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Convergence-Aware Online Model Selection with
Time-Increasing Bandits

Anonymous Author(s)
∗

ABSTRACT
Web-based applications such as chatbots, search engines and news

recommendations continue to grow in scale and complexity with

the recent surge in the adoption of large language models (LLMs).

Online model selection has thus garnered increasing attention due

to the need to choose the best model among a diverse set while

balancing task reward and exploration cost. Organizations faces de-

cisions like whether to employ a costly API-based LLM or a locally

finetuned small LLM, weighing cost against performance. Tradi-

tional selection methods often evaluate every candidate model be-

fore choosing one, which are becoming impractical given the rising

costs of training and finetuning LLMs. Moreover, it is undesirable

to allocate excessive resources towards exploring poor-performing

models. While some recent works leverage online bandit algorithm

to manage such exploration-exploitation trade-off in model selec-

tion, they tend to overlook the increasing-then-converging trend in

model performances as the model is iteratively finetuned, leading

to less accurate predictions and suboptimal model selections.

In this paper, we propose a time-increasing bandit algorithm TI-

UCB, which effectively predicts the increase of model performances

due to training or finetuning and efficiently balances exploration

and exploitation in model selection. To further capture the converg-

ing points of models, we develop a change detection mechanism by

comparing consecutive increase predictions. We theoretically prove

that our algorithm achieves a lower regret upper bound, improving

from prior works’ polynomial regret to logarithmic in a similar

setting. The advantage of our method is also empirically validated

through extensive experiments on classification model selection

and online selection of LLMs. Our results highlight the importance

of utilizing increasing-then-converging pattern for more efficient

and economic model selection in the deployment of LLMs.

CCS CONCEPTS
• Computing methodologies→ Search with partial observa-
tions; Online learning settings.

KEYWORDS
Model Selection; Online Learning; Multi-Armed Bandit; Large Lan-

guage Model
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1 INTRODUCTION
Recent times have witnessed the promising adoption of large-

scale pretrained models such as large language models (LLMs)

[6, 9, 35, 39, 40] in various web-based applications including online

chatbots, search engines and news recommendations. While dif-

ferent models may exhibit different tasks-specific advantages, the

increasing number of high-performing models particularly LLMs

recently has resulted in growing interest in the online model selec-

tion problem [15, 16, 23, 28, 33]. The goal of online model selection

is to choose the best model from a diverse set, maximizing the

reward on a specific task while minimizing the exploration cost in

the selection process, e.g., the economic trade-offs of LLMs [21].

For example, organizations today face decisions like whether

to employ a costly API-based LLM or a local small LLM being

fine-tuned over time. The choice hinges on factors such as cost-

effectiveness and robust performance in practical applications [21].

API-based LLMs [6, 35], while offering impressive zero-shot perfor-

mance, typically charge based on usage. In contrast, small locally-

maintainable LLMs [39, 40] would be much cheaper for heavy usage

and potentially more performant after being sufficiently finetuned.

Existing LLM selection schemes [37, 38, 42] primarily exploit the

best-performing model in a static setting, e.g. choosing the LLM

that generates answers with lowest perplexity score at the current

state [38]. Prior works on more general model selections lie in

parameter-free online learning [11, 15, 36] and in the field of Auto-

mated Machine Learning (AutoML) [13, 20, 24, 28, 31], e.g. treating

1
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the selection of model as a new hyperparameter to be optimized by

Bayesian optimization [13, 24]. These schemes, though effective, of-

ten require full information or comprehensive evaluation of models.

This may be impractical for recent large-scale models such as LLMs,

where training or finetuning could be costly and thus spending

excessive resources on exploring poor-performing models is unde-

sirable. Thus a trade-off between exploration, i.e. learning about

models’ performances being trained or finetuned, and exploitation,

i.e. selecting the best-performing one currently, is needed. Some

recent works [8, 23, 28, 33] have proposed to manage the trade-off

in online model selection by formulating it as a multi-armed bandit

problem, which is similar to our problem setting. However, they

tend to overlook the increasing-then-converging trend in model

performances as models are iteratively trained or finetuned when

they are selected, which is illustrated by the process shown in Fig-

ure 1 and the curve in Figure 2. As a result, these methods often

make inaccurate predictions on future model performances and

thus make suboptimal selections of models.

To address the above limitations, we propose an increasing ban-

dit algorithm, Time-Increasing UCB (TI-UCB), which can promis-

ingly predict and capture the increasing-then-converging pattern

of model performances and efficiently balances the exploration

and exploitation in online model selection. Specifically, TI-UCB

adopts a least square estimator to piecewise-linearly approximate

the increasing trend from past reward observations. To further cap-

ture the converging points, we develop a sliding-window change

detection mechanism by comparing consecutive increase predic-

tions. We provide a theoretical analysis of our proposed method and

prove TI-UCB achieves a lower regret upper bound, improving prior

works’ polynomial regret [33] to logarithmic regret in an increasing-

then-converging bandit problem. We also empirically validate the

advantage of our method in terms of performance and parameter

robustness through synthetic experiments and real-world experi-

ments of online model selection for canonical classification models

as well as recent LLMs.

In summary, we make the following major contributions:

• Motivated by the need for efficient and economic online

model selection (e.g., selecting the best-performing LLMs

being finetuned while minimizing the cost), we formulate

it as time-increasing bandit problem with increasing-then-

converging trend to balance the exploration and exploitation.

• Capitalizing the increasing-then-converging model perfor-

mance trend, we propose the TI-UCB bandit algorithm,which

can promisingly predict the reward increase and capture the

converging points with a change detection mechanism com-

paring consecutive increase predictions.

• We theoretically prove that TI-UCB achieves a lower regret

upper bound, improving prior works’ polynomial regret to

logarithmic in a similar increasing bandit problem.

• We empirically validate the advantages of TI-UCB through

extensive experiments of online model selection for classifi-

cation models as well as recent LLMs. Our results highlight

the importance of utilizing increasing-then-converging pat-

tern for more efficient and economic model selection in the

deployment of LLMs.

2 RELATEDWORK
In this work, we mainly focus on the online model selection formu-

lated as a multi-armed bandit problem, which is closely related to

the following two lines of works.

2.1 Online Model Selection
Online model selection has been drawing attention in choosing the

best one among the increasing number of high-performing models,

e.g. LLMs, with limited training resources and performance evalua-

tions [15, 16, 23, 28, 33]. Existing LLM selection schemes [37, 38, 42]

primarily focus on static model selection without considering the

model performance change due to iterative finetuning. For example,

Peng et al. [38] choose the LLM that generates texts with lowest

perplexity score at the current state [38]. While several prior works

on more general model selections have studied the parameter-free

online learning [11, 15, 36], most of them assume full information

in the online setting, which could be impractical when training

and evaluation costs are high and thus only the feedback from

the selected model might be observable. Some recent works have

explored online model selection with partial information. Foster

et al. [16] consider the model selection problem with contextual

bandit feedback. Cella et al. [8] formulate online model selection

as a rested bandit problem. Karimi et al. [23] utilize active learning

to select the best model among a pool of pre-trained classifiers.

The online model selection problem is also closely related to

the wider field of AutoML, whose objective is to automate the

entire process of applying machine learning to real-world prob-

lems [14, 22]. A similar application of AutoML to online model

selection is hyperparameter optimization [13, 20, 24, 28, 31]. The

commonly adopted Bayesian optimization frameworks [13, 24] for

hyperparameter selections treat the selection of the model as a

new hyperparameter to be optimized. While these approaches are

faced with problems of inefficiency resulting from a huge parameter

space, recent works [12, 27, 28, 33] have been leveraging bandit

algorithms to balance exploration and exploitation for more effi-

cient online model selection. While many approaches have been

proposed as listed above, most of them consider a static setting

and overlook the increasing-then-converging model performance

as models are trained or fine-tuned alongside the model selection

process. In comparison, our work emphasize and utilize the such

increasing-then-converging pattern due to model finetuning when

selected, as illustrated in Figure 1.

2.2 Non-stationary Bandits
The increasing-then-converging reward trend poses the challenge

of non-stationarity in online model selection, which is also closely

relaetd to non-stationary bandit problem. Non-stationary bandits

typically feature rewards that are either piecewise-stationary [2, 4, 7,

18, 30, 46] or smoothly-changing [3, 5, 41]. In piecewise-stationary

environments, the reward distribution is piecewise-constant and

changes abruptly at unknown time points. Existing methods often

use certain selection criteria for recent observations [2, 18, 46] or

change-detection techniques to focus on observations after change

points [4, 7, 30]. Garivier and Moulines [18] propose D-UCB and

SW-UCB, with the former using a discount factor for past rewards

and the latter employing an adaptive sliding window for recent

2
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observations. Cao et al. [7] apply a sliding window to detect abrupt

changes, while Liu et al. [30] use cumulative sums for change point

detection and UCB index updates. Smoothly-changing environ-

ments, on the other hand, describe situations where rewards change

continuously. Besbes et al. [3] propose Rexp3, a modification of

the Exp3 algorithm for adversarial MABs, based on known reward

variation. Bouneffouf and Féraud [5] and Russac et al. [41] develop

UCB-based algorithms for known reward changing trends. Trovo

et al. [46] present SW-TS, a Thompson Sampling-based algorithm

with a sliding window, for environments with smoothly-changing

rewards. Though considering non-stationary, these works have no

guaranteed performance in cases of increasing-then-converging

reward trends exhibited in online model selection problem.

Our setting focuses on rested bandits, where arm rewards depend

on the number of times the arm is pulled, e.g., the model perfor-

mances depend on the number of times the model is trained or fine-

tuned. This setting, introduced by [45], has been further explored

in a subcategory called rested rotting bandits [26, 43, 44], where re-

wards decrease with each pull. Recently, there has been discussion

on the counterpart setting with increasing rewards [8, 19, 28, 33].

However, existing approaches still have certain limitations. For ex-

ample, Heidari et al. [19] assume accurate reward feedback without

stochasticity, while Li et al. [28] solve the hyperparameter optimiza-

tion problem in a similar deterministic setting. Although Cella et al.

[8] consider a non-deterministic increasing reward scenario, they

assume knowledge of the parametric form of the reward. Among the

approaches above,Metelli et al. [33] consider stochastic bandits with

non-decreasing and concave rewards and utilizes a sliding window

to focus on most recent observations, which is the mostly closely re-

lated work to our setting. However, such recent-observation-based

method may not be able to accurately capture the increasing-then-

converging pattern exhibited in online mode selection problem,

and thus lead to suboptimal reward predictions and slow reactions

to converging points. In comparison, our proposed TI-UCB predicts

the increasing reward and adaptively capture the converging point,

which demonstrates advantages over R-ed-UCB both theoretically

and empirically in online model selection problem.

3 PROBLEM FORMULATION
In this section, we first introduce the setting in online model se-

lection, which is similar to [8, 23, 28, 33]. Then, we formulate it

as time-increasing bandits with increasing-then-converging trend,

where we novelly capture the model performance trend.

3.1 Online Model Selection
The online model selection process can be described with the follow-

ing three steps forming a feedback loop. For consistent illustration

as in Figure 1, we use the online selection of LLMs for text summa-

rization as describing examples for each step below.

Model Selection. Among a set of candidate LLMs, the agent first

selects an LLM to deployed for a document summarization task

according to a selection policy.

Reward Observation. Given a test document, the selected LLM

generates a summary of the document. Comparing the generated

Increasing Converging

Figure 2: Increasing-then-converging reward trends of an
API-based LLM (GPT-3 Davinci) and a local small LLM (GPT-
2 Medium) over finetuning steps on a text summarization
dataset. The reward considers both model performance and
API finetuning cost, details of which can be found in Sec-
tion 5.4. GPT-2 Medium is observed to outperform GPT-3
Davinci after certain finetuning steps and hence such re-
ward trends make it non-trivial to apply existing methods
for online model selection.

summary with the reference summary, an evaluation score measur-

ing summarization quality, i.e., model performance, is computed.

The agent then observe the evaluation score as the reward of the

previous model selection and correspondingly update its selection

policy for next round of model selection.

Model Finetuning. After the agent receives the reward, the se-
lected LLM is fine-tuned with the test document-summary pair in

previous step. The finetuned LLM will then be in the candidate pool

for the next round of model selection as in the first step.

The goal of the agent is to efficiently select the best LLM being

finetuned, yielding the highest cumulative reward in a long run.

3.2 Time-Increasing Bandits with
Increasing-then-Converging Trend

We formulate the online model selection as a time-increasing ban-

dit problem with increasing-then-converging trend, capturing the

model performance trend overlooked in previous bandit formu-

lations [8, 23, 28, 33]. Suppose there are 𝐾 arms (e.g., candidate

LLMs) in the environment. Without loss of generality, we denote

𝑖 to be the 𝑖-th one among 𝐾 arms. The agent will interact with

the environment for 𝑇 rounds. At each time step 𝑡 , the agent pulls

an arm 𝐴𝑡 ∈ [𝐾] and observes a reward 𝑋𝐴𝑡 ,𝑡 , which is a random

variable drawn from a probability distribution with expectation

`𝐴𝑡
(𝑡). Note that in our setting, the expected reward `𝑖 (𝑡) of arm

𝑖 at time 𝑡 depends on the number of times that 𝑖 is pulled (e.g.,

the LLM performance depends on the number of times the model

is fine-tuned). Thus, denoting 𝑛𝑖 (𝑡) =
∑𝑡
𝑠=1

1{𝐴𝑠 = 𝑖} as the total
number of pulls on arm 𝑖 till the end of time step 𝑡 , we define the

reward of arm 𝑖 at time step 𝑡 as

`𝑖 (𝑡) = `𝑖,𝑛𝑖 (𝑡 ) .
3
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Similarly, we define the empirical mean on arm 𝑖’s expected reward

at time step 𝑡 as

ˆ̀𝑖 (𝑡) = ˆ̀𝑖,𝑛𝑖 (𝑡 ) =
1

𝑛𝑖 (𝑡)

𝑡∑
𝑠=1

1{𝐴𝑠 = 𝑖}𝑋𝐴𝑠 ,𝑠 . (1)

Suppose the expected reward of arm 𝑖 first increases with the num-

ber of its pulls until it reaches the stable stage (e.g. The LLM per-

formance increases with the number of times it is finetuned until

converging). Denote a𝑖 as the converging point that the reward of

arm 𝑖 becomes stable. The value of a𝑖 could be different across arms

(e.g., LLMs may have different convergence rate when finetuned).

Note that a𝑖 is unknown to the agent and is a value that needs

to be learned by the agent. A typical challenging time-increasing

bandit example is shown in Figure 2, where GPT-3 Davinci gives

higher reward with strong zero-shot performance but is outper-

formed by GPT-2 Medium due to its high finetuning cost despite

the performance improvement.

The goal of the agent in time-increasing bandit is to maximize the

cumulative reward in a long run, which is equivalent to minimize

the cumulative regret. We define the cumulative expected regret as

E [𝑅(𝑇 )] =
𝐾∑
𝑖=1

𝑛∗𝑖 (𝑇 )∑
𝑠=1

`𝑖,𝑠 −
𝐾∑
𝑖=1

E


𝑛𝑖 (𝑇 )∑
𝑠=1

`𝑖,𝑠

 , (2)

where 𝑛∗
𝑖
(𝑇 ) is the total number of times arm 𝑖 is pulled in the

optimal action sequence that maximizes the reward with a greedy

strategy and 𝑛𝑖 (𝑇 ) is the actual number of times that arm 𝑖 has

been selected by the agent till time step 𝑇 .

4 PROPOSED METHOD
In this section, we first introduce the proposed Time-increasing

UCB (TI-UCB) algorithm in Section 4.1 to solve the online model

selection problem formulated in Section 3. Then in Section 4.2 we

theoretically analyze the regret upper bound of TI-UCB in a typical

increasing-then-converging setting.

4.1 TI-UCB Algorithm
The TI-UCB is described in Algorithm 1. Note that in our settings,

the reward of each arm is non-stationary and changes each time

the arm is pulled. Therefore, to maximize the cumulative reward

and thus the cumulative regret, the optimal arm should be chosen

and explored at the early stage, followed by further exploitation

at the later stage. Since the reward will later reach a stable state

at a𝑖 < 𝑇 , 𝑖 = 1, · · · , 𝐾 as defined in Section 3.2 and observed in

Figure 2, e.g., the increasing-then-converging performance trend of

LLMs, the algorithm also aims to detect the change points of each

arm.

To achieve the above goals, TI-UCB comprises two primary

phases. The first phase is the increase prediction process with an up-

per confidence bound, which corresponds to Line 2-8 of Algorithm

1. The second phase is the change detection process, which corre-

sponds to Line 9-13 of Algorithm 1. We describe the two phases in

details as below.

4.1.1 Increase Prediction. Recall that 𝑛𝑖 (𝑡) is the number of pulls

on arm 𝑖 by the end of time 𝑡 . We approximate the initial increasing

Algorithm 1 TI-UCB

Input:
𝐾 , 𝛿 , window size 𝜔 , threshold 𝛾 ;

Output:
Initialize: 𝜏 ′

𝑖
← 1, 𝑛𝑖 ← 0,∀𝑖 ∈ [𝐾];

1: for 𝑡 = 1, ...,𝑇 do
2: for 𝑖 = 1, ..., 𝐾 do
3: ¯̀𝑖,𝑛𝑖 (𝑡 ) = ˆ̀𝑖,𝑛𝑖 (𝑡 ) + 16

√
2 ln(1/𝛿)
𝑛𝑖 (𝑡 ) ;

4: end for
5: Pull arm 𝐴𝑡 ← argmax𝑖 ¯̀𝑖,𝑛𝑖 (𝑡 ) ;
6: Observe reward 𝑋𝐴𝑡 ,𝑡 ;

7: Update estimation ˆ̀𝑖,𝑛𝑖 (𝑡 ) ;
8: Update number of pulls 𝑛𝐴𝑡

(𝑡) ← 𝑛𝐴𝑡
(𝑡) + 1;

9: if 𝑛𝐴𝑡
(𝑡) ≥ 2𝜔 then

10: if | ˆ̀𝑤1,𝐴𝑡
(𝑡 + 1) − ˆ̀𝑤2,𝐴𝑡

(𝑡 + 1) | > 𝛾
2
for arm 𝐴𝑡 then

11: 𝜏 ′
𝐴𝑡
← 𝑡 and 𝑛𝐴𝑡

(𝑡) ← 1;

12: end if
13: end if
14: end for

trend of each arm’s reward as

ˆ̀𝑖,𝑛𝑖 (𝑡 ) = 𝑎𝑖,𝑛𝑖 (𝑡 ) · 𝑛𝑖 (𝑡) + ˆ𝑏𝑖,𝑛𝑖 (𝑡 ) ,

where 𝑎𝑖,𝑛𝑖 (𝑡 ) is the approximated reward growth rate of arm 𝑖 and

ˆ𝑏𝑖,𝑛𝑖 (𝑡 ) is the intercept term, both of which are calculated using

the least square method and linear regression with observation

records. In each time step 𝑡 , the algorithmfirst updates𝑎𝑖,𝑛𝑖 (𝑡−1) and
ˆ𝑏𝑖,𝑛𝑖 (𝑡−1) based on previous reward observations, and then predicts

the reward of current time step ˆ̀𝑖,𝑛𝑖 (𝑡 ) based on the estimated

increasing trend.

With increased reward prediction, TI-UCB seeks to balance ex-

ploration and exploitation by adding an uncertainty term to the

predicted reward of each arm as Line 3 of Algorithm 1. The con-

centration level of the approximated coefficients in the uncertainty

term is derived from Proposition 1. The algorithm then chooses

the arm 𝐴𝑡 with the maximum upper confidence value ¯̀𝑖,𝑛𝑖 (𝑡 ) , re-
ceives a reward 𝑋𝐴𝑡 ,𝑡 and update the observation records of arm

𝑖 as decribed in Line 5-7 of Algorithm 1. Note that to simplify the

notation, we use ˆ̀𝑖,𝑛𝑖 (𝑡 ) as ˆ̀𝑖 (𝑡), and ¯̀𝑖,𝑛𝑖 (𝑡 ) as ¯̀𝑖 (𝑡) in the rest of

the paper.

Proposition 1. The upper confidence bound in TI-UCB for arm 𝑖

can be defined as

¯̀𝑖 (𝑡 − 1, 𝛿) =


∞, if 𝑛𝑖 (𝑡 − 1) = 0 ,

ˆ̀𝑖 (𝑡 − 1) + 16

√
2 ln(1/𝛿)
𝑛𝑖 (𝑡 − 1) , otherwise,

Then for any 𝛿 ∈ (0, 1), ` ≤ ˆ̀ + 16

√
2 ln(1/𝛿)

𝑛 holds with probability
at least 1 − 𝛿 . Detailed proof is provided in Appendix A.1.

4.1.2 Change Detection. After certain amounts of arm pulls, dif-

ferent arms will reach a stable state with stable reward 𝑐𝑖 , 𝑖 ∈ [𝐾]
4
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at different time steps. To infer change points a𝑖 based on the ob-

served rewards of each arm 𝑖 , we set two sliding windows𝑤1 and𝑤2

each with length 𝜔 to monitor rewards along the timeline, moving

forward with more reward are observed for arm 𝑖 .

To detect reward changes, we compare the predicted reward at

time step 𝑡 + 1 calculated based on the previous window of reward

observations from 𝑤1 = [𝑛𝑖 (𝑡) − 2𝜔 + 1, 𝑛𝑖 (𝑡) − 𝜔], and based on

the current window𝑤2 = [𝑛𝑖 (𝑡) − 𝜔 + 1, 𝑛𝑖 (𝑡)], which we refer to

as ˆ̀𝑤1,𝑖 (𝑡+1) and ˆ̀𝑤2,𝑖 (𝑡+1) respectively. If the difference of the two
predictions exceeds the preset threshold 𝛾/2 as described in Line

10 in Algorithm 1, we consider a reward change point of arm 𝑖 is

detected and the observation records of arm 𝑖 will be re-initialized

and the current time step will be recorded as 𝜏 ′
𝑖
representing a

change point. Otherwise, the algorithm continues to pull next arms,

detecting change points with new reward observed. The rational

of change detection is formalized in Proposition 2.

Proposition 2. The reward change point of arm 𝑖 is considered to
be reached, if

| ˆ̀𝑤1,𝑖 (𝑡 + 1) − ˆ̀𝑤2,𝑖 (𝑡 + 1) | > 𝛾/2 ,
where ˆ̀𝑤1,𝑖 (𝑡 + 1) and ˆ̀𝑤2,𝑖 (𝑡 + 1) are the predicted rewards for
arm 𝑖 at time 𝑡 + 1 calculated by observations in the window 𝑤1 =

[𝑛𝑖 (𝑡) − 2𝜔 + 1, 𝑛𝑖 (𝑡) − 𝜔], and by observations in the window𝑤2 =

[𝑛𝑖 (𝑡) − 𝜔 + 1, 𝑛𝑖 (𝑡)]. With 𝛾 ≤
√

2

𝜔 (14 + 12

|𝜔−1 | )2 ln( 2

𝛿
), the above

change detection inequality is valid with probability 1 − 𝛿 . Detailed
proof is provided in Appendix A.2.

4.2 Regret Upper Bound of TI-UCB
In this section, we provide the regret upper bound of TI-UCB in a

typical increasing-then-converging reward setting as follows and

detailed proof can found in Appendix B.

Specifically, we assume the reward received by each arm 𝑖 first

increases linearly with the number of times it is pulled, and then

abruptly changes to a stable value 𝑐𝑖 within the range of [0,𝑇 ],
where 𝑇 remains unknown. Such reward trend approximately cap-

tures the increasing-then-converging performance pattern of LLMs

in online model selection scenarios.

Theorem 1. Assume that 𝛿 ≤ 1/𝑇 , then the expected regret of
TI-UCB algorithm is bounded by

E [𝑅(𝑇 )] ≤
∑

𝑖:𝑛𝑖 (𝑇 ) ≥𝑛∗𝑖 (𝑇 )
𝑐𝑖

4096 ln(𝑇 )
Δ2

min

+ 𝐾
(

2𝜋2

3

+ 𝜔 + 2 + 2𝐿

)
+ 2,

(3)

where Δmin = min

𝑡 ∈[0,𝑇 ],𝑖≠𝑖∗𝑡
{`𝑖∗𝑡 (𝑡) − `𝑖 (𝑡)} is the minimum gap be-

tween the optimal reward and the true reward and 𝐿 is a constant
smaller than ln𝑇 .

Remark. The main idea of our proof is to divide the [0,𝑇 ] period
into two stages, [0, a𝑖 ] and [a𝑖 ,𝑇 ], where a𝑖 is the reward con-

verging point of arm 𝑖 . Define two events that 𝐹𝑖 = {𝜏 ′𝑖 > a𝑖 } and
𝐷𝑖 = {𝜏 ′𝑖 ≤ a𝑖 +𝜔}. 𝐹𝑖 implies that the 𝑖-th change point can only be

detected by the algorithm after change really occurs, and 𝐹𝑐
𝑖
means

that the 𝑖-th change point is regarded as having occurred but actu-

ally change does not happen. Then the regret can be decomposed

by

E [𝑅(𝑇 )] = E [𝑅(𝑇 )1{𝐹1}] + E
[
𝑅(𝑇 )1

{
𝐹𝑐

1

}]
. (4)

The regret of the first stage is derived using a similar method for

proving the regret upper bound for standard UCB algorithm with a

generalization to increasing reward. The regret of the second stage

involves a further discussion on scenarios of whether the change

happened or not with several lemmas introduced, which we refer

to Appendix B for more details.

From Theorem 1, we get the regret upper bound of TI-UCB of

O
(
log(𝑇 )/Δ2

min

)
. In comparison, R-ed-UCB [33] achieves under

certain condition a regret upper bound of O(𝑇 2/3
log(𝑇 )1/3). Thus,

by emphasizing and utilizing the increasing-then-converging re-

ward pattern, TI-UCB improves the prior work’s polynomial regret

to logarithmic regret in a similar setting.

5 EXPERIMENTS
In this section, we evaluate TI-UCB on both synthetic environ-

ment and real-world environment of online model selection for

canonical classification models and LLMs to validate its empirical

performance.

5.1 Experimental Setup
In this section, we describe our experiment setup. We first introduce

the baselines to compare and the parameter settings. Then we

describe the evaluation metrics, followed by the research questions

we seek to answer.

5.1.1 Baselines. We compare our proposed algorithm against the

following baseline algorithms and methods:

• KL-UCB [17]: a classic stationary bandit algorithm utilizing

KL Divergence.

• Rexp3 [3]: a non-stationary bandit algorithm based on vari-

ation budget.

• Ser4 [1]: a non-stationary bandit algorithm that takes into

account the best arm switches during the process.

• SW-TS [46]: a sliding-window bandit algorithmwith Thomp-

son Sampling that generally handles non-stationary settings

well.

• SW-UCB [18]: a sliding-window bandit algorithm with UCB

that can handle general non-stationary settings.

• SW-KL-UCB [10]: a sliding-window bandit algorithm with

KL-UCB.

• R-ed-UCB [33]: a recent non-stationary bandit algorithm

designed for similar scenarios as ours with non-decreasing

and concave rewards.

• Auto-Sklearn [13]: the state-of-the-art AutoML system uti-

lizing Bayesian optimization-based solution.

5.1.2 Parameter Setting and Metric. We use the recommended pa-

rameter settings from the respective papers for all baseline bandit

algorithms. Details can be found in Appendix C. For Auto-Sklearn,

while the system is designed to automate the model selection given

full data in a static setting, it is not directly applicable in online

learning setting. Instead, we update the optimizer of Auto-Sklearn

every 50 steps with the batched data samples. Note that such approx-

imation to online learning would lead to extra computation cost

and time due to frequent optimization steps and thus we only use

Auto-Sklearn as a representative AutoML method to be compared.
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Figure 3: Online selection of generated synthetic models covering a variety of increasing-then-converging patterns.

For our proposed TI-UCB algorithm, we set the change detection

window 𝑤 = 100 and threshold 𝛾 = 0.3 in all experiments if not

specified otherwise. Note that the setting of parameters may be

sub-optimal as we do not optimize all algorithms including TI-UCB.

To evaluate the metric in experiments, we mainly compare the

algorithms based on empirical cumulative regret 𝑅(𝑡), which is the

empirical counterpart of Equation 2 defined as

�𝑅(𝑇 ) = 𝐾∑
𝑖=1


𝑛∗𝑖 (𝑇 )∑
𝑠=1

ˆ̀𝑖,𝑠 −
𝑛𝑖 (𝑇 )∑
𝑠=1

ˆ̀𝑖,𝑠

 .
All experimental results are averaged over 20 independent runs.

5.1.3 ResearchQuestions. The experiments are designed to answer

the following research questions:

RQ1. Can our proposed TI-UCB algorithm outperform existing

methods in online model selection? Is TI-UCB still effec-

tive when the increasing-then-converging reward trend are

subject to fluctuations?

RQ2. Can TI-UCB effectively handle the scenario where we intro-

duce the finetuning cost of API-based LLMs in addition to

model performance in reward design, and thus manage the

economic tradeoff?

RQ3. Is our change detection mechanism really effective in cap-

turing the converging stage? How does different change

detection window sizes affect the performance of TI-UCB?

5.2 Synthetic Model Selection
In this section, we describe the experimental results on a synthetic

environment of online model selection.

5.2.1 Data Generation. We generate two sets of synthetic reward

functions to simulate models with increasing-then-converging per-

formance patterns. Specifically, we sample respectively 2 and 15

reward functions `𝑖 (·) from the following two function families:

𝐹exp =
{
𝑓 (𝑡) = 𝑐

(
1 − 𝑒−𝑎𝑡

)}
and

𝐹
poly

=

{
𝑓 (𝑡) = 𝑐

(
1 − 𝑏

(
𝑡 + 𝑏1/𝜌

)−𝜌 )}
,

where 𝑎, 𝑐, 𝜌 ∈ (0, 1] and 𝑏 ∈ R ≥ 0 are parameters whose values

are selected randomly. These two families of functions are able

to represent the general increasing-then-converging pattern of

different shapes [33], where functions originating from 𝐹exp exhibit

a rapid increase before converging, while those from 𝐹
poly

may

display much slower growth rates. The generated reward functions

of the 2-arm bandits and 15-arm bandits are shown in Figure 3a and

3c respectively. We introduce stochasticity by adding a Gaussian

noise with a standard deviation of 0.1 in each reward observation.

5.2.2 Results. The results on 2-arm bandits and 15-arm bandits

settings are shown in Figure 3b and 3d respectively, which plot

the empirical cumulative regret over 200,000 iterations for 2-arm

bandits and 1,500,000 iterations for 15-arm bandits.

Answer to RQ1. We can clearly observe that our proposed TI-

UCB achieves the lowest regret at the horizon compared with all

baselines. Though at the initial stage, some baselines such as SW-

UCB outperform TI-UCB, they fail to explore sufficiently the op-

timal arm and converge to sub-optimal ones, resulting in linear

regrets. From the results, we also observe that besides TI-UCB, the

regret slope of SW-TS displays a trend of decreasing as well but

the decrease is much later than TI-UCB. This indicates that SW-TS

somehow reacts to the converging points of rewards but not as

prompt as TI-UCB. Note that all algorithms except TI-UCB and

R-ed-UCB do not have a theoretical guarantee on regret in such

increasing-then-converging bandit setting. While R-ed-UCB has

also guaranteed regret upper bound, it does not show consistent

empirical advantages as TI-UCB does, which is also implied in [33].

We further compare their performances in real-world environments

in Section 5.3 and 5.4.

5.3 Classification Model Selection
In this section, we evaluate the performance of TI-UCB compared

with baselines on a classification model selection task.

5.3.1 Data Generation. We build a binary classification problem

on IMDB dataset preprocessed as [32]. The IMDB dataset consists

of 50,000 reviews and after preprocessing each review 𝒙𝑡 has a
𝑑 = 1, 000 dimensional feature. Each arm corresponds to an online

optimization model for binary classification. Following [33], we

formulate an IMDB 8-arm bandits by choosing:

• LR(0.001) and LR(0.1): two online logistic regression mod-

els with learning rates of 0.001 and 0.1.

• NB: a naive bayes model.

• AG(0.05) andAG(0.003): two adaptive gradientmodels with

learning rates of 0.05 and 0.003.
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Figure 4: Online selection of canonical classification models
on IMDB datasets.

• NN(2),NN(2,2,2) andNN(1,1,2): three neural network mod-

els, the first one consists of one layer with two nodes, the

second one consists of three layers with two nodes in each

layer, and the third one consists of three layers with one

node in the first two layers and two nodes in the last layer.

In each round, a sample 𝒙𝑡 is firstly randomly selected from the

dataset. Then the agent selects an arm, i.e. classification model, to

predict make a prediction𝒚𝒕 on the sample and receives a binary re-

ward 1[𝑦𝑡 = 𝑦𝑡 ] corresponding to whether the prediction is correct.

After each arm pull, an online update is conducted to the chosen

model with the selected sample 𝒙𝑡 . Note that here is slight abuse of
notation where we consider an online update as a finetuning step.

We average 30 independent runs to visualize the reward trend of the

above classification models as shown in Figure 4a. Note that while

the general increasing-then-converging patterns are observed, they

are subject to different extent of fluctuations, which poses further

challenges for accurate and efficient online model selection.

5.3.2 Results. The results on classification model selection are

shown in Figure 4b, which plots the empirical cumulative regrets

over 200,000 iterations.

Answer to RQ1. As shown in Figure 4b, TI-UCB outperforms all

considered baselines at the horizon with a considerable improve-

ment even with fluctuations in the reward trends. In comparison,

R-ed-UCB has not converged to the optimal arm yet at the horizon.

While Auto-Sklearn is outperformed by TI-UCB, it shows some

improvements over some other baselines such Ser4 and Rexp3, the

extra computation cost and time due to iterative optimizations

make it less efficient to be applied in online model selection. The

results again demonstrate the empirical effectiveness of TI-UCB in

online model selection with fluctuations in reward trends.

5.4 Large Language Model Selection
In this section, we present the experimental results on large lan-

guage model selection for summarization task. Notably, we intro-

duce the finetuning cost of API-based LLM into the reward design

in addition to model performance to explore the economic tradeoffs

of LLMs discussed in [21].

5.4.1 Data Generate. We choose text summarization as the down-

stream task with XSum [34] dataset. The XSum datasets contains
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(a) LLM Bandits: Reward Functions
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Figure 5: Online selection of large languagemodels onXSum
datasets for summarization.

204,045 samples of text-summary pairs. Each arm corresponds to

an API-based LLM or a local small LLM selected as follows:

• T5 Small [40]: a small version of the text-to-text transfer

transformer model with 60 million parameters.

• T5 Base [40]: a base-sized version of the text-to-text transfer
transformer model with 220 million parameters.

• GPT-2 Small [39]: a small version of the GPT-2 model with

117 million parameters.

• GPT-2 Medium [39]: a medium-sized version of the GPT-2

model with 355 million parameters.

• GPT-3 Davinci [6]: an API-based large language model

hosted by OpenAI with 175 billion parameters.

Similarly to Figure 1, in each round, a random batch of documents

is selected from the dataset. Then, the agent chooses an LLM to

summarize the documents. The quality of generated summaries are

then evaluated using ROUGE-2 [29] score by comparing them with

the reference summaries. After each arm pull, the chosen LLM is

finetuned with the batch of samples. For local small LLMs, We set

the batch size to be 16. AdamW optimizer is used for fine-tuning

and the learning rate is set to be 5𝑒−5
. The fine-tuning processes

run on four NVIDIA RTX2080Ti GPUs. For API-based LLMs, we

use the API finetuning hosted by OpenAI. In addition, we include a

zero-shot version of GPT-3 without the finetuning step as another

base model to be compared, i.e. GPT-3-davinci (w/o).
Instead of directly using ROUGE-2 as the reward, we introduce

the finetuning cost of API-based model. Specifically, if the chosen

is GPT-3 Davinci, the reward is constructed as

𝑋𝑡 = ROUGE-2 − [𝑡 ,

where 𝑋𝑡 is the reward and [𝑡 represents the monetary cost of fine-

tuning, which is calculated as the cumulative sum [𝑡 = [𝑡−1 +𝑚 ·
1 [Do Finetuning] with [0 = 0 where [Do Finetuning] is an indica-

tor of whether we do finetuning at this step. For API-based LLM, we

set𝑚 = 0.01 and for small local LLM, we set𝑚 = 0.0001. The values

of finetuning cost 𝑚 selected are approximate values calculated

based on API-finetuning rate per token charged by OpenAI and

typical tokens length of 500 per document for text summarization

task following [21]. To avoid excessive cumulation of finetuning

costs, we stop the iterative finetuning after 100 consecutive finetun-

ing steps without performance improvement over 0.1. The resulting

7



813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

20 22 24 26 28 210 212

Change Detection Window Size ω

0.0

0.5

1.0

1.5

2.0

R̂
(t

)

×104

TI-UCB

SW-TS

SW-KL-UCB

R-ed-UCB

Auto-Sklearn

(a) IMDB Bandits

20 22 24 26 28 210 212

Change Detection Window Size ω

0

2

4

6

R̂
(t

)

×103

TI-UCB

SW-TS

SW-KL-UCB

R-ed-UCB

Auto-Sklearn

(b) LLM Bandits

Figure 6: Cumulative regret of TI-UCBwith different change
detection window sizes on two real-world environments.

normalized reward trends of considered LLMs are shown in Fig-

ure 5a, again showcasing the increasing-then-converging trends

with some extent of fluctuations.

Note that we are fully aware that our reward design might not

be the actual implementation as there is also cost of inference and

different organizations may have different priorities in employing

LLMs. Our primary focus in this paper is to propose a method that

can promisingly handles the economic tradeoffs of LLMdeployment,

where more fine-grained and target-specific reward design related

to LLMs can be easily plugged in.

5.4.2 Results. The results on large language model selection for

text summarization on XSum dataset are shown in Figure 5b, which

plots the empirical cumulative regrets over 30,000 iterations.

Answer toRQ1. From the results, we again observe the advantage

of considering the increasing-then-converging trend with TI-UCB

achieving the lowest cumulative regret. We also observe that the

sliding-window-based algorithms, SW-TS, SW-UCB, and SW-KL-

UCB, outperform most of other baselines, which shows the gen-

eralizability of sliding-window method in various non-stationary

bandit problems.

Answer to RQ2. As illustrated in Figure 5a, the API-based GPT-3

Davinci achieves high performances at the initial stage even with-

out finetuning while other small LLMs all perform poorly. However,

after some finetuning steps, the model performances of T5 Base

and GPT-2 Medium increases rapidly and are comparable with the

performance of GPT-3 Davinci. Meanwhile, the reward of GPT-3

Davinci first increases and then quickly converges, which repre-

sents that the performance improvement brought by finetuning

may not surpass the monetary cost induced by finetuning. Thus the

economics tradeoffs make the further finetuning of API-based LLM

a sub-optimal option compared to finetuning small LLMs. From

Figure 5b, we can observe that our TI-UCB algorithm captures the

increasing-then-converging rewards trend of GPT-3 Davinci due to

the economic tradeoffs and predicts the potential reward increase

of GPT-2 Medium. As a result, instead of being trapped in the initial

high reward of API-based LLM, TI-UCB effectively and efficiently

explores the best-performing LLM and makes the optimal model

selection with a small amount of reward observations.

5.5 Different Change Detection Window Size
As shown in Section 5.3 and 5.4, TI-UCB has demonstrated its

effectiveness when encountering increasing-then-converging re-

ward trends with fluctuations in real-world environments. In this

seciton, we further analyze the effectiveness of the change detec-

tion mechanism in the two real world environments constructed

above. Specifically, we vary the change detection window size 𝜔

from 2
0
to 2

13
and evaluate the performances TI-UCB in both clas-

sification model selection and LLM selection environments. The

results are shown in Figure 6, where only four competitive baselines

are selected and shown based on the performances from previous

experiments due to limited space.

Answer to RQ3. From Figure 6, we observe that TI-UCB outper-

forms compared baselines with the change detection window size

𝜔 in a certain range. Specifically, TI-UCB achieves the lowest regret

with 𝜔 ∈ [24, 211] on IMDB bandits and with 𝜔 ∈ [21, 27] on LLM

bandits. Though the performance of TI-UCB degenerates when𝜔 is

very small or very large, the wide ranges where TI-UCB performs

best still demonstrate its robustness in terms of hyperparameter

sensitivity and readiness for practical applications.

Analyzing the cases when 𝜔 is small, we attribute the perfor-

mance degeneration to the fluctuations in the increasing-then-

converging reward trend as observe in Figure 4a and 5a. As rewards

typically do not change in a smooth or monotonic manner and may

drastically go up and down in a short period, a small size of change

detection window such as 2
0
could easily result in false detection

of change points. Moreover, comparing Figure 6a and Figure 6b,

we can further observe a right skew of TI-UCB’s regrets on IMDB

bandits, which also conforms the observation from Figure 4a and

5a that IMDB bandits show more fluctuations and thus the window

size needs to be larger to mitigate them. Such implication further

suggests the selection of 𝜔 may be subject to the consideration of

handling potential fluctuations in practice.

For large values of 𝜔 such as 2
13
, the reason of performance

degeneration is due to the reduced frequency and latency of change

detection. As 𝜔 approaches the evaluation horizon 𝑇 , it is even

possible that there are not sufficient amount of reward observations

for change detection, which on the other hand, demonstrates the

effectiveness and necessity of our change detection mechanism.

6 CONCLUSION
In this work, we have explored the pressing issue of online model

selection, notably within the context of the rapidly evolving field

of LLMs. By capitalizing on the increasing-then-converging pat-

tern in model performance being trained or finetuned, we propose

the TI-UCB algorithm, which can promising predict the reward in-

creases and detect converging points with a sliding-window change

detection mechanism. We theoretically prove an improvement of

regret upper bound from prior work’s polynomial regret to logarith-

mic in a similar setting. Extensive experiments also demonstrate

empirically the advantage of TI-UCB in online model selection

for canonical classification models and state-of-the-art LLMs. Our

work underscores the necessity of considering the increasing-then-

converging reward trend in online model selection, which paves

the road for more efficient and economic model selection in the

deployment of LLMs.
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APPENDIX
In Section A, we provide theoretical analysis of the concentration

level of upper confidence bound and change detection criteria of

our algorithm. In Section B, we present detailed proof of the regret

upper bound of our algorithm. In Section C, we provide details of

parameter setting of compared baselines.

A THEORETICAL ANALYSIS
A.1 Proof for Concentration Inequalities
For each arm 𝑖 , its reward satisfies a linear increase with the number

of times it is pulled and then tends to a stationary state. Before we

give the proof of concentration inequalities, we introduce a property

of subgaussian variables following bandit algorithm theory.

Lemma 1. If𝑋𝑖 −` (𝑖 = 1, 2, · · · , 𝑛) are independent𝑀-subgaussian
random variables, then for any Y ≥ 0,

P ( ˆ̀ − ` ≥ Y) ≤ exp

{
− 𝑛Y

2

2𝑀2

}
,

P ( ˆ̀ − ` ≤ −Y) ≤ exp

{
− 𝑛Y

2

2𝑀2

}
,

(5)

where ˆ̀ =

𝑛∑
𝑖=1

𝑋𝑖

𝑛 is the expectation of independent variables [25].

Proof of Proposition 1. Recall that `𝑖,1, `𝑖,2, · · · , `𝑖,𝑛 , (𝑛𝑖 (𝑡) = 𝑛)
are 𝑛 true reward values of arm 𝑖 during [0, 𝑡], and 𝑎𝑖 and ˆ𝑏𝑖 are

the least squares estimations. For any Y > 0, the upper bound of

the difference for the estimated values and true values are

P (𝑎𝑖 − 𝑎𝑖 ≥ Y) ≤ exp{−𝑛Y
2

288

} , P
(

ˆ𝑏𝑖 − 𝑏𝑖 ≥ Y
)
≤ exp

{
−𝑛Y

2

128

}
,

and

P
(
ˆ̀𝑖,𝑛 − `𝑖,𝑛 ≥ Y

)
≤ exp

{
−𝑛Y

2

128

}
.

Choose 𝛿 = exp{−𝑛Y2

512
} ∈ (0, 1), then

P

(
ˆ̀𝑖,𝑛 − `𝑖,𝑛 ≥ 16

√
2 ln(1/𝛿)

𝑛

)
≤ 𝛿 . (6)

Then for any 𝛿 ∈ (0, 1), ` ≤ ˆ̀ + 16

√
2 ln(1/𝛿)

𝑛 holds with probability

at least 1 − 𝛿 .
To demonstrate equation (6), we first explain the regression

estimation of unknown terms of reward 𝑎𝑖 , ˆ𝑏𝑖 . Denote 𝑋𝑖,𝑠 as the

observed reward of arm 𝑖 when arm 𝑖 has been pulled 𝑠 times (𝑠 =

1,2, · · · , n) with true value `𝑖,𝑠 . For 𝑎𝑖 , we have

𝑎𝑖 − 𝑎𝑖 =
𝑛𝑖 (𝑡 )∑
𝑠=1

𝑠 − 𝑠∑𝑛𝑖 (𝑡 )
𝑠=1
(𝑠 − 𝑠)2

[
𝑋𝑖,𝑠 − `𝑖,𝑠

]
=

1

𝑛

𝑛∑
𝑠=1

12

𝑛2 − 1

(𝑠 − 𝑠)
(
𝑋𝑖,𝑠 − `𝑖,𝑠

)
.

Due to the fact that the mean in the sum term is 0 and its absolute

value has an upper bound of
12

𝑛2−1
|𝑠−𝑠 | |𝑋𝑖,𝑠 −`𝑖,𝑠 | ≤ 12

𝑛2−1
· 𝑛+1

2
·2 ≤

12, then by Lemma 1, we obtain

P (𝑎𝑖 − 𝑎𝑖 ≥ Y) ≤ exp

{
−𝑛Y

2

288

}
.

Similarly for
ˆ𝑏𝑖 ,

ˆ𝑏𝑖 − 𝑏𝑖 =
𝑛𝑖 (𝑡 )∑
𝑠=1

[ 1

𝑛𝑖 (𝑡)
− (𝑠 − 𝑠)𝑠∑𝑇𝑖 (𝑡 )

𝑠=1
(𝑠 − 𝑠)2

] [𝑋𝑖,𝑠 − `𝑖,𝑠 ] .

P
(

ˆ𝑏𝑖 − 𝑏𝑖 ≥ Y
)
= P

(
1

𝑛

𝑛∑
𝑠=1

𝑌𝑠 ≥ Y
)
≤ exp

{
−𝑛Y

2

128

}
.

Therefore, the estimated reward in the linear growth stage is

ˆ̀𝑖 (𝑡 + 1) = 𝑎𝑖 · (𝑛𝑖 (𝑡) + 1) + ˆ𝑏𝑖

=
1

𝑛

𝑛∑
𝑠=1

[
1 + 6

𝑛 − 1

(𝑠 − 𝑛 + 1

2

)
]
𝑋𝑖,𝑠 .

ˆ̀𝑖 (𝑡 + 1) − `𝑖 (𝑡 + 1) ≤ 1

𝑛

𝑛∑
𝑠=1

[
1 + 6

𝑛 + 1

(𝑠 − 𝑛 + 1

2

)
] (
𝑋𝑖,𝑠 − `𝑖,𝑠

)
.

Similar result is obtained that

P ( ˆ̀𝑖 (𝑡 + 1) − `𝑖 (𝑡 + 1) ≥ Y) ≤ exp

(
−𝑛Y

2

128

)
.

A.2 Proof for Change Detection
Recall that each detection is performed by comparing the predicted

reward at time step 𝑡 + 1 calculated based on the previous window

of reward observations from𝑤1 = [𝑛𝑖 (𝑡) − 2𝜔 + 1, 𝑛𝑖 (𝑡) − 𝜔], and
predicted reward at time 𝑡 + 1 inferred from the current window

𝑤2 = [𝑛𝑖 (𝑡) − 𝜔 + 1, 𝑛𝑖 (𝑡)], which we refer to as ˆ̀𝑤1,𝐴𝑡
(𝑡 + 1) and

ˆ̀𝑤2,𝐴𝑡
(𝑡+1) respectively. As stated in Proposition 2, if the difference

of the two predictions exceeds the preset threshold 𝛾/2 as Line

10 in Algorithm 1, we consider a change point is detected and

the reward observation records of arm 𝐴𝑡 will be re-initialized.

Otherwise, the algorithm continues to pull arms, minimizing the

regret while detecting change points with observations. In this

section, we provide some analysis of the rationality of such criteria

for detecting change points.

A.2.1 Change does not happen. For any given 𝛿 and for any 0 <

Y1 ≤ 𝛾
2
, if P

(
| ˆ̀𝑤1,𝑖 (𝑡 + 1) − ˆ̀𝑤2,𝑖 (𝑡 + 1) | ≥ Y1

)
≤ 𝛿 , then

P
(
| ˆ̀𝑤1,𝑖 (𝑡 + 1) − ˆ̀𝑤2,𝑖 (𝑡 + 1) | ≥ 𝛾

2

)
≤ 𝛿

holds. In order to find proper Y1, the least square method is used to

represent the reward estimation at time step 𝑡 + 1.

𝒘1 stage. Denote 𝑎𝑤1,𝑖 and 𝑏𝑤1,𝑖 as the linear growth parameter

and the interpret term of𝑤1 stage for arm 𝑖 , respectively.

𝑎𝑤1,𝑖 =

𝑛𝑖 (𝑡 )−𝜔∑
𝑠=𝑛𝑖 (𝑡 )−2𝜔+1

𝑠 − 𝑠∑𝑛𝑖 (𝑡 )−𝜔
𝑠=𝑛𝑖 (𝑡 )−2𝜔+1 (𝑠 − 𝑠)

2

𝑋𝑠

ˆ𝑏𝑤1,𝑖 =

𝑛𝑖 (𝑡 )−𝜔∑
𝑠=𝑛𝑖 (𝑡 )−2𝜔+1


1

𝜔
− (𝑠 − 𝑠)𝑠∑𝑛𝑖 (𝑡 )−𝜔

𝑠=𝑛𝑖 (𝑡 )−2𝜔+1 (𝑠 − 𝑠)
2

 𝑋𝑠 .
Since 𝑠 =

2𝑛𝑖 (𝑡 )−3𝜔+1
2

,

𝑛𝑖 (𝑡 )−𝜔∑
𝑠=𝑛𝑖 (𝑡 )−2𝜔+1

(𝑠 − 𝑠)2 =
𝜔 (𝜔2−1)

12
, then we

have

10
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ˆ̀𝑤1,𝑖 (𝑡 + 1) = 𝑎𝑤1,𝑖 · (𝑛𝑖 (𝑡) + 1) + ˆ𝑏𝑤1,𝑖

=

𝑛𝑖 (𝑡 )−𝜔∑
𝑠=𝑛𝑖 (𝑡 )−2𝜔+1

[
6(𝑠 − 𝑠) (1 + 3𝜔)
𝜔 (𝜔2 − 1)

+ 1

𝜔

]
𝑋𝑠 .

𝒘2 stage. Similarly, 𝑎𝑤2,𝑖 and 𝑏𝑤2,𝑖 means the linear growth term

and the interpret term of𝑤2 stage, respectively.

𝑎𝑤2,𝑖 =

𝑛𝑖 (𝑡 )∑
𝑠=𝑛𝑖 (𝑡 )−𝜔+1

𝑠 − 𝑠∑𝑛𝑖 (𝑡 )−𝜔
𝑠=𝑛𝑖 (𝑡 )−2𝜔+1 (𝑠 − 𝑠)

2

𝑋𝑠

ˆ𝑏𝑤2,𝑖 =

𝑛𝑖 (𝑡 )∑
𝑠=𝑛𝑖 (𝑡 )−𝜔+1


1

𝜔
− (𝑠 − 𝑠)𝑠∑𝑛𝑖 (𝑡 )−𝜔

𝑠=𝑛𝑖 (𝑡 )−2𝜔+1 (𝑠 − 𝑠)
2

 𝑋𝑠 .
Similarly, we have

ˆ̀𝑤2,𝑖 (𝑡 + 1) = 𝑎𝑤2,𝑖 · (𝑛𝑖 (𝑡) + 1) + ˆ𝑏𝑤2,𝑖

=

𝑛𝑖 (𝑡 )∑
𝑠=𝑛𝑖 (𝑡 )−𝜔+1

[
6(𝑠 − 𝑠)
𝜔 (𝜔 + 1) +

1

𝜔

]
𝑋𝑠 .

Then for ˆ̀𝑤1,𝑖 (𝑡 + 1) − ˆ̀𝑤2,𝑖 (𝑡 + 1),

ˆ̀𝑤1,𝑖 (𝑡 + 1) − ˆ̀𝑤2,𝑖 (𝑡 + 1)

=
1

𝜔

𝑛𝑖 (𝑡 )∑
𝑠=𝑛𝑖 (𝑡 )−𝜔+1

{ [
6(𝑠 − 𝑠) (1 + 3𝜔)

𝜔2 − 1

+ 1

]
𝑋𝑠−𝜔

−
[

6(𝑠 − 𝑠)
𝜔 + 1

+ 1

]
𝑋𝑠

}
.

Since ˆ̀𝑤2,𝑖 (𝑡 + 1) − `𝑤2,𝑖 (𝑡 + 1) is a sub-gaussian variable as its

mean is zero and `𝑤1,𝑖 (𝑡 + 1) = `𝑤2,𝑖 (𝑡 + 1) when change has not

happened, we have

ˆ̀𝑤1,𝑖 (𝑡 + 1) − ˆ̀𝑤2,𝑖 (𝑡 + 1) =
[
ˆ̀𝑤1,𝑖 (𝑡 + 1) − `𝑤1,𝑖 (𝑡 + 1)

]
+

[
`𝑤1,𝑖 (𝑡 + 1) − `𝑤2,𝑖 (𝑡 + 1)

]
+

[
`𝑤2,𝑖 (𝑡 + 1) − ˆ̀𝑤2,𝑖 (𝑡 + 1)

]
.

Let 𝑍𝑠 =

[
6(𝑠−𝑠) (1+3𝜔)

𝜔2−1
+ 1

]
𝑋𝑠−𝜔 and 𝑌𝑠 =

[
6(𝑠−𝑠)
𝜔+1 + 1

]
𝑋𝑠 . Sim-

ilar to the proof in A.1, |𝑍𝑠 + 𝑌𝑠 | has an upper bound

(
14 + 12

|𝜔−1 |

)
.

By Lemma 1, we obtain

P
(
| ˆ̀𝑤1,𝑖 (𝑡 + 1) − ˆ̀𝑤2,𝑖 (𝑡 + 1) | ≥ Y1

)
≤ 2 · exp

(
−

𝜔Y2

1

2(14 + 12

|𝜔−1 | )2

)
.

(7)

Choose 𝛿0 = 2 · exp

©«− 𝜔Y2

1

2

(
14+ 12

|𝜔−1|

)
2

ª®¬, and we can obtain Y1 =√
2

𝜔

(
14 + 12

|𝜔−1 |

)
2

ln( 2

𝛿0

)1. Therefore, for any given 𝛿0, if𝛾 satisfies

𝛾
2
≥ Y1 =

√
2

𝜔 (14 + 12

|𝜔−1 | )2 ln( 2

𝛿0

), then we have

P
(��

ˆ̀𝑤1,𝑖 (𝑡 + 1) − ˆ̀𝑤2,𝑖 (𝑡 + 1)
�� ≥ 𝛾

2

)
≤ 𝛿0 . (8)

1
Note the upper bound in equation 7 is not the minimum upper bound, thus the

selection of Y1 is not unique.

A.2.2 Change happens. When change happens, the similar idea is

to find an Y2, such that for any
𝛾
2
≤ Y2,

P
(
| ˆ̀𝑤1,𝑖 (𝑡 + 1) − ˆ̀𝑤2,𝑖 (𝑡 + 1) | ≥ 𝛾

2

)
≥ 1 − 𝛿0 . (9)

With Y1 ≤ 𝛾
2
≤ Y2 holds, we can get a simple way to choose 𝛾 as

Y1 = Y2 =
𝛾

2

. (10)

Such threshold 𝛾/2 is capable to identify whether the reward has

reached a stable state.

Different from Section A.2.1, `𝑤1,𝑖 (𝑡 + 1) = `𝑤2,𝑖 (𝑡 + 1) does
not hold when change happens. Consider the assumption of linear

growth of reward, which means that |`𝑤1,𝑖 (𝑡 + 1) − `𝑤2,𝑖 (𝑡 + 1) |
is approximately equal to 𝑎𝑖 · 𝜔 . Thus, when change happens, we

have��
ˆ̀𝑤1,𝑖 (𝑡 + 1) − ˆ̀𝑤2,𝑖 (𝑡 + 1)

��
= | ˆ̀𝑤1,𝑖 (𝑡 + 1) − `𝑤1,𝑖 (𝑡 + 1) + `𝑤1,𝑖 (𝑡 + 1)
− `𝑤2,𝑖 (𝑡 + 1) + `𝑤2,𝑖 (𝑡 + 1) − ˆ̀𝑤2,𝑖 (𝑡 + 1) |

> |`𝑤1,𝑖 (𝑡 + 1) − `𝑤2,𝑖 (𝑡 + 1) | − | ˆ̀𝑤1,𝑖 (𝑡 + 1) − `𝑤1,𝑖 (𝑡 + 1) |
− | ˆ̀𝑤2,𝑖 (𝑡 + 1) − `𝑤2,𝑖 (𝑡 + 1) |

=𝑎 · 𝜔 − | ˆ̀𝑤1,𝑖 (𝑡 + 1) − `𝑤1,𝑖 (𝑡 + 1) | − | ˆ̀𝑤2,𝑖 (𝑡 + 1) − `𝑤2,𝑖 (𝑡 + 1) |
>𝛾 − | ˆ̀𝑤1,𝑖 (𝑡 + 1) − `𝑤1,𝑖 (𝑡 + 1) | − | ˆ̀𝑤2,𝑖 (𝑡 + 1) − `𝑤2,𝑖 (𝑡 + 1) | .

When the change does not occur, then the difference between

the predicted values of the two windows at time 𝑡 + 1 is smaller

than 𝛾/2, we claim that the difference between the estimated value

and the true value will not be greater than 𝛾/4 at this time with the

following lemma.

Lemma 2. For change detections,
��
ˆ̀𝑤1,𝑖 (𝑡 + 1) − `𝑤1,𝑖 (𝑡 + 1)

�� < 𝛾
4

and
��
ˆ̀𝑤2,𝑖 (𝑡 + 1) − `𝑤2,𝑖 (𝑡 + 1)

�� < 𝛾
4
hold when 𝑎 · 𝜔 >

𝛾
2
.

Proof. By Equation A.1, for any Y𝑝𝑟𝑒𝑑 and a given 𝛿 > 0, if

P
(

ˆ̀𝑤1,𝑖 (𝑡 + 1) − `𝑤1,𝑖 (𝑡 + 1) ≥ Y𝑝𝑟𝑒𝑑
)
≤ exp

©«−
𝜔Y2

𝑝𝑟𝑒𝑑

128

ª®¬ = 𝛿 ,

then Y𝑝𝑟𝑒𝑑 =

√
128

𝜔 ln(1/𝛿). This implies that ˆ̀𝑤1,𝑖 (𝑡 + 1) − `𝑤1,𝑖 (𝑡 +

1) <
√

128

𝜔 ln(1/𝛿) a.s. for sufficiently small 𝛿 . The conclusion also

holds for 𝑤2. In addition, by equation 7, for any Y𝐶𝐷 > 0 and a

given 𝛿

P
(
ˆ̀𝑤1,𝑖 (𝑡 + 1) − ˆ̀𝑤2,𝑖 (𝑡 + 1) ≥ Y𝐶𝐷

)
≤ exp

(
−

𝜔Y2

𝐶𝐷

2(14 + 12

|𝜔−1 | )2

)
= 𝛿,

then Y𝐶𝐷 =

√
2(14+ 12

|𝜔−1| )2
𝜔 ln(1/𝛿), and ˆ̀𝑤1,𝑖 (𝑡 + 1) − ˆ̀𝑤2,𝑖 (𝑡 +

1) <

√
2

(
14+ 12

|𝜔−1|

)
2

𝜔 ln(1/𝛿) almost everywhere. We can always

choose 𝜔 to make the Y𝐶𝐷 at least twice as large as Y𝐿𝑆𝐸 . Therefore,��
ˆ̀𝑤1,𝑖 (𝑡 + 1) − `𝑤1,𝑖 (𝑡 + 1)

�� <
𝛾
4
,

��
ˆ̀𝑤2,𝑖 (𝑡 + 1) − `𝑤2,𝑖 (𝑡 + 1)

�� <
𝛾
4

can always hold when 𝑎 ·𝜔 >
𝛾
2
and change has not happened. □

11
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Thus with Lemma 2, when change has not happened, we have

| ˆ̀𝑤1,𝑖 (𝑡 + 1) − ˆ̀𝑤2,𝑖 (𝑡 + 1) |
= | ˆ̀𝑤1,𝑖 (𝑡 + 1) − `𝑤1,𝑖 (𝑡 + 1) + `𝑤1,𝑖 (𝑡 + 1) − `𝑤2,𝑖 (𝑡 + 1)
+ `𝑤2,𝑖 (𝑡 + 1) − ˆ̀𝑤2,𝑖 (𝑡 + 1) |

= | ˆ̀𝑤1,𝑖 (𝑡 + 1) − `𝑤1,𝑖 (𝑡 + 1) + `𝑤2,𝑖 (𝑡 + 1) − ˆ̀𝑤2,𝑖 (𝑡 + 1) |
≤ | ˆ̀𝑤1,𝑖 (𝑡 + 1) − `𝑤1,𝑖 (𝑡 + 1) | + | ˆ̀𝑤2,𝑖 (𝑡 + 1) − `𝑤2,𝑖 (𝑡 + 1) |
≤𝛾/4 + 𝛾/4 = 𝛾/2 .

Then

| ˆ̀𝑤1,𝑖 (𝑡 + 1) − ˆ̀𝑤2,𝑖 (𝑡 + 1) |
when change happens

≥ 𝑎 · 𝜔 − | ˆ̀𝑤1,𝑖 (𝑡 + 1) − `𝑤1,𝑖 (𝑡 + 1) | − | ˆ̀𝑤2,𝑖 (𝑡 + 1) − `𝑤2,𝑖 (𝑡 + 1) |

>𝛾 − 𝛾
4

− 𝛾
4

= 𝛾/2 = 𝛾/4 + 𝛾/4

≥ | ˆ̀𝑤1,𝑖 (𝑡 + 1) − ˆ̀𝑤2,𝑖 (𝑡 + 1) |
when change has not happened

With the above analysis, we provide the rationality of the criteria

for detecting change points:

(i) If | ˆ̀𝑤1,𝑖 (𝑡 + 1) − ˆ̀𝑤2,𝑖 (𝑡 + 1) | > 𝛾
2
, we think change happens.

(ii) If | ˆ̀𝑤1,𝑖 (𝑡 + 1) − ˆ̀𝑤2,𝑖 (𝑡 + 1) | < 𝛾
2
, we think change has not

happened.

B PROOF FOR REGRET BOUND
In this section, we proof the regret upper bound of our algorithm

present in Theorem 1. Recall that 𝐹𝑖 = {𝜏 ′𝑖 > a𝑖 } and 𝐷𝑖 = {𝜏 ′𝑖 ≤
a𝑖 + 𝜔} indicate that the algorithm identifies changes before the

actual change point occurs, and the algorithm does not detect

changes within the window length after the actual change point,

respectively, where a𝑖 denotes the moment that change happens,

and 𝜏 ′
𝑖
is the moment that our algorithm detects the change point

successfully. When 𝐹𝑐
1
occurs, it means that the change point is

detected by the algorithm, but in fact it does not happen, and

the probability of 𝐹𝑐
1
will be bounded by P

(
𝐹𝑐

1

)
= P

(
𝜏 ′

1
< a1

)
=

P
(
| ˆ̀1 (𝑡 + 1) − ˆ̀2 (𝑡 + 1) | > 𝛾

2

)
≤ 𝛿0 as mentioned before. We di-

vide the [0,𝑇 ] stage into [0,a1] and [a1,𝑇 ]. In the [0,a1] stage, there

is no arm reaching the threshold and this stage is a generalization

of the standard UCB process except the distribution of the reward.

The expected regret can be decomposed by:

E [𝑅(𝑇 )] = E [𝑅(𝑇 )1{𝐹1}] + E
[
𝑅(𝑇 )1

{
𝐹𝑐

1

}]
≤ E [𝑅(a1)1{𝐹1}] + E [𝑅(𝑇 ) − 𝑅(a1)] +𝑇 · P

(
𝐹𝑐

1

)
.

To prove the regret bound provided in Theorem 1, we prove the

following lemmas in Section 4.2.

Lemma 3. Before a1, the number of times that arm 𝑖 is pulled is
at most 2048 ln(1/𝛿)/Δ2

𝑖
(𝑡) in TI-UCB algorithm, where Δ𝑖 (𝑡) is the

difference between the optimal reward and reward obtained by arm 𝑖

at time 𝑡 .

Proof. For simplicity, we assume that ¯̀𝑖 (𝑡) is the upper confi-
dence value (Equation 1 of UCB𝑖 (𝑡 − 1, 𝛿) in Proposition 1) of arm

𝑖 at time 𝑡 and ¯̀𝑖∗ (𝑡) is the value of the optimal arm at time 𝑡 . By

concentration inequality, we have

`𝑖 (𝑡) − 16

√
2 ln(1/𝛿)
𝑛𝑖 (𝑡)

< ˆ̀𝑖 < `𝑖 (𝑡) + 16

√
2 ln(1/𝛿)
𝑛𝑖 (𝑡)

, (𝑎)

By our definition of UCB𝑖 (𝑡 − 1, 𝛿), we have

¯̀𝑖 (𝑡) = ˆ̀𝑖 (𝑡) + 16

√
2 ln(1/𝛿)
𝑛𝑖 (𝑡)

. (𝑏)

If arm 𝑖 is selected rather than arm 𝑖∗ at time 𝑡 , it implies that

¯̀𝑖 (𝑡) > ¯̀𝑖∗ (𝑡) . (𝑐)

Apply (a) to arm 𝑖 and arm 𝑖∗, then we have
ˆ̀𝑖 < `𝑖 (𝑡) + 16

√
2 ln(1/𝛿)
𝑛𝑖 (𝑡)

ˆ̀𝑖∗ > `𝑖∗ (𝑡) − 16

√
2 ln(1/𝛿)
𝑛𝑖 (𝑡)

. (𝑑)

Hence, we can obtain

`𝑖 (𝑡) + 2

[
16 ·

√
2 ln(1/𝛿)
𝑛𝑖 (𝑡)

]
(𝑎)
> ˆ̀𝑖 (𝑡) + 16 ·

√
2 ln(1/𝛿)
𝑛𝑖 (𝑡)

(𝑐)
> ˆ̀𝑖∗ (𝑡) + 16 ·

√
2 ln(1/𝛿)
𝑛𝑖∗ (𝑡)

(𝑑)
> ˆ̀𝑖∗ (𝑡) − 16 ·

√
2 ln(1/𝛿)
𝑛𝑖∗ (𝑡)

+ 16 ·

√
2 ln(1/𝛿)
𝑛𝑖∗ (𝑡)

= `𝑖∗ (𝑡) ,

which leads to 𝑛𝑖 (𝑡) < 2048 ln(1/𝛿)
Δ2

𝑖
(𝑡 ) , where Δ𝑖 (𝑡) means the differ-

ence between the optimal reward and reward obtained by arm 𝑖 at

time 𝑡 . Then for Δ𝑚𝑖𝑛 = min

𝑡 ∈[0,𝑇 ],𝑖≠𝑖∗
{`𝑖∗ (𝑡) − `𝑖 (𝑡)},

𝑛𝑖 (𝑇 ) <
2048 ln(1/𝛿)

Δ2

𝑚𝑖𝑛

.

The Δ𝑚𝑖𝑛 defined here does not change with the order in which the

arms are pulled, it depends on the optimal policy hence it is unique.

Therefore, the number of arm 𝑖 has been pulled before the moment

that the first threshold is reached is at most
2048 ln(1/𝛿)

Δ2

𝑚𝑖𝑛

. □

Lemma 4. For 𝐾 > 0, 𝑇 > 0 and 𝛿 = 𝑂 (1/𝑇 ), we run the TI-UCB
in [0,𝑇 ] before the moment that the first threshold is reached. Then
the regret is at most∑

𝑖:𝑛𝑖 (𝑇 )>𝑛∗𝑖 (𝑇 )
𝑐𝑖

2048 ln(𝑇 )
Δ2

𝑚𝑖𝑛

+ 𝐾
(
𝜋2

3

+ 1

)
,

(11)

where Δ𝑚𝑖𝑛 = min

𝑡 ∈[0,𝑇 ],𝑖≠𝑖∗𝑡
{`𝑖∗𝑡 (𝑡) − `𝑖 (𝑡)} is the minimum gap be-

tween the optimal reward and the true reward.
12
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Proof. Notice that there is no regret when 𝑛𝑖 (𝑇 ) < 𝑛∗𝑖 (𝑇 ). The
expected regret can be bounded by

E [𝑅(𝑇 )] ≤ E


∑
𝑖:𝑛𝑖 (𝑇 ) ≥𝑛𝑖∗ (𝑇 )

������
𝑛𝑖∗ (𝑇 )∑
𝑠=1

`𝑖,𝑠 −
𝑛𝑖 (𝑇 )∑
𝑠=1

`𝑖,𝑠

������
 .

And we have

E [𝑅𝑖 (𝑇 )]

≤ E
1{𝑖 : 𝑛𝑖 (𝑇 ) ≥ 𝑛𝑖∗ (𝑇 )} ·

������
𝑛𝑖∗ (𝑇 )∑
𝑠=1

`𝑖,𝑠 −
𝑛𝑖 (𝑇 )∑
𝑠=1

`𝑖,𝑠

������


= E

(
1{𝑖 : 𝑛𝑖 (𝑇 ) ≥ 𝑛𝑖∗ (𝑇 )} ·

������
𝑛𝑖∗ (𝑇 )∑
𝑠=1

(𝑎𝑖 · 𝑠 + 𝑏𝑖 ) −
𝑛𝑖 (𝑇 )∑
𝑠=1

(𝑎𝑖 · 𝑠 + 𝑏𝑖 )

������
)

= E


������
𝑛𝑖 (𝑇 )∑

𝑠=𝑛𝑖∗ (𝑇 )
(𝑎𝑖 · 𝑠 + 𝑏𝑖 )

������

𝑎𝑖 ·𝑠+𝑏𝑖 ≤𝑐𝑖≤ E [𝑐𝑖 · (𝑛𝑖 (𝑇 ) − 𝑛𝑖∗ (𝑇 ))]

= 𝑐𝑖 [E [(𝑛𝑖 (𝑇 ) − 𝑛𝑖∗ (𝑇 ))]] .

By 𝑛𝑖 (𝑇 ) ≤ 2048 ln(1/𝛿)
Δ2

𝑚𝑖𝑛

, for any positive integer𝑀 , we have

𝑛𝑖 (𝑇 )

≤𝑀 +
𝑇∑

𝑡=𝑀+1
1{𝐴𝑡 = 𝑖, 𝑛𝑖 (𝑡 − 1) ≥ 𝑀}

≤𝑀 +
𝑇∑

𝑡=𝑀+1
1

{
𝑈𝐶𝐵𝑖∗ (𝑡 − 1, 𝛿) ≤ 𝑈𝐶𝐵𝑖 (𝑡 − 1, 𝛿), 𝑛𝑖 (𝑡 − 1) ≥ 𝑀

}
≤𝑀 +

𝑇∑
𝑡=𝑀+1

1

{
min

0<𝑠<𝑡

(
ˆ̀𝑖∗ (𝑠) + 16 ·

√
2 ln(1/𝛿)
𝑛𝑖∗ (𝑠)

)
≤ max

𝑀≤ℎ<𝑡

(
ˆ̀𝑖 (ℎ) + 16 ·

√
2 ln(1/𝛿)
𝑛𝑖 (ℎ)

) }
≤𝑀 +

𝑇∑
𝑡=𝑀+1

𝑡−1∑
𝑠=1

𝑡−1∑
ℎ=𝑀

[
ˆ̀𝑖∗ (𝑠) + 16 ·

√
2 ln(1/𝛿)
𝑛𝑖∗ (𝑠)

≤ ˆ̀𝑖 (ℎ) + 16 ·

√
2 ln(1/𝛿)
𝑛𝑖 (ℎ)

]
.

Note that ˆ̀𝑖∗ (𝑠) + 16 ·
√

2 ln(1/𝛿)
𝑛𝑖∗ (𝑠) ≤ ˆ̀𝑖 (ℎ) + 16 ·

√
2 ln(1/𝛿)
𝑛𝑖 (ℎ) holds

when at least one of the following three inequalities is satisfied.



`𝑖∗ (𝑠) ≥ ˆ̀𝑖∗ (𝑠) + 16

√
2 ln(1/𝛿)
𝑛𝑖 (𝑠)

(𝑒)

`𝑖 (ℎ) ≤ ˆ̀𝑖 (ℎ) − 16

√
2 ln(1/𝛿)
𝑛𝑖 (ℎ)

(𝑓 )

`𝑖∗ (𝑠) < `𝑖 (ℎ) + 2 ∗ 16

√
2 ln(1/𝛿)
𝑛𝑖 (ℎ)

(𝑔)

Since inequality (g) does not occur for any 𝑠 ≤ 𝑡 − 1 when

𝑛𝑖 (𝑡 − 1) ≥ 𝑀 , we have

𝑛𝑖 (𝑇 ) ≤ 𝑀 +
𝑇∑

𝑡=𝑀+1

𝑡−1∑
𝑠=1

𝑡−1∑
ℎ=𝑀

[
P

(
`𝑖∗ (𝑠) ≥ ˆ̀𝑖∗ (𝑠) + 16

√
2 ln(1/𝛿)
𝑛𝑖 (𝑠)

)
+ P

(
`𝑖 (ℎ) ≤ ˆ̀𝑖 (ℎ) − 16

√
2 ln(1/𝛿)
𝑛𝑖 (ℎ)

) ]
.

By concentration inequalities, the probability of (e) and the

probability of (f) are less than 𝑒−4 ln(𝑇 ) = 𝑇−4
. Hence, 𝑛𝑖 (𝑇 ) ≤

𝑀 +∑𝑇
𝑡=1

∑𝑡
𝑠=1

∑𝑡
ℎ=1

2𝑡−4
. Choose𝑀 = ⌈ 2048 ln(𝑇 )

Δ2

𝑚𝑖𝑛

⌉, then

𝑛𝑖 (𝑇 ) ≤
2048 ln(𝑇 )

Δ2

𝑚𝑖𝑛

+ 1 + 𝜋
2

3

.

Finally, the regret bound for UCB with the reward of each arm

increasing linearly with time is

E [𝑅(a1)1{𝐹1}] = E𝑈𝐶𝐵 [a1] ≤
∑

𝑖:𝑛𝑖 (a1) ≥𝑛𝑖∗ (a1)
𝑐𝑖𝑛𝑖 (a1)

≤
∑

𝑖:𝑛𝑖 (𝑇 ) ≥𝑛𝑖∗ (𝑇 )
𝑐𝑖

2048 ln(𝑇 )
Δ2

𝑚𝑖𝑛

+ 𝐾 ( 𝜋
2

3

+ 1) .
(12)

□

Lemma 5 (Regret bound for 𝐹𝑐
1
). The probability of 𝑃 (𝐹𝑐

1
) can be

upper bounded by a constant related to 𝑇 .

P
(
𝐹𝑐

1

)
= P

(
𝜏 ′

1
< a1

)
≤ 2

𝑇
. (13)

Proof. Since `𝑤1,𝑖 = `𝑤2,𝑖 when change has not happened,

P
(
𝐹𝑐

1

)
= P

(
𝜏 ′

1
< a1

)
= P

(��
ˆ̀𝑤1,𝑖 − ˆ̀𝑤2,𝑖

�� > 𝛾

2

)
when change has not happened

= P
(��

ˆ̀𝑤1,𝑖 − `𝑤1,𝑖 + `𝑤1,𝑖 − `𝑤2,𝑖 + `2 − ˆ̀𝑤2,𝑖

�� > 𝛾

2

)
= P

(��( ˆ̀𝑤1,𝑖 − `𝑤1,𝑖 ) + (`𝑤2,𝑖 − ˆ̀𝑤2,𝑖 )
�� > 𝛾

2

)
≤
(ℎ)
P

(��
ˆ̀𝑤1,𝑖 − `𝑤1,𝑖

�� + ��`𝑤2,𝑖 − ˆ̀𝑤2,𝑖

�� > 𝛾

2

)
≤
(𝑖)
P

(��
ˆ̀𝑤1,𝑖 − `𝑤1,𝑖

�� > 𝛾

4

)
+ P

(��`𝑤2,𝑖 − ˆ̀𝑤2,𝑖

�� > 𝛾

4

)
≤ 2𝛿4 < 2𝛿 .

The inequality (h) can be considered as the following. Assume

that the event A1 stands for

��( ˆ̀𝑤1,𝑖 − `𝑤1,𝑖 ) + (`𝑤2,𝑖 − ˆ̀𝑤2,𝑖 )
�� > 𝛾

2
,

and A2 stands for

��
ˆ̀𝑤1,𝑖 − `𝑤1,𝑖

�� + ��`𝑤2,𝑖 − ˆ̀𝑤2,𝑖

�� > 𝛾
2
. When A1

holds, A2 also holds. However, if A2 holds, A1 may not hold.

An example of such case would be when ˆ̀𝑤1,𝑖 − `𝑤1,𝑖 =
𝛾
2
and

ˆ̀𝑤2,𝑖 − `𝑤2,𝑖 = −
𝛾
4
.

The inequality (i) can be proved similarly. LetA3 represents the

event when at least one of the two inequalities

��
ˆ̀𝑤1,𝑖 − `𝑤1,𝑖

�� > 𝛾
4

and

��`𝑤2,𝑖 − ˆ̀𝑤2,𝑖

�� > 𝛾
4
holds and we have

P (A3) = P
({��

ˆ̀𝑤1,𝑖 − `𝑤1,𝑖

�� > 𝛾

4

}
∪

{��`𝑤2,𝑖 − ˆ̀𝑤2,𝑖

�� > 𝛾

4

})
= P

(��
ˆ̀𝑤1,𝑖 − `𝑤1,𝑖

�� > 𝛾

4

)
+ P

(��`𝑤2,𝑖 − ˆ̀𝑤2,𝑖

�� > 𝛾

4

)
.

And A2 ⊂ A3 can be easily seen.

13
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With Lemma 5 and the assumption that 𝛿 ≤ 1

𝑇
, we can obtain

𝑇 · P
(
𝐹𝑐

1

)
≤ 2. □

Lemma 6 (Regret bound from a1 to 𝑇 ).

E [𝑅(𝑇 ) − 𝑅(a1)]
≤ E [𝑅(𝑇 ) − 𝑅(a1) |𝐹1𝐷1] +𝑇 · (1 − 𝑃 (𝐹1𝐷1))
= E

[
𝑅(𝑇 ) − 𝑅(𝜏 ′

1
) |𝐹1𝐷1

]
+ E

[
𝑅(𝜏 ′

1
) − 𝑅(a1) |𝐹1𝐷1

]
+𝑇 · (1 − 𝑃 (𝐹1𝐷1))
≤ · · · ≤ E

[
𝑅(𝑇 ) − 𝑅(𝜏 ′𝐾 )

]
+ 𝐾𝜔 + 2𝐾𝐿

≤
∑

𝑖:𝑛𝑖 (𝑇 )>𝑛∗𝑖 (𝑇 )
𝑐𝑖

2048 ln(𝑇 )
Δ2

min

+ 𝐾
(
𝜋2

3

+ 1

)
+ 𝐾𝜔 + 2𝐾𝐿 ,

(14)

where 𝐿 is a constant strictly less than ln𝑇 .

Proof. The regret of period [a1, T] can be decomposed by

E [𝑅(𝑇 ) − 𝑅(a1)]
≤ E [𝑅(𝑇 ) − 𝑅(a1) |𝐹1𝐷1] +𝑇 · (1 − 𝑃 (𝐹1𝐷1))
≤ E

[
𝑅(𝑇 ) − 𝑅(𝜏 ′

1
) |𝐹1𝐷1

]︸                        ︷︷                        ︸
(i)

+E
[
𝑅(𝜏 ′

1
) − 𝑅(a1) |𝐹1𝐷1

]︸                         ︷︷                         ︸
(ii)

+𝑇 (1 − P (𝐹1𝐷1))︸              ︷︷              ︸
(iii)

.

Next, we analyze these three parts separately.

Part(iii):

P (𝐹1𝐷1) = P
(
a1 < 𝜏 ′

1
< a1 + 𝜔

)
.

Thismeans that if a change occurs, the algorithm can successfully

detect it within the window width 𝜔 . Then by inequality 9 we have

P (𝐹1𝐷1) = P
( ��

ˆ̀𝑤1,𝑖 (𝑡 + 1) − ˆ̀𝑤2,𝑖 (𝑡 + 1)
�� > 𝛾

2

)
> 1 − 𝛿0 .

Note that 𝛿0 ≤ 𝐿𝛿 for a constant 𝐿 < ln( 1

𝛿
) and 𝛿 ≤ 1

𝑇
. When

change has not happened, we have

P
(
| ˆ̀𝑖 − `𝑖 | ≥

𝛾

2

)
≤ exp{−

𝜔 (𝛾
2
)2

128

} = 𝛿 ,

P
(��

ˆ̀𝑤1,𝑖 − ˆ̀𝑤2,𝑖

�� ≥ 𝛾
2

)
≤ exp{−

𝜔 (𝛾
2
)2

2(14 + 12

|𝜔−1 | )2
} = 𝛿0 .

Then we obtain 𝛿0 = 𝛿

28

7+ 6

|𝜔−1|2
. When |𝜔−1| ≥

√
ln(𝐿𝛿)

14

3
ln𝛿− 7

6
ln(𝐿𝛿) ,

𝛿0 ≤ 𝐿𝛿 holds, and when 𝑇 is sufficiently large,
1

𝛿
≥ 𝑇 is large, the

condition for |𝜔 −1| ≥
√

ln(𝐿𝛿)
14

3
ln𝛿− 7

6
ln(𝐿𝛿) holds naturally. Therefore,

we have

1 − P (𝐹1𝐷1) < 𝛿0 ≤ 𝐿𝛿 ≤
2𝐿

𝑇
.

Thus Part(iii) ≤ 2𝐿 < 2 ln(𝑇 ) holds.
Part(ii):

We have

E
[
𝑅(𝜏 ′

1
) − 𝑅(a1) |𝐹1𝐷1

]
≤ E

[
𝜏 ′

1
− a1 |𝐹1𝐷1

]
≤ E

[
𝜏 ′

1
− a1 |a1 < 𝜏 ′

1
≤ a1 + 𝜔

]
≤ 𝜔 .

Part(i):
Let 𝐸 = E [·|𝐹1𝐷1], then E

[
𝑅(𝑇 ) − 𝑅(𝜏 ′

1
) |𝐹1𝐷1

]
= 𝐸 (𝑅(𝑇 ) −

𝑅(𝜏1)) ≤ 𝐸 (𝑅(𝑇 − 𝜏 ′
1
)) .

Using recursive method, we have

𝐸 (𝑅(𝑇 − 𝜏 ′
1
))

≤ 𝐸 (𝑅(𝑇 − 𝜏 ′
1
) |𝐹2𝐷2) +𝑇 [1 − 𝑃 (𝐹2𝐷2)]

= 𝐸 (𝑅(𝑇 − 𝜏 ′
2
) |𝐹2𝐷2) + 𝐸 (𝑅(𝜏 ′2 − a2) |𝐹2𝐷2) +𝑇 [1 − 𝑃 (𝐹2𝐷2)]

=
˜̃
𝐸 (𝑅(𝑇 − 𝜏 ′

2
)) + 𝐸 (𝑅(𝜏 ′

2
− a2) |𝐹2𝐷2) +𝑇 · [1 − 𝑃 (𝐹2𝐷2)]

≤ ˜̃
𝐸 (𝑅(𝑇 − 𝜏 ′

2
)) + 𝜔 + 2𝐿

≤ · · ·
≤ E

[
𝑅(𝑇 − 𝜏 ′𝐾 )

]
+ 𝐾𝜔 + 2𝐾𝐿 .

□

The stage of [𝜏 ′
𝐾
, T] is a process similar to standard UCB with

stationary reward, and its regret can also be bounded by

E
[
𝑅(𝑇 − 𝜏 ′𝐾 )

]
<

∑
𝑖:𝑛𝑖 (𝑇 )>𝑛∗𝑖 (𝑇 )

𝑐𝑖
2048 ln(𝑇 )

Δ2

min

+ 𝐾
(
𝜋2

3

+ 1

)
.

Then

E
[
𝑅(𝑇 − 𝜏 ′

1
) |𝐹1𝐷1

]
≤

∑
𝑖:𝑛𝑖 (𝑇 )>𝑛∗𝑖 (𝑇 )

𝑐𝑖
2048 ln(𝑇 )

Δ2

min

+ 𝐾
(
𝜋2

3

+ 1

)
+ 𝐾𝜔 + 2𝐾𝐿 .

(15)

In summary, by Lemma 4, 5, and Equation 15, we obtain the final

regret upper bound of our algorithm present in Theorem 1:

E [𝑅(𝑇 )]
= E [𝑅(𝑇 )1{𝐹1}] + E

[
𝑅(𝑇 )1

{
𝐹𝑐

1

}]
≤ E [𝑅(a1)1{𝐹1}] +𝑇 · P

(
𝐹𝑐

1

)
+ E [𝑅(𝑇 ) − 𝑅(a1)]

≤
∑

𝑖:𝑛𝑖 (𝑇 )>𝑛∗𝑖 (𝑇 )
𝑐𝑖

2048 ln(𝑇 )
Δ2

𝑚𝑖𝑛

+ 𝐾
(
𝜋2

3

+ 1

)
︸                                               ︷︷                                               ︸

Equation 12 in Lemma 4

+ 2︸︷︷︸
Lemma5

+
∑

𝑖:𝑛𝑖 (𝑇 )>𝑛∗𝑖 (𝑇 )
𝑐𝑖

2048 ln(𝑇 )
Δ2

min

+ 𝐾
(
𝜋2

3

+ 1

)
+ 𝐾𝜔 + 2𝐾𝐿

︸                                                                 ︷︷                                                                 ︸
Equation 15

=
∑

𝑖:𝑛𝑖 (𝑇 )>𝑛∗𝑖 (𝑇 )
𝑐𝑖

4096 ln(𝑇 )
Δ2

min

+ 𝐾
(
𝜋2

3

+ 1

)
+ 𝐾𝜔 + 2𝐾𝐿 + 2 .

C PARAMETER SETTING OF BASELINE
ALGORITHMS

We choose the parameters of compared baselines algorithms as

follows:
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• KL-UCB: 𝑐 = 3 according to [17].

• Rexp3: 𝑉𝑇 = 𝐾 , 𝛾 = min

{
1,

√
𝐾 log𝐾

(𝑒−1)Δ𝑇

}
, and

Δ𝑇 =

⌈
(𝐾 log𝐾)1/3 (𝑇 /𝑉𝑇 )2/3

⌉
according to [3].

• Ser4: 𝛿 = 1/𝑇, 𝜖 = 1

𝐾𝑇
, and 𝜙 =

√
𝑁
𝑇𝐾

log(𝐾𝑇 ) according to
[1].

• SW-TS: 𝛽 = 1/2 and sliding-window 𝜏 = 𝑇 1−𝛽 =
√
𝑇 accord-

ing to [46].

• SW-UCB: sliding-window 𝜏 = 4

√
𝑇 log𝑇 and constant b =

0.6 according to [18].

• SW-KL-UCB: 𝜏 = 𝜎−4/5
according to [10].

• R-ed-UCB: window parameter 𝜖 = 1/4 for synthetic experi-

ments and 𝜖 = 1/32 for real-world experiments according to

[33].
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