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Abstract
With the advance of multimedia on the Internet,001
multi-modal summarization has drawn much at-002
tention. Most current methods follow a pipeline003
strategy, where an off-the-shelf object detec-004
tor is used to extract visual features which are005
then fused with language representations for006
decoder to generate. However, these methods007
suffer two issues 1) separate vision and lan-008
guage representations fail to capture the inter-009
relations within the two modalities; 2) from the010
local view, the semantic alignments between011
images and paragraphs are missing. In order to012
address these problems, in this paper, we pro-013
pose a novel Vision-Language Summarization014
(ViL-Sum) model with a multi-task learning015
framework. Specifically, we train our model016
with two auxiliary tasks in a multi-task manner,017
that are images selection and images reorder-018
ing. In this way, the interrelations within image019
and text are well captured. Besides, to further020
enhance the vision-language representation, we021
employ a unified transformer-based encoder-022
decoder structure. The encoder simultaneously023
takes image and text as input and jointly learns024
the representations of both. Then the represen-025
tations are used by the decoder to generate the026
summary. Experimental results show that ViL-027
Sum significantly outperforms current state-of-028
the-art methods. In further analysis, we find029
that the enhanced representations via multi-task030
training and joint modeling learn reasonable re-031
lations between image and text.032

1 Introduction033

The dramatic increase of multi-modal data (includ-034

ing text, image, audio, and video) on the Inter-035

net makes research on multi-modal summarization036

necessary. Multi-modal summarization is the task037

of automatically capturing salient information and038

generating summaries from one or more modali-039

ties inputs (Evangelopoulos et al., 2013; Li et al.,040

2017). Compared with traditional multi-modal041

summarization tasks, which only generate a text-042

modality summary, Zhu et al. (2018) proved that043

Figure 1: An example for explaining the semantic align-
ment between images and paragraphs in the document.
“...” means some content was omitted.

multi-modal summary with both text and images 044

can effectively increase the satisfaction of users. 045

Intuitively, people can grasp key information easier 046

from multiple modalities than only from the text. 047

In this paper, we mainly focus on the multi-modal 048

summarization with multi-modal outputs (MSMO) 049

task, which is the parent set of multi-modal summa- 050

rization with text-only outputs. A simple example 051

of multi-modal summarization with multi-modal 052

outputs (MSMO) is shown in Fig. 1. 053

Existing multi-modal summarization models (Li 054

et al., 2017, 2018; Chen and Zhuge, 2018; Zhu 055

et al., 2018; Khullar and Arora, 2020; Zhu et al., 056

2020; Im et al., 2021) simply added separate en- 057

coders for different modalities into single-modal 058

encoder-decoder framework as shown in Fig. 2a 059

and 2b. The representation of different modalities 060

is obtained separately from single-modal encoders, 061
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Figure 2: Multi-modal summarization frameworks with
different encoder structure.

which leads to the model not effectively captur-062

ing the interaction between them. Recently, some063

works on vision-language representation learning064

(Li et al., 2020a; Xu et al., 2021; Zhou et al.,065

2020) have demonstrated that jointly encoding066

different modalities with the same encoder can067

improve the performance of natural language un-068

derstanding tasks (e.g. classification). However,069

existing generation tasks (e.g. summarization)070

still ignored this method. In this paper, we pro-071

posed a Vision-Language Summarization (ViL-072

Sum) model which employs a unified transformer-073

based encoder-decoder structure. The encoder of074

ViL-Sum simultaneously encodes images and the075

document jointly for learning the interrelation of076

them. Specifically, we employ an image tokenizer077

to convert images into visual token embeddings078

and the concatenation of it and word embeddings079

is the input of the multi-modal encoder. The joint080

representations from the encoder are fed into the081

decoder to generate a summary. The multi-modal082

framework with the joint encoder of ViL-Sum is083

shown in Fig. 2c.084

From the local view, existing works ignored an-085

other vital problem, that they can not align seman-086

tics between certain images and text paragraphs087

in the document. We give a semantic alignment088

example in Fig. 1. The semantic of paragraphs in089

the document is highly corresponding to the image090

on the left. However, the hard alignment of them091

is not available in existing datasets. To further092

enhance vision-language representation and align093

semantics, we proposed two simple but effective094

auxiliary tasks to train our ViL-Sum via multi-task095

learning. The first task is image selection, which096

selects several summary-related images as part of097

the multi-modal summary, which forces the model098

to learn the interrelation between images and text.099

The second task is images reordering, which aims 100

to align semantics between images and text para- 101

graphs via reordering shuffled images based on 102

vision-language representations. Intuitively, the 103

order of images is coincident with the order of 104

paragraphs in the document. The reorder of im- 105

ages can force the model to learn the alignment 106

of semantics between the two modalities. Finally, 107

we train ViL-Sum with text summary generation, 108

images selection, and image reordering tasks in a 109

multi-task manner. 110

Our contributions can be summarized as follows: 111

1) We proposed a novel Vision-Language Sum- 112

marization (ViL-Sum) model, which can jointly 113

encode images and text to capture their interrela- 114

tion. 2) We employ a multi-task learning frame- 115

work to train our model with text summary gener- 116

ation and two elaborately designed simple tasks, 117

which can effectively enhance vision-language rep- 118

resentations and semantic alignment. 3) Our model 119

outperforms all current state-of-the-art methods 120

on automatic and manual evaluation metrics. 4) 121

In further analysis, we find that the improvement 122

is exactly from the enhanced representations via 123

multi-task learning. 124

2 Methodology 125

2.1 Main Architecture 126

The overall framework of our ViL-Sum and the 127

details of the image tokenizer are shown in Fig. 128

3. The main architecture is a unified Transformer 129

encoder-decoder model, where encoder and de- 130

coder both consist of 12 standard Transformer 131

blocks. Before input to the transformer encoder, we 132

employ an image tokenizer to convert images into 133

embeddings and concatenate them with document 134

token embeddings. Then, we feed the hidden states 135

from the transformer encoder into the transformer 136

decoder to generate text summary, image selector 137

layer to select several images for summary, and 138

image reorder layer to reorder shuffled images. We 139

will describe the details of each component in the 140

next. 141

2.2 Vision-Language Joint Representation 142

We formalized the input and output of our ViT-Sum 143

as (D, I) and (S, IS), where D = {t1, t2, . . . , tT } 144

refers to the sequence of tokens from the input 145

document, I = {img0, img1, . . . , imgM} refers 146

to the sequence of input images from the input 147

document, S = {t1, t2, . . . } refers to the se- 148
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Figure 3: The overall framework of our ViL-Sum. Figure a) is the whole encoder-decoder architecture of ViL-Sum
with multi-task learning. Figure b) is the detail of image tokenzier to project images into visual token embeddings.

quence of tokens from gold text summary, and149

IS = {img1, img2, . . . , imgK} refers to K se-150

lected images for the summary.151

2.2.1 Document Embeddings152

Each document is firstly converted into the se-153

quence of tokens {t1, t2, . . . , tT } and then two154

special tokens “⟨s⟩" and “⟨\s⟩" are added to rep-155

resent the start and end of the document. After156

that, we map each token into vector representation157

ED = {estart, e1, . . . , eT , eend}.158

2.2.2 Image Embeddings159

Different from previous methods, which extract160

many image features via existing object detection161

models. We split each image into several patches,162

then encode them following ViT (Dosovitskiy et al.,163

2021). The details of image tokenizer are shown in164

Fig. 3b.165

Firstly, we reshape image img ∈ RH×W×C166

into a sequence of flattened 2D patches {imgp ∈167

RN×(P 2·C)}Np=1, where (H,W ) is the resolution168

of the original image, C is the number of channels,169

(P, P ) is the resolution of each image patch, and170

N = HW/P 2 is the resulting number of patches.171

Then, we can obtain a sequence of image patches172

{imgp}Np=1 as the input of image tokenzier.173

Secondly, the patches are linearly projected to174

patch embeddings ep = E × imgpi , where E ∈175

R(P 2·D)×C . We also add a special token “[class]”176

with learn-able embedding e0. We add position177

embeddings and patch embeddings as input Z0 of178

image encoder to retain positional information of 179

images: 180

Z0 = [e0i ; e
1
i ; . . . ; e

N
i ] + Epos (1) 181

Where Z0, Epos ∈ R(N+1)×D, Epos is position 182

embeddings. 183

Finally, we follow ViT to employ 12 transformer 184

blocks to encode these patches of each image, 185

which also can be replaced by any other encoders. 186

Zℓ+1 = Transformer(Zℓ), ℓ = 1, 2, ..., L (2) 187

And the global max-pooling of output vectors is 188

obtained as the visual token embedding vi ∈ RD 189

of image imgi. 190

vi = Maxpooling(ZL) (3) 191

Through the image tokenizer, we can convert the 192

sequence of input images into a sequence of visual 193

token embeddings Ev = {vi}Mi=1. 194

2.2.3 Multi-modal Encoder 195

The input of the multi-modal encoder is the con- 196

catenation of visual token embeddings Ev and to- 197

ken embeddings ED. We can formalize the input 198

as H0 = {Ev;ED} and then encode visual and 199

text embeddings with 12 transformer blocks. Fi- 200

nally, we can obtain vision-language representation 201

HL = {hv1 , . . . , hvM , hstart, h1, . . . , hend} from 202

last layer output. 203
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2.3 Enhanced by Multi-task Learning204

We train our ViL-Sum with text summary gener-205

ation task and two auxiliary tasks in a multi-task206

manner, which are used to enhance vision-language207

representation and semantic alignment.208

2.3.1 Visual-enhanced Summary Generation209

We feed the vision-language representation HL210

from the multi-modal encoder as input of decoder211

with 12 transformer blocks. The target of the model212

is to minimize the negative log-likelihood of label213

text y tokens given input document D and images I214

via updating model parameters θ. The loss function215

of summary generation task is as follows:216

LGEN
θ = −

|y|∑
j=1

logPθ(yj |y<j , D, I) (4)217

2.3.2 Images Selection218

We also train our ViL-Sum with multi-modal out-219

put reference following (Zhu et al., 2020). To220

build pseudo image selection labels of training data,221

we employs similarity between image caption and222

gold summary to select top-K images as labels ŷ223

(K is empirically set as 3). The similarity is the224

average of ROUGE-1, ROUGE-2 and ROUGE-L225

scores. The probability to select each image is226

yi = P (imgi) = σ(W · hvi + b) and loss function227

of the image selection task is as follows:228

LIS
θ =

1

M

M∑
i=1

−[ŷi log yi + (1− ŷi) log(1− yi)]

(5)229

2.3.3 Images Reordering230

To further enhance the vision-language represen-231

tation and semantic alignment, we proposed the232

image reordering task to joint train ViL-Sum. We233

shuffle the order of input images and then em-234

ploy vision representations to predict the posi-235

tion of each image through yi = P (posi) =236

softmax(W · hvi + b) and minimize the objective237

function:238

LIR
θ =

1

M

M∑
i=1

C∑
c=1

−ŷic log yic (6)239

where C is the number of categories, depending on240

the number of input images.241

train valid test

#Documents 293,965 10,355 10,261
#AvgTokens(D) 721 766 731
#AvgTokens(S) 70 70 72
#Images 1,928,356 68,520 71,509
#AvgImgs 6.56 6.62 6.97

Table 1: Statistical information of MSMO. D refers to
the input document. S refers to the summary.

2.3.4 Joint Training 242

We train our ViL-Sum with all three tasks (i.e., 243

Summary Generation, Image Selection, Image Re- 244

ordering) jointly by simultaneously minimizing 245

three loss functions. 246

LTOTAL
θ = LGEN

θ + LIS
θ + LIR

θ (7) 247

However, the caption of the image is not always 248

available. If we remove the images selection task, 249

we can select images via measuring similarity be- 250

tween generated summary and vector representa- 251

tions of images. Our proposed multi-modal en- 252

coder and the image reordering task still help the 253

model achieve excellent performance. 254

3 Experiments 255

3.1 Dataset 256

We employ the MSMO dataset (Zhu et al., 2018) to 257

evaluate the effectiveness of our proposed methods. 258

MSMO is a large-scale dataset for Multi-modal 259

Summarization with Multi-modal output. Each ex- 260

ample in the dataset is a triplet (document, images, 261

summary). This dataset contains online news arti- 262

cles (723 tokens on average) paired with multiple 263

image-caption pairs (6.58 images on average) and 264

multi-sentence summaries (70 tokens on average). 265

For test data, based on text reference, at most three 266

images are annotated to produce a multi-modal 267

reference by humans. The detailed statistical infor- 268

mation of MSMO is shown in Tab. 1. 269

3.2 Settings 270

We train our model for 10 epoches on 8 V100 GPUs 271

using Adam (Kingma and Ba, 2015) with β1 = 0.9, 272

β2 = 0.99, a batch size of 64. We also use lin- 273

ear learning rate warm-up with 1,000 steps. The 274

weight-decay is set as 10−4. We employ ViT-B/16 275

and BART-base to initialize our image tokenizer 276

and the main encoder-decoder model. We set the 277

max length of input images and tokens to be 10 278

and 512 respectively. For image tokenizer, we em- 279

ploy the same setting with ViT-b/16 in (Dosovitskiy 280
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et al., 2021). When testing, we generate the sum-281

mary with a beam size of 3, and the minimum and282

maximum decoding lengths are set as 15 and 150283

separately.284

3.3 Metrics285

We evaluate the pictorial summary with the MMAE286

metric (Zhu et al., 2018). 1287

MMAE consists of three sub-metrics: ROUGE288

score (ROUGE-L), Image Precision (IP), and Im-289

age Text Relevance (MAXsim). ROUGE (Lin,290

2004) score can measure the salience of text in291

generated summary, which is widely used for mea-292

suring summarization systems. The image preci-293

sion can measure the salience of selected images294

and is computed as Equ. (8).295

IP =
|refimg ∩ recimg|

|recimg|
(8)296

where refimg and recimg denote reference images297

and recommended images by MSMO systems re-298

spectively. MAXsim can measure the relevance299

between selected images and generated text sum-300

mary, which trains an image-text retrieval (Faghri301

et al., 2018) model with max-margin loss to evalu-302

ate Image-Text relevance. Finally, Zhu et al. (2018)303

choose the linear regression results of 3 metrics as304

MMAE with human judgments and the weight for305

ROUGE-L, MAXsim, and IP is 1.641, 0.854, 0.806306

respectively, the intercept is 1.978.307

We report the results of ROUGE-1/2/L,308

MAXsim, IP, and MMAE of each model to compre-309

hensively measure their performance. The results310

of our model are all the averages of three different311

checkpoints.312

3.4 Comparison Models313

To show the effectiveness of our models, we com-314

pare our model with the existing multimodal sum-315

marization methods (ATG, ATL, HAN, GR) (Zhu316

et al., 2018) and MOFRR
dec (Zhu et al., 2020) using317

multiple metrics. We also report the result of PGC318

(See et al., 2017), which is a single-modal sum-319

marization model. To prove the effectiveness of320

our proposed joint representation and multi-task321

learning, we compared with BART-base (Lewis322

et al., 2020) model and a reproduced two-stream323

1Comment: Zhu et al. (2020) also proposed a MMAE+ to
better evaluate MSMO task. However, the author did not
release their MR model, which is the core component of
their MMAE+. We find that the performance of MMAE and
MMAE+ is very closer and consistent.

model BART-cross which has the same structure 324

with MOFRR
dec and replace GRU and VGG19 (Liu 325

and Deng, 2015) with BART and ViT (Dosovitskiy 326

et al., 2021) respectively. To be fair, we mainly 327

compare our model with BART-base and BART- 328

cross due to previous methods did not employ pre- 329

trained models. 330

1) PGC: It is the widely used pointer-generator 331

network that allows both copying words from the 332

input text and generating words from a fixed vocab- 333

ulary. 334

2) ATG: It refers to the multi-modal attention 335

model which fuses images with static visual fea- 336

tures from VGG19 (Liu and Deng, 2015) and se- 337

lects images by measuring the visual attention dis- 338

tribution. 339

3) ATL: It replaces the image global features of 340

ATG with local features (multiple pooling features), 341

which select images by measuring the sum of visual 342

attention distribution over the local patch features 343

of each image. 344

4) HAN: It is based on ATL and a hierarchical 345

attention mechanism is added, which first attends to 346

the image patches to get the intermediate vectors to 347

represent images and then attends to these vectors 348

to get the visual context vector. 349

5) GR: It is an extractive method that employs 350

LexRank (Erkan and Radev, 2004) to rank captions 351

of images and select images based on the rank score 352

of captions. And it also employs PGC to generate 353

the text summary. 354

6) MOFRR
dec : MOF is based on ATG and training 355

with multi-modal optimization function, MOFRR
dec 356

is the best version of MOF which feed the last 357

hidden state of decoder into image discriminator 358

(dec) with ROUGE-ranking (RR) pseudo-labels. 359

7) BART-base: It is a pre-trained seq2seq gen- 360

eration model, which achieved promising results 361

in many generation NLP tasks, especially on text 362

summarization. We employ this model to confirm 363

the contribution of visual features for a summary 364

generation. 365

8) BART-cross: We build BART-cross with 366

model structure from previous ATG, ATL, HAN, 367

GR, and MOFRR
dec . It encodes images and text with 368

different encoders. We employ BART-base as the 369

main encoder-decoder model and encode text input. 370

Before feeding into the BART decoder, we fuse 371

image and text representation with cross attention 372

like ATG. BART-cross is a strong baseline with 373

separate encoders for different modalities. 374
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Model ROUGE-1 ROUGE-2 ROUGE-L MAXsim IP MMAE

baseline

PGC (See et al. 2017) 41.11 18.31 37.74 - - -
ATG (Zhu et al., 2018) 40.63 18.12 37.53 25.82 59.28 3.35
ATL (Zhu et al., 2018) 40.86 18.27 37.75 13.26 62.44 3.26
HAN (Zhu et al., 2018) 40.82 18.30 37.70 12.22 61.83 3.25
GR (Zhu et al., 2018) 37.13 15.03 30.21 26.60 61.70 3.20
MOFRR

dec (Zhu et al., 2020) 41.20 18.33 37.80 26.38 65.45 3.37

ours

BART-base 43.75 20.70 40.66 - - -
BART-cross 43.67 20.65 40.65 30.25 65.98 3.45
ViL-Sum 44.29 20.96 41.34 32.17 66.27 3.48
+ selection 44.20 20.90 41.22 34.47 68.18 3.51
+ reordering 44.21 20.98 41.20 34.35 69.03 3.52
+ selection, reordering 44.16 20.88 41.21 34.52 71.73 3.55

Table 2: The main results of all comparison models on different metrics. Models in baseline are based on the pointer
network with Bi-GRU. Models in ours are based on the BART-base model. All reported results of ours are the
average of three different checkpoints.

3.5 Main Results375

3.5.1 Performance of Joint Representation376

The main results of all models are shown in Tab. 2.377

We can see that compared with the baselines, our378

ViL-Sum gains significant improvement on all met-379

rics, and the joint modeling of the two modalities380

does not hurt the performance of ROUGE scores.381

However, the performance of ATG, ATL, HAN,382

and GR all hurt ROUGE scores by simply introduc-383

ing images as independent visual features. Through384

the multi-modal objective optimization, MOFRR
dec385

has a significant improvement on IP and does not386

decrease the quality of generated text summary.387

This situation proves that modeling vision and lan-388

guage information independently did not bring in389

the revenue for text summary generation. We can390

see that BART-cross, which also introduces images391

as independent features, also has lower ROUGE392

scores than BART-base, which also proves the pre-393

vious conclusion. Our ViL-Sum obtains better394

ROUGE scores via encoding different modalities395

with the same encoder and the Image Precision (IP)396

and MAXsim both have a significant improvement.397

This demonstrated that using the joint multi-modal398

encoder to obtain vision-language representation is399

better than using separate encoders.400

3.5.2 Performance of Multi-task Learning401

The result of ViL-Sum without multi-task learning402

has achieved new state-of-the-art performance. In403

this section, we will analyze the influence of our404

proposed multi-task learning. From the results, we405

can see that the introduction of images selection406

and reordering bring a slight decrease in ROUGE407

scores. Meanwhile, the IP and MAXsim scores in-408

Systems Human Score

BART-base 3.29
BART-cross 3.46
ViL-Sum (best) 3.78

Gold 4.02

Table 3: Results evaluated by human annotators. Each
summary is scored by three persons, and we take the
average value.

crease significantly, which makes the overall score 409

MMAE is better than ViL-Sum without multi-task 410

training. 411

We report the ablation study results of two auxil- 412

iary tasks in the second block of Tab. 2. From the 413

results in the second block, we can see that images 414

selection and reordering both can bring improve- 415

ment on IP and MAXsim scores. The combination 416

of two tasks can push the overall score of MMAE 417

to a new state-of-the-art. The comparison of these 418

models demonstrated that the introduction of multi- 419

task learning exactly improved the vision-language 420

representation and semantic alignment, which is 421

reflected in the improvement of the multi-modal 422

metrics: IP, MAXsim and MMAE. 423

4 Discussion 424

4.1 Human Evaluation 425

We randomly sample 100 examples from the 426

MSMO test set to conduct the human evalua- 427

tion. The multi-modal summary of gold reference, 428

BART-base, BART-cross, and our ViL-Sum (best) 429

are evaluated by three human annotators. Each 430

annotator will give each example with a rating 431

scale from 1 (worst) to 5 (best). Tab. 3 shows 432
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K ROUGE-L MAXsim IP MMAE

1 40.97 34.63 70.94 3.54
2 41.12 34.33 70.40 3.53
3 41.21 34.52 71.73 3.55
4 41.08 34.49 70.61 3.53

Table 4: Results of ViL-Sum under different hyper-
parameters, where K is the selected image number.

ROUGE-L MAXsim IP MMAE

ViT 41.21 34.52 71.73 3.55

Linear 40.18 33.89 70.44 3.51
Vision 41.10 34.28 71.04 3.54

Table 5: Results of ViL-Sum with different image to-
kenizer. Linear means image tokenizer which replace
transformer blocks with linear layer. Vision is an image
tokenizer from Vision Transformer.

the average scores from three annotators (t-test,433

p < 0.05). We can see that our ViL-Sum outper-434

forms two strong baselines and BART-cross with435

multi-modal summary is better than BART-base436

with the single-modal summary.437

4.2 Impact of Different K438

Tab. 4 depicts the experimental results of our model439

performance varying with different K (the image440

number at summary). Since the gold reference in441

the test set contains three images, the consistency442

between training and test makes the model perform443

best when K is 3. We also can see that our model444

is not very sensitive with K.445

4.3 Impact of Different Image Tokenizer446

We employ different image tokenizers to prove the447

robustness of our framework. The results of them448

are shown in Tab. 5. Linear is the simple version of449

ViT which replaces the transformer image encoder450

with a simple linear layer to map the images into451

visual token embeddings. Vision is an image tok-452

enizer from Vision Transformer (Wu et al., 2020),453

which can convert one image into several visual454

tokens embeddings. From the results, we can see455

that different tokenizers all can gain satisfactory456

performance.457

4.4 Case Study and Relevance Visualization458

To analyze the effectiveness of our proposed meth-459

ods, we choose an example from the test set and460

visualized the relevance of 1) summary sentences461

and selected images; 2) selected paragraphs and462

images; 3) all tokens and images in Fig. 4 and 5.463

Each color block means cosine similarity between 464

image and text object. The darker color refers to 465

a higher similarity in heatmaps. From three dif- 466

ferent relevant visualizations, we can see that our 467

model can effectively align semantic representa- 468

tion of summary sentences and selected images as 469

shown in Fig. 4b. The input images can be aligned 470

with paragraphs by training with image reordering 471

as shown in Fig. 4c. We also report the heatmap 472

of all input tokens and images in Fig. 5, which is 473

consistent with Fig. 4b and 4c. 474

5 Related Work 475

5.1 Vision-Language Representation 476

Large-scale Transformers-based (Vaswani et al., 477

2017) models (Radford et al., 2019; Devlin et al., 478

2019; Lewis et al., 2020) have achieved the state- 479

of-the-art results on many Natural Language Pro- 480

cessing (NLP) tasks, which always pre-train on a 481

large corpus with self-supervised tasks and then 482

fine-tune on specific NLP tasks. With the success 483

of transformers in NLP, many works begin to em- 484

ploy Transformers and pre-train with image-text 485

pairs to joint represent vision and language seman- 486

tic information for multi-modal downstream tasks, 487

which can be called vision-language pre-training 488

(VLP) model. Most existing VLP models (Tan 489

and Bansal, 2019; Li et al., 2021) adopt two differ- 490

ent encoders to model vision and language sepa- 491

rately, which extracts visual features by an object 492

detection model, and then combines the derived 493

object-centric representation of the image and text 494

embedding. Recently, many methods (Li et al., 495

2020b; Zhou et al., 2020; Li et al., 2020c; Zhang 496

et al., 2021; Xu et al., 2021) employed an unified 497

encoder to obtain vision-language representation 498

and achieved better performance on downstream 499

tasks. 500

5.2 Multi-modal Summarization 501

Recently, text summarization models have achieved 502

remarkable performance on different type meth- 503

ods (Liu and Lapata, 2019; Zhong et al., 2020; 504

Lewis et al., 2020; Zhang et al., 2019; Liang et al., 505

2021) with the development of pre-trained lan- 506

guage models. Different from text summarization, 507

multi-modal summarization is a task to generate 508

a condensed summary to cover main information 509

from multimedia data. One of the most significant 510

characteristics of this task is it is not only based on 511

text information, but it can also employ rich visual 512
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Figure 4: Example from the test set with the generated multi-modal summary. Fig. a) is the full example. Fig. b) is
the heatmap that shows the relevance of the summary and selected images. Fig. c) is the heatmap that shows the
relevance of selected paragraphs and images. Each color block means cosine similarity between image and text
object. The darker color refers to higher similarity.

Figure 5: The heatmap shows the relevance of all input
tokens and images. The darker color refers to higher
similarity.

information from images, audio, and videos. Multi-513

modal summarization task can be divided into two514

types with different output: single-modal output515

(Evangelopoulos et al., 2013; Chen and Zhuge,516

2018; Li et al., 2018) and multi-modal output (Bian517

et al., 2015; Zhu et al., 2018, 2020). Compared518

with single-modal output, multi-modal output sum-519

mary can increase users’ satisfaction (Zhu et al.,520

2018) and first proposed a large-scale Multi-modal521

Summarization with Multi-modal Output (MSMO)522

dataset. To tackle the gap between training and523

testing in MSMO task, Zhu et al. (2020) proposed524

two methods to obtain pseudo image labels and525

training the model with multi-modal optimization526

objectives.527

However, previous works all obtain vision-528

language representation via separate encoders for529

different modalities, which has been proved weaker 530

than joint representation in vision-language repre- 531

sentation learning research (Zhou et al., 2020; Xu 532

et al., 2021). Besides, they ignored the special se- 533

mantic alignment between different modalities. In 534

this paper, we proposed a novel Vision-Language 535

Summarization (ViL-Sum) model with a multi-task 536

learning framework to tackle these issues. 537

6 Conclusion 538

In this paper, we propose a novel Vision-Language 539

Summarization (ViL-Sum) model with a multi-task 540

learning framework, which can enhance the vision- 541

language representation and align the semantics 542

of different modalities. Our model achieved new 543

state-of-the-art results on automatic and manual 544

evaluation metrics. 545

Limitations: We only evaluate our model on one 546

dataset due to the lack of MSMO datasets. How- 547

ever, we believe our model can obtain nice perfor- 548

mance on other multi-modal tasks which need to 549

align the semantic of paragraphs and images. 550

Broader Impact: The alignment of different 551

modalities is an important problem in multi-modal 552

tasks, in this paper, our proposed image reorder- 553

ing task is very simple yet effective for semantic 554

alignment. We believe it can be employed in more 555

scenarios (e.g. vision-language pre-training mod- 556

els). We also prove the joint modeling of images 557

and texts is effective for the summary generation 558

task. 559
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