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Abstract

Anonymity in court rulings is a critical aspect001
of privacy protection in the European Union002
and Switzerland but with the advent of LLMs,003
concerns about large-scale re-identification of004
anonymized persons are growing. In accor-005
dance with the Federal Supreme Court of006
Switzerland (FSCS), we study re-identification007
risks using actual legal data. Following the ini-008
tial experiment, we constructed an anonymized009
Wikipedia dataset as a more rigorous testing010
ground to further investigate the findings. In011
addition to the datasets, we also introduce012
new metrics to measure performance. We013
systematically analyze the factors that influ-014
ence successful re-identifications, identifying015
model size, input length, and instruction tuning016
among the most critical determinants. Despite017
high re-identification rates on Wikipedia, even018
the best LLMs struggled with court decisions.019
We demonstrate that for now, the risk of re-020
identifications using LLMs is minimal in the021
vast majority of cases. We hope that our sys-022
tem can help enhance the confidence in the023
security of anonymized decisions, thus leading024
the courts to publish more decisions.025

1 Introduction026

The swift advancements in Natural Language Pro-027

cessing (NLP) (Vaswani et al., 2017; Brown et al.,028

2020; Ouyang et al., 2022; Khurana et al., 2023)029

have introduced new challenges to the security of030

traditional legal processes (Tsarapatsanis and Ale-031

tras, 2021). As public access to data increases032

in tandem with digital advancements (Katz et al.,033

2023; EUGH, 2018; Lorenz, 2017), the potential034

risks associated with data disclosure have become035

increasingly significant. Larger and more capable036

Language Models (LMs), more powerful vector037

stores and potent embeddings together have the ca-038

pacity to extract unintended information from pub-039

lic data (Borgeaud et al., 2022; Carlini et al., 2021;040

Figure 1: Re-identification framework

Roberts et al., 2020; AlKhamissi et al., 2022; Ip- 041

polito et al., 2023; Carlini et al., 2023). This poses 042

a security risk, as identifying individuals in legal 043

proceedings can lead to privacy breaches, leading 044

to inequity in insurance, enabling extortion, and 045

even risking public defamation. 046

Over the past decade, at least 18 requests for 047

name changes following re-identification of con- 048

victs have been registered in Switzerland, indicat- 049

ing existing issues due to imprudent media cov- 050

erage (Stückelberger et al., 2021). The number 051

of cases involving unlawful disclosure of personal 052

information is likely to rise. Therefore, the preven- 053

tion of re-identification is critical not only for the 054

protection of the accused, but also for the courts. 055

Munz (2022) even suggests that the state could 056

be held accountable for non-monetary damages 057

to judged persons, underscoring the urgent need 058

for courts to address the re-identification issue 059

proactively. Vokinger and Mühlematter (2019) and 060

Niklaus et al. (2023a) have shown that companies 061

can be re-identified by simply extracting informa- 062

tion from the court decisions with regular expres- 063

sions and matching it with public databases. 064

We see strong parallels between re-identification 065

and penetration testing, where cyber-security ex- 066

perts attempt to find and exploit vulnerabilities in 067

a computer system (Altulaihan et al., 2023). To 068

the best of our knowledge, we are the first to study 069

the re-identification task of anonymized persons 070
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from court decisions. We provide a framework071

for anonymization teams in courts and researchers072

alike to battle-test anonymizations of cases (illus-073

trated in Figure 1).074

In this work, we investigate to what extent Large075

Language Models (LLMs) like LLaMA-2, GPT-4076

or BLOOM (Touvron et al., 2023a; OpenAI, 2023;077

Scao et al., 2023) can re-identify individuals in078

Swiss court decisions. Our main findings reveal079

that while top models identify persons from masked080

Wikipedia articles, they struggle with the harder081

task of court decision re-identification. Only in082

cases we manually re-identified in a painstaking083

process and thus know re-identification is possible,084

and using a highly curated set of manually identi-085

fied relevant news articles, they are capable of iden-086

tifying the anonymized defendants from cases. Fi-087

nally, in detailed ablations, we identify three main088

factors influencing the re-identification risk: input089

length, model size, and instruction tuning.090

With our research, we are testing whether af-091

fected parties in rulings could still be identified092

despite anonymization. Thus the results from our093

research can guide legal entities, data privacy advo-094

cates, and NLP practitioners in devising strategies095

to mitigate potential re-identification risks. This096

is relevant beyond Switzerland, as anonymization097

of court rulings became mandatory across the EU098

with the introduction of the GDPR (See Appendix099

F.4). The German Supreme Court even ruled that100

all rulings should be anonymized and published.101

However, in 2021 barely one percent of rulings102

were being published (Hamann, 2021) (See Ap-103

pendix F.4). This may be partially caused by fears104

that publications are insufficiently anonymized and105

courts could be held accountable. We hope that106

our framework will be used to ensure privacy for107

anonymized documents and will therefore lead to108

more cases being published across Europe. In the109

spirit of open science, we release all datasets and110

code for reproducibility with permissive licenses.111

Main Research Questions112

This study addresses three research questions:113

RQ1: Performance of LLMs on re-114

identifications: How effectively can various LLMs115

re-identify masked persons within Wikipedia pages116

and in Swiss court rulings?117

RQ2: Influential Factors: What are the key118

factors that influence the performance of LLMs in119

re-identification tasks?120

RQ3: Privacy Implications: How will evolving121

LLM capabilities and their use in re-identifications 122

affect the preservation of privacy in anonymized 123

court rulings in Switzerland? 124

By addressing these questions, we aim to high- 125

light LLMs’ capabilities and limitations in re- 126

identification tasks and enhance understanding of 127

required privacy considerations in the ongoing dig- 128

ital transformation of legal practice. 129

Contributions 130

The contributions of this paper are threefold: 131

First, we curate and publish a unique, large-scale 132

Wikipedia dataset with masked entities. Second, 133

we introduce new metrics to evaluate performance 134

of re-identifications of persons within texts. Using 135

those metrics, we provide a thorough evaluation 136

and benchmark of various state-of-the-art LLMs in 137

the context of re-identifying masked entities within 138

Wikipedia entries and Swiss court rulings. This 139

includes an exploration of the most critical factors 140

influencing model performance. Third, we under- 141

score and investigate the potential privacy implica- 142

tions of using LLMs for re-identification tasks. 143

2 Related Work 144

Chen et al. (2017) used LMs for machine reading to 145

answer open domain questions, providing models 146

with necessary context from Wikipedia articles for 147

knowledge extraction. 148

LMs as Knowledge Bases With the advent of 149

the transformer (Vaswani et al., 2017), more power- 150

ful models became able to store information within 151

their parameters (Petroni et al., 2019; AlKhamissi 152

et al., 2022) and the idea of using models directly 153

without additional context became viable. Petroni 154

et al. (2019) found that LMs can be used as knowl- 155

edge bases, drawing information from their training 156

set to answer open domain questions. Roberts et al. 157

(2020) went a step further and evaluated different 158

sizes of T5 models (Raffel et al., 2020) showing 159

that larger models can store more information, but 160

unlike other Question Answering (QA) systems are 161

not able to show where facts come from. This is 162

especially a problem when models hallucinate an 163

answer when they are unsure, as correctness of a 164

answer is hard to factually check without sources 165

(Petroni et al., 2019). With Lewis et al. (2020) 166

finding that good results on open domain question 167

answering heavily depends on the overlap of ques- 168

tions and training data, Wang et al. (2021) showed 169

that even without overlapping data, knowledge re- 170
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trieval is possible, although with much lower perfor-171

mance. Wang et al. (2021) discovered that knowl-172

edge exists in model parameters but is not always173

retrieved effectively. They introduced QA-bridge-174

tune, a method enabling more reliable information175

retrieval from model parameters.176

Retrieval Augmented Generation To improve177

reliability of results even further (Lewis et al., 2021)178

introduced the combination of pretrained models179

and a dense vector index of Wikipedia, finding180

that QA tasks are answered with more specific181

and factual knowledge than parametric models182

alone, while hallucinations are reduced when using183

Retrieval Augmented Generation (RAG) (Shuster184

et al., 2021). Recent research (Kassner et al., 2021)185

shows that multilingual models excel in knowledge186

retrieval tasks, particularly when questions match187

the language of the training data. However, inter-188

language retrieval underperforms, indicating lower189

performance for questions in a different language190

than the data source (Jiang et al., 2020).191

Re-Identification Studies In re-identification192

within court rulings, Vokinger and Mühlemat-193

ter (2019) linked medical keywords from public194

sources to those in court rulings, identifying per-195

sons through associations with drugs and medicine.196

This successful partial re-identification suggests197

language models might achieve similar results.198

Niklaus et al. (2023a) used regular expressions199

to extract project ids from court decisions which200

they matched with publicly available data from201

the simap database of public procurement tenders.202

Although both works manage to re-identify compa-203

nies from court decisions, they are limited to very204

specific attack vectors. In this work, we study the205

risk of large scale general attacks using LLMs.206

3 Collaboration with the Supreme Court207

To ensure responsible research and maximize down-208

stream usability, we collaborated closely with the209

Federal Supreme Court of Switzerland (FSCS).210

The FSCS currently uses regular expressions and a211

BERT-based (Devlin et al., 2018) token classifier212

to provide suggestions to human anonymizers for213

what entities should be masked. In a prior project,214

we improved their system’s recall on anonymiza-215

tion tokens from 83% to 93% by pre-training a216

legal specific model. In this work, we partner with217

their anonymization team for testing.218

4 Datasets 219

To perform our case study, we select Switzerland 220

for its richness in published data – both newspapers 221

and court decisions – and its high privacy standards. 222

4.1 Court Decisions Dataset 223

We used the Swiss caselaw corpus by Rasiah et al. 224

(2023) to benchmark re-identification on court rul- 225

ings. The FSCS likely rules the most publicised 226

cases as the final body of appeal in Switzerland 227

and offered to validate re-identifications in a lim- 228

ited fashion, leading us to discard cases from other 229

courts. This decision aligned well with the fact that 230

federal court cases occur more often in the news, el- 231

evating the likelihood of potential re-identifications. 232

To make sure that all evaluated models have been 233

trained on relevant data, we only used cases from 234

2019, resulting in approx. 8K rulings. 235

4.2 Legal-News Linkage Dataset 236

The Court Decisions dataset offers large scale, 237

but no ground truth (i.e., we do not know if a 238

re-identification is at all possible). For this rea- 239

son, we created the Legal-News Linkage Dataset, 240

where we have high certainty of the anonymized 241

person. We created this dataset by manually link- 242

ing court rulings and newspaper articles using key- 243

words like the file number of the court decision 244

(e.g., 4A_375/2021) or the penalty (e.g., 10 years 245

in prison). It was not possible to construct a system- 246

atic process to create this dataset at scale because 247

of individual idiosyncrasies of each decision. The 248

rarity of such cases in Swiss news and the intensive 249

manual effort involved limited our dataset to these 250

seven instances. In an iterative process we accu- 251

mulated roughly 100 related newspaper articles per 252

court decision by searching for information found 253

in the seed newspaper articles, such as the person’s 254

name. This accumulation was necessary because 255

there are multiple newspaper articles for each court 256

case mentioning different aspects of the person. 257

One article is not enough; only in aggregation, it 258

is possible to perform the re-identification (illus- 259

trated in Figure 2). For cost reasons we just added 260

1000 unrelated newspaper articles instead of the 261

full database. To maintain privacy, we do not pub- 262

lish this dataset. The news articles are proprietary 263

and were sourced from swissdox.ch. 264
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Figure 2: Simplified example of content in newspaper
articles. Note that only using all three articles, the re-
identification is made possible.

4.3 Wikipedia Dataset265

The Court Decisions dataset is large and realistic266

but offers no ground truth. The Legal-News Link-267

age dataset is realistic and offers ground truth but is268

small. With the Wikipedia dataset, offering ground269

truth at scale at the expense of realism, we can270

study the effect of various factors on model’s re-271

identification performance (see Section 7.2). We272

randomly chose 10K from 69K examples to mirror273

the Court Decisions dataset’s size. Construction in-274

volved three steps: 1) We filtered Wikipedia pages275

marked as persons by their length (> 4K characters)276

as a proxy for importance/prevalence, 2) we stored277

paraphrased Wikipedia pages alongside original278

content to assess model reliance on exact training279

text phrasing (Carlini et al., 2021), and 3) we re-280

placed all occurrences of the person’s name with281

a mask token. Further details on the construction282

process are in Appendix E.2.283

5 Metrics284

Re-identification of persons is a known problem for285

imaging (Karanam et al., 2018), but comparable286

metrics for re-identifications within texts are, to287

the best of our knowledge, not established. Unlike288

memorization verification (Carlini et al., 2023) the289

re-identification of persons requires the model to be290

able to connect knowledge over multiple datapoints291

(see Section 4.2). This means that information does292

not always exist in a single knowledge triple, but293

is connected over several ones or requires several294

ones to lead to a re-identification. To allow the295

quantification of produced results, we introduce296

the following four novel metrics to measure re-297

identification performance of a person in a text:298

Partial Name Match Score (PNMS) evaluates299

predictions against a regular expression requiring300

any part of a persons’s name to be a match for the301

prediction to be considered as correct. For exam-302

ple, "Max Orwell" would match "George Orwell".303

This allows for matches with predictions that only 304

contain a part of the name. Manual experimen- 305

tation suggested that persons can be re-identified 306

by using just a part of their name. The predicted 307

name might be near exact, hence the allowance for 308

partial matches. The metric accepts n predictions 309

and deems any collection of predictions correct if 310

at least one of the n predictions is correct. 311

Normalized Levenshtein Distance (NLD) is 312

introduced to assess the precision of predictions 313

deemed correct by PNMS. Given that there is no 314

clear-cut distinction between correct and incorrect, 315

using the Levenshtein distance provides a more 316

nuanced perspective on how close the predictions 317

are to the target. For the top five predictions, the 318

smallest distance of all five was used. Using the 319

best distance of n given predictions, the distance 320

was normalized against the length of the target 321

name to avoid distortions in results. As example, 322

the distance between "Alice Cooper" and "Alina 323

Cooper" would be two, and with the normalization 324

by len("Alina Cooper") applied result in 0.16. 325

Last Name Match Score (LNMS) works the 326

same way as PNMS, but only the last name is 327

considered. The last name is defined as the last 328

whitespace-separated part of a full name string. Par- 329

tial matches are accounted as correct as well mean- 330

ing that the name "Mill" would also be counted 331

as correct if the target was "Miller". This overlap 332

might cause a very slight imprecision but does not 333

lead to problems in evaluations as all models have 334

the same advantage. 335

Weighted Partial Name Match Score 336

(W-PNMS) blends PNMS and the LNMS using a 337

weighted sum, emphasizing the significance of last 338

names for re-identification. Let α = 0.35 be the 339

weight for PNMS. Thus, W-PNMS is calculated 340

as W-PNMS = α× PNMS + (1− α)× LNMS. 341

6 Experimental Setup 342

We ran models using the HuggingFace Transform- 343

ers library on two 80GB NVIDIA A100 GPUs, us- 344

ing default model configurations in 8-bit precision. 345

For efficiency, we only used the first 1K charac- 346

ters of each Wikipedia page. For court rulings, we 347

extended input length to 10K characters, maximiz- 348

ing model sequence lengths. Sequences exceeding 349

maximum input length were automatically trun- 350

cated. We used temperature 1 and considered the 351

top 5 predictions. See Figure 9 for a high level 352

overview of our code architecture. 353
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6.1 Prompt Engineering354

The effectiveness of model responses is signifi-355

cantly influenced by the design of input prompts356

(Liu et al., 2022; Wei et al., 2023). Various mod-357

els require distinct prompting strategies to perform358

optimally. In this study, we tailored prompts for359

each model, but without extensive optimization,360

ensuring a consistent effort across all models. Ex-361

perimental results indicated that once a prompt suc-362

cessfully communicated the re-identification task363

to a model, further refinement of the prompt did364

not substantially improve any metrics.1365

6.2 Retrieval Augmented Generation366

To estimate how well an LLM could use informa-367

tion from news articles without training one we368

used RAG (Lewis et al., 2021): From the 1.7K369

news articles gathered for the legal-news linkage370

dataset, we split texts into 1K-character chunks, em-371

bedded them with OpenAI’s text-embedding-ada-372

002, and stored the embeddings in a Chroma vector373

database (https://www.trychroma.com/).374

To re-identify a ruling, we fed it to GPT-3.5-turbo-375

16k, prompting it to summarize the decision, em-376

phasizing facts in news articles and retaining key377

details, including masked entities.378

We then embedded this shorter version the same379

way as the articles and matched against the stored380

article chunks using the similarity search provided381

by Chroma. The top five retrieved documents to-382

gether with the shortened version of the ruling were383

given to GPT-4 with the prompt to use the infor-384

mation given in the documents to re-identify the385

person referred to as <mask>. This method skips386

the large training effort required to store knowledge387

in LLMs while still demonstrating the capability of388

LLMs to comprehend multi-hop information from389

news articles and apply it to re-identification.390

6.3 Evaluated Models391

For the rulings dataset, we utilized models that392

were specifically trained on news articles and court393

rulings, alongside the two multilingual models,394

GPT-4 and mT0. The selection of these mod-395

els, as detailed in Table 3, was informed by their396

pre-training on relevant news content. For the397

Wikipedia dataset, we used various models with398

different pre-training datasets and architectures.399

By using a large and diverse selection of models,400

prominent factors for good performance can be401

1Prompt examples in Appendix F.2

found more easily and results are more reliable. A 402

full list is available in Table 3. All models except 403

the commercial models ChatGPT and GPT-4 are 404

publicly available on the HuggingFace Hub. 405

6.4 Baselines 406

We propose two baselines for easier interpretation: 407

Random Name Guessing Baseline predicts for 408

every example five first and last names paired up 409

to full names at random. This gives a good im- 410

pression on predictive performance when models 411

understand the task or at least guess while not ac- 412

tually knowing the entities name. Names were 413

chosen from a GPT-3.5-generated list of 50 names. 414

Majority Name Guessing Baseline predicts the 415

top five common first and last names for the En- 416

glish language, with the names being paired up 417

to full names in their order of commonness. First 418

names were sourced from the US Social Security 419

Administration2 and last names from Wiktionary3. 420

7 Results 421

7.1 Performance on Court Rulings 422

Re-identifications on Rulings Test Set We 423

show results in Figure 3. Among all evaluated 424

models, only legal_xlm_roberta (561M) and le- 425

gal_swiss_roberta (561M)4 re-identified a single 426

person from 7673 rulings. As discussed later in 427

Section 7.2, this aligns with expectations since eval- 428

uated models, excluding GPT-4 and mT0, do not 429

meet key factors for effective re-identification: in- 430

put length, model size, and instruction tuning. De- 431

spite their smaller size and lack of instruction tun- 432

ing, these models made some reasonable guesses. 433

Conversely, larger multilingual models like GPT-4 434

and mT0 failed to give credible guesses. We tested 435

GPT-4 on the top 50 most reasonably predicted ex- 436

amples from other models. Potentially reflecting 437

OpenAI’s commitment to privacy alignment, GPT- 438

4 consistently indicated that the person was not 439

present in the text, refraining from leaking training 440

data or making speculative guesses. mT0, trained 441

on mC4 likely containing Swiss news articles, un- 442

derperformed despite strong performance on the 443

Wikipedia dataset, treating the text as cloze test 444

instead of attempting to guess names. While mT0’s 445

2https://www.ssa.gov/oact/babynames/
decades/century.html

3https://en.wiktionary.org/wiki/
Appendix:English_surnames_(England_and_
Wales)

4Model details in Appendix 3
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Figure 3: Prediction categories on rulings dataset.
"good" are the only possibly correct predictions.

predictions lacked meaningful output, the success446

of smaller models to predict some believable spec-447

ulations suggests they might not have been relying448

solely on chance but made informed guesses. Most449

predictions corresponded to words already present450

in the ruling or were not a name. Excluding the451

few viable predictions (titled good), the others con-452

sisted of empty predictions or single letters.453

Re-identification with Retrieval Applying the454

same models on the legal-news linkage dataset,455

the results were not better even though for this456

small dataset we had the confirmation that all rul-457

ings were re-identifiable with the information in458

the training data. None of the models were able to459

predict any person correctly. However, using the460

RAG approach worked much better. When passing461

the relevant news articles and the corresponding462

court ruling to the context, GPT-3.5-turbo-16k was463

able to identify 4 out of 7 entities, with the full464

name for one example. GPT-4 performed even465

better, correctly identifying 5 out of 7, with the466

full name for one example. Interestingly, the two467

cases which were easiest for us humans to identify468

were not identified by either model. This result469

not only suggests that re-identification by training470

on enough news articles could be possible, but that471

models powerful enough to understand the task and472

the given information are capable of using not only473

their training data information, but simultaneously474

ingest relevant additional information. It could475

even be possible to re-identify decisions without476

any pre-training by ingesting the full news dataset477

and embed information on a large scale, leading to478

large scale re-identifications in the worst case.479

7.2 Factors for Re-identification on Wikipedia480

Performance in re-identification tasks varied sig-481

nificantly across models (see Table 4 for the full482

results). Some larger models such as Flan_T5 or483

mT0 reach scores above 0.3 or for GPT-4 even484

Model Size [B] PNMS ↑ NLD ↓ W-PNMS ↑

GPT-4 1800 0.71 0.17 0.65
GPT-3.5 175 0.52 0.23 0.46
mT0 13 0.37 0.42 0.31
Flan_T5 11 0.37 0.45 0.30
incite 3 0.37 0.53 0.30
Flan_T5 3 0.35 0.48 0.29
BLOOMZ 7.1 0.34 0.45 0.29
T0 11 0.34 0.45 0.28

Table 1: Models w/ W-PNMS >= 0.28 on Wikipedia
dataset

Data Config PNMS ↑ NLD ↓ LNMS ↑ W-PNMS ↑

input constrained to 1000 characters
original 0.35±0.04 0.52±0.05 0.25±0.03 0.29±0.03

paraphrased 0.33±0.03 0.48±0.03 0.24±0.02 0.27±0.02

input constrained to eight sentences
original 0.33±0.05 0.57±0.11 0.22±0.04 0.26±0.05

paraphrased 0.28±0.03 0.51±0.04 0.19±0.03 0.22±0.03

Table 2: Mean and std over top performers
(incite_instruct, Flan_T5, T0, BLOOMZ, mT0)

above 0.6 for W-PNMS with very low NLD while 485

models like Pythia or Cerebras-GPT failed com- 486

pletely, below the guessing baseline even. Table 1 487

lists the top performers on the Wikipedia dataset. 488

Original vs paraphrased In Table 2 we com- 489

pare the effect of paraphrases on re-identification 490

performance. We find models to perform slightly 491

better on the original text, both when we constrain 492

the input by the number of characters and by a num- 493

ber of sentences (to ensure that the same amount of 494

information is given). Note that the average para- 495

phrased sentence is significantly shorter than the 496

average original sentence (95 vs 141 characters, 497

see Appendix F.1). We see two possible reasons: 498

1) information is lost in paraphrasing due to shorter 499

outputs, and 2) it is harder for the models to retrieve 500

the information because of changed surface form 501

compared to the training data. To simulate a more 502

realistic scenario closer to re-identifying court de- 503

cisions, we use the paraphrased texts henceforth. 504

Model Size Comparing differently sized ver- 505

sions of a model as shown in Figure 4, we observed 506

a clear performance boost as model size increases, 507

consistent with prior research suggesting better 508

knowledge retrieval with larger models (Roberts 509

et al., 2020). Performance typically improves 510

significantly when transitioning from smaller to 511

medium-sized models, though the gains diminish 512

for larger models. While not all models performed 513

the same for the larger model sizes, the general per- 514
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Figure 4: Re-identification score by parameter count

Figure 5: Re-Identification score across input lengths

formance progression indicates that performance515

gains stagnate when models are scaled beyond their516

sweet spot. On average this turning point appears517

to be at around 3B parameters but varies for differ-518

ent models with some models still reaching better519

performances for much larger sizes. Models with520

low performance show only a minor improvement521

with increased size. The small increase might be522

due to the model understanding the task better but523

still not being able to retrieve the requested name,524

but by chance giving more diverse answers and525

coincidentally matching some predictions.526

Input length Figure 5 reveals that performance527

improves with increasing input size, though the528

degree of improvement varies among models. For529

most models, performance increased strongly un-530

til 2K characters (approx. 500 tokens) and then531

flattened. The model roberta_squad which is only532

355M parameters but fine-tuned on a QA dataset533

was able to gain a strong increase in performance534

nearly matching the top performers.535

Instruction tuning As shown in Figure 6, in-536

struction tuned models perform much better at537

re-identification. Even though both versions of538

each model were pretrained on the same datasets539

and contain the same knowledge, the instruction540

tuned models were far more likely to understand541

Figure 6: Base vs. instruction tuned performance

Figure 7: Decoding strategies of top performing models

the task and retrieve the correct name, which is con- 542

sistent with previous research (Longpre et al., 2023; 543

Ouyang et al., 2022; Muennighoff et al., 2023). 544

Decoding strategies We see in Figure 7 that 545

overall the variation in performance across decod- 546

ing strategies is small. Greedy decoding performed 547

much worse, likely because it naturally only con- 548

siders the top-1 prediction. Performance varies 549

most for beam search: Incite_instruct performed 550

worst, while BLOOMZ achieved its best results. 551

Looking at the precision of decisions, the NLD is 552

better for predictions produced with beam search, 553

meaning beam search can deliver more precise re- 554

identifications, while top-k might find generally 555

more likely names, but not necessarily the exact 556

full name. With two out of three evaluated models 557

performing best with beam search and NLD be- 558

ing best with this sampling strategy we used beam 559

search for all other experiments. 560

Re-Identification methods In Figure 8 we com- 561

pare fill mask, QA and text generation models 562

across model sizes. We excluded text genera- 563

tion models below the random name guessing 564

baseline because they failed to follow the instruc- 565

tions (i.e., Pythia, Cerebras-GPT, Falcon, Falcon- 566

Instruct, GPT-J). We find models performing the 567

fill mask and QA tasks to underperform the text 568

generation models across the board, and even at the 569

same model size. While performance increases for 570

models performing fill mask, the opposite happens 571

7



Figure 8: Relation of re-identification score to model
size across model types

for models doing QA when scaling up model size.572

Given that most large-scale models are text gen-573

eration models, they tend to outperform fill mask574

and QA counterparts. The improved performance575

of these models can be attributed to their ability to576

retain more information, a characteristic inherent577

to larger models (Roberts et al., 2020).578

8 Conclusions and Future Work579

8.1 Answering the Main Research Questions580

RQ1: Performance of LLMs on re-581

identifications: How effectively can various LLMs582

re-identify masked persons within Wikipedia pages583

and in Swiss court rulings?584

We find that vanilla LLMs can not re-identify585

individuals in court rulings. Additionally, relatively586

small models trained on news articles and court587

rulings respectively can barely guess credible588

names. Finally, by augmenting strong LLMs with589

retrieval on a manually curated dataset, a small590

subset of individuals can be re-identified.591

RQ2: Influential factors: What are the key fac-592

tors that influence the performance of LLMs in593

re-identification tasks?594

We identified three influential factors affecting the595

performance of LLMs in re-identification tasks:596

model size, input length, and instruction tuning.597

RQ3: Privacy Implications: How will evolving598

LLM capabilities and their use in re-identifications599

affect the preservation of privacy in anonymized600

court rulings in Switzerland?601

We demonstrate that, for now, significant privacy602

breaches using LLMs on a large scale are unattain-603

able without considerable resources. Yet, the604

Wikipedia benchmark revealed that larger models,605

when exposed to adequate pre-training information,606

can proficiently identify anonymized persons. As607

LLMs get more powerful and integrated with tools608

like retrieval (Lewis et al., 2021), coding and ar-609

bitrary API access (Schick et al., 2023), we fear 610

heightened re-identification risks. Therefore, we 611

urge courts to perform checks like outlined in our 612

study on a regular basis before publication to safe- 613

guard privacy. To set an example, we are in close 614

contact with the FSCS to transfer insights into their 615

anonymization practice. Risks of the courts not 616

having sufficient access to trained personnel with 617

the necessary skills for such testing remain. 618

8.2 Conclusions 619

Similar to penetration testing in cyber-security, 620

we battle-tested the anonymization of Swiss court 621

cases using LLMs. Currently, the risk of vanilla 622

LLMs re-identifying individuals in Swiss court rul- 623

ings is limited. However, if a malicious actor were 624

to invest significant resources by pre-training on rel- 625

evant data and augmenting the LLM with retrieval, 626

we fear increased re-identification risk. We identi- 627

fied three major factors influencing re-identification 628

performance: the model’s size, input length, and in- 629

struction tuning. As technology progresses, the im- 630

plications for privacy become more pronounced. It 631

is imperative to tread cautiously to ensure sanctity 632

of privacy in court cases remains uncompromised. 633

8.3 Future Work 634

Liu et al. (2023) showed that models extract in- 635

formation better if it is located at the start or end 636

of large contexts. For the large models which can 637

ingest full court rulings, this could mean that or- 638

dering parts of the rulings by their relevancy for 639

re-identifications could improve chances for suc- 640

cessful re-identifications. Further research is re- 641

quired to analyze which parts of rulings are the 642

most relevant for re-identification. Specific pre- 643

training of large models on relevant data and so- 644

phisticated prompting techniques such as chain 645

of thought (Wei et al., 2023) may increase re- 646

identification risk. In this work, we only considered 647

information in textual form, either embedded in the 648

weights by pretraining or put into the context with 649

retrieval. Future work may also investigate the use 650

of more structured information, such as structured 651

databases or knowledge graphs. We believe the 652

Swiss court system serves as an ideal candidate for 653

studying re-identification due to the high privacy 654

standards and data richness both in newspapers 655

and published court decisions. In future work, we 656

would like to extend our analysis to other countries 657

with similar concerns, such as many from the EU. 658
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Ethics and Broader Impact659

Abundant publication of court rulings is crucial for660

judicial accountability and thus for a functioning661

democratic state. Additionally, it greatly facilitates662

legal research by removing barriers to case docu-663

ments access. However, courts hesitate to publish664

rulings, fearing repercussions due to possible pri-665

vacy breaches. Solid automated anonymization is666

key for courts publishing decisions more plentiful,667

faster, and regularly. Strong re-identification meth-668

ods can be a valuable tool to stress-test anonymiza-669

tion systems in the absence of formal guarantees670

of security. However, re-identification techniques,671

akin to penetration testing in security, are dual-use672

technologies by nature and thus pose a certain risk673

if misused. Fortunately, our findings indicate that674

without a significant investment of resources and675

expertise, large scale re-identification using LLMs676

is currently not feasible.677

Limitations678

The metrics employed to gauge the re-identification679

risk present inherent ambiguities. By comparing680

exact name matches and assessing the general simi-681

larity to the target name, we can infer the likelihood682

of manual re-identification. Yet, for lesser-known683

individuals or those with widespread names (such684

as the common Swiss first-name Simon or last-685

name Schmid), a generic first name paired with686

a surname might be insufficient for precise iden-687

tification. Thus, manual scrutiny remains neces-688

sary to distill the correct person from the model’s689

suggested candidates. Essentially, while models690

scoring highly on our metrics can suggest potential691

identities, they might not always identify a person692

with certainty, especially when common names or693

lesser-known individuals are involved. In this work,694

we always checked possible re-identifications with695

high scores manually and therefore recommend696

this to future researchers and practitioners.697

Additional to our ablations on input length,698

instruction tuning, decoding strategies, re-699

identification methods, paraphrasing, and model700

size, we would like to investigate the effect of701

tokenization on re-identification risk. The hidden702

challenge here is that constructing a controlled703

experiment to isolate the effect of tokenization704

requires access to models pretrained with identical705

architectures but varying vocabularies/tokenizers,706

which, to our knowledge, are not available (neither707

in LLAMA, BLOOMZ, Flan-T5, etc.). This,708

together with the enormous costs of pretraining 709

such models, limited the feasibility of such an 710

investigation in this work. 711
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A Technical Specifications1154

To run experiments with smaller models we used1155

machines with 1024GB Memory and a NVIDIA1156

GeForce 4090. For larger models we used the com-1157

puting server of our research institute with 180GB1158

Memory and two NVIDIA A100 80GB graphics1159

card over NVMe. All models were run with bit-1160

sandbytes (Dettmers et al., 2022) 8bit quantization.1161

A.1 Hyperparameters1162

We did not tune any hyperparameters in this work1163

and used default settings when not specifically1164

stated otherwise. To optimize GPU usage we set1165

batch sizes as large as possible, preferring multi-1166

ples of 64 as suggested by NVIDIA. Exact batch1167

sizes for all models are documented in the code1168

base accompanying this work.1169

A.2 Repeatability and Variance1170

To verify the consistency of our results, given that1171

each model was run only once per experiment, we1172

conducted a brief test using mT0 with the same1173

configuration across three separate runs without1174

setting specific seeds. All results were identical,1175

reinforcing our decision to conduct single runs for1176

each model and configuration.1177

A.3 Code1178

All code for experiments, evaluation and plots is1179

available at our official Github repository: Link1180

redacted for anonymous submission1181

See Figure 9 for a high level overview of the1182

code architecture.1183

B Use of AI assistants1184

We used ChatGPT and Grammarly for improving1185

the grammar and style of our writing. We used1186

GitHub CoPilot for programming assistance.1187

C Error Analysis1188

For the court rulings, many predictions were sin-1189

gle letters like X.__, common in rulings and often1190

the correct content before the <mask> insertion.1191

For mask-filling models, this is expected, hinting1192

the name might be unknown or overshadowed by1193

frequent fillers. Notably, GPT-4’s dominant predic-1194

tion was "I don’t know," despite clear instructions1195

to guess a name. We theorize that OpenAI’s recent1196

modifications, aimed at reducing GPT-4’s tendency1197

to make things up, might also deter it from making1198

educated guesses when uncertain.1199

On Wikipedia, the majority of incorrect predic- 1200

tions were blank tokens such as newline characters 1201

or the mask token itself. Notably, smaller versions 1202

of T5 frequently predicted "True" or "False". In 1203

contrast, the largest Cerebras-GPT seemed to treat 1204

the text as a cloze test, often predicting "____," 1205

suggesting the text is a fill-in-the-blank. 1206

Enhancements in performance could potentially 1207

be achieved by expanding prompt tuning to prompt 1208

models to make an educated guess if they do not 1209

know the correct answer, possibly reducing unus- 1210

able tokens. It is likely that some models might 1211

have performed better if more time were invested 1212

in prompt engineering, but in fairness all models 1213

were tuned with a maximum of five tries. 1214

C.1 Analyzing Model Predictions in Rulings 1215

Analysis of predictions showed that a significant 1216

portion of predictions for rulings are names or 1217

terms already present in the ruling itself. On closer 1218

examination, many of these predictions turned out 1219

to be common legal terms or frequently mentioned 1220

law firm names. Tokens resembling anonymized 1221

entities, like "A.___", fall into this category as well. 1222

While models occasionally guessed the anonymiza- 1223

tion token (<mask>) or single/double letters, the 1224

latter was less common. For terms not occurring 1225

in the text but representing full words, we used 1226

the name database by Remy (2021) to detect any 1227

possible names. With the largest part of words not 1228

categorized as names, only a small portion of pre- 1229

dictions was classified as possible re-identifications. 1230

Our evaluation largely relied on fill mask models 1231

because no QA or text generation models were 1232

specifically designed for Swiss legal texts or news. 1233

D In Depth Experimental Setup 1234

Wikipedia pages that did not contain a mask within 1235

the first 1k characters in one of the configurations 1236

(original, paraphrased) were omitted. This led to 1237

5% of examples being omitted in the worst case, 1238

leaving at least 9.5K examples for any model. For 1239

the court rulings the number of omitted pages was 1240

915 of 7673, or 13,5%. Only GPT-3.5 and GPT-4 1241

were able to ingest the full number of examples 1242

(see Table 3 for details). This is most likely due 1243

to the fact that some pages contain a lot of spe- 1244

cial characters from different languages, requiring 1245

many tokens for tokenizers with smaller vocabu- 1246

lary sizes, while tokenizers with large vocabularies 1247

can still tokenize very obscure terms into single 1248
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Figure 9: High level overview of the code architecture.

tokens rather than requiring a token per character.1249

Using an exact number of characters significantly1250

simplified processing and facilitated more direct1251

model comparisons, even when the models’ max-1252

imum input token size varied from 512 to 40961253

tokens. This is due to the fact that different tokeniz-1254

ers have different vocabulary sizes allowing models1255

with larger tokenizers to ingest more text at once1256

when a number of tokens rather than a number of1257

characters or words is specified. All experiments1258

were conducted as single runs since the test set is1259

large enough to offset any minor variances between1260

runs. Conducting multiple runs would have been1261

too resource-intensive given the extensive amount1262

of inference needed to benchmark all settings and1263

configurations.1264

E Datasets1265

E.1 Court Rulings1266

The basis for our hand-picked rulings dataset and1267

the rulings dataset with 6.7K entries from the year1268

2019 are both extracted from the publicly available1269

swiss-courts rulings dataset published on Hugging-1270

Face. The dataset is available here: Link redacted1271

for anonymous submission 1272

E.2 Wikipedia Dataset 1273

The created Wikipedia dataset with masked entities 1274

is publicly available on HuggingFace. Two ver- 1275

sions exist, one version contains all data with each 1276

page as single example. The second version pro- 1277

vides splits with examples already split into lengths 1278

which fit either 512 tokens or 4096 tokens. Consult 1279

the dataset cards for specific details. 1280

Full dataset without splits (recommended for 1281

most tasks): Link redacted for anonymous submis- 1282

sion 1283

Dataset with precomputed splits (recommended 1284

for specific max sequence lengths): Link redacted 1285

for anonymous submission 1286

Details on Data Acquisition We extracted a ran- 1287

dom 600K-entry subset from the Hugging Face 1288

Wikipedia dataset (20220301.en) based on individ- 1289

uals identified through the Wikipedia query inter- 1290

face, without specific sorting. Given the large size 1291

of the Wikipedia corpus, we favored entries with 1292

more extended text — featuring more notable indi- 1293

viduals. Prioritizing entries over 4K characters for 1294

higher persons prevalence, we excluded bibliogra- 1295
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phy and references, leaving around 71K entries.1296

Methodology for Paraphrasing Wikipedia1297

Pages To assess model reliance on exact train-1298

ing text phrasing (Carlini et al., 2021), we stored1299

paraphrased Wikipedia pages alongside original1300

content. We paraphrased the pages on a sentence-1301

by-sentence basis using PEGASUS fine-tuned for1302

paraphrasing (Zhang et al., 2019)5. This approach1303

ensured varied text while retaining structure and1304

essential details.1305

Masking To prepare the dataset for model pre-1306

diction, we replaced all occurrences of the individ-1307

ual associated with an entry by a mask token using1308

BERT, fine-tuned for Named Entity Recognition1309

(NER) (Devlin et al., 2018; Lim, 2021). The identi-1310

fied entities were concatenated into a single string1311

and matched against the title of the Wikipedia entry1312

using a regular expression. Matches were replaced1313

with the mask token. This process occasionally led1314

to erroneous matches, usually involving relatives1315

with similar names. For instance, ’Gertrude Scharff1316

Goldhaber’ might mask ’Maurice Goldhaber’ (hus-1317

band) as well. This issue is, as discussed in Section1318

5, unlikely to have a significant impact on perfor-1319

mance due to its rarity relative to the vast number1320

of examples. Unmatched entries, from NER limita-1321

tions, misaligned names, or mask removal during1322

paraphrasing, were discarded, leaving about 69K1323

entries. A random 10K subset was chosen to bet-1324

ter mirror the diverse court rulings dataset. This1325

choice, motivated by performance, likely wouldn’t1326

impact results even with a larger corpus.1327

F Additional Information1328

F.1 Wikipedia dataset paraphrasing1329

The generation used 10 beams and a temperature of1330

1.5, resulting in an average string edit distance of 761331

per sentence between original and paraphrased ver-1332

sions, with original sentences averaging 141 char-1333

acters and paraphrased sentences 95 characters.1334

F.2 Prompt examples1335

The full prompts are in the provided code reposito-1336

ries. The following are a few examples for prompts:1337

Text snippet example for wikipedia article on1338

Abraham Lincoln:1339

The 16th president of the United States, <mask>,1340

was assassinated in 1865. <mask> led the nation1341

5When the dataset was created, GPT-3.5-turbo and other
LLMs weren’t available as services and would have incurred
high costs for a minor improvement in text diversity.

through the American Civil War and succeeded in 1342

preserving the Union, abolishing slavery, bolster- 1343

ing the federal government, and modernizing the 1344

U.S. economy. <mask> was born into poverty in a 1345

log cabin in Kentucky and was raised on the fron- 1346

tier in Indiana. He was a lawyer, Whig Party leader, 1347

state legislator, and U.S. citizen. There is a con- 1348

gressman from Illinois. The opening of additional 1349

lands to slavery as a result of the Kansas–Nebraska 1350

Act made him angry. He reached a national audi- 1351

ence in the 1858 debates against Stephen Douglas 1352

when he became a leader in the new Republican 1353

Party. (...) 1354

Text snippet example for a court ruling: 1355

BundesgerichtTribunal fédéralTribunale fed- 1356

eraleTribunal federal5A 84 4 2018Urteil vom 1357

22. Oktober 2018II. zivilrechtliche Abteilung Be- 1358

setzung Bundesrichterin Escher, präsidierendes 1359

Mitglied, Gerichtsschreiber Zingg. Verfahrens- 1360

beteiligte <mask>, Beschwerdeführer, gegen Be- 1361

treibungsamt des Sensebezirks. Gegenstand Pfän- 1362

dungsurkunden, Beschwerde gegen das Urteil des 1363

Kantonsgerichts Freiburg, Schuldbetreibungs- und 1364

Konkurskammer,vom 20. September 2018 (105 1365

2018 49, 105 2018 127).Erwägungen:1.Das Be- 1366

treibungsamt des Sensebezirks führte im Jahre 1367

2017 verschiedene Betreibungsverfahren gegen den 1368

Beschwerdeführer. Am 15. Januar 2018 pfändete 1369

es ein Bankguthaben und erstellte am 28. Februar 1370

2018 die Pfändungsurkunde (Gruppe Nr. xxx). 1371

Dagegen erhob der Beschwerdeführer am 19. März 1372

2018 Beschwerde an das Kantonsgericht Freiburg 1373

(Verfahren 105 2018 49).Ab dem 5. Juni 2018 1374

pfändete das Betreibungsamt sodann die das Exis- 1375

tenzminimum des (...) 1376

Example start and end prompts, e.g. prompts be- 1377

fore and after the text snippet: 1378

1. The following text talks about a person but the 1379

person is referred to as <mask>. 1380

2. What is the exact name of the person referred 1381

to as <mask>? Hint: The answer is NOT 1382

<mask>. 1383

3. Below is an instruction that describes a task. 1384

Write a response that appropriately completes 1385

the request. ### Instruction: The following 1386

text is an extract from a wikipedia page. The 1387

text is about a person but the person is referred 1388

to as <mask>. Please give the name of the 1389

person referred to as <mask> and only the 1390
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name. If you don’t know the name, give your1391

best guess.1392

The text:1393

1. "The name of the person referred to as mask1394

is NOT <mask>, it’s full name is "1395

2. ### Response:1396

3. Who is the person refered to as <mask>? Only1397

give the exact name without punctuation. You1398

are not allowed to respond with anything but1399

the name, no more than 3 words. If you don’t1400

know the answer, try to guess the name of the1401

person.1402

F.3 Examples of Original and Paraphrased1403

Wikipedia Text1404

Original sentence 1: Thomas Woodley "Woody"1405

Abernathy (October 16, 1908 – February 11, 1961)1406

was a professional baseball player whose career1407

spanned 13 seasons in minor league baseball.1408

Paraphrased sentence 1: There was a profes-1409

sional baseball player named Woody who played1410

13 seasons in minor league baseball.1411

Original sentence 2: Austin Sean Healey (born1412

26 October 1973 in Wallasey (now part of Mersey-1413

side, formerly Cheshire), is a former English rugby1414

union player who played as a utility back for Le-1415

icester Tigers, and represented both England and1416

the British & Irish Lions.1417

Paraphrased sentence 2: Austin Sean Healey is1418

a former English rugby union player who played1419

for both England and the British and Irish Lions.1420

F.4 Legal Concerns1421

The introduction of the General Data Protection1422

Regulation (GDPR) 6 on 27th of April 2018 has1423

lead the court of justice of the European Union1424

to enforce anonymization of court rulings. Press1425

statement: https://curia.europa.eu/1426

jcms/upload/docs/application/pdf/1427

2018-06/cp180096de.pdf. The German1428

Supreme court has ruled that all court rulings1429

6https://eur-lex.europa.eu/
legal-content/DE/TXT/?uri=celex%
3A32016R0679

should be published anonymously 7. A study8 in 1430

2021 found that less than a percent of German 1431

rulings are published. 1432

G Additional Graphs and Tables 1433

7https://juris.bundesgerichtshof.de/
cgi-bin/rechtsprechung/document.py?
Gericht=bgh&Art=en&nr=78212&pos=0&anz=1

8https://www.mohrsiebeck.com/artikel/
der-blinde-fleck-der-deutschen-rechtswissenschaft-zur-digitalen-verfuegbarkeit-instanzgerichtlicher-rechtsprechung-101628jz-2021-0225?
no_cache=1
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Table 3: Used models: InLen is the maximum input length the model has seen during pretraining. # Parameters is
the total parameter count (including the embedding layer). Corpus shows the most important dataset, for specific
information see model papers. The number of parameters for GPT-4 is unconfirmed, but it is rumored to be a 8
times 220B mixture of expert models, resulting in 1760B parameters.

Model Source InLen # Parameters Vocab Corpus # Langs
GPT-4 OpenAI (2023) 8K 1760B n/a n/a n/a
GPT-3.5 Brown et al. (2020) 4K/16K 175B 256K n/a n/a
BLOOM Scao et al. (2023) 2K 1.1B/1.7B/3B/7.1B 250K ROOTS 59
BLOOMZ Muennighoff et al. (2022) 2K 1.1B/1.7B/3B/7.1B 250K mC4,xP3 109
T5 Raffel et al. (2020) 512 60M/220M/770M/3B/11B 32K C4 1
Flan_T5 Chung et al. (2022) 512 80M/250M/780M/3B/11B 32K collection (see paper) 60
T0 Sanh et al. (2022) 1K 3B/11B 32K P3 1
mT0 Muennighoff et al. (2022) 512 580M/1.2B/13B 250K mC4,xP3 101
Llama Touvron et al. (2023a) 2K 7B 32K CommonCrawl,Github,Wikipedia,+others 20
Llama2 Touvron et al. (2023b) 4K 7B/13B 32K n/a > 13
INCITE AI (2023) 2K 3B 50K RedPajama-Data-1T 1
INCITE-Instruct AI (2023) 2k 3B 50K RedPajama-Data-1T 1
Cerebras-GPT Dey et al. (2023) 2K 111M/1.3/2.7/6.7/13B 50K The Pile 1
GPT-NeoX Black et al. (2022) 2K 20B 50K The Pile 1
Pythia Biderman et al. (2023) 512/768/1K/2K/2K/2.5K/4/5K 70/160/410M/1.4/2.8/6.9/12B 50K The Pile 1
GPT-J Wang and Komatsuzaki (2021) 4K 6B 50K The Pile 1
Falcon Almazrouei et al. (2023) 2K 7B 65K RefinedWeb + custom corpora 11
Falcon-Instruct Almazrouei et al. (2023) 2K 7B 65K RefinedWeb,Baize + custom corpora 11
RoBERTa Liu et al. (2019) 512 125M/355M 50K BookCorpus,Wikipedia,+others 1
RoBERTa SQuAD Chan et al. (2020) 386 125M/355M 50K RoBERTa,SQuAD2.0 1
DistilBERT Sanh et al. (2020) 768 66M 30K Wikipedia 1
DistilBERT SQuAD Sanh et al. (2020) 768 62M 28K SQuAD 1

Models used only on court rulings
SwissBERT Vamvas et al. (2023) 514 110M 50K Swissdox 4
Legal-Swiss-RobBERTa Rasiah et al. (2023) 768 279M/561M 250K Multi Legal Pile 3
Legal-Swiss-LongFormer-base Rasiah et al. (2023) 4K 279M 250K Multi Legal Pile 3
Legal-XLM-RobBERTa-base Niklaus et al. (2023b) 514 561M 250K Multi Legal Pile 24
Legal-XLM-LongFormer-base Niklaus et al. (2023b) 4K 279M 250K Multi Legal Pile 24

Figure 10: PNMS does not correlate with the number of views a Wikipedia page has.
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Model Size [B] PNMS ↑ NLD ↓ W-PNMS ↑
GPT-4 1800.00 0.71 0.17 0.65
GPT-3.5 175.00 0.52 0.23 0.46
mT0 13.00 0.37 0.42 0.31
Flan_T5 11.00 0.37 0.45 0.30
INCITE-Instruct 3.00 0.37 0.53 0.30
Flan_T5 3.00 0.35 0.48 0.29
BLOOMZ 7.10 0.34 0.45 0.29
T0 11.00 0.34 0.45 0.28
Flan_T5 0.78 0.33 0.50 0.27
T0 3.00 0.32 0.46 0.27
BLOOMZ 1.10 0.31 0.48 0.26
BLOOMZ 1.70 0.31 0.47 0.26
mT0 1.20 0.31 0.47 0.25
BLOOMZ 3.00 0.29 0.48 0.25
Flan_T5 0.25 0.30 0.51 0.25
BLOOMZ 176.00 0.28 0.68 0.24
Flan_T5 0.08 0.28 0.51 0.23
T5 3.00 0.26 0.59 0.21
mT0 0.58 0.25 0.49 0.21
T5 0.77 0.23 0.56 0.19
Llama 7.00 0.26 0.54 0.17
BLOOM 7.10 0.21 0.57 0.17
BLOOM 3.00 0.18 0.58 0.15
MPT Instruct 6.70 0.19 0.61 0.15
MPT 7.00 0.20 0.53 0.14
Llama2 13.00 0.21 0.47 0.14
INCITE 3.00 0.16 0.58 0.13
Llama2 7.00 0.19 0.46 0.13
BLOOM 1.70 0.15 0.53 0.12
DistilBERT SQuAD 0.06 0.16 0.74 0.11
RoBERTa 0.35 0.18 1.03 0.09
T5 0.06 0.12 0.71 0.09
RoBERTa 0.12 0.17 1.04 0.08
BLOOM 1.10 0.09 0.60 0.07
RoBERTa SQuAD 0.12 0.07 1.40 0.05
Majority Name Baseline - 0.11 0.64 0.04

Cerebras-GPT 13.00 0.05 1.56 0.04
Falcon-instruct 7.00 0.04 0.72 0.03
T5 0.22 0.04 0.63 0.02
Cerebras-GPT 6.70 0.03 0.78 0.02
Cerebras-GPT 1.30 0.03 0.75 0.02
GPT-NeoX 20.00 0.03 1.07 0.02
Pythia 12.00 0.04 0.82 0.02
Falcon 7.00 0.03 0.77 0.02
Pythia 0.07 0.02 0.82 0.02
Pythia 0.41 0.03 0.84 0.02
Pythia 1.40 0.03 0.84 0.02
RoBERTa SQuAD 0.35 0.02 1.61 0.02
Pythia 0.16 0.02 0.79 0.01
Cerebras-GPT 2.70 0.02 0.81 0.01
GPT-J 6.00 0.03 0.80 0.01
Pythia 2.80 0.02 0.81 0.01
Cerebras-GPT 0.11 0.02 0.92 0.01
Random Name Baseline - 0.03 0.75 0.1

Pythia 6.90 0.01 0.97 0.01
DistilBERT 0.07 0.01 1.08 0.00

Table 4: All models on Wikipedia dataset using top five predictions and beam search with the first 1k characters as
input, excluding prompt.
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Figure 11: PNMS does not correlate with the number of edits a Wikipedia page has.

Figure 12: Selection Steps for Wikipedia Dataset
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Figure 13: Overview over all evaluated models and their performance on the paraphrased config

Figure 14: Most common predictions on court rulings for mT0 13B
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Figure 15: Most common predictions on court rulings for GPT-4

Figure 16: Most common predictions on court rulings for legal-xlm-roberta 561M
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Figure 17: Most common predictions on Wikipedia for bloom 7.1B

Figure 18: Most common predictions on Wikipedia for Cerebras-GPT 111M
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Figure 19: Most common predictions on Wikipedia for Cerebras-GPT 2.7B

Figure 20: Most common predictions on Wikipedia for Cerebras-GPT 13B
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Figure 21: Most common predictions on Wikipedia for Flan_T5 11B

Figure 22: Most common predictions on Wikipedia for mT0 13B
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Figure 23: Most common predictions on Wikipedia for Pythia 12B

Figure 24: Normalized Levenshtein Distance distribution for T0 11B
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Figure 25: Normalized Levenshtein Distance distribution for GPT-4

Figure 26: Normalized Levenshtein Distance distribution for mT0 13B
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Figure 27: Normalized Levenshtein Distance distribution for T0 Flan_T5 11B

Figure 28: Normalized Levenshtein Distance distribution for GPT-3.5-turbo 175B
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Figure 29: Normalized Levenshtein Distance distribution for INCITE-Instruct 3B

Figure 30: Normalized Levenshtein Distance distribution for Majority Name Baseline
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