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ABSTRACT

We introduce Enhancing Graph Of Thoughts (EGoT), a method designed to en-
hance the performance of large language models (LLMs) on complex reasoning
tasks. EGoT automates the process of generating accurate responses using given
data and a base prompt. The process consists of several steps: It obtains an initial
response from the answering node using the base prompt. Evaluation node evalu-
ates the response and generates reasoning for it, utilizing the score’s probabilities
to enhance evaluation accuracy. The reasoning from both the answering node and
the evaluation node is aggregated to identify the problem in the response. This
aggregated reasoning is incorporated into the base prompt to obtain an enhanced
response. These steps are organized in a graph architecture, where the final leaf
nodes are merged to produce a final response. As the graph descends, the temper-
ature is lowered using Cosine Annealing and scoring, to explore diverse responses
with earlier nodes and to focus on precise responses with later nodes. The mini-
mum temperature in Cosine Annealing is adjusted based on scoring, ensuring that
nodes with low scores continue to explore diverse responses, while those with high
scores confirm accurate responses. In sorting 256 elements using GPT-4o mini,
EGoT performs 88.31% accuracy, respectively, GoT (Graph Of Thought) perfor-
mance has 84.37%. In the frozen lake problem using GPT-4o, EGoT averages
0.55 jumps or falls into the hole, while ToT (Tree of Thoughts) averages 0.89.

1 INTRODUCTION

In recent research, the performance of large language models (LLMs) has evolved incredibly rapidly,
with applications in a variety of fields, including math problem (Shao et al., 2024), robotics (Park
et al., 2023), medicine (Lee et al., 2024b; Kwon et al., 2024), and even programming (Wang et al.,
2023a; Duong & Meng, 2024; McAleese et al., 2024). To further improve the performance of LLM,
researchers are now actively exploring methods to significantly scale up the architecture of models,
or optimize with distillation (Qu et al., 2024) and fine-tuning (Singh et al., 2024). These efforts are
broadening the scope of LLM and enabling more innovative applications.

Training LLM directly requires a lot of time and GPU resources. To address such limitations, Prompt
Engineering, which involves designing effective prompts rather than training the model directly,
stands out. Prompt engineering is a technique that can improve the performance of LLM on specific
tasks without requiring additional training. Examples of prompts include Chain of Thought (CoT)
(Wei et al., 2022), Chain of Thought with Self-Consistency (CoT-SC) (Wang et al., 2023b), Tree of
Thought (ToT) (Long, 2023; Yao et al., 2024), Exchange of Thought (EoT) (Yin et al., 2023), and
Graph of Thought (GoT) (Besta et al., 2024). These approaches help LLM generate more accurate
and useful results.

However, complex problems often decrease the rationale of LLM. When LLM provides a correct
answer, its rationale steps are not always reliable (Hao et al., 2024). In addition, most architectures
utilize external tools (Stechly et al., 2023; Gou et al., 2024) to improve performance, and prompts
often require specific examples (Lee et al., 2024a). Since obtaining the valid rationale makes LLM’s
performance highly contributing (Yin et al., 2024), the technique of prompting LLM with a score to
evaluate the performance of LLM (Valmeekam et al., 2023; Ren et al., 2023) is an ongoing research
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area. There are also researches that utilize dynamic temperature control techniques (Cai et al., 2024;
Nasir et al., 2024; Zhang et al., 2024; Zhu et al., 2024) to further enhance LLM’s rationale ability.

Our approach, EGoT, is an architecture that can automatically generate the prompt and answer from
LLM by only initializing the base prompt. In the process, log probability is utilized to evaluate the
answers of LLM to increase the confidence. We also propose to dynamically adjust the temperature
based on the progress and score of the answer, applying the cosine annealing (Loshchilov & Hutter,
2016) to set a high temperature at the beginning of the graph and a low temperature at the end. The
minimum temperature is set as the inverse of the score, so that nodes with high scores consistently
provide correct answers, while nodes with low scores explore a wide range of answers. This ap-
proach has the advantage of showing constant and consistent performance without the evaluation
metric, and it does not need additional examples to avoid bias in the results. The approach focuses
on addressing the challenges that emerge during the integration of multiple components, allowing
for the optimization of trade-offs and the achievement of significant performance improvements.

To summarize, EGoT provides the following advantages:

• Dynamic Temperature Control with Cosine Annealing to propagate more accurate rationale
to child node prompts.

• Continuously append rationale to the Base Prompt in graph architecture to generate high-
quality final response.

• Increase confidence by utilizing the probability of LLM answers for scoring and avoid bias
by not including specific examples.

• A simple but effective rationale approach, directly repeating the input question in the same
form once more to make it easier for LLM to understand the problem, and then utilize the
previous repeats in the rationale.

2 EGOT ARCHITECTURE

2.1 OVERVIEW

EGoT is the architecture of a graph, consisting of METHODNODE, ANSWERINGNODE, EVALUA-
TIONNODE, and AGGREGATERATIONALENODE. The structure of graph is shown in Figure 1.

• Answering Node•Method Node

• Evaluation Node

• Aggregate Rationale Node

answer
rationale

evaluation
rationale

answer

If the answer 
is equal to 

the parent’s

If prob < 𝜀

Node 0

Node 1 Node 2

Node 3 Node 4 Node 5 Node 6

Update 𝑡𝑢,0

Update 𝑡𝑢,1 Update 𝑡𝑢,2

Methods

Figure 1: Framework of EGoT. The left side illustrates the overall graph architecture and dynamic
temperature. The right side illustrates the internals of each Node N . Each Node contains ANSWER-
INGNODE, EVALUATIONNODE, and AGGREGATERATIONALENODE as sub-nodes. Each node gen-
erates a rationale and forwards the temperature to its child answering nodes.
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2.2 METHOD NODE

The METHODNODE inquires about the method to solve the question and the methods for evaluating
the answer. Although these methodologies can be formulated by humans, in this paper, heuristic
methods are requested from LLM and utilized. ma denotes the method for obtaining the answer to
the question, and me denotes the method for evaluating the answer. t denotes the temperature of
LLM.

ma,me = METHODNODE(Prompt, t = 0) (1)

2.3 ANSWERING NODE

ANSWERINGNODE finds the answer to the problem. The top root node solves the problem with the
rules. The child node solves the problem using the rationale from the previous nodes. ANSWER-
INGNODE outputs the answer to the problem and the rationale for the answer. a and ra are the
answer and the rationale regarding the response provided by LLM, and rpr denotes the rationales
of the previous nodes. t denotes the temperature, in case of the root node is set to 1, and tu is the
temperature updated on the parent node.

a, ra =

{
ANSWERINGNODE(Prompt(ma, ·), t = 1), if Node = Root Node
ANSWERINGNODE(Prompt(ma, rpr), t = tu), else Node ̸= Root Node

(2)

2.4 EVALUATION NODE

EVALUATIONNODE evaluates the answer provided by ANSWERINGNODE. LLM outputs the accu-
racy of the answer and the rationale for why the accuracy score is given. If the probability of the
score provided by LLM is lower than the threshold, EVALUATIONNODE is performed once more.
s and rs are the score and the rationale regarding the response provided by LLM and Pr(s) is the
probability of the score. t denotes the temperature of LLM. We request a score range of 0-100 from
LLM to better represent the scores as percentages.

s, rs,Pr(s) = EVALUATIONNODE(Prompt(me, a), t = 0) (3)

2.5 AGGREGATE RATIONALE NODE

AGGREGATERATIONALENODE integrates the rationales provided from ANSWERINGNODE and
EVALUATIONNODE. LLM outputs the aggregated rationale and the information considered inac-
curate. AGGREGATERATIONALENODE aggregates the information from the two input rationales,
emphasizing the incorrect encountered during the reasoning while omitting details related to suc-
cessful outputs. This concept is similar to the state evaluator in ToT (Yao et al., 2024). The dif-
ference with ToT is that it provides a rationale for finding flaws without providing a question and
answer. The inaccurate information is the elements that LLM needs to recheck where there is a
conflict between the two input rationales. It arises from LLM misinterpretation of the question
and can lead to hallucinations and incorrect reasoning in the responses. This information derived
from AGGREGATERATIONALENODE is subsequently incorporated into the prompt of the child’s
ANSWERINGNODE. rpr denotes the aggregate rationale and the incorrect information.

rpr = AGGREGATERATIONALENODE(Prompt(ra, rs), t = 0) (4)

3 METHODOLOGY

3.1 ENHANCING RESPONSE

This section describes the methods to obtain enhancing responses from LLM. Two methods are used:
exploring varied answers to obtain enhancing responses and utilizing the probability of answers to
obtain more accurate scoring.
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3.1.1 EXPLORING VARIED ANSWER

To explore different answers, multiple root nodes are utilized in the architecture. Since the tempera-
ture decreases as the node travels down, multiple graphs are used to explore different answers. There
are cases where the node gives the same answer as the node travels down. To solve these cases, if
a child ANSWERINGNODE gives the same answer as the parent ANSWERINGNODE, a question is
only asked once more. This is because it cannot be determined exactly whether it is the correct
answer while the graph is in progress.

3.1.2 ENHANCING SCORE

To enhance the score, the probability that LLM predicts the score token is used to answer the score.
If the probability does not exceed the threshold, it asks for the score one more time. The probability
threshold is set high for evaluation scores of 0 or 100 to ensure these extreme values are assigned
only when the model is highly confident. For other scores, from 1 to 99, the threshold is set low
to exclude nonsense answers. It is important to consider the order in which LLM is asked for the
score and the rationale for the score. If LLM is asked for the rationale first and then the score, LLM
thinks that it has a basis in the previous rationale. Therefore, a score of 0 or 100 is often returned
regardless of whether the answer is correct or not, with a probability close to 1. For this reason, the
score is asked for before the rationale, and the score is obtained with a variety of scores. The setting
for the thresholds is explained later in each experiment.

3.2 TEMPERATURE CONTROL

LLM basically sets temperature to 1.0 for creative answers. Whereas when creativity is not required,
it sets temperature closer to 0 for consistent answers. However, setting temperature to 0 from the
start can lead to fixed answers and errors.

To gradually decrease temperature as the graph progresses, cosine annealing is used. When the
answer is well guessed, the temperature is lowered to generate a fixed answer, and when the answer
is ambiguous, the temperature is kept high to explore different answers. The reason for evaluating
answers in EVALUATIONNODE is not only to create a rationale, but also to control the temperature.
If the score is high, it means that the rationale of that ANSWERINGNODE is correct, and this rationale
is forwarded to the child nodes, which are expected to generate good answers. On the other hand, if
the score is low, the answer needs to be revised, and the rationale of ANSWERINGNODE also needs
to improve, requiring various explorations until it is correct.

In cosine annealing, max temperature (tmax) is fixed at 0.7 and min temperature is set to the inverse
of accuracy so that the higher the accuracy, the lower the temperature. Total epoch is set to the total
number of nodes (nodet) and the current epoch is defined as the progress of the nodes (nodec).

tu = tmin +
1

2
(tmax − tmin)(1 + cos(

nodec
nodet

)), tmin = 1−
√
1− (c− 1)2, c = s · Pr(s) 1

e (5)

c represents the confidence of ANSWERINGNODE. If the answer is scored high and the probability
that LLM predicted the score is also high, the confidence is high. If the answer is scored low or the
probability that LLM predicted the score is low, the confidence is low. c and tmin are between 0
and 1. The probability is used in tmin to differentiate between high and low probability cases when
LLM answers the score.

3.3 EXAMPLE USE CASE

This section explains the content of section 2 and 3 with a practical example. Figure 2 shows the re-
sults of the Frozen lake experiment, one of the experimental results that demonstrates the advantages
of EGoT. The blue background represents the hole and the light blue represents the frozen. The two
black points on the top left (0, 0) and bottom right (4, 4) represent the start and end. The green line
is the route that LLM predicts the answer, the orange square is what EVALUATIONNODE rationale
explains as incorrect because it is a hole, and the brown triangle is the position that AGGREGATERA-
TIONALENODE aggregates because the rationale from ANSWERINGNODE and EVALUATIONNODE
conflict with each other.
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Before the graph starts, METHODNODE is invoked once. The information responded from the
METHODNODE is utilized by all subsequent nodes in Figure 2, from Node 0 to Node Final. The
graph experiment starts with 3 nodes. In ANSWERINGNODE, Node 0 passes through the holes (2,
1), (3, 1), and Node 1 and Node 2 pass through the holes (2, 4), (3, 4). At EVALUATIONNODE,
Node 0 observes the hole at (2, 1) and Node 1 observes the hole at (2, 4), and ANSWERINGNODE
states that the answer is incorrect, lowering Node 0 and Node 1’s confidence. Conversely, Node 2
has a high confidence in EVALUATIONNODE, because it doesn’t find anything wrong. Since it is
the first round, temperature remains close to 0.7, regardless of confidence. The node updates the
temperature of its two child nodes. Node 3 and Node 4 update the temperature by Node 0.

Because depth 0 informs the coordinates (2, 1) and (2, 4) are holes, depth 1 nodes recognize this as
a hole and do not traverse these coordinates. Still, nodes 4, 5, and 8 are unsure of the correct answer
because the propagated rationale confuses the information about frozen tile and hole. Depth 1 also
can’t make a confident decision and answers incorrectly that (3, 3) is a hole. Since one depth is
passed, nodes with higher confidence have a lower temperature to update to their child. In the mid-
dle, omitted part of the figure, if a node gives an incorrect answer, the temperature increases again,
and it explores for coordinate (3, 2). When the final node responds to the answer by incorporating
aggregate rationales from the leaf nodes, LLM explores the correct answer, avoiding [2, 1], [3, 2].

Node 0
•𝑐 : 0.082 
•𝑡𝑢: 0.695

Node 3
•𝑐 : 0.595
•𝑡𝑢: 0.461

Node 4
•𝑐 : 0.593
•𝑡𝑢: 0.462

Node K-6
•𝑐 : 0.181
•𝑡𝑢: 0.426

Node K-5
•𝑐 : 0.642
•𝑡𝑢: 0.066

Node 5
•𝑐 : 0.171
•𝑡𝑢: 0.599

Node 6
•𝑐 : 0.592
•𝑡𝑢: 0.462

Node K-4
•𝑐 : 0.162
•𝑡𝑢: 0.454

Node K-2
•𝑐 : 0.170
•𝑡𝑢: 0.442

Node 7
•𝑐 : 0.167
•𝑡𝑢: 0.601

Node 8
•𝑐 : 0.164
•𝑡𝑢: 0.603

Node K-1
•𝑐 : 0.680
•𝑡𝑢: 0.052

Node K
•𝑐 : 0.171
•𝑡𝑢: 0.441

Node 1
•𝑐 : 0.170
•𝑡𝑢: 0.687

Node 2
•𝑐: 0.602
•𝑡𝑢: 0.669

Depth 0 Rationales

Depth 1 Rationales

Depth N-1 Rationales

Depth N Rationales

Node Final

Answer Rationale
… First, … each tile: S at [0,0], F at [0,1], H 
at [0,2], F at [0,3], H at [0,4], … indicate 
discrepancies at [2,1] and [3,2]. Upon 
rechecking, [2,1] is a hole (H) and [3,2] is a 
hole (H). … The valid path avoiding holes is: 
[0,0] -> [1,0] -> … -> [4,4]. This path 
adheres to the rules, avoids all H tiles, …

Figure 2: In the Frozen lake example, the temperature decreases as it progresses down the graph,
various positions are explored and the graph finds the correct answer using the information.
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4 EXPERIMENTS

We use langgraph library to construct the graph, and “gpt-4o-mini-2024-07-18” & “gpt-4o-2024-08-
06” for LLM models. The graph structure starts with three root nodes, and when solving a problem,
LLM responds with prompts that include all of the rationale information before one depth. At the
end of the graph, the answer is aggregated into one, using the response from ANSWERINGNODE
with the prompt that incorporates all the aggregate rationales from the leaf nodes.

EGoT evaluates three experiments: document merging, number sorting, and frozen lake. Document
merging and number sorting use the graph with a depth of 3, and frozen lake uses the graph with
a depth of 4. We experiment with TOT (Long, 2023) that appends the incorrect answer rather than
evaluating and exploring each element because in the experiments, the number of nodes increases
exponentially to explore each case. GoT only picks the best performing node to evaluate the graph,
however, it is changed to select a medium value to compare only structural performance. Solving
problems with evaluation metrics is not considered to be a structural advantage, therefore, to fully
automate LLM, the evaluation of nodes is assumed to be randomized and the medium value is used
as the expectation. Experiments are performed multiple times with the same data. To compare the
impact of temperature, the experiment is performed with temperature fixed to 1, named EGoT*.

4.1 DOCUMENT MERGING

We experiment with the dataset provided by GoT for doc merge, and evaluate the result at the end
with GoT’s scoring prompt. The evaluation compares non-redundancy and retained harmonic mean.
The performance is 75.96%, 77.79%, 76.74%, 76.43%, 76.01%, 74.98%, in the following order:
IO, CoT, ToT, GoT, EGoT, EGoT*. This experiment motivates the idea that scoring with LLM
should not simply be evaluated. The experiment shows that autonomous evaluation by LLM does
not have the logical and structural advantages of well-known CoT and ToT. It provides a rationale
for the idea that the scoring should be better evaluated.

4.2 NUMBER SORTING

This experiment is a sorting problem with random numbers as input. LLM is able to sort small
list lengths successfully, however, LLM performs inaccurately when sorting long lists of numbers.
To evaluate the sorting problem, two metrics are utilized: accuracy and number of errors (NOE).
Accuracy is the intersection divided by union to measure how similar the two lists are. The number
of errors is the number of elements that ascend rather than descend. The higher the accuracy, the
better, the lower the number of errors, the better. All nodes except ANSWERINGNODE set the
temperature to 0. The threshold for score probability is set to 0.99 for 100 and 0, and 0.5 for others.

The experiment is performed with 100 lists of 128 elements and 100 lists of 256 elements. 128
elements are randomly selected from the numbers 1 to 1000, allowing for duplicates. 256 elements
are randomly selected from the numbers 1 to 1500, allowing for duplicates, because GPT 4o’s
tokenizer splits numbers over 1000 into two tokens. In this experiment, to show the effectiveness
of rationale in stating the problem once more, CoT is performed in two ways. CoT1 utilizes the
rationale to sort the entire list in three steps: divide the list into four parts, sort each part, and then
combine them. CoT2 is the method where the rationale writes the input one more time to understand
it, and then sorts the corresponding numbers written in the previous step.

4.3 FROZEN LAKE

A frozen lake is a problem of finding a route to a destination avoiding the hole. To find the correct
route in a frozen lake, it is necessary to know the exact location of the holes and understand the
rules of the frozen lake. To evaluate the frozen lake problem, two metrics are utilized: Accuracy
and number of errors (NOE). Accuracy is the number of successful routes found correctly divided
by the total number of attempts. The number of errors is the number of times falling into a hole
plus the distance of the jump. All nodes except ANSWERINGNODE set the temperature to 0. The
threshold for score probability is set to 0.95 for 100 and 0, and 0.5 for other scores. This experiment
is performed on 5 by 5 size lake with 20 examples of 8 holes and 20 examples of 10 holes. GPT-4o
and GPT-4o mini are utilized in the experiment.
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Table 1: Results of the Number Sorting experiment (GPT-mini 4o)

128 Elements IO CoT1 CoT2 ToT GoT EGoT EGoT*
Accuracy 90.25% 72.13% 90.41% 92.28% 90.98% 92.09% 91.70%
Number of Errors 14.07 38.79 13.87 10.87 11.88 10.94 11.45

256 Elements
Accuracy 70.71% 49.50% 83.17% 75.58% 84.37% 88.31% 87.94%
Number of Errors 119.51 154.57 49.25 65.74 40.93 34.54 35.19

Sorting 128 Elements Sorting 256 Elements

IO CoT2 ToT GoT EGoT EGoT*

Frozen lake
(gpt-4o mini)

CoT ToT EGoT EGoT*IO CoT2 ToT GoT EGoT EGoT*

ACC NOE ACC NOE ACC NOE
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65
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0.5

0.7
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0.8

0.9

60 0.6

Figure 3: Figure shows Min, Max, and Average for multiple experiments. The blue line on the left
of each graph represents accuracy and the green line on the right represents number of errors (NOE).
The bars represent the maximum and minimum values, and the darker color in the middle of the bars
represents the average. In the sorting problem, IO, CoT2, ToT, and GoT architectures are validated
architectures, we experiment only one time. The higher ACC, the better, the lower NOE, the better.

5 EVALUATION

5.1 NUMBER SORTING

Table 1 is the experiment result of number sorting. ToT has the best performance for sorting 128
elements, followed by the proposed EGoT. When sorting 256 elements, the proposed EGoT out-
performed the other architectures. EGoT* also performs similarly to EGoT, however, it is slightly
lower. Five experiments were conducted to verify the consistent performance of EGoT for 128 el-
ements and 256 elements, the results are shown in Figure 3 and it shows consistent performance in
general.

The result of CoT1 and CoT2 is the one to focus on here. While there is a relatively slight perfor-
mance difference when sorting 128 numbers, there is a huge performance difference when sorting
256 numbers. The reason for the difference is that in the first step of CoT1’s rationale, when dividing
the list into 4 lists, many numbers are missing, and in the last step of the rationale, when merging the
4 lists, it sometimes returns only the numbers from the first list without merging. For the reason, the
performance of CoT1 is significantly lower compared to the other experiments. Conversely, CoT2’s
first step of rationale, which is to repeat elements one more time, is not a difficult task for LLM, and
it outputs relatively few missing numbers. Subsequently, when prompting for sorting with the previ-
ously mentioned numbers, LLM performs the sorting without difficulty. The tradeoff is an increase
in time and the number of output tokens because the rationale process requires more outputs.

We also compare the performance of various LLMs instead of GPT. Since EGoT requires the prob-
ability to evaluate the answer, we utilize the Llama 3.1 405B model and the Mixtral 8×22B model,
both provided by the Fireworks platform. The Anthropic Claude 3 Haiku model does not provide
the probability of the answer, therefore, we fix the probability to 1. The experiments are conducted
using 10 samples for sorting 256 data. During the evaluation, both Llama and Mixtral, in contrast to
GPT-4o mini, consistently assign a score of 100 in EVALUATIONNODE. In such cases, we request
the LLM for the score again. The results of these experiments are presented in Table 2.
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Table 2: Results of the 256 Number Sorting experiment using various LLMs

Llama 3.1 405B CoT ToT GoT EGoT
Accuracy 91.59% 92.05% 94.09% 95.85%
Number of Errors 22.53 21.3 16.4 11.5

Mixtral 8×22B
Accuracy 82.91% 71.91% 83.85% 89.05%
Number of Errors 73.63 83.6 44.6 30.67

Claude 3 Haiku
Accuracy 92.10% 97.62% 94.38% 95.00%
Number of Errors 20.4 6.2 14.6 12.9

5.2 FROZEN LAKE

Table 3 and Table 4 are the experiment results for the frozen lake. In the experiment, EGoT and
EGoT* perform better than other architectures. To evaluate the consistent performance, 5 experi-
ments are performed on the GPT-4o mini, and 3 experiments are performed on the GPT-4o. The
results can be shown in Figure 3. GoT is applicable only when the problem can be divided into sub-
problems, whereas Frozen Lake cannot be broken down into smaller parts. Therefore, we cannot
compare GoT in this experiment. When the rationale simply requests to understand the position of
the holes and tiles, LLM confuses a lot, whereas when LLM writes the coordinate next to the input
and then requests to understand the position of the holes and tiles, it performs better.

5.3 DIFFERENCES WITH OTHER ARCHITECTURES

Since EGoT depends on LLM to evaluate, it doesn’t need a tool to check that the answer is correct.
Math problems are simple to evaluate for correctness with the assistance of tools, however, general
questions are not simple to evaluate for correctness with the assistance of tools. EGoTs do not re-
quire splitting the problem. GoT is a useful architecture if the problem can be divided hierarchically,
however it is difficult to apply to general problems where the problem cannot be partitioned. ToT is a
similar implementation of BFS or A* in LLM, and it is difficult to solve with BFS or A* when there
are many elements to evaluate, such as number sorting. CoT-SC focuses on the answer, not the ra-
tionale, when voting for the final answer, which is efficient if the answer is a scalar. However, when
the answer is a list or vector, such as in experiments like sorting or frozen lake, it is not as applicable
as ToT. EGoT emphasize the importance of rationale and propose that it can have the same effect as
voting by aggregating rationales continuously, discarding incorrect rationales and allowing correct
rationales. The disadvantage of EGoT compared to other architectures is that it requires more time
and credits due to having many nodes. Since EGoT utilizes three nodes (Answering, Evaluation,
and Aggregate Rationale) to obtain one answer, it takes three times more time and credits to obtain
the same number of answers.

5.4 EGOT’S ADVANTAGES

EGoT has two main advantages. First, EGoT generalizes the problem by generating the prompts to
enhance the basis prompt. The basis prompt contains only the rule and rationale step of the problem,
and the child node enhances the prompt by appending only the parent’s rationale output. In all
experiments, EGoT performs high performance, showing that the enhancing prompt is effective.

Second, dynamic temperature control and requesting the score from LLM to increase the confidence
of the answer through the score and the probability of the corresponding token. Cosine Annealing is
used to control the temperature, therefore, it is possible to explore various answers and find various
rationales at the beginning. Obtaining a variety of rationales helps to understand the problems of the
problem and fix the prompt engineering easily. In the end, the low temperature allows us to focus
on more accurate answers rather than diversity.
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Table 3: Results of the Frozen Lake experiment (GPT-4o mini)

5 by 5 with 8 holes CoT ToT EGoT EGoT*
Accuracy 36% 28.1% 43% 41%
Number of Errors 1.33 1.38 1.13 1.14

5 by 5 with 10 holes
Accuracy 36.3% 27.6% 41.0% 34.0%
Number of Errors 1.28 1.54 1.15 1.43

Table 4: Results of the Frozen Lake experiment (GPT-4o)

5 by 5 with 8 holes CoT ToT EGoT EGoT*
Accuracy 50.8% 39.7% 58.8% 53.3%
Number of Errors 0.83 1.03 0.64 0.62

5 by 5 with 10 holes
Accuracy 51.7% 44.4% 59.0% 60.3%
Number of Errors 0.80 0.89 0.55 0.60

EGoT* does not include dynamic temperature control, leading to a continual exploration of diverse
solutions. On average, EGoT* performs similarly to EGoT when solving frozen lake problems.
However, EGoT is able to identify more accurate answer when LLM exhibits enhanced capabilities.

6 RELATED WORK

6.1 CHAINING ARCHITECTURE AND RATIONALE STEP

There are several Prompt engineering architectures, including CoT (Wei et al., 2022), CoT-SC
(Wang et al., 2023b), ToT (Long, 2023; Yao et al., 2024), EoT (Yin et al., 2023), and GoT (Besta
et al., 2024). Various methods of evolving CoT and voting on the results of CoT are proposed. There
are papers that emphasize the correct answer and others that emphasize the rationale. EGoT utilizes
to construct the architecture as known EOT and Determlr (Sun et al., 2024).

CoT emphasized the importance of rationale and CoT-SC, on the contrary, focused on the correct
answer rather than rationale. The importance of providing rationale steps in prompts is widely
recognized, and this leads to research on which rationale steps to include (Xu et al., 2024). Generally,
it summarizes the input (Zhang et al., 2023), separates the steps and gives the feedback in the input
(Yuan et al., 2024; Madaan et al., 2024), or provides an explanation of the input (Yugeswardeenoo
et al., 2024). Villarreal-Haro et al. (2024) and Yin et al. (2024) show that utilizing a rationale with
negative information and evaluating the rationale with probability increases the performance of the
rationale, and shows the validity of the EGoT rationale step.

6.2 TEMPERATURE CONTROL AND EVALUATION LLM RESPONSE

Temperature increases LLM’s response diversity, and temperature affects the performance of an-
swers. Zhu et al. (2024) shows the performance increase by adapting temperature with token con-
fidence. To evaluate LLM response, voting (Li et al., 2022; Du et al., 2024), debating (Liang et al.,
2023; Xiong et al., 2023) and scoring (Lee et al., 2024a) are utilized. Since evaluating LLM response
affects the performance of the architecture significantly, external tools (Gou et al., 2024) are used to
evaluate the confidence level of LLM response (Zhu et al., 2023). Motivated by these methods, we
utilize debating to obtain the answer by providing the rationale of the parent node to LLM to infer
the correct answer, and we perform self-evaluation on a single token by requesting the score from
LLM first instead of utilizing all the response in the EVALUATIONNODE. We defined confidence by
utilizing the score and the probability of the token responded by LLM to self evaluate.
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7 CONCLUSION

Prompt engineering is an area of study that is key to effectively utilizing LLM, maximizing the
advantage of LLM: the applicability of the model to a wide variety of problems without training.
While the Chain of Thought (CoT) approach enhanced the ability to reason in general situations,
recently various architectures evolved methodologies that are more effective for special cases.

We emphasize that LLM performance is already enough to enable automated solutions for intuitive
problems, and use the simple rationale approach of repeating the question entered when LLM prints
an answer because it is effective. Different people use different reasoning forms for the problem
and requirement, however, EGoT approach is generally applicable to a wide range of situations and
leads to improved performance. Our work reemphasizes the importance of rationale, and its concise
architecture suggests the possibility of prompt engineering for a wide variety of problems.

Improving the performance of the LLM is also important, obviously. We tried to compare chess
puzzles to verify the performance of EGoT architecture. However, despite adding a rule in the
prompts that no piece except the knight can jump, GPT-4o mini thinks it can jump over a piece in
the middle of a move. As a result, no architectures can find a move that captures the opponent’s
piece and checkmates, and the performance is not enough to compare results. Therefore, we hope
that prompt engineering techniques improve with LLM performance improvement.
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A APPENDIX

A.1 METHOD NODE PROMPT EXAMPLE (SORTING PROBLEM)

Human Message
<Goal>
- When a list of numbers is entered, answer the question about how to sort them.
- Answer the questions about how to evaluate whether the sorted numbers found by this method
is correct.
</Goal>

<Instruction>
- Answers the method based on keywords.
- The evaluation methods should be done by LLM, so only print heuristic answers.
- Answer without being abstract, only considering the method with the best performance.
</Instruction>
LLM Response
Method:
- QuickSort
Evaluation Method:
- Check if the sorted list is in ascending order by comparing each element with the next one.
- Count the number of inversions in the original list and the sorted list; the number of inversions
should decrease.
- Verify that the sorted list contains the same elements as the original list by checking for dupli-
cates and ensuring all elements are present.

Table 5: METHODNODE Prompt Example.

Table 5 is an example of a real prompt we used. The method and evaluation method may not be
effective, however, we used it to minimize human intervention.
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A.2 ANSWERING NODE PROMPT EXAMPLE (SORTING PROBLEM)

Human Message

. . .
[Provide the method and data to resolve the problem.]
. . .

<Rationale Step>
- Rationalize through 4 processes and must provide a step-by-step explanation in detail.
- First, accurately determine and write the all numbers in Input Data.
- Be sure to sorting the numbers and write down the rationale in detail using the information
provided in the previous step.
- Make sure you explain why the sorting is correct with rationale the entire process.
- Finally, answer the process of deducing the correct answer by synthesizing the previous process.
</Rationale Step>

. . .
[Provide the information from the upper nodes.]
. . .

{% if aggregate rationale %}
<Hint>
- Refer to the hint, but they are not always accurate, so verify the hint with checking the input
data and use them.
{% for idx in range(aggregate rationale|length) %}
- Hint {{ idx }}: {aggregate rationale[{{ idx }}]}{% endfor %}
</Hint>
{% endif %}
LLM Response
Answer:
- 6, 20, 20, 25, . . .
Answer Rationale:
- First, I will identify all the numbers in the input list, which are: [1348, 147, 1454, 1111, . . . Next,
using the QuickSort algorithm, I will sort this list in ascending order. Using QuickSort, I will
choose a pivot and divide the list into smaller sub-lists of numbers less than or greater than the
pivot, then further sort those sub-lists until the entire list is sorted. The resulting sorted list is: [6,
20, 20, 25 . . .

Table 6: ANSWERINGNODE Prompt Example. (Jinja2 template)

Table 6 is the prompt that requests the LLM to answer the question. Because we emphasize the
importance of rationale, we set four rationale steps and gather effective rationale. The top node does
not have aggregate rationale information, while the lower nodes have aggregate rationale information
received from the upper nodes. Therefore, the prompt utilizes jinja2 template and forwards this
information to the lower nodes at the bottom of the prompt with the Hint tag.
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A.3 EVALUATION NODE PROMPT EXAMPLE (SORTING PROBLEM)

Human Message

. . .
[Provide the question, the answer from ANSWERINGNODE, and request a score.]
. . .

<Evaluation Rationale Step>
- Rationalize through 4 processes and must provide a step-by-step explanation in detail.
- First, accurately determine and write the all the numbers in Input Data.
- Be sure to score each number included in the sorted data and write down the rationale in detail
using the information provided in the previous step.
- Make sure you explain why the sorting is correct with rationale the entire process.
- Finally, answer the process of deducing the correct answer by synthesizing the previous process.
</Evaluation Rationale Step>

<Evaluate Methods>
{% for idx in range(evaluate methods|length) %}
- {evaluate methods[{{ idx }}]}{% endfor %}
</Evaluate Methods>
LLM Response
Accuracy:
- 80
Evaluation Rationale:
. . . For instance, the number ‘680’ appears in the sorted data but is not present in the input data.
Additionally, the number ‘994’ is also present in the sorted data but is missing from the input.
. . . Therefore, while the majority of the numbers are sorted correctly, the presence of these dis-
crepancies warrants a score below 90.

Table 7: EVALUATIONNODE Prompt Example. (Jinja2 template)

Table 7 is the prompt that requests the LLM to evaluate the response. The Evaluation Rationale Step
is almost identical to table 6. However, only the content of step 2 changes slightly because it needs
to evaluate the score. By parsing the log probability of the number “80” in the LLM response, the
confidence is calculated as 0.607.
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A.4 AGGREGATE RATIONALE NODE PROMPT EXAMPLE (SORTING PROBLEM)

Human Message
<Input Rationales>
- Evaluation Rationale: {evaluation rationale}
- Answer Rationale: {answer rationale}
</Input Rationales>

<Instruction>
<Aggregate Rationale>
- Don’t print the successes or valid, just print the incorrectly missing numbers.
- Integrate the flaws that are problematic or invalid.
- Be sure to consider the previous two steps, aggregate the Input Rationales.
</Aggregate Rationale>
<Inaccurate Info>
- Inaccurate Info is information to recheck regarding the missing numbers, as it seems to be
inaccurate.
- If the number information in two rationales is different, the number should be included in the
inaccurate information.
</Inaccurate Info>
</Instruction>
LLM Response
Aggregate Rationale:
- The sorted list contains discrepancies, including numbers that are not present in the original
input data, such as ‘680’ and ‘994’. . . .
Inaccurate Info:
- The numbers ‘680’ and ‘994’ are present in the sorted data but are missing from the input list.
Additionally, the number ‘1496’ appears twice in the input list but is only represented once in
the sorted list, indicating a potential error in the sorting process.

Table 8: AGGREGATERATIONALENODE Prompt Example. (Jinja2 template)

Table 8 is the prompt that summarizes the rationale generated by the two nodes ANSWERINGNODE
and EVALUATIONNODE. AGGREGATERATIONALENODE provides the rationale information by
summarizing the key points. Additionally, it extracts negative information and propagates this to the
lower nodes. In table 7, LLM informs that 680 and 994 are present in the input, however, the sorted
result doesn’t contain these numbers, therefore table 8 aggregates this information. Misinformation
like 1496 also propagates, though the misinformation gradually vanishes as the graph progresses.
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