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Abstract

The advancements in computational modeling and simulations have facilitated the emer-
gence of in-silico clinical trials (ISCTs). ISCTs are valuable in developing and evaluating
novel treatments targeting acute ischemic stroke (AIS), a prominent contributor to both
mortality and disability rates. However, obtaining large populations of accurate anatomical
structures that are required as input to ISCTs is labor-intensive and time-consuming. In
this work, we propose and evaluate diffusion-based generative modeling and set transform-
ers to generate a population of synthetic intracranial vessel tree centerlines with associated
radii and vessel types. We condition our model on the presence of an occlusion in the
middle cerebral artery, a frequently occurring occlusion location in AIS patients. Our anal-
ysis of generated synthetic populations shows that our model accurately produces diverse
and realistic cerebral vessel trees that represent the geometric characteristics of the real
population.

Keywords: deep learning, diffusion, conditional, cerebral vessels, arteries, stroke, in-silico
modeling

1. Introduction

Advancements in computational modeling and simulations have enabled the development
of in-silico clinical trials (ISCTs). Combined with machine learning methods, ISCTs can
provide valuable insights into new medical treatments and devices. ISCTs allow for a
reduction of resources spent on developing new devices and treatments by simulating their
performance on virtual patient populations, reserving actual clinical trials only for the most
encouraging candidates (Konduri et al., 2020; Miller et al., 2023; Viceconti et al., 2016).

ISCTs can aid in the development of novel treatments for acute ischemic stroke (AIS),
one of the leading causes of mortality and disability (Phipps and Cronin, 2020). AIS
occurs when a thrombotic occlusion reduces the blood flow in a cerebral vessel. Treatment
of large vessel occlusions, for example, in the interior cerebral artery (ICA), the middle
cerebral artery (MCA) M1 and M2 segments, or the anterior cerebral artery (ACA), involves
mechanical thrombectomy, for which in-silico treatment models have been developed and
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validated (Luraghi et al., 2021). The training of in-silico treatment models benefits from
large populations of patient-specific information derived from radiological images, including
segmentations of cerebral vessels and characteristics of the occluding thrombus. Such data
enhances the generalizability and robustness of the trials. However, obtaining this data is
often expensive and time-consuming. With the advances in generative modeling, synthetic
patient populations that can be conditioned on certain auxiliary variables of interest are
becoming increasingly popular. Conditioning provides several advantages, such as aligning
synthetic data to real-world patient data or customization for specific patient groups.

Various methods have been introduced for generating vessel geometry. Bridio et al.
(2023) uses statistical shape modeling (SSM) to generate cerebral vessel anatomies de-
scribed by their centerlines and diameters. However, SSM approaches are linear models,
limiting their ability to model complex and large variations in vessel geometry and topology
(Kalaie et al., 2023). Furthermore, conditioning SSM approaches on auxiliary variables is
not straightforward (Bannister et al., 2022). Danu et al. (2019) use deep generative voxel-
based models for generating vessels. However, voxel volumes have limited resolution due to
their high computational cost, making it difficult to convert them to a mesh that is suitable
for ISCTs. Wolterink et al. (2018), instead, uses a conditional generative adversarial net-
work (GAN) (Goodfellow et al., 2020) vessel centerlines, which is not limited by resolution.
Nevertheless, it assumes a fixed topology, i.e., centerline points have a fixed ordering, and
therefore cannot generate structures with bifurcations.

In this work, we present a deep generative diffusion-based method for generating vessel
geometry. Diffusion (Ho et al., 2020) has emerged as one of the most powerful generative
methods. We address the limitations of voxel-based methods and fixed topology by generat-
ing vessel tree centerlines with arbitrary topologies using a conditional set transformer-based
architecture (Lee et al., 2019). By representing vessel trees as point clouds, or equivalently,
fully connected graphs, our model is not constrained by topology. Since we are interested
in computational simulation of stroke treatment for large vessel occlusions, our approach
generates vessel tree centerlines with corresponding radii and associated ICA, ACA, M1,
and M2 vessel types. However, since our method supports arbitrary toplogy, it is not lim-
ited to these specific vessels. The model is conditioned on the presence of an M1 occlusion.
We evaluate the synthetic vessels by comparing their geometric characteristics with those
observed in clinical data. However, since set-diffusion output is unordered, we present a
post-processing centerline-sequencing algorithm for ordering the generated centerlines.

We summarize our contributions as follows. We use diffusion with a set-transformer
architecture to generate topology free conditional vessel tree centerlines. A simple post-
processing step is used to sequence the unordered centerlines for use in further downstream
tasks. Our evaluation shows that our method can generate realistic and unique vessel trees.

2. Method

Section 2.1 describes the used dataset and how we represent the centerlines for training the
diffusion model. The diffusion process and its set-transformer backbone is described in 2.2.
We present the sequencing algorithm that orders the synthetic centerlines sampled from the
diffusion model in Section 2.3. An overview of the entire generative process is presented in
Figure 1. We make our code publicly available here.

2

https://github.com/ThijsKuipers1995/vessel_diffusion


Cerebral Vessel Generation

Figure 1: Overview of the generative process. (a) Noisy point cloud is sampled and a
condition label is provided. (b) The noisy point cloud is iteratively denoised
during the reverse diffusion process to form a vessel centerline tree. (c) The
unordered points are sequenced to form the final centerline vessel tree.

2.1. Data

In this work, we used data from the MR CLEAN Registry, an ongoing, prospective, obser-
vational, multicenter study from 16 EVT-capable hospitals in the Netherlands. The dataset
consists of 110 patients with an occlusion in the M1 artery, in either the left or right side
of the brain, and sufficient image and segmentation quality. We segmented the intracranial
arteries using a vessel segmentation algorithm developed within StrokeViewer (NICO.LAB,
Amsterdam). The centerline and geometry characteristics (radius, tortuosity, and bifurca-
tion angle) extraction and artery segment labeling were performed with a semi-automated
software: iCAFE(© 2016-2018 University of Washington. Used with permission) (Chen
et al., 2018). The vessel trees include ICA, ACA, and the MCA (M1 and M1 segments) on
the contralateral hemisphere (without occlusion). To increase the number of data samples,
we mirrored vessel trees with occlusion on the left side to the right side. Hence, our dataset
consists of 181 training samples (95 with and 86 without an M1 occlusion) and 39 testing
samples (20 with and 19 without occlusion).

The vessel trees are parameterized by their centerline, i.e., a set of points xi = (ci,hi)
where ci contain the point coordinates and hi the point features, such as the radius and
vessel type. The vessel type is a categorical feature represented as a one-hot encoding.
Similar to Hoogeboom et al. (2022), we multiply the categorical features by 0.1 to stimulate
the denoising process to first emphasize the shape of the centerline before segmenting it.
Note that in practice, xi is the concatenation of ci,hi. We sample 256 equidistantly spaced
centerline points using linear interpolation that are scaled down by a factor of 24 to be
approximately within the range of [−1, 1] and have a standard deviation of 0.5, as this is
expected by the EDM (Karras et al., 2022) diffusion formulation.

2.2. Conditional Set-Diffusion

The diffusion model consists of three parts. The forward diffusion process adds noise to
the input. A denoising function aims to remove the added noise to reconstruct the original
input. The reverse diffusion process synthesizes a vessel tree by iteratively denoising noise
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from the unit Gaussian distribution. The reverse diffusion process requires 18 steps to
synthesize a centerline vessel tree.

Diffusion Process We use the EDM formulations introduced by Karras et al. (2022).
EDM drastically simplifies the forward diffusion process and the training of the denoising
function. Sampling from the diffusion model is also significantly faster, requiring only 18
steps compared to the hundreds of steps such as in (Hoogeboom et al., 2022).

Denoising Objective Given a centerline point xi = (ci,hi) and noise ni, the objective of
the denoising function is to map the diffused input back to the original input. The amount
of noise ni added to the input is determined by the noise level σ. As σ increases, the noisy
input increasingly resembles unit Gaussian noise. Formally, the denoising objective is

Eni∼N (0,σ2I)

[
1

N

N∑
i

(Fθ(xi + ni, σ, C) − xi)
2

]
. (1)

Here, Fθ is the denoising function with learnable parameters θ. During training, Fθ is
conditioned on the noise level σ and any optional auxiliary conditional information C. We
use learnable embedding vectors for conditioning on the presence of an M1-occlusion and
parameterize. The denoising function Fθ is modeled by a set-transformer.

Cross Attention Our denoising network consists of a series of cross-attention blocks.
The attention mechanism allows elements in the input to pass information to each other
while being permutation equivariant (Vaswani et al., 2017). Given matrices X ∈ RN×L and
Y ∈ RM×P , with rows denoting individual set elements, we formulate cross-attention as

CrossAttn(X,Y) = A(YWV ) (2)

A = Softmax

(
XWQ(YWK)T√

d

)
, (3)

where WQ ∈ RL×d and WK ,WV ∈ RP×d are learnable parameters mapping X and Y
to sets of queries, keys, and values respectively. In the case where X = Y, Equation (2)
becomes self-attention.

Set Transformer The set transformer consists of a series of cross-attention blocks. Each
cross-attention block consists of three components. First, self-attention is applied where
centerline elements exchange information with each other. Next, conditional information is
incorporated via cross-attention, serving as an effective conditioning mechanism (Rombach
et al., 2022). In the case of unconditional generation, the cross-attention layer becomes
a self-attention layer. Finally, an inverse-bottleneck feed-forward network performs chan-
nel mixing. Adaptive layer normalization is applied before each component to inject the
noise levels. Pre-normalization in the transformer architecture improves gradient stability,
reducing training time and the need for hyperparameter tuning (Xiong et al., 2020).

2.3. Unordered Centerline Sequencing

Our generative model generates an unordered set of centerline points. We turn the un-
ordered sets into ordered and cleaned-up connected centerline segments with the following
three-stage post-processing algorithm.
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(1) Noise Reduction Noise mainly occurs if points are far away from the centerline or
if points form clusters. Points that have a nearest-neighbor distance (nn-distance) larger
than four times the average nn-distance are removed. Clusters, generally occurring at
bifurcations, are reduced by applying furthest-point sampling.

(2) Sequencing Sequencing starts with an empty sequence s to which points are added to
the end. We define the last point added to the sequence as the endpoint and the remaining
points as candidate points. The candidate point with the minimum distance to the endpoint,
weighted by the current direction of the sequence is chosen as the next endpoint. Given the
current endpoint and direction xcur and dcur, and a candidate point xi with direction di,
the direction-weighted distance d is calculated as

d(xcur,xi) = (1 + αdT
curdi)||xi − xcur||, (4)

where α determines the importance of the current direction. The directions are calculated
as dcur = (xprior − xcur)/||xprior − xcur|| and di = (xi − xcur)/||xi − xcur||, where xprior is
the point prior to xcur in the sequence. The point chosen as the initial endpoint is given as
the point x that maximizes the average pairwise inner product between the directions from
x to its k nearest neighbors. Intuitively, the point where its nearest neighbors have similar
directions is likely one of the end points of the sequence.

(3) Segment Merging Individual vessel segments are merged by calculating a common
bifurcation point. Given an endpoint x belonging to segment s, its nearest neighbors from
the remaining segments are candidate bifurcation points. Candidate points with distances
greater than 4 times the average nn-distance of s are discarded. The common bifurcation
point is the average of the remaining candidate points.

Figure 2: Synthetic vessel trees. The bottom two rows display the skeletons with the closest
match from the training set.
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Figure 3: Distributions of tortuosity, average radius (in mm), and ICA-M1 bifurcation angle
(in degrees) for the different vessel segments with and without an M1 occlusion.

3. Results and Evaluation

We train the diffusion model to generate cerebral vessel tree centerlines of 256 points,
conditioned on an M1 occlusion. The training and sampling details are given in Section 3.1.
In Section 3.2, we assess the geometric characteristics of the synthesized vessels, as well as
model diversity. We quantitatively analyze the distributions of the geometric characteristics
in Section 3.3.

3.1. Evaluation Methodology

We use the default hyperparameters from EDM (Karras et al., 2022) for the diffusion
process, as tuning these did yield better results. The transformer architecture consists
of 6 cross-attention blocks with 8 attention heads and a hidden dimension of 64 trained on
centerlines. The model is trained for 2500 epochs with a batch size of 16 using the AdamW
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(Loshchilov and Hutter, 2017) optimizer. We use a cosine annealing learning rate schedule,
with an initial learning rate of 1e−7 that increases to 1e−4 in the first 100 epochs, after
which it decreases back to 1e−7. We found these hyperparameters to result in accurate
generative results while preventing the model from overfitting, which we validated on the
held-out test set.

For evaluating the generative model, we sample a synthetic population of 200 samples,
100 of which contain an M1 occlusion. All synthetic samples are processed by the sequencing
algorithm. Of the 200 samples, the sequencing algorithm failed on 7 M2 segments due to
too much noise. We attribute this due to the large variance in M2 geometry combined with
the small training set. For the sequencing algorithm, we set α = 0.25 and k = 5. With
these parameters, the algorithm successfully processes the train and test sets.

3.2. Qualitative Results and Diversity

The quality of the synthetic vessels is assessed by comparing the distributions of tortuosity,
average radius of the ICA, ACA, M1, and M2 and ICA-M1 bifurcation angle between the
synthetic data and the real training population in Figure 3. We observe that the distribu-
tions are specific to each vessel type and the presence of an M1-occlusion. Furthermore,
the synthesized vessels represent the distributions of the geometric characteristics of the
training set. This suggests that the model successfully captures the geometry of the vessel
trees. Noteworthy, the model does not assign the wrong vessel type to the centerline points,
e.g., assigning type ICA to a point belonging to the M1. We also assess the diversity of the
synthesized population compared to the training set. We analyze the diversity by finding
the closest sample from the training set for each sample in the synthetic population using
the Chamfer distance. We observe that the model generates both diverse samples and sam-
ples that more closely resemble the training set, see Appendix A. Examples of generated
vessels are shown in Figure 2.

3.3. Quantitative Analysis of Geometric Characteristics

We further analyze the distributions from Figure 3 by measuring their difference using the
Kolmogorov-Smirnov (KS) test. When we compare the top and bottom rows of Figure 4,
we observe that the differences between distributions between the synthetic vessels and the
training set are similar to the differences within the training set itself. We also observe
that the distributions of the vessels in the training set are specific to each vessel type and
the presence of an M1-occlusion. The same specific distributions are seen in the synthetic
population, which aligns with our observations in Section 3.2. This indicates that the dis-
tributions generated by the model are not arbitrary, but rather that the model successfully
captures the specific geometries and conditioning from the training set.

4. Discussion and Conclusion

In this work, we presented a method for conditionally generating cerebral vessel trees with
diffusion and a set-transformer backbone architecture. Our model generates vessel tree
geometry parameterized by centerline points with associated radius and vessel type. Our
model can generate complex and diverse cerebral vessel tree centerlines. In addition, the
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Figure 4: Differences between geometric characteristic distributions for samples with (a)
and without (b) an M1-occlusion. *p-value < 0.05. **p-value < 0.01.

model labels each point with its corresponding vessel type. Furthermore, our simple se-
quencing algorithm is effective at connecting the individual points and vessel segments.
Since the sequencing algorithm assumes equidistantly spaced points, this suggests the gen-
erated centerlines are relatively artifact-free.

Our experiments showed that our model can generate complex vessel trees that share
the geometric characteristics of the training set. We observed that the model accurately
captures the geometric differences between the individual vessel segments. The model can
be effectively conditioned on auxiliary variables that affect vessel geometry, which we tested
with the presence of an occlusion in the M1 vessel. Moreover, the model’s generations are
diverse and do not simply mimic the geometry from the training set. This suggests our
model has learned an accurate distribution of cerebral vessel geometry.

It is important to consider that our evaluation does not directly validate the usefulness
of our model on downstream tasks. However, centerline-based in-silico stroke treatment
models have been developed and validated using the same dataset as our study (Luraghi
et al., 2021; Miller et al., 2023). Since our model generates samples that are comparable to
the real patient data, we are confident of the usefulness of our model for such computational
models. In future studies, we will experiment on the required resolution and variation of
the generated vessel trees to validate their usefulness for downstream tasks.

In conclusion, we showed that diffusion with a set-transformer architecture is a capable
solution for conditionally generating realistic and diverse cerebral vessel tree geometry.
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Appendix A. Chamfer Distance Distributions

The Chamfer distance can be used to calcualte the distance between two sets of points, e.g.,
point clouds. Given two sets of points X and Y , the Chamfer distance CD(X, Y ) is:

CD(X,Y ) =
1

|X|
∑
x∈X

min
y∈Y

||x− y|| +
1

|Y |
∑
y∈Y

min
x∈X

||y − x||, (5)

where | · | denotes set cardinality. We determine the uniqueness of the generative model by
calculating the Chamfer distance between each generated sample and the full training set.
We consider the training sample that minimizes the Chamfer distance to be the sample that
most closely resembles the generated sample. In figure 5, we report the minimum Chamfer
distance between the generated samples and the training set.

Figure 5: Minimum Chamfer distances between the generated samples and the training set
for the samples with (left) and without (right) an M1 occlusion.
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