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Abstract

As a computer vision task, automatic object segmentation remains challenging in special-
ized image domains without massive labeled data, such as synthetic aperture sonar images,
remote sensing, biomedical imaging, etc. In any domain, obtaining pixel-wise segmentation
masks is expensive. In this work, we propose a method for training a masking network
to perform binary object segmentation using weak supervision in the form of image-wise
presence or absence of an object of interest, which provides less information but may be
obtained more quickly from manual or automatic labeling. A key step in our method is that
the segmented objects can be placed into background-only images to create realistic, images
of the objects with counterfactual backgrounds. To create a contrast between the original
and counterfactual background images, we propose to first cluster the background-only im-
ages, and then during learning create counterfactual images that blend objects segmented
from their original source backgrounds to backgrounds chosen from a targeted cluster. One
term in the training loss is the divergence between these counterfactual images and the
real object images with backgrounds of the target cluster. The other term is a supervised
loss for background-only images. While an adversarial critic could provide the divergence,
we use sample-based divergences. We conduct experiments on side-scan and synthetic aper-
ture sonar in which our approach succeeds compared to previous unsupervised segmentation
baselines that were only tested on natural images. Furthermore, to show generality we ex-
tend our experiments to natural images, obtaining reasonable performance with our method
that avoids pretrained networks, generative networks, and adversarial critics. The code for
this work can be found at (made public upon acceptance).

1 Introduction

Automatic foreground object segmentation is a computer vision task with a variety of applications in many
fields such as medicine, autonomous driving, and defense (Ma et al., [2024; |Song et al., 2024; |Lee et al.|
2024; |Cao et al.l 2024; (Gao et al., |2024; Marinov et al., |2024; Kamtam et al., [2025). Supervised machine
learning approaches are limited by the availability of supervised training annotations, such as object masks
or bounding boxes, which in specialized domains are expensive to obtain (Russakovsky et al.l 2015; [Bakas
et al., 2017, Sohn et al., |2020). Weak supervision in the form of image-level labels is often sufficient to guide
segmentation. In particular, a well-trained classifier can provide class-activation maps to guide segmenta-
tion (Kumar Singh & Jae Lee), 2017; Wei et al., |2017; |Zhang et al.; 2018; |Li et al.| [2018; Xu et al., |2022;
Xie et al.| [2022)). Prior work on unsupervised learning for object segmentation build off either pretrained
classifiers, or the underlying feature extraction backbone networks (Remez et al.| [2018; |Li et al.| |2023; [Doso-
vitskiy et al., 2021; [Hamilton et all 2022; Zhang et al.l [2018; [Xie et al., |2022). However, for specialized
imaging domains, such as sonar and medical images, there are not large crowd-sourced labeled datasets, and
the limited datasets that are available differ in sensors and contexts that make it difficult to pretrain useful
models. Thus, we consider the weakly supervised task for which no pretrained networks are available, where
the dataset consists of two sets of images: one labeled as having an object (i.e., composite images) and the
other as having no object (i.e., background-only images), which can be obtained through a combination of
expert annotation, supervised image-level classification, and human-in-the-loop active learning.
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Our goal is to train a neural network to generate binary pixel-wise segmentation masks that separate salient
foreground objects from the background. A motivating possibility for such a network is the ability to
generate synthetic images composed of an object extracted from one image and background pixels from
another image (Ostyakov et al.l 2018]). This synthetic image, created by alpha-blending a composite image
and a background-only image, is referred to as a counterfactual image, as the background is counterfactual
to the original background. While the automatic creation of counterfactual images is independently useful
for augmenting training datasets to resolve spurious correlations between objects and their background,
these counterfactual images are key to our approach as the network is trained to minimize the statistical
divergence between the distributions of real images and the counterfactual imagesﬂ To minimize this loss,
the learned masks must generate counterfactual images that are statistically similar to the real images.
However, without further specification this loss is minimized by a degenerate masking that segments the
entire image as the object such that after alpha-blending the output is the original input images. Other
work on unsupervised segmentation, which lacks the additional set of background-only images, has used the
generators and discriminators underlying generative adversarial networks (GANSs) along with additional loss
terms to avoid such degenerate solutions (Bielski & Favaro, 2019; [Sauer & Geiger}, 2021}; |Zou et al., |2023;
Yang et al.l [2022b). Another solution proposed by (Ostyakov et al. (2018) is to use a generative network
to inpaint missing portions of the background after applying the complement mask, which should then be
background only, and then calculate the divergence between inpainted images and real background-images.

In contrast, our novel approach to avoid the degenerate solution is relatively straightforward: firstly, we
organize all images into clusters based on their background content; secondly, we form counterfactuals with
background-only images taken from a target cluster that differs from original background cluster; and finally,
we compute the conditional divergence between these counterfactual and real images. Although there are
multiple ways to achieve background clustering, we choose to perform K-means clustering (or a modified
version that seeks balanced clusters) in a latent space obtained from training either an autoencoder (AE) with
reconstruction loss or an encoder with self-supervised contrastive learning on the background-only images.
For datasets where foreground objects are roughly centered, the background content can be inferred from
random crops near edges and corners. In cases where composite images with objects are patches taken from a
larger image, the background is inferred from nearby patches without objects. The approach is summarized
in Figure Using the average of the conditional divergences across all clusters as a loss encourages the
masking network to learn meaningful segmentations by leveraging background variations while effectively
isolating foreground objects.

The differences between our approach and the majority of the other work reviewed in Section [2] can be
summarized in the following:

1. We assume access to two types of images: composite images (i.e., images that contain foreground
objects on a background) and background-only images. These are the only labels that we assume to
be available.

2. The model consists of a masking network whose output is used to alpha-blend the input composite
image with a background-only images, producing a synthetic, counterfactual image.

3. During training, we compute the conditional statistical divergence between background-conditioned
counterfactual images and real composite images, and we compute a supervised cost for background-
only images.

4. Our approach is relatively straightforward; it consists of a single masking network with a composite
loss that is a sum of the two terms, without extensive hyperparameters.

1We assume the object can be placed on an independently chosen background. This assumption is valid in underwater sonar
where a man-made object’s location is largely independent of the background. However, in natural imagery there is much
stronger dependence between the object and location within the image, due to depth and context, making it imperative to
choose an appropriate background image and/or location within the background, a problem addressed in other work (Dvornik
et al.l 2018} |Zhu et al.| |2023).
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5. We do not rely on pretrained models, affording our research the benefit of achieving satisfactory
object segmentation results even with limited datasets of modalities, for which pretrained models
are unavailable.

In particular, Table [6] shows that the related work suffer from at least one undesired attribute of requiring:
pretrained models, adversarial training which is known for its instability, labeled data (e.g., class informa-
tion), or extensive hyperparameter search for a complicated loss function combination (i.e., not minimalist).

We evaluate the effectiveness of our segmentation approach on the following datasets:

1. Toy datasets created by combining canonical datasets (e.g., MNIST, Fashion MNIST
2017), and dSprites (Matthey et all, [2017)) with textured backgrounds (Brodatz, [1966). We show
that existing unsupervised segmentation benchmarks (Bielski & Favaro, [2019; Xie et al., 2022)) fail
to converge to an acceptable segmentation on these datasets.

2. Side-Scan Sonar (SSS) images containing various foreground objects such as shipwrecks and
rocks (Sethuraman et all 2024)). We show that our methodology provides finer-grained details for
foreground objects compared to the available ground truth.

3. Synthetic Aperture Sonar (SAS) images (Cobb & Zare, 2014)), where artificial objects are
pasted onto real sonar backgrounds.

4. Natural images from the CUB-200-2011 dataset (Wah et all [2011), which consists of bird
images without background-only samples. Our approach performs reasonably well on this dataset,
achieving an average precision of up to 50%.

2 Related Work

Our weakly supervised foreground object segmentation is most closely related to prior work on unsupervised
foreground object segmentation (Bielski & Favaro, 2019; |Sauer & Geiger} 2021; Zou et al., [2023} Yang et al.
2022b). These methods either depend on adversarial training (Ostyakov et al., [2018; Remez et al., |2018
Bielski & Favarol [2019; [Chen & Konukoglul, 2018} [Singh et all 2019} [He et al.l 2022; [Yang et al., [2022a} [Zou!
et al.l 2023} |[Sauer & Geiger| 2021} [Li et al.,|2023)), make assumptions about the foreground object size (Bielski
& Favaro, [2019; He et al.l [2022; [Yang et al., |2022b; Zou et al., 2023; |Sauer & Geiger, [2021), depend on a
given initial mask (Li et al., [2023)), need an extensive hyperparameters search (Li et al., 2018; [Remez et al),
2018} Bielski & Favaro), [2019; [Singh et all, 2019} [He et al. 2022} [Yang et all,[2022b} [Zou et alll 2023} [Sauer &
Geiger| Hung et al. 2019; Savarese et al.,[2021)), depend on pretrained models or foreground labels (e.g.,
birds classes) (Remez et all 2018} [Sauer & Geigerl 2021} [Li et al.l 2023} [Dosovitskiy et al., [2021; [Hamilton|
et all 2022} [Wang et al., [2023b; [Zhang et all 2018; [Li et al., 2018; Hou et all 2018} [Jiang et al., [2019;
Chang et al., 2020} [Lee et all 2021} Wu et al., 2021} Xie et all [2022; [Hung et al., 2019), require stochastic
generation or complicated combinations of losses to avoid degenerate solutions (Ostyakov et al., 2018;
et all [2018} Remez et all, [2018} [Bielski & Favarol 2019} [Hung et all 2019} [Zou et all 2023} [Yang et al.|
2022b). Our proposed method, on the other hand, does not depend on any of that. The difference is that we
assume access to background-only images that follow the same distribution of backgrounds in the composite
images. (Ostyakov et al. (2018) also use this assumption but have adversarial discriminator along with an
enhancement and inpainting network.) While purely unsupervised learning without any background-only
images is even more challenging, in practice background-only images can be obtained from the surrounding
of images with an object, and are naturally obtained through the weak labeling process.

Furthermore, the majority of related work has focused on natural images, where there is often visible dif-
ferences between objects and background due to the optics. Additionally, in other imaging domains, there
may also be a lack of pretrained models. In the case of underwater sonar imagery, which is a specialized
and limited domain, even more so than standardized medical imaging (Ma et all [2024), with datasets lim-
ited by the diversity of objects and sensors (Valdenegro-Toro et al., 2021} [Preciado-Grijalva et al., |2022).
Nonetheless, self-supervised pretraining before classification is possible (Preciado-Grijalva et al., [2022)). We
found that the majority of the work on unsupervised segmentation of sonar imagery is concerned with sea
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floor segmentation (Sun et all [2022; |Abu & Diamant, 2017; [Yao et al., 2000) or object detection
[& Diamant], [2018; Wei et al., 2024)). One recent work did investigate generating new sonar imagery using
a mask-conditioned diffusion model (i.e., counterfactual images); however they did not explicitly address
segmentation (Yang et al., [2024).

A description of related work is included in Appendix[A] and summarized in Table[6] which notes which works
depend on pretrained models, GAN training, or data labels (e.g., foreground labels). The table highlights
that prior work has at least one of these undesirable criteria, which makes it hard to be applied to data-scarce
domains such as sonar images.

3 Methodology

Our methodology trains a masking network by using its output to alpha-blend the input composite image
with an independent background-only image creating a counterfactual image. The training loss consists of
two terms; the first is a measure of the statistical divergence between counterfactual and real composite
images, and the second is a pixel-wise supervised loss that encourages the alpha-blended output to match
the input for background-only images. To avoid degenerate solutions we rely on conditioning the divergence
based on different background clusters, which we derive from an auto-encoder or contrastive-learning based
representation. Additionally, we consider an extra loss for the masks of composite images that forces a
portion of the mask to not be background, which is applicable if the object size is known a priori. Our
approach requires minimal hyperparameter tuning, namely the number of clusters, epochs, and batch size.
For architectures we use a U-Net (Ronneberger et al.L|2015b)), which is a standard neural network architecture,
as the masking network and minimal auto-encoder or encoder-only architectures for the latent representation
of backgrounds. Figure [I| summarizes the approach and Table [I] details the variables in the formulation.

3.1 Problem Formulation

Table 1: Summary of random variable notation used in the problem formulation.
Notation Description
(F,M,R) ~Ppy rpr An object image F' € Z, a binary mask M € {0,1}™*", and a background image
R € R C T jointly sampled.

R~ Pp A background image sampled from the background distribution.
Xr~Px A composite image constructed from F, M, and background R.
Xp An ideal counterfactual composite image constructed from F and M (or equiva-

lently X and M) but with background R’ ~ Pg. If object-background indepen-
dence holds X ~ Py, then Xp/ <x R, Where 2 denotes equality in distribution.

My Masking network My : Z — [0, 1]™*™

Xpr ~ Py, A counterfactual image produced from Xp and R’ using the mask My(Xg). Ide-
ally, X/ 4x R 4x R, assuming object-background independence.

Maegen A degenerate masking function that maps any composite image to a mask of all
ones, i.e., Maegen(X) =1 € {1}*", VX € X.

Cy ~ Cat(l,...,K) A random variable for the background cluster label, drawn from a categorical
distribution over K clusters.

Xe ~Pxoy=c A composite image with a background from cluster c.

Re ~Pricy=c A background image from cluster c.

)gﬁc ~ Pxic,#c A composite image with a background not from cluster c.

X~ PXC,Q Counterfactual image produced from X_. and R, using the mask My(X_.). Ide-
ally, X, < X,.

We assume two distributions of images: composite images that contain objects surrounded by background
and background-only images that do not have salient objects. Let Z C R™*"*¢ denote the space of images
with ¢ channels and m x n pixels, X C Z denote the space of composite images, and R C Z denote the space
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of background images. Similar to the generative assumptions in the layered GAN (Bielski & Favarol [2019;
[Yang et al., [2022b; Zou et al. [2023)), we assume a composite image Xp € X' generated according to

XR:MOF+(1—M)OR, (1)

where o denotes an elementwise product with broadcasting across channels, R € R is a background-only
image, F' € 7 is an image of an object paired with a binary mask M € {0,1}™*" (M;; = 1 if the pixel
corresponds to the object and M;; = 0 if the pixel corresponds to background), and 1 is a m x n-array
of ones. The unsupervised segmentation goal is to learn to infer M given only Xg~ Px, where Px is the
distribution of composite images.

Probabilistically, as a random variable X ~ Px is a function of the dependent random variables (F, M, R) ~
P F R, where the object and mask are dependent, and the object and the background may be dependent.
However, we assume R ~ Pg is independent of (F, M) ~ Py r. Under this assumption, one can generate
a new composite image X g/ containing the same object M o Xp = M o F but with a different independent
background R’ ~ Pg:

XR/:MOXR#*(]_*M)OR/. (2)
While Xi and R’ represent real images, Xpg/ is an ideal counterfactual. If the independence assumptions
hold, Xz ~ Px. [}

A masking network is a function My : Z — [0,1]™*", parameterized by 0, that models the relationship
between Xp and M El Unlike supervised segmentation, the latter is never observed. An ideal masking
network would yield the true mask My«(Xg) = M when applied to a composite image, and would yield
an all-zeros mask 0 when applied to a background only image Mpy-(R) = 0. The output mask is used to
alpha-blend composite image Xr ~ Px with an independent background-only image R’ ~ Pg,

X = My(Xr) o Xp+ (1— My(Xp))o R ~ Py, 3)

The goal is then to make the counterfactual distribution Py = statistically indistinguishable from the com-
posite image distribution Px. However, directly minimizing a statistical divergence between P; and Px
leads to a trivial solution Mgegen : X — 1, VX € X, where the masking network always produces a mask
of all ones (indicating all foreground) so that each generated counterfactual image is the same as its input
composite image. That is,

Mgegen = argmin D(IP)XQ Px), (4)

My

based on the fact that Xp = Maegen(XRr) 0 X+ (1 — Myegen(Xr))oR' = Xp ~ Px, which is a problem also
encountered and addressed in different ways in GAN-based approaches for unsupervised segmentation
& Favaro| [2019; |Yang et al.l [2022b; Zou et al. [2023) and weakly supervised segmentation
2018).

To overcome this, we create a distributional shift between the random backgrounds R found in the composite
images and the random background-only images R'. Intuitively, restricting the counterfactuals to be gener-
ated from backgrounds that are different from the backgrounds of the composite images discourages masks
from retaining the original (composite) backgrounds as that would increase the divergence. Specifically, we
assume that all backgrounds belong to a latent background class Cp, € {1,..., K}, and that there exists a
joint distribution (R, Cy) ~ Pg ¢, over background images and latent background class. Let Px|c,—. repre-
sent the distribution of composite images generated under the condition that the background image belongs
to class ¢ € {1,...,K}. To target composite images with a specific background class Px|c,—., the goal
is generate counterfactuals from independent background-only images of the same class R. ~ Pg|c,—. and
composite images that do not have this class X-. = Xpg|c,2c ~ Px|c,£c, Where Pgjc, 2. is the distribution
over other background classes, such that X. ~ Px|c,—. and X_. are independent random variables with
different distributions. The masking network’s counterfactual image with background from class c is

Xe=My(X-c) o Xop + (1 — Mp(X-p)) o Re ~ Py . (5)

2In domains with strong dependence between objects and background, then to create the counterfactual X 5/ the background
R’ would need to be conditional on the object F, M, a problem considered in other works (Fang et al.; |[Dvornik et all [2018;

[ ot 023)
W

hile an ideal masking network would have binary output, to facilitate training the unit interval is allowed.
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Figure [I] shows a diagram of the counterfactual background-conditional image generation process.

We optimize the parameters 6 of the masking network My in terms of a background conditional divergence
between the distributions of Px|c,=. and Pg_,

Lp(0) = D[Px_,, Pxic,—c)- (6)

Due to the distinct distribution of X_. and X, the trivial masking solution will not minimize the divergence
between P ¢ » and Px|c,—c, Mdegen(X-c) 0 X-¢ 4 (1 = Mgegen(X-¢)) © R. = X is clearly not distributed
according to Px\cb —.. We summarize the notation in Table E

Since we assume a sample of background-only images, we also train the masking network to determine if
there is an object in the input image (by outputting an all-zero mask). While a per-pixel binary cross-entropy
loss could be used, we use the squared error loss

Log(6) =Er | Y _[Mo(R)]3; | =Er [IMo(R)|Z] . (7)

ij
The optimization problem for training the masking network is then

min £p () + Lpg(6), (8)

0co

where © is the set of possible parameters for the masking network. In practice, the training data are
{(zi, )} c X x {1,..., K} and {(rs, )} € R x {1,..., K}, where Ngomp. and N, are the total
number of composite and background only images, respectlvely We define the empirical conditional distri-

: 1 1 1
butions Px|c,=c = [,y Lilei=c 92> PXI0v2e = Tapaizey] Lileirte 0o a0 PriC,=c = =) Liler—c Oro»

1 z€A
where ¢, is the Dirac measure §,(A) = 0 . ¢ A VYA C Z. For a given background ¢, three sets of
x
mini-batches of size B are sampled {1() B “wd Px|cy£e) {rc B l'i'vd' Pricy=c {x&i)}f;l L Px|cy=c

which correspond to X., X-., and R, respectlvely. Then the counterfactuals are produced fg) =
(1 —Mg(ng)) or 4 M, (xLZ) oz, e {1,..., B}. Finally, the divergence D(]f”)gc . Px|cy=c) is computed
from the empirical distributions PXC 5 = % Zszl 553(;) and ]f”X‘CFC = % Zf;l 61@. Denoting the mini-batch

loss functions as £, we summarize the training procedure in Algorithm

Algorithm 1 Training Procedure

Require: Model My, distributions Py |c,—c, Px|c, ¢, and Pgjc,=. for ¢ € {1,..., K}, batch size B
1: for each training iteration do

2: for cach category c € {1,..., K} do

3: Sample mini-batches: {xﬁZ} bl PX|C;,;£C7 {ré“ B, L Pric,=c {xgl) B, L Px|c,=c-
" 7 = (1= My(ad)) o r? + M(,(zﬁi) oxﬂc, ie{l,...,B}

5: £ (0) = D(Px o wab O Pr, =560, Pxjo=e=$Xi0,0-

6 L5)0) = 57 I1Me(ri”)||% (Background loss)

7 end for

8 Update 6 using gradient step on the total loss: £(6) = Zf(:1 (ﬁg‘)(é’) + ﬁgé(@)) =Lp(0) + ﬁBg(O).
9: end for

3.2 Statistical Divergence Choice

The choice of the divergence D will necessarily impact performance, computational cost, and the learning
dynamics. To connect our approach to supervised segmentation tasks, the Wasserstein-2 distance is natural
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Figure 1: Right: The counterfactual generation model employs a masking network, My, to process com-
posite images, (X-.), which contain backgrounds other than ¢. These composite images are combined with
corresponding background images, R.., of background c¢. The model generates a mask to separate the object
from the background, and alpha-blending (as per equation [1)) is used to combine the composite images and
background images. This results in a counterfactual image that retains the foreground object from X_. but
places it against a different background. In this instance, the counterfactual image preserves the foreground
object in X_. but is presented against a distinct background. Left: Demonstration of the inputs and the
outputs of the proposed framework indicated by the blue box on the right. The first three rows display
different sets of background images, where each set belongs to the same background label. Each subsequent
pair of rows shows composite images with various backgrounds, excluding the target background (indicated
by the two headed arrow). The second row in each pair presents the generated counterfactual images, where
the foreground object is pasted onto the target background using the model on the right.

as it seeks a joint distribution Pg | that pairs the counterfactual X, and composite image X.. to be as
close as possible in a root-mean squared error sense

WPy, Pricime) =, W [Bie xne 1Ko = Kol 9)

PXC,QXC eP

where P is the set of joint distributions with marginals equal to Py » and Px|c,—c. The ideal joint distri-
bution would pair the object in X, with a corresponding object in Xﬁc and the background of X, with a
corresponding background R, such that X, would match X, if the masking is correct. However, if the mask-
ing network is wrong the optimal joint distribution may create non-ideal pairings to compensate, possibly
leading to local minima. Furthermore, estimating the Wasserstein distance in this primal form is challenging.
Based on a review of divergences, including alternatives for the Wasserstein distance, in Appendix we
select D to be the energy-based sliced Wasserstein (EBSW) distance (Nguyen & Hol [2023)), which avoids
adversarial training of discriminators required for the variational estimates of f-divergences in GANs
ffellow et al., 2014; Nowozin et al. |2016) and has desirable computational and statistical characteristics—in
particular it does not suffer from curse of dimensionality (Nguyen & Hol 2023)—making it broadly applica-
ble without many hyperparameters. For the hyperparameters of the estimate of the EBSW, described by
equation [14] in Appendix [B] we choose p = 2 to match equation [9] f to be the exponential function, and
L = 1000 slices.

3.3 Background Clustering

Generally, we do not assume access to the background class/cluster, although in certain situations this side
information is known. We propose to use data-driven clustering to assign a cluster label as surrogate for Cj
for each image (both composite and background-only images). While directly inferring a background cluster
for an image containing an object that takes up the majority of the image may be difficult, in many cases
access to wider crops containing mostly background may be possible, which is the case with sonar imagery.



Under review as submission to TMLR

For clustering the backgrounds, we propose using a two-stage process of either an autoencoder (AE) or an
encoder trained with self-supervised contrastive learning (CL) followed by K-means on the encoders output.
The positive pair in the CL setting is defined as a randomly cropped background image (no less than 80%)
and resized to match the original image.

Instead of K-means, we also implement an optimal transport K-means to encourage the cluster distribution
to be uniform. That is for each K-means iteration, we run the Sinkhorn algorithm (Cuturi, [2013), using the
Euclidean cost matrix between input data points and the centroids, with a uniform distribution for both,
to yield a transportation plan that is cluster balanced. Due to the entropic regularization intrinsic to the
Sinkhorn algorithm, each input point is distributed to multiple centroids. Before updating the centroids,
new hard assignments are obtained from the highest mass in each row.

The encoder training and subsequent cluster assignment can be applied to all or a subset of the background-
only images. Then, during the training of the masking network background-only images and composite
images (or mostly background images from nearby crops) are assigned based on the nearest cluster to their
encoding, yielding the label Cp. This produces the background-labeled images underlying the distributions
required for Algorithm [I}

3.4 Data

While our goal is to perform real-world weakly supervised object segmentation on sonar images, datasets with
ground truth labels are limited. We developed and initially validated our proposed method on artificial single-
channel data constructed from combining real-world backgrounds—either textures (photographic images of
materials with various textures (Brodatzl [1966)) under controlled lighting) or seafloor images obtained from
sonar (Cobb & Zare, 2014)—with objects from standard object classification datasets: standard MNIST,
FashionMNIST (Xiao et al} [2017), and dSprites (Matthey et al.l2017). On these toy datasets we also ensure
that the object is independently chosen from the background. Details and specific implementation of these
artificial datasets are included in Appendix [C1]

We validate our approach on purely real datasets. The first dataset is a real side-scan sonar (SSS)
dataset (Sethuraman et al., 2024), which contains a variety of foreground objects corresponding to dif-
ferent sites that contain shipwrecks in Lake Michigan along with ground truth segmentation masks for
the shipwrecks in the seabed. The second dataset, is the Caltech-UCSD Birds-200-2011 (CUB-200-211)
dataset (Wah et al., |2011)), which consists of three-channel (RGB) color images of 200 species of birds on
various backgrounds with segmentations.

3.4.1 Side Scan Sonar with Shipwreck Objects

The first dataset is a real side-scan sonar (SSS) dataset (Sethuraman et al.| [2024), which contains a variety

of foreground objects corresponding to different sites that contain shipwrecks in Lake Michigan along with
ground truth segmentation masks for the shipwrecks in the seabed. The SSS dataset (Sethuraman et al.|
2024)) contains 28 distinct shipwrecks totaling 286 high-resolution images with segmentations. The dataset
is already divided 50/50 into training and test respecting the variety of sites. We further split the training
data into 70% training and 30% validation.

For each sonar scene, we crop out the black strip in the middle (i.e., the blind spot directly below the sonar
platform) and we flip the right side of the sonar image so that range increases consistently from right to left
in images and the acoustic shadows all have the same orientation. Then, we crop 500 128 x 128 images from
the 143 images in the training set. We normalize each crop by its mean and then clip any value larger than
16. Then, we resample each crop to 64 x 64. We use ground truth labels to label each crop as composite or
background-only. Although this approach uses supervised information, the idea of weak supervision is that
each crop could be quickly manually labeled or one could use a statistical anomaly detection algorithm for
the presence of objects in groups.

For testing, for each of the 143 test set images, we take 128 x 128 crops with 90%-overlap. Each crop
is processed as above. The final segmentation mask is the mean across the overlapped masks. This is a
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convolutional approach, and the mean of the masks acts as a majority-vote segmentation, where the votes
comes from the same pixel being in multiple overlapping crops.

3.4.2 CUB-200-211

To illustrate the broader applicability of our approach across diverse imaging modalities, we also evaluate
it on a dataset comprising natural images from the CUB-200-211 dataset (Wah et al., [2011)), which consists
of 11,788 images of birds from 200 species on various backgrounds. We chose this dataset to demonstrate
that our work can also be applied to natural images, although the assumptions of independence of object
and background are likely violated for birds with different habitats. Each image is min-max normalized such
that all pixel values are between [0,1]. We report the results for the separate testing set which consists of
the half of the images, specifically, the train-test split has 5994 train and 5794 test images. We further split
the training data into 70% training and 30% validation. Additionally, when benchmarking against other
unsupervised object segmentation approaches, we follow |Chen et al.| (2019)) and use their split consists of
10,000 images for training, 1,000 for testing, and the remaining 778 for validation.

3.5 Implementation Details

The AE or CL encoder (CLE) and K-means are trained on background-only images. The AE architecture
is composed of 4 convolution layers each followed by a batch normalization layer and ReLU activation. The
number of kernels in each layer is {64, 128,256,512}. A fully connected bottleneck layer of dimension o = 20
is used to represent the latent space. Similarly, the decoder is composed of one fully connected layer and
4 transpose convolutions with the same number of kernels as the encoder but with a reversed order. We
add a sigmoid layer at the end of the decoder as we find it accelerates training the AE. We used the Adam
optimizer to optimize the AE, with a fixed learning rate of 0.0001, and batch size of 4096. The CLE follow
the exact design of the encoder part in the AE but we increased the latent dimension to o = 200 for CUB
dataset.

For the SSS dataset, a nearby patch of seafloor without any object can be passed to the AE/CLE + Sinkhorn
K-means to infer the background of a foreground object image. The entropic regularization parameter in the
Sinkhorn algorithm was set to 0.01. For CUB-200-2011, we train CLE and K-means and we use patches of
size 25% of the image width and height taken from the composite images as background-only images: during
CLE training, we use the ground truth masks to ensure that the patch does not contain any objects, but
during training of the masking network we use a random patch cropped from the input image. In this case,
we use the ground truth to satisfy the assumption that representative background-only images are available;
however we train the masking network without any ground truth knowledge. For the contrastive learning,
we use augmentation techniques such as random cropping to assign positive pairs. We also used random
horizontal flipping for the CUB dataset.

For SSS dataset, we choose clusters from the set {2,3,4,5} but we found that they perform very similarly
so we only report the 4 clusters results. For CUB-200-2011, we train models with varying the number of
clusters, choosing values from the set {5,10,15}. In both cases, the choice of cluster numbers is guided by
the visual distinctiveness of example images in each cluster: we increase the number of clusters until further
subdivision yields negligible improvement in visual separation.

We choose our segmentation model to be the U-Net architecture (Ronneberger et al., [2015b) with default
hyperparameters. We choose D-adaptation optimizer to optimize U-Net (Defazio & Mishchenko, [2023]). The
learning rate for the U-Net is 1 and the batch size is 400. We selected the largest batch size the GPU we
used for training could handle. For the SSS and CUB datasets, we run the training for 150 and 200 epochs,
respectively. We choose the model with lowest validation loss £ shown in equation We implement our
approach using the PyTorch Lightning (Falcon & The PyTorch Lightning team, 2019)) framework. Only
one GPU, a Tesla V100-SXM2-32GB, is used for training.
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4 Results

In the main body, we firstly present results for the real datasets: Side Sonar Sonar dataset in [f.I] and CUB
dataset in Then we present the results of the synthetic Texture+MNIST /FashionMNIST /dSprites in
and SAS-+dSprites in In the appendix we show additional results on real images and failure of
benchmarks on single-channel images: for synthetic data and for the SSS dataset.

Since our method is weakly supervised, it is noteworthy that our method achieves near-perfect performance
(False Positive Rate < 0.5%) for background images across all datasets and cluster numbers (except for the
SSS dataset, which has its own discussion). As a result, our primary focus will be on the segmentation of
foreground objects. When ground truth masks are available we evaluate the segmentation performance on
composite images using the following metrics: area-under-the-curve of the receiver operating characteristic
(AUCROC), mean intersection of union (IoU) (also known as Jaccard index) with mask threshold at 0.5,
and average precision.

For the SSS dataset. Since our method is weakly supervised, it is noteworthy that our method achieves
near-perfect performance (False Positive Rate < 0.5%) for background images across all datasets and cluster
numbers (except for the SSS dataset, which has its own discussion). As a result, our primary focus will
be on the segmentation of foreground objects. When ground truth masks are available we evaluate the
segmentation performance on composite images using the following metrics: area-under-the-curve of the
receiver operating characteristic (AUCROC), intersection of cardinality (IoU) (also known as Jaccard index,
which is slightly more conservative than the intersection over union metric) with mask threshold at 0.5, and
average precision.

4.1 Side Scan Sonar (SSS) Dataset

We first present visualizations of the input image, ground truth, estimated masking, and thresholded esti-
mated masking for several images in Figure We note that our mask often include more of the shadow,
but the ground truth does not account for these shadows. Despite this, our model successfully recovers
the ships, providing more precise segmentation in the second and third images. Further examples can be
found in Figure [I3] where the capturing of shadows is more pronounced. Additionally, we note that because
the seabed sand moves, it may cover non-edge parts of the ships, making it reasonable for these regions to
be segmented as background. This effect is even more pronounced in Figure which demonstrates two
key observations: first, our methodology captures the foreground shadow, an aspect not represented in the
ground truth. Second, our model extracts ‘foreground’ objects that are not ships, such as rocks and coarse
regions, as illustrated in Figure [I5] Finally, in Figure [[4 we show more examples of ships and small objects
with relatively small shadows.

4.1.1 Performance against Supervised Baselines

Given that our segmentation method includes additional foreground objects (e.g., rocks), captures shadows,
and ignores portions of wrecks covered by sand—elements not considered in the ground truth—we believe a
direct comparison with the provided ground truth may not fully reflect the model’s performance. Nonetheless,
we benchmark our method against supervised methods selected to reflect the variety of deep learning-based
segmentation models used in the vision community: Yang (Yang et al., [2022a)), ViT Adapter (Chen et al.,
2022)), DeepLabV3 (Chen et al., [2017), HRNet (Wang et al., 2020), U-Net (Ronneberger et al.| [2015a), and
Salient Object Detection, InNSPyReNet (Kim et al.,2023). Following (Sethuraman et al.; 2024)), we aggregate
the images per site and report the IoU for each cite in Table[2] Our unsupervised method has comparable or
superior average performance to 4 supervised methods, but is outperformed by supervised U-Net and SOD.
We also note that across the sites our performance co-varies with the best method. We outperform other
methods on sites where the supervised methods also fail. For example, on the ‘James Davidson’ site, one
portion shown in Figure false alarms are evident, where parts of the background are incorrectly identified
as foreground, with no clear rationale behind these misclassifications. We believe this issue arises because
the models have not encountered such a background during training and, as a result, mistakenly segment it.

10
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Figure 2: Segmentation model results on SSS images. Each row corresponds to a different image.

From

left to right: input images, ground truth masks, estimated masks, and thresholded estimated masks at 0.5.
Images sites: Lucinda van Valkenburg.

Site Yang ViT-Adapter DeepLabv3 HRNet U-Net SOD Ours Our rank
Artificial Reef 0.002 0.003 0.003 0.011 0.006 0.017 0.05 1
Barge 0.471 0.412 0.670 0.703 0.736 0.775 0.52 5
Corsair 0.231 0.542 0.531 0.293 0.564 0.583 0.43 5
Corsican 0.056 0.088 0.042 0.174 0.116 0.077 0.162 2
James Davidson 0.000 0.000 0.031 0.067 0.074 0.091 0.092 1
WH Gilbert 0.276 0.006 0.658 0.641 0.726 0.749 0.623 5
Haltiner Barge 0.031 0.368 0.459 0.448 0.242 0.442 0.357 5
Lucinda van Valkenburg 0.367 0.127 0.645 0.641 0.641 0.713 0.542 5
Monohansett 0.020 0.496 0.034 0.207 0.042 0.467 0.361 3
Monrovia 0.478 0.469 0.411 0.566 0.572 0.572 0.487 4
Shamrock 0.102 0.354 0.151 0.003 0.428 0.001 0.143 4
WP Thew 0.161 0.176 0.419 0.437 0.545 0.580 0.391 5
Viator 0.563 0.631 0.667 0.646 0.646 0.776 0.521 7
Average 0.214+0.20  0.284+0.22 0.364+0.27 0.37+0.26  0.414+0.28 0.454+0.30 0.36+0.19 4.00+1.78

Table 2: Per-site IoU comparison between our method and supervised benchmark baselines. Bold indicates

the best performance per site.
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4.1.2 Unsupervised Segmentation Benchmarks

We attempted to apply unsupervised object segmentation methods introduced by Zou et al| (2023); |Chen
et al.| (2019); [Savarese et al| (2021 as benchmarks for the Side Scan Sonar with Shipwreck Objects. We
choose ILSGAN (Zou et al. [2023) as it is the best performing method among the generative-based methods,
ReDO (Chen et al., [2019) as it makes the minimal assumption about the foreground objects (e.g., it does
not assume a minimal object size), and finally the work by |[Savarese et al. (2021) for its unique attributes
(i.e., no pretrained models, no adversarial training, and no need for data labels).

We use the same pre-processing steps explained in Section with the same patch size. We adapt the
model architectures to accept one channel instead of three. We also use the same hyperparameters used by
the authors. We found that the networks produce either trivial masks (i.e., all ones or all zeros) or masks
without any meaningful segmentation. The work ReDo by |Chen et al.|(2019)) converged to either almost
all-zero masks or all-ones masks as shown in Figure [I7] in the appendix. The foreground mask typically
contains either diffuse low-intensity values or small, high-intensity regions. These mask patterns appear
to be leveraged by the model to promote statistical dependency—i.e., mutual information—between the
input noise vector and the resulting generated image. We use their default setting of generating two masks.
Additionally, to ensure a fair comparison, we also tried adding a supervised loss for background-only images,
the mean squared loss for the generated mask, which is minimized if the generated mask is all zeros, as in
equation [7] Figure[I8shows examples for background and composite patches where our MSE loss drives the
foreground mask to be completely all-zeros.

For ILSGAN (Zou et al.l 2023), the trained model was able to generate realistic images; however, the
corresponding masks almost all zero. In other words, the model degenerates and ignores the possible presence
of the shipwreck objects shown in Figure [I9] in the appendix. This is not surprising as the ‘foreground’ is
very similar to the background.

Finally, we attempted to use the method by |Savarese et al| (2021), since it is a model-free method, we
applied two schemes: the first one is to input the whole sonar image and the second one use a patch-based
scheme with 50% overlap. However, both schemes provide nonsensical masks as expected for an unsupervised
method designed to work on color images with the object at the center. Results are shown in Figure 20] in
the appendix. Although we show only two examples, this observation is consistent across the testing images.

Admittedly, the hyperparameters selected in prior work, which work when trained on colored natural images,
may not be optimal; however, for unsupervised segmentation it is not clear how to conduct the required
hyperparameter search. Even with the weak supervision, we hypothesize that these methods may simply
be poorly suited for single channel images, such as sonar images, that lack the color and optical cues of
foreground and background found in natural imagery. To test this hypothesis, in addition to sonar images,
we also benchmark some other works using our synthetic datasets (see .

4.2 CUB Dataset

To qualitatively assess segmentation performance, we show 16 images from the testing set along with their
segmentations and the birds masks in Figure [3]

In Figure [l we show a variety of counterfactual images. We notice that the majority of the generated
counterfactual images do look like real images. However, there are interesting cases where the masking
network, in addition to birds, captures other objects. For example, it captures tree branches (e.g., third row,
6th and 7th columns), rocks (e.g., third row, 14th column), wires (first row, last column), cars (first row,
8th column). These objects can be still considered as foreground, so capturing them is not surprising. Also,
we can see some unexplained failure such as the 10th and 12th pictures in the first row, where for the former
the counterfactual does not appear to differ from the input image and for the latter, the counterfactual does
not look like anything in the CUB dataset.

To delve into more examples, we show the generated counterfactual images using the corresponding source
composite images (first column) and the source background images (first row) in Figure

12



Under review as submission to TMLR

Figure 3: Results of the segmentation model for CUB. From top to bottom: input images, estimated masks,
true masks, and thresholded estimated masks at 0.5.

Figure 4: Generated counterfactual images based on test images using 10 clusters. Each block is composed of
two rows and 8 columns. Each block shows the original input images in the first row and the corresponding
counterfactual images in the second row. The counterfactual are created by alpha-blending the real input
images with randomly selected backgrounds. Each second row in the blocks should ideally be composed of
the same background clusters. An example of the obtained clusters is shown in Figure 2] in the appendix.

For quantitative results, we show in Table[3]the IoU metric for different cluster numbers under AE+K-means
and CL+K-means settings (other metrics are in Table E[)

Table 3: Masking Network Performance (IoU) Comparison of AE+K-means and CL+K-Means based Back-
ground Clustering.

Number of Clusters AE+K-means CL+K-means

5 20% 30%
10 24% 30%
15 24% 26%

4.2.1 Benchmark Comparison

We also include a comparison between our method and other related work that does not require pretrained
networks as in Table [d] Here, we use a 5 cluster method. The model is different than the one previously
discussed, as the benchmark (Chen et al.,2019) uses more training data, i.e., 10,000 instances compared to
the approximately 5,000 instances used in Table 3] With the additional training data, our IoU performance
increases by 6 percentage points.

Our model’s modest performance is characteristic of its objective: generating plausible counterfactuals.
The masking network finds a solution not aligned to the ground truth due to three main reasons: it can
create plausible counterfactuals by taking portions of images that create bird-like silhouettes, as seen in
Figure [5| rows 4, 6, 9, 10, and 11; it can ignore portions of birds bodies that can vary in color, such that
when blended with background they are still reasonable representations (perhaps of different species); and

13
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Figure 5: Generated counterfactual images based on test images using 10 clusters. The first row shows
the source background image where each image comes from a different background cluster, and the first
column is the source composite image. Each cell in the grid (except the first row and column) represents
the alpha-blending of the corresponding source background and source composite images. Each column in
this figure shows a background that corresponds to the source background at the top, and every row shows
a foreground object that corresponds to the source foreground object at the most left, which demonstrates,
generally speaking, that our method is preserving both background and foreground information. Also, the
general appearance of the counterfactual images do correspond to the original data. It is interesting to see
that in the last three rows, the model is able to craft counterfactuals with bird-like images that are not
strongly related to the input composite images.
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Table 4: IoU scores on the CUB dataset across different methods. Bold indicates the best score. From left
to right, each work corresponds to Singh et al.| (2019), |Chen et al. (2019),Bielski & Favaro| (2019),Hung et al.
(2019) JSavarese et al.| (2021))/Yang et al.| (2022b), [He et al.| (2022), [Zou et al.| (2023)), respectively.
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44.5 42.6 38.0 32.9 55.1 69.7 62.9 72.1 35.6

thirdly, the strong contextual dependency between foreground objects and their backgrounds. When a
strong dependency exists, a cleanly segmented foreground object often creates a statistically improbable
image when placed in a new context, resulting in a high loss. Instead of this, our model strategically finds
masks that include ‘contextual anchors’ from the source background to preserve local realism and create a
more plausible final image, as seen in Figure For instance, consider a task where the source image is a
bird native to a dense forest, and the target distribution is characterized by backgrounds that are mostly
open sky with a few branches. To minimize the statistical distance, the model will not just segment the bird;
it will segment the ‘bird-on-branch’ unit together. A forest bird floating against a plain sky is a statistical
anomaly, but by including the branch, the model preserves a high-probability visual pattern. Similarly, for
the same target distribution, creating a silhouette of a flying bird out of any composite image will create a
plausible counterfactual with the open sky background.

Together, these masks create counterfactuals that better align with the target distribution, thereby achieving
a lower loss, but do not align with the ground truth mask of the bird alone. While this masking behavior
leads to imperfect segmentation on CUB, it highlights our method’s key strength—it is ideally suited for
domains where the foreground and background are decoupled. For example, in sonar imagery, man-made
objects like shipwrecks (artificial reefs, abandoned crab/lobster traps, or unexploded ordinances or mines)
do not correlate with the surrounding seabed. In this setup, where contextual priors are not a factor, our
method excels, proving competitive even with supervised approaches.

4.3 Synthetic Object on Real Sonar Dataset

We present both quantitative and qualitative results for the sonar dataset that combines real-world seafloor
imagery from |Cobb & Zare|(2014]) with synthetic objects from the dSprites dataset. The seafloor contains six
texture categories: sand ripple, rock, coral, sand, mud, and seagrass. Figure [f] illustrates the segmentation
performance, demonstrating that the proposed method generates high-quality segmentation masks. However,
for this dataset, the method does not produce ‘sharp’ masks. Table [f] provides the performance metric values

Figure 6: Results of the segmentation model for sonar images. From top to bottom: input images, estimated
masks, true masks, and thresholded estimated masks at 0.5.

for different numbers of background clusters. The results indicate that the best performance is achieved when
using four clusters.
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Table 5: Performance Metrics Across Different Number of Clusters for Sonar Data
Clusters Avg. Precision (%) IoU (%) AUC-ROC (%)

3 60 30 90
4 82 57 97
5 22 20 87

4.4 MNIST, FasionMNIST, and dSprites on Textures

We provide both quantitative and qualitative results for three datasets: MNIST, Fashion MNIST, and
dSprites. Initially, we trained the segmentation model using true clusters, defined by the texture label. Sub-
sequently, we trained the segmentation model based on AE clustering. We begin by presenting quantitative
results, followed by showcasing qualitative outcomes for the best-performing models on each dataset.

We show eight testing images, the estimated masks, the true masks, and the thresholded estimated mask
based on 0.5 in Figure [7] using 10 clusters obtained from the AE+K-Means.

Figure 7: Results of the segmentation model for Fashion MNIST (left), MNIST (middle), and dSprites
(right). From top to bottom: input images, estimated masks, true masks, and thresholded estimated masks
at 0.5

Figure [§] shows the quantitative performance results for the three datasets with respect to the number of
clusters from K-means along with performance using the true texture classes indicated by stars. (Quali-
tative results for the masks using the true texture classes in provided in Figure in the appendix.) The
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Figure 8: The percentage of Average Precision, AUCROC, IoU values (y-axis) for the four datasets, as
indicated by the legend. The x-axis represents the chosen number of clusters for the K-means model based
on AE/CLE features. The star symbols above the x-axis values, specifically at the position of 10, emphasize
the Average Precision and AUCROC corresponding to the ground truth clusters.
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performance of the model on Fashion MNIST, which has are relatively large objects with polygonal-like
shapes, is high with all clusters performing relatively the same. The model performs similarly on MNIST
when utilizing any of the estimated clusters, except for a slight drop when using the 10 clusters. We notice,
however, that the performance of the true clusters is worse compared to the estimated one, which is evident
in the qualitative results also (see Figure in the appendix). The model’s performance on the dSprites
dataset is comparatively lower, which we primarily attribute to the small size of objects and intensity vari-
ation. Despite this, the qualitative results depicted in Figure [} show that as in the case of sonar data, the
masks are not ‘sharp’. It is noteworthy that the mask size is proportional to the object size. Notably, when
employing AE-based clustering with a cluster number equal to 10, the dataset achieves the highest average
precision at 83%, compared to 60% when using true clusters.

To further discuss the reason for the superior performance for estimated clusters versus the true texture
classes, we show the clustered background using AE+K-means along with the corresponding true clusters
in Figure [9] in the appendix. We notice that the K-means clustering creates clusters out of the same true
cluster, and each cluster has a different phase. For example, in the case of 5 clusters, the brick cluster is
divided into two out-of-phase clusters. It also groups together distinct true backgrounds into one cluster.
Another example, in the case of 5 clusters, the first row, which represents a cluster, shows a mix of two
true clusters. Consequently, images with essentially the same content but differing phase are challenging to
assign to the same distribution.

5 Discussion

We introduced a framework for weakly-supervised foreground object segmentation within a dataset com-
prising both foreground and background images. Our approach leverages background images to formulate
a straightforward loss function that avoids degenerate solutions and offers a more straightforward training
scheme compared to generative and ViT-based models. Our approach can be applied without relying on
large models pretrained on natural imagery. Methods based on such models often cannot be directly applied
to other data modalities. However, our approach can be directly applied to other modalities such as sonar
object data. The distinctive combination of our dataset and framework sets our work apart.

We demonstrate the limitations of related work by applying two works by Bielski & Favaro| (2019) and
to our synthetic datasets. Both methods failed to converge to a solution where the segmentation
results are acceptable. This is due to the lack of a well-pretrained model (for the work done by Xie et al.
(2022))) and having diverse classes of foreground objects (for the work done by Bielski & Favaro (2019)).

In addition to sonar data, we also demonstrate relatively good performance on natural images using the CUB
datasetcolor, but note that counterfactual generation in cases with strong object-background dependence
limits performance.. During training of the masking network, random patches can be taken from the input
image to assign a background cluster for the conditional divergence loss. This demonstrates that our approach
can also be used for datasets composed only of composite images (as long as the images are not tightly cropped
around the objects).

We have assumed only access to composite images and background-only images. If we also have access
to the ground truth masks, one can incorporate ‘cut, paste and learn’ approaches that use known ground
truth masks to help train segmentation models (Dvornik et all) [2018} [Dwibedi et all, [2017} [Fang et al)) as
additional synthetic supervision to be combined with weakly supervised real cases. However, we note that
the location selection problem involved in ‘cut, paste and learn’ may not be as crucial in image domains such
as sonar. Nonetheless, the various blending techniques by Dvornik et al|(2018) could alleviate some of the
artifacts in counterfactuals.

Although one of the main contributions of our work is the avoidance of pretrained models, they can be used
to extract reliable initial heuristic cues of where the foreground object is. This can be useful in extracting
background patches that are used to train the clustering AE or to help guide the masking network.

The main limitation of our approach is the reliance on an appropriate background clustering. We observed
that each dataset achieves optimal performance with a different number of clusters, constructed under varying
settings. Selecting the correct number of clusters is a challenging task. Notably, the optimal clustering does
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not have to correspond to true background classes. On the dSprites synthetic dataset, using the clusters
actually outperformed the background classes corresponding to the texture class.

6 Conclusion

We have investigated a novel technique for weakly supervised segmentation based on the assumptions that
an object’s appearance is independent of the background imagery and there exists sufficient variety across
clusters of backgrounds. Given these assumptions, we can avoid a trivial solution when seeking a masking that
creates counterfactuals that superimpose a masked object obtained on a different background by minimizing
a divergence conditioned on the background cluster. The method, which does not use any pretrained network,
performs well on real-world sonar images of shipwrecks and synthetic images where the assumptions hold,
and other unsupervised and weakly supervised segmentation methods fails. It achieves modest performance
on natural images where only the second assumption holds. Future work can investigate possibilities for
semi-supervised approaches that incorporate limited ground-truth masks.
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A Literature Review

State-of-the-art approaches in unsupervised object segmentation area can be divided into three main
categories—the first is generative-based (e.g., GANs), the second is based on vision transformers (ViT),
and the third is class activation map (CAM). Table |§| summarizes approaches based on their reliance on
pretrained models, GAN training—which can create unstable learning dynamics— object class labels, and
extensive hyperparameter tuning to balance composite losses.

A.1 Generative-based Models

The work by |Remez et al.| (2018) is similar to ours in that it proposes a weakly-supervised approach that
relies on a discriminator to assess the statistical similarity between synthetic images with counterfactual
backgrounds and real images. Notably, their discriminator relies on a pretrained object classifier. Further-
more, the masking network input is based on the features from a pretrained object recognition network that
outputs a bounding box for the foreground object. The necessity of using pretrained models and a network
to generate a bounding box are the main limitations of this work.

Ostyakov et al| (2018) proposed a generative adversarial network (GAN) that takes a composite image
as input and inpaints the foreground region with a background consistent with the original background.
Subsequently, the segmented object is pasted onto a different background to generate a counterfactual image.
Their model involves a segmentation network that aims to produce inpainted and counterfactual images
realistic enough to deceive the discriminator. In addition to two discriminator networks, their architecture
includes three auxiliary networks: a segmentation network, an inpainting network, and an enhancement
network—the latter designed to correct artifacts resulting from inaccurate object masking. To avoid trivial
segmentation masks, the first discriminator distinguishes between inpainted composites and real background
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Table 6: Literature Review on Weakly Supervised Foreground Object Segmentation: All of the reviewed
work, depends on at least one undesired attributes (pretrained model, GAN training, data labels, Extensive
Hyperparameters) that hinders applying them to data-scarce domains such as sonar images.

Category Reference Pretrained GAN Data Extensive
Models Training Labels Hyperparameters

Generative-based Remez et al.| (2018)) v

[Ostyakov et al.[(2018)
[Bielski & Favarol (2019)

Chen et al.| (2019)
Singh et al.| (2019)
He et al.| (2022)

[Yang et al.| (2022b
|Zou et al.| (2023
|Sauer & Geiger| (]2021[)
[Li et al.| (2023))

Vision-Transformers |Dosovitskiy et al.| (]2021[)
|Hamilton et al.| (2022))
|Wang et al.| (2023b)

CAM-based Zhang et al.| (2018
Li et al.| (2018
Hou et al.| (2018
Jiang et al.| (2019
hang et al.| (2020
Lee et al.| (2021
Wu et al.| (2021
Xu et al.| (2022

Xie et al.| (2022
Others Hung et al| (2019)

|Savarese et al. (]2021[) v
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images, while the second discriminator differentiates counterfactual images from genuine composite images.
Their total loss is extremely complicated; it consists of 11 different losses.

[Bielski & Favaro| (2019) proposed a GAN-based, unsupervised approach to segment foreground pixels. The
GAN produces mask, foreground, and background images. The mask is used to alpha-blend the background
and foreground back together. Trivial solutions for this work result when (i) the generated background and
foreground are identical, so any arbitrary mask would still give a real image, (ii) Either the foreground or the
background is ignored (i.e., all-foreground or all-background), which results in an either all-zero or all-one
mask. To prevent the latter, the hinge loss on the average mask value is deployed. To prevent the former,
a small random spatial shift of the composite image and mask are applied before alpha-blending to create a
counterfactual shift in the resulting synthetic image. This shift penalizes having poor generated masks with
identical foreground and background by creating a statistical divergence between shifted counterfactuals (i.e.,
the generated image) and real images, which the discriminator can detect. A drawback to this approach
is the number of different loss functions (size, binary, gradient penalty, discriminator output norm) and
hyperparameters required to prevent degenerate solutions.

Building on the layered-GAN approach of the previous work (Bielski & Favaro, 2019), the method by
, used more general perturbations of mask and foreground via affine transforms and added
mutual information objectives between the random codes for foreground generation and the resulting mask
and synthetic image. There are two random codes for the two GANs (GAN-1 and GAN-2). The first code is
shared and used by GAN-1 for generating backgrounds and GAN-2 for generating foregrounds and masks in
conjunction with the second code which is used only by GAN-2. Maximizing the mutual information between
the rendered synthetic image and the second code prevents producing all-zero masks—if the mask is all-zeros
then the image will be equivalent to the generated background image which has zero mutual information
with the second code. On the other hand, maximizing the mutual information between the mask and the
second code encourages mixed-value masks (i.e., variety of zeros and ones). The reason behind this is that
since the map is deterministic, the mutual information is equivalent to the entropy of the mask. Finally, a
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masking network is jointly trained based on the data generated by the GAN model. This approach could
be adapted to our setting by avoiding the GANs and considering the mutual information between the mask
and synthetic image and the original composite image as an additional objective.

A similar work by [Zou et al| (2023]), ILSGAN, introduced an information-theoretic regularization which
maximizes the independence (minimizes an upper bound on mutual information (Cheng et al., |2020])) between
(1) the visible foreground (i.e., foreground pixels where the mask values are ones) and invisible background
(i.e., background pixels where the mask values are zeros), (2) invisible foreground (i.e., foreground pixels
where the mask values are zeros) and visible background (i.e., background pixels where the mask values are
zeros). Additional losses are added to encourage non-zero and binary masks. While this work addresses
the issue of preventing degenerate solutions, a notable drawback is the utilization of multiple loss functions
which requires a careful fine-tuning for the weight of each loss.

Chen et al.| (2019) proposed ReDO as an unsupervised object segmentation method based on the assumption
that foreground texture and background content are statistically independent (e.g., a flower can change
color regardless of its background). Their model consists of a segmentation network that predicts a soft
mask and a generator network that produces a new foreground texture conditioned on a Gaussian noise
vector. The final output image is formed by alpha-blending the generated texture and the original image
using the predicted mask. To avoid degenerate masks (e.g., all-zero or full-coverage), they introduce a mutual
information objective: a separate network is trained to recover the original noise vector from the generated
image, encouraging the mask to preserve informative regions relevant to texture generation.

Singh et al.|(2019) proposed FineGAN, a hierarchical gan that (i) generates the background image by using
a vanilla GAN that only focuses on the background patches obtained using off-the-shelf object detection
models, (ii) generates the shape and texture hierarchically by imposing a parent-child relationship between
the generated shape and texture, where a shape (i.e., the parent) can have many textures (i.e., the child).
This is realized by conditioning the generated texture on the code used to generate the mask. Note that for
generating the shape, infoGAN loss where it maximizes the mutual information between the code and the
generated image as there is no access to real images that has no textures.

The work by [Sauer & Geiger| (2021) introduced a Counterfactual Generative Network (CGN), leveraging
the concept of learning Independent Mechanisms (IMs) to establish a causal structure for mask, foreground,
and background. Each was modeled by fine-tuning a distinct pretrained BigGAN. To ensure the resulting
composite image is real, they minimize the MSE loss between the output of pretrained frozen BigGAN
and the composition process. To ensure the generated mask is not trivial, hinge and entropy losses are
deployed. For the background loss, the predicted saliency is minimized which leads to the foreground object’s
disappearance. For background generation a pretrained U2Net is used to detect the saliency. Overall, this
approach heavily relies on pretrained models and necessitates the incorporation of specific losses to prevent
degenerate or trivial solutions.

He et al.| (2022)) proposed GANSeg, a generative model that synthesizes foregrounds, backgrounds, and
segmentation masks in a hierarchical manner. Foreground and mask generation are conditioned on spatial
embeddings derived from Gaussian noise, which encode part-specific locations. Each object is composed of
multiple segments with each segment having its own mask; the final object mask is obtained by aggregating
these individual masks. To avoid degenerate solutions where the masks collapse to all-zeros or all-ones, a
hinge loss is applied to constrain the overall mask area. Additionally, a geometric consistency loss encourages
each segment’s mask to be spatially concentrated around its designated location, promoting more structured
and interpretable mask generation.

The work by [Li et al.| (2023]) proposes a training-free image segmentation method that leverages pretrained
generative inpainting models, such as latent diffusion models (Rombach et all |2022)). Given an initial coarse
mask (e.g., a bounding box), the image is first inpainted to hallucinate the background in place of the
masked foreground. A contrast map is then computed by comparing the original and inpainted images,
using both pixel-wise color differences and L-2 distances in the feature space of a pretrained encoder that
preserves spatial resolution. K-means clustering (with & = 2) is applied to this contrast map, and the cluster
with the higher mean contrast is interpreted as the refined foreground. This enhanced mask is then used
in an outpainting step, in which the background is masked and reconstructed using the generative model.
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The contrast between the original image and this outpainted version is again analyzed to further refine the
segmentation mask, following the same contrastive and clustering strategy. This process is iterated multiple
times to resolve false positives and false negatives in the initial segmentation. While this method is notable
for requiring no supervised training, its reliance on powerful pretrained generative models may limit its
applicability in domains where such models are unavailable or underperforming. Moreover, its segmentation
quality is contingent on the inpainting fidelity and the robustness of contrast-based clustering

To summarize, the presented works rely on either pretrained models or complex combinations of loss
functions—involving training GANs, dependencies that our approach avoids.

A.2 Vision-Transforms-based Models

The vision transformer (ViT) (Dosovitskiy et all [2021) treats patches of input as tokens whose represen-
tations are processed through layers involving multi-head attention, and can be adapted to unsupervised
segmentation. For example, the work by Wang et al.| (2023b]) used the ViT model DINO (Caron et al., [2021)
to obtain features from non-overlapping patches of the input image. These features were used to construct
a graph that represents the similarity between the patch-wise features. The normalized cut (N-cut) (Shi
& Malikl, 2000) algorithm was then applied, which was followed by CRF (Lafferty et all 2001) for edge
enhancement. A similar work was proposed by Wang et al.| (2023a) which uses multiple N-cuts on masked
images to detect multiple objects. Again, post-processing, such as conditional random field (CRF) (Lafferty
et al.l 2001) or bilateral solver (Barron & Poolel 2016), is required to get pixel-wise masks from the coarse
patch-wise segmentation.

ViTs require large amounts of training data (Dosovitskiy et al., [2021)), which can hinder the performance of
the presented works if sufficient data is unavailable or if the data domain differs significantly from that of the
pretrained ViT models. Even with sufficient data for ViT training, the demand for significant computational
resources remains, posing an additional constraint (Irandoust et al., [2022). All the works mentioned below
depend on pretrained models, which is limiting for specialized image modalities.

The work by [Hamilton et al.| (2022)) proposed an unsupervised semantic segmentation approach that distills
knowledge from pretrained feature extractors. A frozen backbone (e.g., DINO-VIT) is used to extract
dense pixel-wise features from input images. A trainable segmentation network maps these features to
lower-dimensional embeddings representing per-pixel segment assignments. During training, a mini-batch
is constructed for each sample by including its K-nearest neighbors in the feature space. The model then
samples a neighbor image and computes a cosine similarity matrix between the pixel features of the target
and the neighbor. The segmentation output is encouraged to be similar for pixels with high feature similarity
and dissimilar for pixels with low similarity.

A.3 Class-Activation-Map-based Models

Much work on weakly-supervised segmentation is based on class-activation maps (CAM) derived from pre-
trained convolutional object classification networks (Kumar Singh & Jae Lee, |2017; [Wei et al., [2017; [Zhang
et al., 2018 [Li et al., |2018; [Hou et all, 2018} |Jiang et al., 2019). We stress the fact that our model does
not require labeled data (for instance, class information for composite/background images). Performance
was initially limited as segmentation based on activation maps often focused on a few parts of the ob-
jects (Kumar Singh & Jae Lee| 2017, [Wei et all 2017). To mitigate this problem, |Zhang et al. (2018]) used
a backbone fully-convolutional network to extract initial CAMs and then used two parallel-branches, each
a CNN classification network, which took the initial CAM as an input. Parts of the input CAM of the
first classifier are erased with the guidance of the object localization map from the second classifier. This
encourages the first classifier to seek other parts of the image to do the classification. Thus, this results in
learning a more coherent /complete feature map that can be used for object segmentation. Similarly, |Li et al.
(2018) proposed two networks, where one network uses the parts that are neglected by the first one for the
classification task which results in expanding the activation map to other related parts. The work by [Hou
et al.| (2018]) introduced an approach for adversarial learning during supervised classification training which
encourages the CAM to expand from covering only part of the target objects while penalizing it for cover-
ing background regions spuriously using the background prior (i.e., regions with low activations defined as
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background, regions with high activations defined as foreground and regions in-between defined as potential
foreground) obtained from the initial map. Following a similar aim, |Jiang et al| (2019) observed that the
attention maps produced by a classification network changes focus on different object parts throughout the
learning. They saved copies of the model each epoch and then used them to produce CAMs. At the end,
they fused all the resulting CAMs using a pixel-wise max operation, which enhanced the final CAM. All
previously mentioned work in this paragraph depends on pretrained models.

The work by |Chang et al.| (2020)) joined supervised learning with self-supervised learning to enhance CAM.
First, a CNN is trained to classify images according to their true labels. After that, the internal representation
of the input image is used as a feature representation. The aggregated feature representations are then used
to cluster each class into pseudo-labels (e.g., person label can be divided into child and adult). Then, another
classifier is trained to classify the pseudo-labels/clusters of the feature representations while backpropagating
the loss to fine-tune the original CNN to improve the feature representation. After that, the thresholded
resulting CAM is used for semantic segmentation.

The work by |Lee et al.|(2021) uses information obtained from an off-the-shelf, pretrained saliency detector
(trained in supervised or unsupervised fashion) to improve the CAM semantic segmentation. They minimize
the loss between the estimated saliency map based on CAMs and the one obtained from off-the-shelf models
while minimizing the classification loss.

Wu et al.| (2021)) initially extracted the class-specific CAMs obtained from an off-the-shelf model (i.e., for each
input image, X' CAMs are generated where K are the number of classes). Then, a self-attention mechanism
is applied to all B x K CAMs , where B is the batch size, from the batch, enabling the model to capture
both spatial dependencies within each CAM (intra-CAM) and semantic relationships across different CAMs
(inter-CAM), thereby improving attention consistency and completeness. The output is then used to classify
the input image based on its multi-label obtained by the K activation maps. During inference, the activation
maps obtained from the self-attention model are used for semantic segmentation.

The work by Xu et al. (2022) proposed a multiclass transformer that learns class tokens in a classification
setting. The basic idea is to learn the interaction between the patches and different class tokens and use
the resulting similarity to refine the resulting activation maps from the transformer, which is later used for
semantic segmentation. The training loss comprises two multi-label soft margin losses. One is based on the
class tokens and the other is based on patch tokens. These losses are calculated between the ground-truth
labels at the image level and the predictions for each class. Their implementation depends on a pretrained
model on ImageNet and they used multi-scale testing (i.e., processing the same input image at different
scales and then combining the results) and CRFs for post-processing.

The work by Xie et al.| (2022)) introduced a class-agnostic contrastive learning framework for semantic seg-
mentation (C2AM) with pretrained models as backbone for features extraction. Using a pretrained model
activation maps for extracting background and foreground features, a contrastive learning approach is used
to separate foreground and background by encouraging the similarity within each foreground and back-
ground representation and dissimilarity across foreground and background representations. The foreground
and background representations are separated by a matrix multiplication with a thresholded mask based on
the value of the activations. The mask is obtained by the pretrained model’s activation maps.

Overall, the work presented in this section relies on pretrained models, typically trained on large datasets.
We demonstrate that training models from scratch on synthetic data does not yield useful CAMs, which are
crucial for achieving high performance in this line of work.

A.4 Other Work

Hung et al| (2019) proposed SCOPS, a self-supervised part segmentation framework that leveraged multiple
auxiliary objectives. First, they used saliency maps extracted from a pretrained classification network as soft
supervision, encouraging the encoder’s part activation maps to align with semantically meaningful regions
via a cosine similarity loss. Second, they introduced a geometric loss that encouraged all pixels assigned
to a given part to be spatially concentrated around that part’s center; the number of parts was treated as
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a hyperparameter. Lastly, an equivariance loss ensured that part assignments remained consistent under
random spatial transformations such as rotation and scaling, promoting robustness and part consistency.

The work by [Savarese et al.| (2021) proposed an unsupervised model-free method to segment foreground and
background based on minimizing the mutual information between the segmented foreground and background.
They used a variant of mutual information, namely the coefficient of constraint that prevents trivial solution
including an entropy in the denominator. By including assumptions about the conditional distributions
(i.e., Laplace distribution for foreground/background given background/foreground), the loss is equivalent
to maximizing the inpainting errors of both the masked foreground and the masked background. However,
they added a new loss that penalizes the texture diversity within the masked region (i.e., the masked region
should have a uniform texture). The mask is estimated for each image by projected gradient descent on the
mutual information loss.

B Statistical Divergences

In this section, we review statistical divergences, particularly the sliced Wasserstein distance, which serves
as the backbone loss for our approach, as explained in the next section.

Previous work in unsupervised foreground object masking (see Section has relied on discriminator networks
and adversarial loss functions as in the original GAN (Goodfellow et al., [2014), which exploit the fact that
the cross-entropy loss of the ideal discriminator is proportional to the Jensen-Shannon divergence. Since
Goodfellow et al.| (2014)’s seminal work, a variety of statistical divergences have been used to train GANs,
namely f-divergences (Nowozin et al., [2016) and maximum mean discrepancy (MMD) (Li et al.l [2017).

The family of Wasserstein distances is another class of divergences based on optimal transport theory (Villani
et al., [2008). In particular, the Wasserstein-1 distance, a statistical divergence also known as the Earth
mover’s distance, has been applied in generative modeling in the form of the Kantorovich dual (Arjovsky!
et all |2017). Note that all of these divergences require adversarial optimization (MMD-GAN (Li et al.l
2017) uses adversarial selection of the kernel). In contrast, the primal form of the Wasserstein-p distance
measures the divergence between the distributions of two random variables X ~ Px and Y ~ Py in terms
of the optimal transport plan

1

WP P2 (i Eocreend1P) (10)
Pxy €Ppy by

where Pp, p, defines the set of transport plans, consisting of all joint distributions with marginals equal to

the original distributions Px and Py, and d is a distance function. For X,Y € R?, the Euclidean distance

is typically used d(X,Y) = || X — Y||2.

In practice, only samples are available, and for training divergence estimates require computation on batches.
For batches of size N, the computational complexity of variational approaches (Nowozin et all [2016; |Ar-
jovsky et al.,|2017) is O(N), compared to O(N?) for MMD (Li et al.,[2017), and O(N?) for the primal form
of Wasserstein-p distance. To mitigate the computational bottleneck of the Wasserstein distance for samples,
the Sinkhorn algorithm has been applied to solve an entropically regularized version of equation (Cu-
turi, |2013)). Another alternative, is to exploit the sliced Wasserstein distance (Kolouri et al., 2018), as the
one-dimensional case of Wasserstein-p distance requires only O(N log N), due to a closed form (Santambro-
gio, 2015)) that requires sorting. The sliced Wasserstein (SW) distance is motivated by the Cramér-Wold
theorem (Bélisle et al., [1997), which states that probability measures in Euclidean space are characterized
by all one-dimensional projections, which corresponds to the integration of the Wasserstein distance across
all one-dimensional slices (Wu et al.l |2019; Deshpande et al., 2018} [Kolouri et al., |2018]). In practice, this
integration is an expectation that can be computed by Monte Carlo integration by sampling from a uniform
distribution over the unit hypersphere S

§d—1
=Ewpi-1) [SWE(Px,Py; W), (11)
SWP(Px, Py; w) é Wp(]P)wTX7 ]PwTy).
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Given two samples/batches Px = {(%,%:)}¥, and Py = {(%,y:)}X,, the computation of the sliced

Wasserstein-p distance is simply the mean of the absolute error to the pth power between paired samples
after sorting: SW7(Px,Py;w) = % Z;V:l(WTXw]- - WTij )P, where the permutations 7 and ¢ ensure that
WX, SWixg, < - <WiXey and W'y, <W'y,, <--- <W!ygy, respectively. Intuitively, w defines

a subspace and the sorting ensures the shortest distances between the pairs in the subspace.

Alternatively, one can use energy-based Wasserstein (EBSW) (Nguyen & Ho, 2023)) that depends on impor-
tance sampling to emphasize slices that distinguish the distributions:

o=

EBSW,(Px,Py; f) = (Ewnoxy (wifp) [SWE(Px,Py; W)]) (12)

With a uniform proposal distribution over the hypersphere,

. A f(SWp(Px,Py;w))
UX,Y(w; fap) - de—l f(SV\%(Px,Py;wl))dwﬂ (13)

where f is a monotonic function. Importantly, this avoids an explicit search for the best slice (Deshpande
et al.L|2019). Using Monte Carlo integration, a set of L random unit vectors wy, . . . ,wr, are drawn, importance
sampling estimate approximate

L
SWE(Px, Py;
EBSWE(Py, Py; f) ~ FSWH(Px, Py; w))
p I /
=1 El’:l f(SWg(Px,Py; wl))

SWg(Px,Py;wl). (14)

Interestingly, an analogous approach can be used to select from a predefined set of kernel functions for
MMD (Biggs et al.l 2023]), which provides a rough approximation of the adversarial optimization of the
kernel function in MMD-GAN (Li et al.l [2017).

C Synthetic Datasets

C.1 Synthetic Data Description

C.1.1 Synthetic-Aperture Sonar Backgrounds with dSprites

This synthetic dataset is derived from real-world background-only synthetic-aperture sonar (SAS) im-
ages (Cobb & Zare, 2014), augmented by overlaying artificial objects to simulate relevant scenarios. This
SAS dataset contains 129 1001 x 1001 images that are originally complex-valued, single (high-frequency)
channel, taken from various seafloor texture types. For each sonar scene, we crop 200 64 x 64 images from
the magnitude images. We normalize each crop by its mean and then clip any value larger than 16. Half
of the resulting crops are used as composite images where we paste objects from dSprites (Matthey et al.
2017) dataset using equation [I} The data is divided into 70%,20%, and 10% for training, validation, and
testing.

We select the dSprites dataset because the shapes resemble real man-made objects observed in sonar images.
However, since the dSprites shapes lack intensity variations, we introduced a smooth gradient to each dSprite
object, which mimics the consistent intensity patterns typical in SAS imaging systems. This gradient follows
a planar transition with a 45-degree slope and is applied based on the corresponding crop values. The
minimum value of the transition is chosen randomly between the 50th and 70th percentiles of the crop
values, while the maximum value is randomly selected between the 80th and 100th percentiles of the crop
values. This dependence on the background intensity values makes the foreground object brighter in a bright
crop and dimmer in a dim one. This makes the segmentation task more challenging since using a simple
threshold will not produce a reasonable mask. We use the other half as background images.

C.1.2 Textures with MNIST, FashionMNIST, and dSprites

This synthetic dataset consists of surrogate data, represented as grayscale single-channel images, which we
use to further demonstrate and validate the method’s functionality. We sourced background images from
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crops of 10 different textures obtained from the Brodatz dataset (Brodatz, [1966]). For foreground objects,
we used MNIST, Fashion MNIST (Xiao et al.l 2017, and dSprites (Matthey et al., 2017)). These datasets
reflect a variety of foreground objects: MNIST are medium extent, thin objects with high pixel values;
Fashion MNIST are objects of large extent, a diversity of shapes, some almost-convex, and varying in pixel
intensities; and dSprites are small compact shapes (we created an artificial range of intensity values).

For the synthetic dataset, 140,000 background images of size 64 x 64 were generated by randomly patching
the texture images. Half of the background images were used as background for the composite images. This
resulted in 70,000 images as foreground and background. Images in the foreground datasets were resized
to 64 x 64 and the true (binary) mask was used to blend it onto the background image using equation
Since MNIST and Fashion MNIST have no given true mask, we estimate the true mask by applying Otsu’s
threshold on each image (Otsul, [1979). The data is divided into 70%, 20%, and 10% for training, validation,
and testing.

Again, since the dSprites images lack intensity variation, we create random intensities for each foreground
object pixel by sampling a Gaussian distribution with zero mean and unit standard deviation and then
squaring it to remove negative values. We then min-max normalize the resulting composite image such that
the lowest intensity value is 150 and the max is 255, before masking a background and combining the two.
Each image is min-max normalized such that all pixel values are between [0, 1].

C.2 Implementation Details for Synthetic Datasets

We note here any dataset dependent implementation details.

For SAS+dSprites and Textures+MNIST /FashionMNIST/dSprites, the surrogate data cluster labels for the
composite images are computed by processing the corresponding background-only images through both the
AE/CLE and Sinkhorn K-means. For the SAS images, we find that AE architecture is not able to reconstruct
the images, so we use a symmetrical architecture that is composed of four blocks for the encoder and decoder,
and each block is composed of convolution, ReLLU, BatchNorm, with residual units: the 64-channel block
has 1 and other blocks have 2 residual units each. The number of channels per block is {64, 128,256,512},
with an additional 768-channel stage. As described above, a fully connected bottleneck layer of dimension
o = 20 is used to represent the latent space.

The Textures+MNIST /FashionMNIST /dSprites images, have 10 ground truth clusters and we experiment
with varying the number of clusters, choosing values from the set {5, 10, 15}

For SAS images, we choose cluster values from the set {3,4,5}. Initial experiments with 2 clusters consistently
failed to separate visually distinct regions.

For Textures+MNIST /FashionMNIST /dSprites and SAS+dSprites datasets, we run the training for 50 and
100 epochs, respectively. For the former, we choose the model with lowest validation loss £ shown in
equation [§] but for the latter we also include a quantile loss equation [15] with quantile, ¢ = 0.8, such that
the maximum area of an object is 20% of the image size:

> 2 . :
Lquantite(8) = Ex g Z ([X@]ij — Rij) , Q@ ={ij: Mp(X)i; <7}, 7 =quantile(Mp(X),q). (15)
ijEQ
That is, for the SAS+dSprites dataset the total loss is Lp(0) + Lpg() + Lquantite(?). This additional loss

encourages the masking network to produce counterfactual images in which a gth fraction of its pixels match
the source background, essentially encouraging the corresponding mask pixels to be zero.

C.2.1 Unsupervised Object Segmentation Benchmarks

For the synthetic datasets, since we have more class information about the background and objects, we can
train a classification model and use its resulting CAM. We use the method introduced by [Xie et al.|(2022) as a
benchmark as it gives the best results among the CAM-based models. We find it one of the closest methods to
our work due to its weakly supervised nature. We also use the GAN-based method, PerturbGAN, introduced
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Figure 10: Results of the segmentation model for Fashion MNIST (left), MNIST (middle), and dSprites
(right) using true clusters. From top to bottom: input images, estimated masks, true masks, and thresholded
estimated masks at 0.5

by [Bielski & Favaro| (2019)). Both of them fail to converge to meaningful object masks when using synthetic
single-channel data. In order to compare the performance of the related work using our synthetic data, we
train PerturbGAN (Bielski & Favaro| [2019) on our composite images (excluding background images). We
also found that the work by [Xie et al.| (2022) (C2AM) can be adapted to take advantage of the composite and
background images. Thus, we train a ResNeT-52 model (their backbone model) to classify the composite
images based on their foreground objects class, and to classify background images based on their texture
label. We choose this classification task to encourage the ResNeT model to learn a rich representation that
has enough entropy to be used as CAM. After training the backbone model, we proceed to fine-tune the
model using their approach.

We have noticed that PerturbGAN is able to generate similar images to the synthetic dataset; however, it
was able to ‘cheat’ as the generated foreground mask did not represent the true foreground masks. Also, the
generated background images have composite images and background images as shown in Figure

For the C2AM model (Xie et all |2022), we notice that it failed to converge to a meaningful solution as
shown in Figure [[I] Note that these are training samples. We hypothesize this is due to a not well-trained
backbone model; the model either needs more data or a more complicated modeling scheme, for which the
two scenarios invalidate the minimalist approach that our method promotes.

D Additional Results

D.1 SSS Dataset

Figure [13] shows cases where the masking network also includes shadows of ships.

In contrast, Figure [I4] shows cases where the masking network is successful with less extensive shadows.
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Figure 11: Results from C2AM model based on Fashion MNIST (left) and MNIST (right) datasets. Left
of each block: the training input image. Right of each block: the activation maps where red shows the
predicted foreground object.

il

Figure 12: Results from PerturbGAN images based on MNIST (top) and Fashion MNIST (bottom) datasets.
From left to right: generated mask along with the generated composite images, generated composite images,
and generated background images.

E
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Figure shows images without ships, where the model identifies the artificial reef, although it not in the
ground truth. As a man-made object and arrangement it could be argued that the masking network worked
in this case. However, Figure[[5]also highlights an image where there are extensive false positives for portions
of the seafloor.

Figure [16]is another case with many false positives, that other supervised models also perform poorly on.
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Figure 13: Segmentation model results on SSS images. Each row corresponds to a different image. From
left to right: input images, ground truth masks, estimated masks, and thresholded estimated masks at 0.5.
Image sites: Viator.
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Figure 14: Segmentation model results on SSS images. Each row corresponds to a different image. From
left to right: input images, ground truth masks, estimated masks, and thresholded estimated masks at 0.5.
Images sites from top to bottom: Barge, WH Gilbert , WH Gilbert, and Barge.
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Figure 15: Segmentation model results on SSS images without ships, but regular arrangement of rocks or
blocks in the first image. Each row corresponds to a different image. From left to right: input images,

ground truth masks, estimated masks, and thresholded estimated masks at 0.5. Site of the first image is
Artificial Reef, and for the second image is Haltiner Berge.

\is

Figure 16: Failure cases of the segmentation model on SSS images at ‘James Davidson’ From left to right:
input image, ground truth mask, estimated mask, and thresholded estimated mask at 0.5.
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D.2 Benchmark Results

Attempts to apply unsupervised segmentation methods to the SSS dataset are shown in Figures

Figure 17: Two blocks of results from |Chen et al. (2019)) model on the SSS dataset. Each row represents the
result of an input sonar patch: first column is the input sonar patch, second is the segmentation ground truth,
third and fourth are generated masks, and the last two are alpha blended results based on the generated
masks.
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Figure 18: Two blocks of results from [Chen et al| (2019)) model on the SSS dataset. Each row represents the
result of an input sonar patch: first column is the input sonar patch, second is the segmentation ground truth,
third and fourth are generated masks, and the last two are alpha blended results based on the generated
masks. The left figure shows a group of background patches and the right one shows a group of composite
images.

Figure 19: Generated images from ILSGAN (Zou et all 2023)) on the SSS dataset. Each cell represents a

generated image.

Figure 20: Results from model-free unsupervised baseline method [Savarese et al (2021) using patches with
50% overlaps on the SSS dataset.
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D.3 Additional Results for CUB Dataset

Figure shows examples of the background images extracted from original CUB split organized into 10
clusters. Note that color and texture are very distinct.

Figure 21: Each row shows an example obtained from clusters for the CUB dataset.

For quantitative results, we show a sensitivity analysis of performance metrics for the choice of latent
representation (auto-encoder or contrastive learning) and the number of clusters for the original CUB split
are shown in Table[1

Table 7: Masking Network Performance (Average Precision, AUCROC and IoU) Comparison of AE+K-
means and CL+K-Means based Background Clustering

Metric Number of Clusters | AE | CL
Average Precision 5 34% | 46%
10 38% | 40%

15 37% | 41%

AUCROC 5 2% | 74%

10 67% | 7T0%

15 0% | 74%

IoU 5 20% | 30%

10 24% | 30%

15 24% | 26%
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