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Abstract

Large language models (LLM) have emerged as a powerful tool for many AI
problems and are deeply involved in many aspects of human activity. One important
emergent ability is in-context learning (ICL), where LLM can perform well on
unseen tasks based on a brief series of task examples without necessitating any
adjustments to the model’s parameters. Many works trying to study ICL and
one recent interesting counter-intuitive observation is that different scale language
models may have different ICL behaviors. Despite the tremendous success made by
ICL, why different ICL behaviors remains a mystery. In this work, we are trying to
answer this question. As a limited understanding of the ICL mechanism, we study a
simplified setting, one-layer single-head linear self-attention network pretrained on
linear regression in-context task. We characterize language model scale as the rank
of key and query matrix in attention. We show that smaller language models are
more robust to noise, while larger language models are easily distracted, leading to
different ICL behaviors. We also conduct ICL experiments utilizing the LLaMA
model families. The results are consistent with previous work and our analysis.

1 Introduction

As large language models (LLM), e.g., ChatGPT [42] and GPT4 [43], are profoundly changing human
society and development, it is critical to understand its mechanism for safe and efficient deployment.
One important emergent ability [62], which makes LLM successful, is in-context learning (ICL),
where models are given a few exemplars of input–label pairs as part of the prompt before performing
the evaluation on some new input. More specifically, ICL is a few-shot [9] evaluation method without
updating parameters in LLM. Surprisingly, people find that, through ICL, LLM can perform well on
tasks that have never been seen before, even without any fine-tuning. It means LLM can adapt to
wide-ranging downstream tasks under efficient sample and computation complexity. The mechanism
of in-context learning is different from traditional machine learning, such as supervised learning,
unsupervised learning, and self/semi-supervised learning. For example, in neural networks, learning
usually occurs in gradient updates, whereas there is only a forward inference in ICL and no gradient
updates. Several recent works, trying to answer why LLM can learn in-context, argue that LLM
secretly performs gradient descent as meta-optimizers with just a forward pass during in-context
learning empirically [15, 36, 58] and theoretically [2, 35].

However, recently, there have been some important observations [39, 45, 49, 65] that cannot be
explained by existing studies. In particular, [49] finds that LLM is not robust during ICL and can be
easily distracted by an irrelevant context. Furthermore, [65] shows that when we inject noise into the
prompts, the larger language models may have a worse ICL ability than the small language models,
and conjectures that the larger language models may overfit into the prompts and forget the prior
knowledge from pretraining, while small models tend to follow the prior knowledge. On the other
hand, [39, 45] demonstrate that injecting noise does not affect the in-context learning that much for
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smaller models, which have a more strong pretraining knowledge bias. To understand the mechanism
of ICL and to use ICL efficiently and safely, we are interested in the following question:

Why do larger language models do in-context learning differently?

To answer this question, we study a simplified setting, one-layer single-head linear self-attention
network [2, 3, 35, 48, 58, 70] pretrained on linear regression in-context task [2, 3, 6, 24, 32, 35, 47,
58, 70]. We characterize language model scale as rank of key and query matrix in attention. Then, we
show that smaller language models are more robust to label noise and input noise during evaluation,
while larger language models may easily be distracted by such noises, so larger language models
may have a worse ICL ability than a smaller language model. We also conduct in-context learning
experiments on five prevalent NLP tasks utilizing various sizes of the LLaMA model families [55, 56],
whose results are consistent with previous work [39, 45, 65] and our analysis.

2 Related Work

Large language model. Transformer-based [57] neural networks have rapidly emerged as the pri-
mary machine learning architecture for tasks in natural language processing. Pretrained transformers
with billions of parameters on broad and varied datasets are called large language models (LLM)
or foundation models [8], e.g., BERT [17], PaLM [12], LLaMA[55], ChatGPT [42], GPT4 [43]
and so on. LLM has shown powerful general intelligence [10] in various downstream tasks. To
better use the LLM for a specific downstream task, there are many adaptation methods, such as
adaptor [21, 25, 50, 69], calibration [71, 72], multitask finetuning [22, 58, 68], prompt tuning [23, 29],
instruction tuning [13, 31, 40], symbol tuning [64], black-box tuning [52], chain-of-thoughts [28, 63],
scratchpad [41], reinforcement learning from human feedback (RLHF) [44] and many so on.

In-context learning. One important emergent ability [62] from LLM is in-context learning
(ICL) [9]. Specifically, when presented with a brief series of input-output pairings (known as a
prompt) related to a certain task, they can generate predictions for test scenarios without neces-
sitating any adjustments to the model’s parameters. ICL is widely used in broad scenarios, e.g.,
reasoning [73], negotiation [20], self-correction [46], machine translation [1] and so on. Many works
trying to improve the ICL and zero-shot ability of LLM [26, 38, 60, 61]. There is a line of insightful
works to study the mechanism of transformer learning [4, 5, 27, 30, 33, 34, 53, 54] and in-context
learning [2, 3, 6, 15, 24, 32, 35, 45, 47, 58, 67, 70] empirically and theoretically. On the basis of
these works, our analysis takes a step forward to show the ICL behavior difference under different
scales of language models.

3 Preliminary Setup

Notation. We follow the setup and notation of the problem in [2, 35, 70]. We denote [n] :=
{1, 2, . . . , n}. For a positive semidefinite matrix A, we denote ∥x∥2A := x⊤Ax as the norm induced
by a positive definite matrix A. We denote ∥ · ∥F as the Frobenius norm.

In-context learning. We consider the linear regression task for in-context learning which is widely
studied empirically [3, 6, 24, 47, 58] and theoretically [2, 32, 35, 70]. During learning ICL (pretrain-
ing), for each prompt, we have an embedding matrix Eτ which is formed using a d-dimension task
weights wτ ∈ Rd and N examples (xτ,1, yτ,1), . . . (xτ,N , yτ,N ) and a query token xτ,q for prediction,
where for any i ∈ [N ] we have yτ,i = ⟨wτ , xτ,i⟩ ∈ R and xτ,i, xτ,q ∈ Rd. The form of Eτ is,

Eτ :=

(
xτ,1 xτ,2 . . . xτ,N xτ,q

yτ,1 yτ,2 . . . yτ,N 0

)
∈ R(d+1)×(N+1). (1)

We assume the task weights wτ
i.i.d.∼ N (0, Id×d) and for any i ∈ [N ] tokens xτ,i, xτ,q

i.i.d.∼ N (0,Λ),
where Λ is the covariance matrix of the token. We have a network f which has the parameter θ. Then
the network prediction is ŷτ,q := fθ(Eτ ). We consider the mean square error (MSE) loss so that the
empirical risk over independent B prompts is defined as

L̂(fθ) :=
1

2B

B∑
τ=1

(ŷτ,q − ⟨wτ , xτ,q⟩)2 . (2)
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Remark 1. For simplicity, we consider a fixed embedding method so that there are no embedding
parameters in the network. Also, we do not consider noise in labels during pretraining, while we may
consider noise in labels during evaluation.

In fact, our pre-training period is called learning to learn in-context [38] or in-context training
warmup [18], where the network needs to pretrain on some related in-context learning prompts and
then evaluate on a new task, e.g., a new w above, which may never be seen in pertaining. The learning
to learn in-context is the first step to understanding the mechanism of ICL in LLM.

Linear self-attention networks. We study a one-layer single-head linear self-attention network
(LSA). The linear self-attention module is widely studied [2, 3, 35, 48, 58, 70]. It is defined as

fLSA,θ(E) =

[
E +WPV E · E

⊤WKQE

ρ

]
(d+1),(N+1)

(3)

where θ = (WPV ,WKQ), E ∈ R(d+1)×(ρ+1) being an embedding matrix, and ρ is a normalization
factor (guarantee the linear self-attention having similar behavior as the softmax-attention), being as
the length of examples, i.e., ρ = N during pretraining. Similar to existing work, for simplicity, we
merge the projection matrix and the value matrix into WPV , and we merge the key matrix and the
query matrix in attention into WKQ. We also have a residual connection in our LSA network. The
prediction of the network for the token xq will be the bottom right entry of the matrix output, that
is, the entry (d+ 1), (N + 1), while other entries are features we may ignore. Thus, there are some
parameters irrelevant to our loss. To see how, let us denote

WPV =

(
WPV

11 wPV
12

(wPV
21 )⊤ wPV

22

)
∈ R(d+1)×(d+1), WKQ =

(
WKQ

11 wKQ
12

(wKQ
21 )⊤ wKQ

22

)
∈ R(d+1)×(d+1),

where WPV
11 ,WKQ

11 ∈ Rd×d and wPV
12 , wPV

21 , wKQ
12 , wKQ

21 ∈ Rd and wPV
22 , wKQ

22 ∈ R. Then,

ŷq = fLSA,θ(E) =
(
(wPV

21 )⊤ wPV
22

)(EE⊤

ρ

)(
WKQ

11

(wKQ
21 )⊤

)
xq. (4)

Remark 2. In practical pertaining, transformers use a sliding window of stride 1 (moving 1 data
point/token forward each time), while our setting can be viewed as moving a large stride sliding
window so that no overlapping among windows, i.e., all windows are independent with each other.

Measure model scale by rank. Before introducing our measurement, we first introduce a lemma
from previous work which simplifies MSE loss to a quadratic function so that we can easily calculate
the optimal solution. For notation simplicity, we denote U = WKQ

11 , u = wPV
22 .

Lemma 3 (Lemma A.1 in [70]). Let Γ :=
(
1 + 1

N

)
Λ + 1

N tr(Λ)Id×d ∈ Rd×d. Let

L(fLSA,θ) = lim
B→∞

L̂(fLSA,θ) =
1

2
Ewτ ,xτ,1,...,xτ,N ,xτ,q

[
(ŷτ,q − ⟨wτ , xτ,q⟩)2

]
, (5)

ℓ̃(U, u) = tr

[
1

2
u2ΓΛUΛU⊤ − uΛ2U⊤

]
, (6)

we have L(fLSA,θ) = ℓ̃(U, u) + C, where C is a constant independent with θ.

Lemma 3 tells us that the loss only depends on uU where u is a scalar. If we consider non-zero u,
w.l.o.g, letting u = 1, then we can see that the loss only depends on U ∈ Rd×d, non-strictly,

L(fLSA,θ) = tr

[
1

2
ΓΛUΛU⊤ − Λ2U⊤

]
. (7)

Note that U = WKQ
11 , then it is natural to measure the size of the language model by rank of U . Recall

that we merge the key matrix and the query matrix in attention together, i.e., WKQ = (WK)⊤WQ.
Thus, a low-rank U is equivalent to the constraint WK ,WQ ∈ Rr×d where r ≪ d. The low-rank
key and query matrix are practical and have been widely studied [7, 11, 16, 19, 25, 51]. In this
work, we use r = rank(U) to measure the scale of language models, i.e., larger r representing larger
language models. Thus, to study the behavior difference under different scale language models, we
will analyze when U under different rank constraints.
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4 Theoretical Results

Now, we are ready to present our theoretical results. In Section 4.1, we study the optimal rank-r
solution of fLSA,θ, and show that the optimal rank-r solution indeed is the truncated version of the
optimal full-rank solution. On the basis of that, we can show the behavior difference in Section 4.2.
In short, as a small language model is a truncated version of a large language model, the small model
is able to rule out additional label noise and input noise so that it may have a better ICL ability.

4.1 Low Rank Optimal Solution

As Λ is a covariance matrix, Λ is a positive semidefinite symmetric matrix. Thus, we have Λ is
diagonalizable, where its eigenvalues are real and non-negative, and its eigenvectors are orthogonal.
We have eigendecomposition Λ = QDQ⊤, where Q is an orthonormal matrix containing eigenvectors
of Λ and D is a sorted diagonal matrix with non-negative entries containing eigenvalues of Λ, denoting
as D = diag([λ1, . . . , λd]), where λ1 ≥ · · · ≥ λd ≥ 0. Then, we have the following theorem.

Theorem 4.1 (Optimal rank-r solution). Recall the loss function ℓ̃ in Lemma 3. Let

U∗, u∗ = argmin
U∈Rd×d,rank(U)≤r,u∈R

ℓ̃(U, u). (8)

Then U∗ = cQV ∗Q⊤, u = 1
c , where c is any non-zero constant and V ∗ = diag([v∗1 , . . . , v

∗
d])

is satisfying for any i ≤ r, v∗i = N
(N+1)λi+tr(D) and for any i > r, v∗i = 0.

Proof sketch of Theorem 4.1. We defer the full proof to Appendix A.1. The proof idea is that

argmin
U∈Rd×d,rank(U)≤r,u∈R

ℓ̃(U, u) = argmin
U∈Rd×d,rank(U)≤r,u∈R

(
ℓ̃(U, u)− min

U∈Rd×d,u∈R
ℓ̃(U, u)

)
. (9)

Denote D′ =
(
1 + 1

N

)
D+ 1

N tr(D)Id×d. We can see Λ
1
2 = QD

1
2Q⊤, Γ

1
2 = QD′ 1

2Q⊤, and Γ−1 =

QD′−1
Q⊤. We can show ℓ̃(U, u) − minU∈Rd×d,u∈R ℓ̃(U, u) = 1

2

∥∥∥D′ 1
2D

1
2

(
V −D′−1

)
D

1
2

∥∥∥2
F
.

We denote V ∗ = argminV ∈Rd×d,rank(V )≤r

∥∥∥D′ 1
2D

1
2

(
V −D′−1

)
D

1
2

∥∥∥2
F

. We can see that V ∗

is a diagonal matrix. Denote D′ = diag([λ′
1, . . . , λ

′
d]) and V ∗ = diag([v∗1 , . . . , v

∗
d]). Then, we

have
∥∥∥D′ 1

2D
1
2

(
V −D′−1

)
D

1
2

∥∥∥2
F
=
∑d

i=1

((
1 + 1

N

)
λi +

tr(D)
N

)
λ2
i

(
v∗i − 1

(1+ 1
N )λi+

tr(D)
N

)2

.

We have that v∗i ≥ 0 for any i ∈ [d] and if v∗i > 0, we have v∗i = 1

(1+ 1
N )λi+

tr(D)
N

. Denote

g(x) = x2

(
1

(1+ 1
N )x+ tr(D)

N

)
. We get the conclusion by g(x) is an increasing function on [0,∞).

We denote U∗, u∗ above and corresponding fLSA,θ as the optimal rank-r solution. In detail, the
optimal rank-r solution fLSA,θ satisfies

W ∗PV =

(
0d×d 0d
0⊤d u

)
,W ∗KQ =

(
U∗ 0d
0⊤d 0

)
. (10)

Theorem 4.1 shows that the optimal rank-r solution indeed is the truncated version of the optimal
full-rank solution. In detail, (1) for the optimal full-rank solution, we have for any i ∈ [d], v∗i =

N
(N+1)λi+tr(D) ; (2) for the optimal rank-r solution, we have for any i ≤ r, v∗i = N

(N+1)λi+tr(D) and
for any i > r, v∗i = 0. Thus, as a small language model is a truncated version of a large language
model, the small language model may ignore less important features (noise) but still keep the most
important ones (signal) so that it has a smaller evaluation loss and better ICL ability.

4.2 Behavior Difference

We formalize the previous intuition here, where we can see that the different scale language models
may have different behaviors. We consider the evaluation prompt to have M examples (may not be

4



equal to N examples during pretraining for a general evaluation setting) with noise in labels (our
results can extend to the noiseless case when σ = 0). Formally, the evaluation prompt is

Ê :=

(
x1 x2 . . . xM xq

y1 y2 . . . yM 0

)
(11)

=

(
x1 x2 . . . xM xq

⟨w, x1⟩+ ϵ1 ⟨w, x2⟩+ ϵ2 . . . ⟨w, xM ⟩+ ϵM 0

)
∈ R(d+1)×(M+1), (12)

where for any i ∈ [M ], ϵi
i.i.d.∼ N (0, σ2).

Remark 4. Here, we consider task shifts as defined in [70]. We have xτ,i
i.i.d.∼ N (0,Λ) for any

i ∈ [M ], i.e., no covariate shifts defined in [70], because the transformer will fail in this case. See
detailed discussion in [24, 70].

Recall Q is eigenvectors of Λ, i.e., Λ = QDQ⊤ and D = diag([λ1, . . . , λd]). In practice, we can
see the large variance part in the inputs x as a useful signal (like words “positive”, “negative”), e.g.,
top r direction in Q, and the small variance part in x as the noise information (like words “even”,
“just”), e.g., bottom d− r direction in Q. Based on such intuition, we can decompose w accordingly.

Let s ∈ Rd be a truncated vector whose non-zero entry can only be in the first r dimensions, i.e., for
any r < i ≤ d, si = 0. Let ξ ∈ Rd be a residual vector whose non-zero entry can only be in the last
d− r dimensions, i.e., for any 1 ≤ i ≤ r, ξi = 0. Then, we can decompose any task w = Q(s+ ξ),
where Qs corresponds to inputs useful signal and Qξ corresponds to inputs noise information. Indeed,
the way we decompose w can be viewed as using prior knowledge Λ from pretraining inputs x. If
w = Qs, the task is related to the attitude (signal), e.g., “positive”, “negative”. If w = Qξ, the
task is related to some minor information (input noise), e.g., “even”, “just”. On the other hand, as
the pertaining data may be from noisy resources, e.g., websites, we suppose w

i.i.d.∼ N (0, Id×d) for
pertaining. However, for evaluation, we probably focus on the useful signal rather than the noise
information of inputs. Thus, our w decomposition captures this intuition. Now, we can decompose
our evaluation MSE loss accordingly in the following theorem.

Theorem 4.2 (Evaluation loss). Recall s, ξ ∈ Rd are truncated and residual vectors respectively.
Let w = Q(s+ ξ) ∈ Rd. Then for the optimal rank-r solution fLSA,θ and V ∗ in Theorem 4.1 ,
we have evaluation population MSE loss

L(fLSA,θ; Ê) := Ex1,ϵ1,...,xM ,ϵM ,xq

(
fLSA,θ(Ê)− ⟨w, xq⟩

)2
(13)

=
1

M
∥s∥2(V ∗)2D3 +

1

M

(
∥s+ ξ∥2D + σ2

)
tr
(
(V ∗)2D2

)
+ ∥ξ∥2D +

∑
i∈[r]

s2iλi (λiv
∗
i − 1)

2
. (14)

Proof sketch of Theorem 4.2. We defer the full proof to Appendix A.2. The proof idea is the follow-
ing. Denote Λ̂ := 1

M

∑M
i=1 xix

⊤
i and U∗ = QV ∗Q⊤. Note the fact that U∗ and Λ commute. By

Theorem 4.1, we have ŷq =
(
w⊤Λ̂ + 1

M

∑M
i=1 ϵix

⊤
i

)
U∗xq. Then, we have

Ex1,ϵ1,...,xM ,ϵM ,xq
(ŷq − ⟨w, xq⟩)2 = E

[(
w⊤Λ̂U∗xq − w⊤xq

)2]
︸ ︷︷ ︸

(I)

+E

( 1

M

M∑
i=1

ϵix
⊤
i U

∗xq

)2


︸ ︷︷ ︸
(II)

.

We see that the label noise can only have an effect in the second term. For the term (I) we have,

(I) = E
[(

w⊤Λ̂U∗xq − w⊤ΛU∗xq

)2]
︸ ︷︷ ︸

(III)

+E
[(
w⊤ΛU∗xq − w⊤xq

)2]︸ ︷︷ ︸
(IV)

. (15)

We inject w = Q(s + ξ). For the (III) term, by the property of trace and Lemma 6, we have
(III) = 1

M ∥s∥2(V ∗)2D3 +
1
M ∥s+ ξ∥2D tr

(
(V ∗)2D2

)
. Similarly, for the term (IV) and term (II), we

have (IV) = ∥ξ∥2D +
∑

i∈[r] s
2
iλi (λiv

∗
i − 1)

2
, and (II) = σ2

M tr
(
(V ∗)2D2

)
. We can conclude by

combining four terms.
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In Theorem 4.2, if we have N that is large enough so that Nλr ≫ tr(D), which is practical as we
usually pretrain networks on super long text, then we have

L(fLSA,θ; Ê) ≈ ∥ξ∥2D +
1

M

(
(r + 1)∥s∥2D + r∥ξ∥2D + rσ2

)
+

1

N2
∥s∥2D, (16)

where 1
N2 (·) is small comparing to the other two terms. For the other two terms: (1) The ∥ξ∥2D term

is due to the approximation power of the network, e.g., ∥ξ∥2D = 0 for the full-rank optimal solution.
On the other hand, if the main component of our evaluation task w is from Qs, i.e., the task w focuses
on the useful signal of inputs rather than the noise information, we will have small ∥ξ∥2D and small
evaluation loss. (2) The 1

M (·) term will vanish to zero if we have a large sample complexity in the
evaluation prompt. However, we mostly only have limited examples in evaluation, e.g. N ≫ M = 8,
so this term will be dominant. On the other hand, if we assume ∥ξ∥2D is small, we will have roughly
r
M (∥s∥2D + σ2) in Equation (16), which means that larger models (optimal solutions of higher rank)
have larger evaluation loss, the so-called different size language models doing ICL differently. We
formalize the above insight into the following theorem.

Theorem 4.3 (Behavior difference). Suppose 0 ≤ r1 ≤ r2 ≤ d and w = Qs where s is
r1-dimension truncated vector. Denote the optimal rank-r1 solution as f1 and the optimal
rank-r2 solution as f2. Then, we have

L(f2; Ê)− L(f1; Ê) =
1

M

(
∥s∥2D + σ2

)( r2∑
i=r1+1

(
Nλi

(N + 1)λi + tr(D)

)2
)
. (17)

Proof of Theorem 4.3. Let V ∗ = diag([v∗1 , . . . , v
∗
d]) satisfying for any i ≤ r1, v

∗
i = N

(N+1)λi+tr(D)

and for any i > r1, v
∗
i = 0. Let V ′∗ = diag([v′

∗
1, . . . , v

′∗
d]) be satisfied for any i ≤ r2, v

′∗
i =

N
(N+1)λi+tr(D) and for any i > r2, v

′∗
i = 0. Note that V ∗ is a truncated diagonal matrix of V ′∗. By

Theorem 4.1 and Theorem 4.2, we have

L(f2; Ê)− L(f1; Ê) (18)

=

 1

M
∥s∥2(V ′∗)2D3 +

1

M

(
∥s∥2D + σ2

)
tr
(
(V ′∗)2D2

)
+
∑
i∈[r2]

s2iλi

(
λiv

′∗
i − 1

)2 (19)

−

 1

M
∥s∥2(V ∗)2D3 +

1

M

(
∥s∥2D + σ2

)
tr
(
(V ∗)2D2

)
+
∑
i∈[r1]

s2iλi (λiv
∗
i − 1)

2

 (20)

=
1

M

(
∥s∥2D + σ2

) (
tr
(
(V ′∗)2D2

)
− tr

(
(V ∗)2D2

))
(21)

=
1

M

(
∥s∥2D + σ2

)( r2∑
i=r1+1

(
Nλi

(N + 1)λi + tr(D)

)2
)
. (22)

Main intuition. By Theorem 4.3, when task w only focuses on useful signal,

L(f2; Ê)− L(f1; Ê) ≈ r2 − r1
M

∥s∥2D︸ ︷︷ ︸
input noise

+
r2 − r1
M

σ2︸ ︷︷ ︸
label noise

. (23)

We can decompose Equation (23) to label noise and input noise, and we know that ∥s∥2D + σ2 only
depends on the intrinsic property of evaluation data and is independent of the model size. When we
have a larger language model (larger r2), we will have a larger evaluation loss gap between the large
and small models. It means larger language models may be easily affected by the label noise and
input noise and may have worse in-context learning ability, while smaller language models may be
more robust to these noises. Moreover, if we increase the label noise scale on purpose, the larger
language models will be more sensitive to the injected label noise. This main intuition is consistent
with the observation in [49, 65] and our experimental results in Section 5.
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5 Experiments
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Figure 1: Larger models are easier to override semantic meanings when presented with flipped
labels than smaller models for many datasets and model families. Accuracy is calculated over 1000
evaluations prompts per dataset with M = 16 in-context exemplars.

Experimental setup. Following the experimental protocols in [39, 65], we conduct experiments on
five prevalent NLP tasks, leveraging datasets from GLUE [59] tasks and Subj [14]. Our experiments
utilize various sizes of the LLaMA model families [55, 56] specifically: 3B, 7B, 13B, 70B. We follow
the prior literature on in-context learning [65] and use M = 16 in-context exemplars. We aim to
assess the models’ ability to prioritize input-label correlations presented in-context over inherent
semantic biases from pretraining. As part of this experiment, we introduce variability by inverting
an escalating percentage of in-context example labels. To illustrate, a 100% label inversion for the
SST-2 dataset implies that every “positive” exemplar is now labeled “negative”. However, while we
manipulate the in-context example labels, the evaluation sample labels remain consistent.

Results. Figure 1 shows the result of model performance across all datasets with respect to the
proportion of labels that are flipped. As 0% label flips, we see larger language models have better
in-context abilities. On the other hand, we observe that the override performance is more significant
for language models with a larger scale. As the percentage of label alterations increases, which can
be viewed as increasing label noise σ2, the performance of small models remains flat and seldom is
worse than random guessing while large models are easily affected by the noise, corresponding to a
larger gap in Equation (23). These results indicate that large models can override their pretraining
biases in-context input-label correlations, while small models may not and are robust to label noise.
This observation aligns with the findings in [65] and our analysis in Section 4.2.

For tasks RTE and WNLI, whose patterns are less pronounced, we do not see a significant de-
crease curve for large models. A possible reason could be the inherent complexity of these tasks,
which require predictions about sentence entailments, a challenge distinct from simpler sentiment
classification or semantic equivalence tasks.

6 Conclusion

In this work, we answer our research question: why do larger language models do in-context learning
differently? Our theoretical study shows that larger language models are easily overfitted to input
noise and label noise during in-context learning, while smaller models are robust to noise, leading to
different behaviors. Our empirical results support our claim and are consistent with previous work.
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Appendix

A Deferred Proof

A.1 Proof of Theorem 4.1

Here, we provide the proof of Theorem 4.1.

Theorem 4.1 (Optimal rank-r solution). Recall the loss function ℓ̃ in Lemma 3. Let

U∗, u∗ = argmin
U∈Rd×d,rank(U)≤r,u∈R

ℓ̃(U, u). (8)

Then U∗ = cQV ∗Q⊤, u = 1
c , where c is any non-zero constant and V ∗ = diag([v∗1 , . . . , v

∗
d]) is

satisfying for any i ≤ r, v∗i = N
(N+1)λi+tr(D) and for any i > r, v∗i = 0.

Proof of Theorem 4.1. Note that,

argmin
U∈Rd×d,rank(U)≤r,u∈R

ℓ̃(U, u) = argmin
U∈Rd×d,rank(U)≤r,u∈R

ℓ̃(U, u)− min
U∈Rd×d,u∈R

ℓ̃(U, u) (24)

= argmin
U∈Rd×d,rank(U)≤r,u∈R

(
ℓ̃(U, u)− min

U∈Rd×d,u∈R
ℓ̃(U, u)

)
. (25)

Thus, we may consider Equation (65) in Lemma 5 only. On the other hand, we have

Γ =

(
1 +

1

N

)
Λ +

1

N
tr(Λ)Id×d (26)

=

(
1 +

1

N

)
QDQ⊤ +

1

N
tr(D)QId×dQ

⊤ (27)

=Q

((
1 +

1

N

)
D +

1

N
tr(D)Id×d

)
Q⊤. (28)

We denote D′ =
(
1 + 1

N

)
D + 1

N tr(D)Id×d. We can see Λ
1
2 = QD

1
2Q⊤, Γ

1
2 = QD′ 1

2Q⊤, and
Γ−1 = QD′−1

Q⊤. We denote V = uQ⊤UQ. Since Γ and Λ are commutable and the Frobenius
norm (F-norm) of a matrix does not change after multiplying it by an orthonormal matrix, we have
Equation (65) as

ℓ̃(U, u)− min
U∈Rd×d,u∈R

ℓ̃(U, u) =
1

2

∥∥∥Γ 1
2

(
uΛ

1
2UΛ

1
2 − ΛΓ−1

)∥∥∥2
F

(29)

=
1

2

∥∥∥Γ 1
2Λ

1
2

(
uU − Γ−1

)
Λ

1
2

∥∥∥2
F

(30)

=
1

2

∥∥∥D′ 1
2D

1
2

(
V −D′−1

)
D

1
2

∥∥∥2
F
. (31)

As WKQ is a matrix whose rank is at most r, we have V is also at most rank r. Then, we denote

V ∗ = argminV ∈Rd×d,rank(V )≤r

∥∥∥D′ 1
2D

1
2

(
V −D′−1

)
D

1
2

∥∥∥2
F

. We can see that V ∗ is a diagonal

matrix. Denote D′ = diag([λ′
1, . . . , λ

′
d]) and V ∗ = diag([v∗1 , . . . , v

∗
d]). Then, we have∥∥∥D′ 1

2D
1
2

(
V −D′−1

)
D

1
2

∥∥∥2
F

(32)

=

d∑
i=1

(
λ′
i

1
2λi

(
v∗i − 1

λ′
i

))2

(33)

=

d∑
i=1

((
1 +

1

N

)
λi +

tr(D)

N

)
λ2
i

(
v∗i − 1(

1 + 1
N

)
λi +

tr(D)
N

)2

. (34)
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As V ∗ is the minimum rank r solution, we have that v∗i ≥ 0 for any i ∈ [d] and if v∗i > 0,

we have v∗i = 1

(1+ 1
N )λi+

tr(D)
N

. Denote g(x) =
((

1 + 1
N

)
x+ tr(D)

N

)
x2

(
1

(1+ 1
N )x+ tr(D)

N

)2

=

x2

(
1

(1+ 1
N )x+ tr(D)

N

)
. It is easy to see that g(x) is an increasing function on [0,∞). Now, we use

contradiction to show that V ∗ only has non-zero entries in the first r diagonal entries. Suppose i > r,
such that v∗i > 0, then we must have j ≤ r such that v∗j = 0 as V ∗ is a rank r solution. We find
that if we set v∗i = 0, v∗j = 1

(1+ 1
N )λj+

tr(D)
N

and all other values remain the same, Equation (34) will

strictly decrease as g(x) is an increasing function on [0,∞). Thus, here is a contradiction. We finish
the proof by V ∗ = uQ⊤U∗Q.

A.2 Proof of Theorem 4.2

Here, we provide the proof of Theorem 4.2.
Theorem 4.2 (Evaluation loss). Recall s, ξ ∈ Rd are truncated and residual vectors respectively. Let
w = Q(s+ ξ) ∈ Rd. Then for the optimal rank-r solution fLSA,θ and V ∗ in Theorem 4.1 , we have
evaluation population MSE loss

L(fLSA,θ; Ê) := Ex1,ϵ1,...,xM ,ϵM ,xq

(
fLSA,θ(Ê)− ⟨w, xq⟩

)2
(13)

=
1

M
∥s∥2(V ∗)2D3 +

1

M

(
∥s+ ξ∥2D + σ2

)
tr
(
(V ∗)2D2

)
+ ∥ξ∥2D +

∑
i∈[r]

s2iλi (λiv
∗
i − 1)

2
. (14)

Proof of Theorem 4.2. By Theorem 4.1, w.l.o.g, letting c = 1, the optimal rank-r solution fLSA,θ

satisfies θ = (WPV ,WKQ), and

W ∗PV =

(
0d×d 0d
0⊤d 1

)
,W ∗KQ =

(
U∗ 0d
0⊤d 0

)
, (35)

where U∗ = QV ∗Q⊤.

We can see that U∗ and Λ commute. Denote Λ̂ := 1
M

∑M
i=1 xix

⊤
i . Note that we have

ŷq =fLSA,θ(Ê) (36)

=

(
0d×d 0d
0⊤d 1

)(
ÊÊ⊤

M

)(
U∗ 0d
0⊤d 0

)
xq (37)

=

(
0d×d 0d
0⊤d 1

) 1
M

(
xqx

⊤
q +

∑M
i=1 xix

⊤
i

)
1
M

(∑M
i=1 xix

⊤
i w +

∑M
i=1 ϵixi

)
1
M

(∑M
i=1 w

⊤xix
⊤
i +

∑M
i=1 ϵix

⊤
i

)
1
M

∑M
i=1(w

⊤xi + ϵi)
2


·
(
U∗ 0d
0⊤d 0

)
xq (38)

=

(
w⊤Λ̂ +

1

M

M∑
i=1

ϵix
⊤
i

)
U∗xq. (39)

Then, we have

Ex1,ϵ1,...,xM ,ϵM ,xq
(ŷq − ⟨w, xq⟩)2 (40)

=Ex1,ϵ1,...,xM ,ϵM ,xq

(
w⊤Λ̂U∗xq +

1

M

M∑
i=1

ϵix
⊤
i U

∗xq − w⊤xq

)2

(41)

=E
[(

w⊤Λ̂U∗xq − w⊤xq

)2]
︸ ︷︷ ︸

(I)

+E

( 1

M

M∑
i=1

ϵix
⊤
i U

∗xq

)2


︸ ︷︷ ︸
(II)

, (42)
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where the last equality is due to i.i.d. of ϵi. We see that the label noise can only have an effect in the
second term. For the term (I) we have,

(I) =E
[(

w⊤Λ̂U∗xq − w⊤ΛU∗xq + w⊤ΛU∗xq − w⊤xq

)2]
(43)

=E
[(

w⊤Λ̂U∗xq − w⊤ΛU∗xq

)2]
︸ ︷︷ ︸

(III)

+E
[(
w⊤ΛU∗xq − w⊤xq

)2]︸ ︷︷ ︸
(IV)

, (44)

where the last equality is due to E[Λ̂] = Λ and Λ̂ is independent with xq . Note the fact that U∗ and Λ
commute. For the (III) term, we have

(III) =E
[
E
[(

w⊤Λ̂U∗xq

)2
+
(
w⊤ΛU∗xq

)2 − 2
(
w⊤Λ̂U∗xq

) (
w⊤ΛU∗xq

)]∣∣∣∣xq

]
(45)

=E
[(

w⊤Λ̂U∗xq

)2
−
(
w⊤ΛU∗xq

)2]
. (46)

By the property of trace, we have,

(III) =E
[
tr
(
Λ̂ww⊤Λ̂(U∗)2Λ

)]
− ∥w∥2(U∗)2Λ3 (47)

=E

[
1

M2
tr

((
M∑
i=1

xix
⊤
i

)
ww⊤

(
M∑
i=1

xix
⊤
i

)
(U∗)2Λ

)]
− ∥w∥2(U∗)2Λ3 (48)

=E
[
M − 1

M
tr
(
Λww⊤Λ(U∗)2Λ

)
+

1

M
tr
(
x1x

⊤
1 ww

⊤x1x
⊤
1 (U

∗)2Λ
)]

− ∥w∥2(U∗)2Λ3 (49)

=− 1

M
∥w∥2(U∗)2Λ3 +

1

M
E
[
tr
(
x1x

⊤
1 ww

⊤x1x
⊤
1 (U

∗)2Λ
)]

(50)

=− 1

M
∥w∥2(U∗)2Λ3 +

1

M
E
[
tr
((
∥w∥2ΛΛ + 2Λw⊤wΛ

)
(U∗)2Λ

)]
(51)

=
1

M
∥w∥2(U∗)2Λ3 +

1

M
∥w∥2Λ tr

(
(U∗)2Λ2

)
, (52)

where the third last equality is by Lemma 6. Furthermore, injecting w = Q(s+ ξ), as ξ⊤V ∗ is a zero
vector, we have

(III) =
1

M
∥s+ ξ∥2(V ∗)2D3 +

1

M
∥s+ ξ∥2D tr

(
(V ∗)2D2

)
(53)

=
1

M
∥s∥2(V ∗)2D3 +

1

M
∥s+ ξ∥2D tr

(
(V ∗)2D2

)
. (54)

Similarly, for the term (IV), we have

(IV) =E
[(
(s+ ξ)⊤Q⊤ΛU∗xq − (s+ ξ)⊤Q⊤xq

)2]
(55)

=E
[(
s⊤DV ∗Q⊤xq − s⊤Q⊤xq − ξ⊤Q⊤xq

)2]
(56)

=s⊤(V ∗)2D3s+ s⊤Ds+ ξ⊤Dξ − 2s⊤V ∗D2s (57)

=ξ⊤Dξ +
∑
i∈[r]

s2iλi

(
λ2
i (v

∗
i )

2 − 2λiv
∗
i + 1

)
(58)

=∥ξ∥2D +
∑
i∈[r]

s2iλi (λiv
∗
i − 1)

2
, (59)

where the third equality is due to s⊤Aξ = 0 for any diagonal matrix A ∈ Rd×d.
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Now, we analyze the label noise term. By U∗ and Λ being commutable, for the term (II), we have

(II) =
σ2

M2
E

( M∑
i=1

x⊤
i U

∗xq

)2
 (60)

=
σ2

M2
E

tr
( M∑

i=1

xi

)⊤

U∗ΛU∗

(
M∑
i=1

xi

) (61)

=
σ2

M
E
[
tr
(
x⊤
1 U

∗ΛU∗x1

)]
(62)

=
σ2

M
tr
(
(V ∗)2D2

)
, (63)

where all cross terms vanish in the second equality. We conclude by combining four terms.

A.3 Auxiliary Lemma

Lemma 5 provides the structure of the quadratic form of our MSE loss.

Lemma 5 (Corollary A.2 in [70]). The loss function ℓ̃ in Lemma 3 satisfies

min
U∈Rd×d,u∈R

ℓ̃(U, u) = −1

2
tr[Λ2Γ−1], (64)

where U = cΓ−1, u = 1
c for any non-zero constant c are minimum solution. We also have

ℓ̃(U, u)− min
U∈Rd×d,u∈R

ℓ̃(U, u) =
1

2

∥∥∥Γ 1
2

(
uΛ

1
2UΛ

1
2 − ΛΓ−1

)∥∥∥2
F
. (65)

Lemma 6. Let x ∼ N (0,Λ), ϵ ∼ N (0, σ2) and y = ⟨w, x⟩ + ϵ, where w ∈ Rd is a fixed vector.
Then we have

E
[
y2xx⊤] =σ2Λ + ∥w∥2ΛΛ + 2Λw⊤wΛ, (66)

E(yx)E(yx)⊤ =Λ⊤ww⊤Λ, (67)

E
[
(yx− E(yx))(yx− E(yx))⊤

]
=σ2Λ + ∥w∥2ΛΛ + Λw⊤wΛ. (68)

Proof of Lemma 6. As y is a zero mean Gaussian, by Isserlis’ theorem [37, 66], for any i, j ∈ [d] we
have

E[y2xixj ] =E[y2]E[xixj ] + 2E[yxi]E[yxj ] (69)

=
(
σ2 + w⊤Λw

)
Λi,j + 2Λ⊤

i ww
⊤Λj . (70)

Thus, we have E
[
y2xx⊤] = (σ2 + w⊤Λw

)
Λ+2Λw⊤wΛ. Similarly, we also have E(yx)E(yx)⊤ =

Λ⊤ww⊤Λ. Thus, we have

E
[
(yx− E(yx))(yx− E(yx))⊤

]
(71)

=E
[
y2xx⊤ − yxE(yx)⊤ − E(yx)yx⊤ + E(yx)E(yx)⊤

]
(72)

=E
[
y2xx⊤]− E(yx)E(yx)⊤ (73)

=
(
σ2 + w⊤Λw

)
Λ + Λw⊤wΛ. (74)
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