section, we provide an introduction to the104

types of knowledge that are commonly used In105

metaphor detection task and how they are used.106

2.1 Syntactic Knowledge107

Part-of-Speech Tagging. Part-of-Speech (POS) is108

the tagging of each word in a sentence to indicate109

its grammatical role or lexical category in the110

context. Commonly used POS tag sets include111

Universal POS tag sets (Petrov et al., 2011), which112

defined a simplified set of lexical tokens with 17113

tokens, such as NOUN (noun), VERB (verb), and114

Treebank tag sets (Santorini, 1990), which had115

more detailed tokens, including JJ (adjective),116

JJS (adjective with a supreme ending -est), etc.117

In metaphor detection task, researchers usually118

combine POS knowledge directly into the input119

sequence (Song et al., 2021; Feng and Ma, 2022),120

or construct multitask learning with POS as an121

auxiliary task (Le et al., 2020).122

Dependency Tree. A Dependency Tree (DT)123

is a syntactic structural tree used to efficiently124

represent dependency relationships between words125

in a sentence. In a Dependency Tree, each word is126

given a node and is connected by edges to represent127

the directional relationship from the dependent128

(subordinate) word to its main dependent (head129

of the subordinate) word. In metaphor detection130

task, researchers often utilize dependency tree131

knowledge to improve the syntactic comprehension 132

of their models. Le et al. (2020) employed Graph 133

Convolutional Network (GCN), which used the 134

dependency tree knowledge as an adjacency 135

matrix to build a graphical structure of dependency 136

relationships between words. Some studies (Song 137

et al., 2021; Feng and Ma, 2022), on the other 138

hand, focused on extracting subject-verb-object re- 139

lationships in dependency trees to aid in metaphor 140

detection. Song et al. (2021) processed the output 141

of subject-predicate-object correspondences in 142

text by combining, averaging, and maximizing to 143

further capture the associations between structural 144

semantics, while Feng and Ma (2022) used a 145

BERT Decoder (Devlin et al., 2019) to allow the 146

model to generate the start and end positions of 147

subject-predicate-objects based on the context. 148

149

2.2 Semantic Knowledge 150

VerbNet. VerbNet (Schuler, 2005) is a verb cat- 151

egorization database containing nearly 4,000 En- 152

glish verb lemmas (lemma), and its category de- 153

sign refers to the study of Levin (Somers, 1994). 154

In VerbNet, each verb is attributed to one or more 155

categories that describe the semantic roles of the 156

verb, syntactic constraints, and semantic relations 157

between different categories, etc. VerbNet provides 158

two main categorization approaches: based on syn- 159

tactic structure and based on predicate meaning. 160

In the metaphor detection task, researchers (Gong 161

et al., 2020; Beigman Klebanov et al., 2016) used 162

VerbNet’s class information to convert each lexical 163

unit into a binary feature vector. 164

FrameNet. The main goal of FrameNet (Baker 165

et al., 1998; Lowe, 1997) is to provide sentences 166

with semantic and syntactic annotations for a 167

large part of the vocabulary in contemporary En- 168

glish. The corpus of this resource is built on The 169

British National Corpus (Consortium et al., 2007). 170

FrameNet employs a semantic description based 171

on frames, each of which represents a semantic 172

concept and describes the events, participants, at- 173

tributes, relations, etc. associated with that concept. 174

The project (Fillmore et al., 2002) is an extended 175

version of FrameNet, which adds the US National 176

Corpus resources. In the metaphor detection, Li 177

et al. (2023c) used the FrameNet provided by (Fill- 178

more et al., 2002) in the task for frame prediction 179

of target and contextual lexical units, and the pre- 180

diction results will aid in metaphorical analysis. 181
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WordNet. WordNet (Miller, 1995; Fellbaum,182

1998) is a hierarchically structured lexical database183

in which each word forms links with other related184

words to represent the semantic connections be-185

tween them. In the metaphor detection task, Gong186

et al. (2020); Beigman Klebanov et al. (2016) clas-187

sified words into fifteen categories based on the188

semantic links between words in WordNet and189

converted these categories into binary feature vec-190

tors. Such feature vectors can be used to assist the191

metaphor detection and improve the performance192

of the model. And Zhang and Liu (2023) consid-193

ered the first of the WordNet example sentences as194

literal meanings and used it for multi-task learning.195

Dictionary Knowledge. Dictionary example sen-196

tences or paraphrase knowledge are intended to197

provide the model with knowledge of the polyse-198

mous and metaphorical meanings of the words to199

be detected, and help the model better understand200

the semantic changes and metaphorical expressions201

of the words to be detected in different contexts. In202

metaphor detection, some researchers have utilized203

lexical examples to extract the context-based ba-204

sic meanings of the words to be detected (Zhang205

and Liu, 2023), instead of the traditional approach206

of directly using the words to be detected as the207

basic meanings. Su et al. (2021) combined the lexi-208

cal paraphrase information into the model input to209

achieve knowledge fusion.210

Concreteness. Concreteness is the degree to which211

a word is characterized by the meaning it expresses212

in a language. In metaphor detection, researchers213

often relyed on the word specificity rating dataset214

(Brysbaert et al., 2014). This dataset was based215

on the SUBTLEX-US corpus (Brysbaert and New,216

2009) and covers 37,058 token-level samples. This217

dataset was rated using a 5-point scale from ab-218

stract to concrete, and the data was collected with219

the help of Internet crowdsourcing. In previous220

studies (Klebanov et al., 2014; Gong et al., 2020;221

Beigman Klebanov et al., 2016), the lexical units222

to be detected were transformed into binary feature223

vectors depending on their specificity ratings.224

Topic. Using the Latent Dirichlet Allocation (LDA)225

model (Blei et al., 2003), research scholars ex-226

tracted a model containing 100 topics from the227

New York Times (NYT) corpus (Sandhaus, 2008)228

to characterize general topics discussed by the pub-229

lic. In the metaphor detection task, previous re-230

search work (Klebanov et al., 2014; Gong et al.,231

2020; Beigman Klebanov et al., 2016) matched and232

associated the words in each instance with these 233

100 topics, followed by the calculation of probabil- 234

ity scores for each word under each topic. 235

2.3 Emotional Knowledge 236

VAD Model. VAD (Mehrabian, 1996) is an affec- 237

tive classification system for describing and mea- 238

suring the three main dimensions of human affec- 239

tive experience: valence, arousal, and dominance. 240

EmoBank corpus (Buechel and Hahn, 2017) is a 241

VAD model-based and balanced multi-type 10k En- 242

glish corpus of sentences, each labeled with one to 243

five ratings on the three VAD dimensions. In the 244

metaphor detection task, Dankers et al. (2019) in- 245

troduced the EmoBank corpus (Buechel and Hahn, 246

2017) as an auxiliary task. Sentence-level senti- 247

ment regression was constructed based on each 248

dimension in EmoBank. In its training process, a 249

batch of metaphor or sentiment task data sampling 250

is randomly selected for training at each step. 251

Hyperbole Corpus. Exaggeration usually involves 252

over- or under-exaggeration of an emotion, senti- 253

ment or attitude. Combining a dataset for hyper- 254

bole detection with a metaphor detection task can 255

make the model more sensitive to capturing emo- 256

tions and sentiments in text. In a previous research, 257

Badathala et al. (2023) introduced two hyperbole 258

corpora, named HYPO and HYPO-L, and subse- 259

quently labeled them with metaphors. The results 260

showed that multitask learning based on hyperbole 261

and metaphor gains in both two-way performance. 262

3 Method 263

This section will comprehensively introduce the 264

current mainstream knowledge injection methods. 265

Table 1 demonstrates a summary of knowledge 266

injection-based metaphor detection systems. 267

3.1 Model Fine-tuning 268

Using semantic knowledge to fine-tune the model 269

is a common approach. Li et al. (2023c) used two 270

encoders, which first fine-tuned the Conceptual En- 271

coder model on FrameNet Fillmore et al. (2002). 272

For the output features H = (hcls, h0, ..., hn, hseq). 273

We got the frame distribution of sentences and tar- 274

gets as follows: 275

ŷcls = sigmoid(W0hcls + b0) (1) 276

ŷ = softmax(W1H + b1), (2) 277

where W0 and W1 are learnable parameters and 278

b0 and b1 are biases. The fine-tuned Conceptual 279
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SK SYK EK Core Structure Loss Function Papers

BERT+GRL / BERT+GBM L = 1

|Nk|
∑|Nk|

i=1 Lce

(
ŷk
i , y

k
i

) (Zhang and Liu,
2023)
(Mao and Li, 2021)
(Mao et al., 2022)

✓
Multi-task learning based on example sentence knowledge or POS labeling, where |N k|
represents the number of samples for the kth task, and ŷk

i and yk
i represent the predicted

and true labeled values for the kth task, respectively.

✓
BERT+MIP+SPV / BERT L = 1

|N|
∑|N|

i=1 Lce (ŷi, yi)
(Li et al., 2023b)
(Zhang and Liu)

Using dictionary examples, and explanations of the words to be tested as auxiliary inputs. (Su et al., 2021)
(Babieno et al., 2022)

BERT Lm= 1
|N|

∑|N|
i=1 Lce(ŷi,yi); Le=

√
1
n

∑n
i=1(ŷi−yi)2

(Dankers et al., 2019)
(Badathala et al.,
2023)

✓
Introducing multi-task learning with affective knowledge, Lm for metaphor or exaggera-
tion task loss, Le for affective regression task loss.

BERT Lk=
∑|N|

i=1 Lce(ŝki ,s
k
i )+

∑|N|
i=1 Lce(êki ,e

k
i ) (Feng and Ma, 2022)✓ ✓

k ∈ (sub, tar, obj) is the prediction loss for the main predicate, ŝki and êki denote the
start and end positions of the kth grammatical category, respectively

BERT L = 1
|N|

∑|N|
i=1 Lce (ŷi, yi) (Su et al., 2020)

(Gong et al., 2020)✓ ✓
Using semantic knowledge as portfolio input

BiLSTM+GCN L
(
xt, yt

)
= − logP t

(
yt | xt

)
+ λ

∥∥V wsd − V md
∥∥2

2 (Le et al., 2020)✓ ✓
Multi-task learning based on dependency trees, where t ∈ wsd,md. V wsd and V md

denote the representation vectors of the same input sentence xt, respectively.

BERT+MIP+SPV Lc
k=− 1

|N|
∑|N|

i=1

∑|C|
j=1 yij log(ŷij); Ls=− 1

|N|
∑|N|

i=1 Lce(ŷi,yi) (Li et al., 2023c)✓
Lc represents the loss of FrameNet fine-tuning encoder, where k ∈ (target, cls) denotes
the loss of global Frame and target word Frame; Ls denotes the loss of metaphorical
classification.

BERT L1=
1

|N|
∑|N|

i=1 Lce(ŷi,yi); L2=
∑|K|

j=0 I(fi=g
j
i ) log(α

j
i ) (Wan et al., 2021)✓

Multi-task learning for word sense disambiguation is introduced. Where fi denotes the
correct paraphrase of word wordi in sentence s, I(X) = 1 denotes when X is true, and
I(X) = 0 denotes when X is false.

BERT+MIP+SPV / BERT L = 1
|N|

∑|N|
i=1 Lce (ŷi, yi) (Wang et al., 2023)

(Song et al., 2021)✓
Guiding the model to focus on structural information based on the dependency tree
structure of the text.

Table 1: Abstract of metaphor detection system based on knowledge injection. SK: semantic knowledge. SYK:
syntactic knowledge. EK: emotional knowledge. core structure: subject model architecture.

Encoder will be injected with knowledge through280

MIP and SPV:281

hMIP = vt ⊕ vS,t ⊕ ht ⊕ hS,t (3)282

hSPV = vcls ⊕ vS,t ⊕ hcls ⊕ hS,t, (4)283

where vcls, hcls denotes the hidden layer output284

corresponding to the two encoder CLS token inputs,285

vt, ht denote the isolated target word features, and286

vS,t, hS,t denote the contextual target word features,287

respectively.288

Le et al. (2020) used the structural knowledge289

from the dependency tree to build the adjacency290

matrix for the GCN network construction, which is291

denoted by the adjacency matrix A as: 292

Aij =

{
1, if i = j or j → i or i → j

0, otherwise
. (5) 293

3.2 Additional Inputs 294

This type of approach aims to enhance the model’s 295

understanding of the context by inputting knowl- 296

edge into the model along with the text to be 297

detected. The current dominant structure for 298

knowledge-attached input are MIP and SPV. 299

MIP (Group, 2007) (Metaphor Identification Pro- 300

gram) was originally introduced by the Pragglejaz 301

Group. Its core logic consists in comparing the 302
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difference between a lexical unit in its original303

meaning and its meaning in context. For the text in-304

put S = ([cls]w0, ..., wk, ....wn[seq]) and the test305

word wk, the meaning of a lexical unit in context306

is defined as:307

VS,k = fb(S)[k + 1], (6)308

where fb denotes the encoder and VS,k is the corre-309

sponding output of the kth hidden layer in the text310

to be detected. The vocabulary unit is intrinsically311

defined as:312

Vk = fb(wk). (7)313

SPV (Selectional Preference Violation) was orig-314

inally introduced to the metaphor detection (Wilks315

et al., 2013), and its core logic lied in comparing316

the semantic differences between lexical units and317

their surrounding words. The semantic information318

of surrounding words can be defined as:319

VS = fb(S)[0], (8)320

where fb denotes the encoder and VS denotes the321

corresponding hidden layer output of cls in the text322

to be detected. And the semantic information of323

the SPV lexical units is similar to MIP as VS,t.324

In the metaphor detection task, the researcher325

introduced example sentences (Zhang and Liu; Li326

et al., 2023b), word paraphrases (Su et al., 2021;327

Babieno et al., 2022), or other relevant knowledge328

(Gong et al., 2020; Su et al., 2020) as additional329

input to the knowledge.330

For the original sentence s and the word to be331

detected as wk, Su et al. (2021) combines the first332

k paraphrases from the lexicon to the input and333

combines the output features through the mean-334

pool operation:335

hl =

{
fb(wk) l = 0
1
Nl

∑Nl
i=1 fb(w

l
i) l ̸= 0

, (9)336

where fb denotes the BERT encoder (Devlin et al.,337

2019), wk is the target word, l = 0 is the original338

sentence, l > 0 is the paraphrase, and all the out-339

puts will be used for the final classification after cat.340

While Zhang and Liu; Li et al. (2023b); Babieno341

et al. (2022) separate the sentence to be tested from342

the knowledge:343

S1 = ([cls]w0, ...wk, ...wn[seq]), (10)344

S2 = ([cls]w′
0, ...w

′
k, ...w

′
n[seq]), (11)345

where S1, S2 are the text to be detected and the 346

knowledge text, respectively, and w′
k corresponds 347

to the hidden layer output h′k is the basic word 348

paraphrase of the enhanced MIP. 349

3.3 Output Modulation 350

Pre-defined knowledge information can not only 351

be used as input to the model, but also direct its 352

attention to specific semantic content or syntactic 353

structures when adjusting the model output. Wang 354

et al. (2023); Song et al. (2021) assigned different 355

weights to the model output based on the intro- 356

duced knowledge. 357

Wang et al. (2023) measured the distance be- 358

tween the context word and the target word in terms 359

of the number of jumps between neighboring words. 360

For the output feature: H = (h1, h2, . . . , hn), its 361

final output is: 362

h′i =
1

n

∑
hi, i ∈ Cn, (12) 363

where h′i is the final output feature and Cn, n ∈ 364

(1, 2, 3, 4) denotes the nth neighboring word in the 365

adjacent range of the parse tree centered on the 366

target word. 367

Song et al. (2021) used three combination ap- 368

proaches (concatenation, average and maxout) to 369

extract high dimensional features. For example, the 370

contextual features obtained using the concatena- 371

tion combination approach are defined as follows: 372

c = csubj ⊕ cobj ⊕ ccls ⊕ cbsc, (13) 373

where ck, k ∈ (cls, subj, obj, bsc), are the hidden 374

layer outputs corresponding to the basic meanings 375

of cls, subjects, objects and verbs, respectively. To 376

capture the interaction of target lexical units with 377

a specific context, Song et al. (2021) used linear, 378

bilinear or a combination of both. Specifically, 379

the linear and bilinear combination approaches are 380

defined as follows, respectively: 381

rvc−linear = σ(Vr

(
v
c

)
+ ar), (14) 382

rvc−bilinear = σ(v⊺Arc+ br), (15) 383

where Vr and Ar are the trainable weight parame- 384

ters, respectively, and ar and br are the bias param- 385

eters, σ is the sigmoid function. 386

Feng and Ma (2022) used decoder to allow 387

the model to predict the position of the subject- 388

predicate-object in the sentence, for the output text 389
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feature H = (h0, ..., hn), there are:390

h′t = fd(w
′
x<t, H), t ∈ [1, 7], (16)391

where h′t is the t th predicted output, t ∈ [1, 6]392

corresponds to the indexes of the beginning and the393

end of the subject-predicate-object in the sentence,394

respectively, and h′7 is the metaphorical classifica-395

tion result.396

3.4 Multi-task Based Knowledge Fusion397

Introducing other associated tasks can effectively398

promote knowledge fusion between tasks, thus399

helping to improve metaphor detection perfor-400

mance. In automatic metaphor detection, the re-401

searchers introduced several auxiliary tasks, includ-402

ing Word Sense Disambiguation (Le et al., 2020;403

Wan et al., 2021; Zhang and Liu, 2023), lexical an-404

notation (Mao and Li, 2021; Mao et al., 2022), and405

tasks based on VAD sentiment labeling (Dankers406

et al., 2019).407

For metaphor detection and lexical disambigua-408

tion input s = (w0, ..., wn), s
′ = (w′

0, ..., w
′
n), Le409

et al. (2020) used different models to extract fea-410

tures with respectively:411

Hwsd = fwsd
b (s), Hmd = fmd

b (s′), (17)412

where Hwsd, Hmd are the word sense disambigua-413

tion and metaphor detection output features, re-414

spectively, and fwsd
c , fmd

c are their corresponding415

models, and the output features will be used to ob-416

tain the fusion knowledge through similarity loss:417

Losssimilarity = λ||Hwsd −Hmd||. (18)418

Wan et al. (2021) combined the two types of419

features by means of a combination:420

p′i =

mi−1∑
k=0

αj
ip

j
i , α

j
i =

exp(hip
j
i )∑mi−1

k=0 exp(hip
j
i )
, (19)421

where hi metaphorical text feature, pji is the jth422

paraphrase of the ith metaphorical text, and the423

weighted combination of paraphrase features will424

be concatenated into the metaphorical features.425

Zhang and Liu (2023) introduced the Gradi-426

ent Reversal Layer (GRL) (Ganin and Lempit-427

sky, 2015) module for adversarial learning. GRL428

aims to train on a large amount of labeled data429

in the source domain and a large amount of unla-430

beled data in the target domain through an inverse-431

gradient strategy, allowing the model to learn the432

target data distribution. Zhang and Liu (2023) 433

constructed two lossy attempts to incorporate the 434

knowledge of the WSD task into metaphor detec- 435

tion, for the i th input sample si = (w0, ..., wn): 436

Lg =
1

|D|
∑

Lce((W
gfb(si) + bg), di), (20) 437

Ll =
1

|D|
∑

Lce((W
l(ŷifb(si)) + bl), di),

(21)

438

where fb is the BERT encoder and ŷi is the model 439

output distribution. D = DMD ∪ DWSD, di ∈ 440

(0, 1) is the task labeling, where 0, 1 are metaphor 441

detection and WSD, respectively. Through an ad- 442

versarial learning approach, the inverse gradient of 443

Lg aims to steer the model for global knowledge fu- 444

sion, while Ll further fine-tunes the output distribu- 445

tion of the model so that the metaphor-biased sam- 446

ples are closer to the non-basic samples in WSD, 447

while the literal samples are closer to the basic sam- 448

ples, thus realizing fine-grained knowledge fusion. 449

Mao and Li (2021) proposed a gating mecha- 450

nism based on multi-task learning, whose structure 451

consists of three main parts: reset gate, update gate, 452

and fusion gate. Considering the main task output 453

feature Hj of a particular layer and multiple sub- 454

task features Hm (where m ̸= j). The reset gate 455

and its filtering features can be represented as: 456

Rm = σ(Wm
ϕR

Hm + bmϕR
), (22) 457

Cm = tanh(Wm
ϕC

(Rm ⊙Hm) + bmϕC
), (23) 458

where Wm
ϕR

, bmϕR
,Wm

ϕC
, bmϕC

is the trainable param- 459

eter, σ is the sigmoid activation function, and ⊙ 460

is the element-wise product. the update gate will 461

learn joint information of the main task and a cer- 462

tain auxiliary task. For the main task Hj and a 463

certain auxiliary task Hm, the update gate and its 464

combined features are denoted as: 465

Zm = σ(Wm
ϕZ

Hj + bmϕZ
+ V m

ϕZ
Cm + dmϕZ

),

(24)
466

Fm = Zm ⊙Hj + (1− Zm)⊙ Cm, (25) 467

where Wm
ϕZ

, bmϕZ
, V m

ϕZ
, dmϕZ

are the trainable param- 468

eters, and Fm are the combined features of the 469

main task and the mth auxiliary task. The fusion 470

gate will fuse all the combined features obtained 471

by the update gate and use them for subsequent 472

feature extraction or classification, i.e: 473

Gj = σ(W j
ϕG

(
∑
m ̸=j

Fm) + bjϕG
), (26) 474

where W j
ϕG

, bjϕG
are the trainable weights and bias. 475
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4 Dataset and Metrics476

The purpose of this section is to provide an477

overview of the current mainstream metaphor de-478

tection datasets, details about which have been479

listed in Table 2. Also, we will introduce the eval-480

uation metrics commonly used in this field (see481

Appendix A for details). In addition, we will also482

summarize the performance of metaphor detection483

tasks performed on the four datasets VUA ALL,484

VUA verb, MOH-X and TroFi in recent years (see485

Table 3 in Appendix B for more details), to present486

a comprehensive picture of the state of the art of487

research in this area.488

VUAMC. The VU Amsterdam Metaphor Corpus489

(Steen et al., 2010) annotated each lexical unit490

(187,570 in total) in a subset of the British Na-491

tional Corpus (Consortium et al., 2007) metaphori-492

cally. The corpus tags sentences used the MIPVU493

metaphor detection program. VUAMC is the494

largest publicly available annotated corpus for495

token-level metaphor detection, and the only one496

that investigates the metaphorical nature of dummy497

words. Based on VUAMC, many variants of VUA498

have emerged.499

VUA ALL POS. VUA ALL POS dataset has been500

applied to the shared task of metaphor detection501

(Leong et al., 2018, 2020), which consists of two502

parts, VUA ALL POS and VUA Verb. In par-503

ticular, VUA ALL POS annotates all real-sense504

words (including adjectives, verbs, nouns, and ad-505

jectives) in a sentence; while VUA Verb covers506

only verbs. However, in the studies of (Song et al.,507

2021; Feng and Ma, 2022; Wan et al., 2021; Su508

et al., 2020), the VUA ALL POS dataset also in-509

cludes dummy words. To distinguish it from the510

shared task (Leong et al., 2018, 2020), we named511

the VUA ALL POS dataset that includes both real512

and dummy words as VUA ALL.513

VUA Verb. Since VUA Verb contains only verbs514

and no other variants, we used the dataset reported515

in the metaphor detection shared task (Leong et al.,516

2018, 2020). In VUA Verb, 15,516 samples were517

used for training and 5,873 for testing.518

VUA SEQ. VUA SEQ is another dataset con-519

structed based on VUAMC. Compared to VUA520

ALL, VUA SEQ has the same number of samples521

as reported (Gao et al., 2018; Neidlein et al., 2020).522

However, VUA SEQ covers all tokens in a sen-523

tence, even punctuation, in the classification task,524

thus leading to a richer number of target tokens525

used than VUA ALL.526

VUA18. According to the research (Choi et al., 527

2021), VUA-18 is very similar to VUA-SEQ and 528

VUA ALL as they use the same sentences in each 529

subset, 6,323, 1,550, and 2,694 sentences for the 530

training, development, and test sets, respectively. 531

VUA-18 does not consider abbreviations and punc- 532

tuation as separate tokens, and has the same label- 533

ing rules as VUA ALL. We therefore categorized 534

VUA-18 with VUA ALL. 535

VUA20. In the literature (Choi et al., 2021; Li et al., 536

2023c; Wang et al., 2023), VUA20 labeled 1.2k sen- 537

tences with real and imaginary words. However, 538

this did not match the description in the 20-year 539

shared task (Leong et al., 2020). The text stated 540

that it uses the same VUA as the 18-year shared 541

task (Leong et al., 2018) (see Section 3.1, lines 542

8-10) and that both report the same token count. 543

TroFi. TroFi is a verb-target focused dataset con- 544

taining the literal and metaphorical usage of 50 545

English verbs from the 1987-1989 Wall Street Jour- 546

nal corpus (Charniak et al., 2000). The dataset 547

contains a total of 3717 samples, including 2741 548

training samples and 968 test samples. 549

MOH. The MOH dataset (Mohammad et al., 2016) 550

consists of 1639 sentences extracted from Word- 551

Net, which contains 1230 sentences for literal us- 552

age and 409 sentences for metaphorical usage. And 553

it was labeled with metaphors using crowdsourcing. 554

MOH-X (Shutova et al., 2016), on the other hand, 555

is a subset of the MOH dataset that focuses on col- 556

lecting samples containing verbs. In MOH-X, each 557

verb covers multiple semantic meanings, at least 558

one of which is metaphorical usage.

Dataset #Tok. #Sent. %Met.

VUAall/SEQ 205,425 10,567 11.6%
VUAall/SEQ/tr 116,622 6,323 11.2%
VUAall/SEQ/val 38,628 1,550 11.6%
VUAall/SEQ/te 50,175 2,694 12.4%
VUAallpos 94,807 16,202 15.8%
VUAallpos_tr 72,611 12,122 15.2%
VUAallpos_te 22,196 4,080 17.9%
VUAverb_tr 15,516 7,479 27.9%
VUAverb_val 1,724 1,541 26.9%
VUAverb_te 5,873 2,694 29.9%
MOH-X 647 647 48.7%
TroFi 3,737 3,737 43.5%

Table 2: tr: training set. val: validation set. te: test
set. tokens: number of samples. sent.: total number of
sentences, %Met.: percentage of metaphorical samples

559
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5 Conclusion560

In this section, we summarize the problems faced561

in the metaphor detection task as follows and ex-562

plore possible future research directions.563

Refining the Criteria for Defining Metaphors.564

Current research ignores the problem of lexical565

lag. Lexical lag refers to the lack of a clear ba-566

sis for researchers to define literal meanings when567

introducing knowledge. For example, some stud-568

ies consider the first paraphrase in WordNet as the569

basic meaning Zhang and Liu (2023), or use the570

first k example sentences in the dictionary as the571

criterion for classifying non-metaphorical expres-572

sions (Su et al., 2021; Zhang and Liu). However,573

these approaches may lead the model to incorrectly574

interpret metaphorical words as literal meanings.575

Therefore, there is a need for continuous refine-576

ment of the metaphor definition criteria to improve577

the accuracy of knowledge incorporation.578

Enhancing the Knowledge Infusion Methodol-579

ogy. Most of the past studies injected knowledge di-580

rectly into the inputs of the model (Li et al., 2023b;581

Babieno et al., 2022) or adjusted the outputs (Wang582

et al., 2023; Feng and Ma, 2022). However, using583

this combination alone may not be able to fully584

utilize the rich contextual information in the knowl-585

edge. To improve the efficiency of knowledge in-586

jection, Le et al. (2020) used dependency tree struc-587

ture information to construct the adjacency matrix588

of Graph Convolutional Network (GCN), Li et al.589

(2023c) fine-tuned the model with FrameNet to590

capture the implicit knowledge, and Mao and Li591

(2021); Mao et al. (2022) designed a gating mech-592

anism for extracting the associations between the593

main task and several subtasks separately informa-594

tion. Although there have been some attempts to595

improve the knowledge injection approach, this596

area is still an active research direction.597

Exploring Fine-Grained Emotions. Many stud-598

ies have shown that there is a close connection599

between textual emotions and metaphors (Moham-600

mad et al., 2016; Li et al., 2023a). Among the pre-601

vious researches, Dankers et al. (2019) designed602

an emotion-based VAD labeling sentiment regres-603

sion task. While Badathala et al. (2023) skillfully604

introduced a hyperbole corpus to realize the bidirec-605

tional efficiency of hyperbole and metaphor detec-606

tion performance. It is worth noting that the above607

studies are limited to rough sample combination608

in terms of knowledge fusion methods, and have609

not yet explored in-depth more detailed ways of610

emotion knowledge injection, such as at the lexical 611

level or at the level of sentence structure. 612

Exploring Zero-shot Metaphor Detection. In 613

view of the resource overhead problem associated 614

with supervised metaphor detection, the zero-shot 615

metaphor detection has been attempted by some 616

scholars in past researches. Among them, Mao 617

et al. (2018) introduced WordNet’s superordinate 618

and synonyms, by calculating the cosine distance 619

between the context and the target word, if it is 620

greater than a set threshold, it is determined to be a 621

metaphor. Mao et al. (2022) adopted a similar ap- 622

proach, where the proximity word is selected from 623

the candidate set, i.e., the word with the highest 624

probability of occurrence in the BERT context. The 625

above methods provided meaningful explorations 626

in the zero-shot metaphor detection for knowledge 627

injection and some insights for future research. 628

Introducing Multilingual Knowledge An im- 629

portant but little explored research direction is the 630

construction of multilingual metaphor detection 631

models. Tsvetkov et al. (2013, 2014) have con- 632

structed cross-language metaphor detection models 633

by training them on English samples and applying 634

them to the target language. Sanchez-Bayona and 635

Agerri (2022) constructed CoMeta, the first corpus 636

annotated with Spanish metaphors, and designed 637

two zero-shot experiments using CoMeta and VUA 638

(Steen et al., 2010) as the training and test sets, re- 639

spectively, thus demonstrating cross-linguistic con- 640

sistency between languages. These studies provide 641

the feasibility and value of exploring cross-lingual 642

knowledge injection. 643

6 Limitations 644

This paper provides a comprehensive description 645

of metaphor detection systems in deep learning, fo- 646

cusing on discussing and summarizing in detail the 647

different types and methods of model knowledge 648

injection. However, there exists a small amount 649

of research work in the area of metaphor detection 650

that does not use knowledge or employs unsuper- 651

vised methods, and these studies are not covered or 652

discussed in the paper. In future research, we plan 653

to provide a comprehensive summary of most of 654

the work in the area of metaphor detection, includ- 655

ing both supervised and unsupervised approaches, 656

to provide researchers with a more comprehensive 657

understanding. 658
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7 Ethics Statement659

In this paper, we provide a detailed description660

of the supervised metaphor detection system and661

the different ways of knowledge injection. The662

datasets and research papers we have used have663

been obtained from publicly available sources and664

we have adhered to strict guidelines of academic665

and research ethics. In addition, we place special666

emphasis on transparency and openness of infor-667

mation, encourage other researchers to conduct668

responsible research, and uphold best practices in669

knowledge sharing. In the text, we explicitly cite670

the public data sources cited to express our full re-671

spect for the original authors and data providers of672

research related to the field of metaphor detection.673
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A Metrics 937

Current mainstream neural models treated 938

metaphor detection as a dichotomous sequence 939

labeling task. Among their commonly used 940

evaluation metrics, precision measures the degree 941

of correct prediction, while recall measures the 942

completeness of the categorization or information 943

retrieval system. The reconciled mean of precision 944

and recall is known as the F-score, which is 945

high when both precision and recall are high. 946

Precision, Recall, F-score and Accuracy are 947

defined respectively: 948

Pre =
TP

TP + FP
(27) 949

Rec =
TP

TP + FN
(28) 950

F1 =
2× Pre×Rec

Pre
(29) 951

Acc =
TP + TN

TP + TN + FP + FN
, (30) 952

where True Positives (TP) denote the number 953

of texts recognized as metaphorical and actually 954

metaphorical, False Positives (FP) denote the num- 955

ber of texts recognized as metaphorical but actually 956

non-metaphorical, True Negatives (TN) denote the 957

number of texts recognized as non-metaphorical 958

and actually non-metaphorical, and False Nega- 959

tives (FN) denote the number of texts recognized 960

as non-metaphorical but actually metaphorical. 961

B Model Performance 962
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VUA ALL VUA Verb MOH-X (10 fold) TroFi (10 fold)
Pre. Rec. F1 Acc. Pre. Rec. F1 Acc. Pre. Rec. F1 Acc. Pre. Rec. F1 Acc.

(Gao et al., 2018) 53.4 65.6 58.9 69.1 75.3 84.3 79.1 78.5 68.7 74.6 72 73.7
(Gao et al., 2018) 71.6 73.6 72.6 93.1 68.2 71.3 69.7 81.4 79.1 73.5 75.6 77.2 70.1 71.6 71.1 74.6
(Gao et al., 2018) 71.5 71.9 71.7 92.9 66.7 71.5 69 80.7 75.1 81.8 78.2 78.1 70.3 67.1 68.7 73.4
(Mao et al., 2019) 71.8 76.3 74 93.6 69.3 72.3 70.8 82.1 79.7 79.8 79.8 79.7 67.4 77.8 72.2 74.9
(Mao et al., 2019) 73 75.7 74.3 93.8 66.3 75.2 70.5 81.8 77.5 83.1 80 79.8 68.6 76.8 72.4 75.2
(Gong et al., 2020) 74.6 71.5 73 76.7 77.2 77 72.6 67.5 69
(Le et al., 2020) 74.8 75.5 75.1 72.5 70.9 71.7 83.2 79.7 80.5 79.6 79.9 73.1 73.6 73.2 76.4
(Rohanian et al., 2020) 80 80.4 80.2 80.5 73.8 71.8 72.8 73.5
(Leong et al., 2020) 80.4 74.9 77.5 79.2 69.8 74.2
(Su et al., 2020) 82 71.3 76.3 79.5 70.8 74.9 79.9† 76.5† 77.9† 53.7† 72.9† 61.7†

(Song et al., 2021) 82.7 72.5 77.2 94.7 80.8 71.5 75.9 86.4 80 85.1 82.1 81.9 70.4 74.3 72.2 75.1
(Wan et al., 2021) 82.5 72.5 77.2 94.7 78.9 70.9 74.7 85.4
(Choi et al., 2021) 80.1 76.9 78.5 78.7 72.9 75.7 79.3† 79.7† 79.2† 53.4† 74.1† 62†

(Li et al., 2023c) 82.7 75.3 78.8 83.2† 84.4† 83.8† 70.7† 78.2† 74.2†

(Babieno et al., 2022) 79.3 78.5 78.9 60.9 77.7 68.3 81 80 80.2 53.2 72.8 61.4
(Lin et al., 2021) 79.3 78.8 79 94.8 78.1 73.2 75.6 85.8 85.7 84.6 84.7 85.2 74.4 74.8 74.5 77.7
(Wang et al., 2023) 80 78.2 79.1 77∗ 83.5∗ 80.1∗ 54.2∗ 76.2∗ 63.3∗

(Zhang and Liu) 80.4 78.4 79.4 94.9 78.3 73.6 75.9 86 84 84 83.4 83.6 67.5 77.6 71.9 73.6
(Feng and Ma, 2022) 81.6 77.4 79.4 95.2 81.6 71.1 76 86.4 89.5 85.2 87 87.5 72.5 77.5 74.8 77.7
(Su et al., 2021) 76 76 76 85.7 82.9 84 83.4 84.2 73.3 69.6 71.4 75.7
(Zhang and Liu, 2023) 78.4 79.5 79 94.7 78.5 78.1 78.3 87 87.4 88.8 87.9 88 70.5 79.8 74.7 76.5

Table 3: This table shows the performance of the metaphor detection system on four datasets, VUA ALL, VUA
verb, MOH-X and TroFi, in recent years. Among them, most of the results on the MOH-X and TroFi datasets are
based on ten-fold cross-validation, and also include some results derived from direct computation († labeling), as
well as some of the models are trained on the VUA20 dataset (∗ labeling).
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