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Abstract This tutorial chapter provides a comprehensive step-by-step guide on the
setup of the navigation stack and the teb_local_planner package for mobile robot
navigation in dynamic environments. The teb_local_planner explicitly considers
dynamic obstacles and their predicted motions to plan an optimal collision-free tra-
jectory. The chapter introduces a novel plugin to the costmap_converter ROSpackage
which supports the detection and motion estimation of moving objects from the local
costmap. This tutorial covers the theoretical foundations of the obstacle detection and
trajectory optimization in dynamic scenarios. The presentation is designated for ROS
Kinetic and Lunar and both packages will be maintained in future ROS distributions.

Keywords Navigation · Local planning · Online trajectory optimization
Dynamic obstacles · Dynamic environment · Obstacle tracking

1 Introduction

In the context of service robotics and autonomous transportation systems mobile
robots are required to safely navigate environments populated with humans and
other robots. On this occasion, universally applicable motion planning strategies
are of utmost importance in mobile robot applications. Online planning is favored
over offline approaches as it responds to dynamic environments, map inconsistencies
or robot motion uncertainty. Furthermore, online trajectory optimization conciliates
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Fig. 1 Overview of the ROS navigation stack including the teb_local_planner

among partially conflicting objectives such as control effort, path fidelity, overall
path length or transition time.

The navigation stack1 [12] along with its plugins for environment representations
(in terms of occupancy grids respectively costmaps) and local and global planners
constitutes a widely established framework for mobile robot navigation in the Robot
Operating System (ROS). Figure1 shows an overview of the navigation stack setup2

employed in the course of this chapter.
A global_costmap is generated based on a known map of the environment

(published by the map_server). Additionally, sensor readings which are classified
as observations of static obstacles are incorporated into the global_costmap. The
global_planner computes an initial path to the goal based on the global_costmap.
This path does neither consider any time information nor obstacles which are not
represented in the global_costmap (for example because they are dynamic or simply
were not present at the time of mapping). In order to consider these obstacles as well,
the local_costmap is generated from fused readings of the robot’s sensors. Taking
into account the local_costmap, the local_planner optimizes the initial plan defined
by the global_planner and publishes the appropriate velocities to the underlying base
controller. In contrast to the standard architecture of the navigation stack, the default
local_planner is replaced by the gray highlighted teb_local_planner plugin in this
chapter. The robot localizes itself using a combination of odometry (motion estima-
tion relative to the robot’s starting position based on data from its drive system) and
Adaptive Monte Carlo Localization (amcl) [22]. Transformations between multiple
coordinate frames are provided by the tf package.3

1ROS navigation, http://wiki.ros.org/navigation.
2Adopted from the move_base wiki page, http://wiki.ros.org/move_base.
3tf, http://wiki.ros.org/tf.

http://wiki.ros.org/navigation
http://wiki.ros.org/move_base
http://wiki.ros.org/tf
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The current implementation of the navigation stack assumes a quasi-static envi-
ronment and neither predicts nor considers the motion of dynamic obstacles (such as
humans or other robots) explicitly. The costmap representation only provides a static
view of the current environment and lacks the temporal evolution of grid occupancy.
Consequently, planners are unable to benefit from the knowledge of a moving obsta-
cle’s estimated velocity and heading. In order to achieve robust navigation in dynamic
environments, ROS navigation implements so-called inflation in which static occu-
pied costmap cells are inflated by an exponentially decreasing cost decay rate. Thus,
the robot plans a more pessimistic trajectory and maintains a larger separation from
obstacles than actually required by collision avoidance.

The authors developed a package for dynamic obstacle detection and tracking
based on the two-dimensional costmap of the ROS navigation stack. The approach
rests upon an algorithm for foreground detection in the rollingwindowof the costmap
that discriminates between occupied cells attributed to moving objects and the static
background. The approach compensates the robot’s ego-motion to obtain an unbiased
estimate of obstacle velocitiesw.r.t. a global frame. The foreground cells are clustered
into a set of obstacles for which individual model-based filters (Kalman-Filters) are
applied for the ongoing state estimation of the obstacle motion. The node publishes
the set of current dynamic obstacles in terms of their estimated location, footprint
(shape), translational velocity vector and its uncertainty at every sampling interval.
Local trajectory planners utilize the estimated motion of obstacles to plan the future
collision-free robot trajectory ahead of time. For that purpose the interface for local
planners should not only consider the current costmap but also its temporal evolution
due to obstacle motion.

The previous volume of the book Robot Operating System - The Complete Refer-
ence includes a tutorial chapter on kinodynamicmotion planningwithTimed-Elastic-
Bands (TEB) [18]. The package teb_local_planner4 implements a local planner plu-
gin for the ROS navigation stack. The underlying TEB approach efficiently optimizes
the robot trajectory w.r.t. (kino-)dynamic constraints and non-holonomic kinematics
of differential-drive, car-like or omnidirectional mobile robots while explicitly incor-
porating temporal information in order to reach the goal pose in minimal time [16,
17].With its recent update, the teb_local_planner explicitly considers dynamicobsta-
cles based on the estimates provided by the tracker for local planning. Multiple ques-
tions and inquiries in (ROS Answers) and personal feedback to the authors clearly
indicate a broad interest of the community to support dynamic obstacles in ROS
mobile robot navigation.

This chapter covers the following topics:

• The current state of the art for mobile robot path planning is briefly summarized
in Sect. 2 with a focus on currently available local_planner plugins for the ROS
navigation stack

• The algorithmic background for local costmap conversion is explained in Sect. 3
• Section4 introduces the novel CostmapToDynamicObstacles plugin for the
costmap_converter along with an intuitive example setup in Sect. 4.4

4teb_local_planner, http://wiki.ros.org/teb_local_planner.

http://wiki.ros.org/teb_local_planner
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• Section5 presents the theoretical foundations of the TEB trajectory optimization
methods

• Section6 discusses the teb_local_planner along with a basic test node for spatio-
temporal trajectory optimization (Sect. 7)

• Finally, Sect. 8 explains the setup of a navigation task in environmentswithmoving
obstacles.

2 Related Work

Collision-free locomotion is a fundamental skill for mobile robots. Especially in
dynamic environments, online planning is preferred over offline approaches due to its
immediate response to alterations in the vicinity of the robot. The Dynamic Window
Approach (DWA) constitutes a well-known online trajectory planning approach [4].
It rests upon a dynamic window in the control input space from which admissible
velocities for the robot are sampled in each time step. The search space is restricted
to collision-free velocities considering the dynamics of the robot. For each sample,
a short-term prediction of the future motion is simulated and evaluated w.r.t. a cost
function (including a distance measure to the goal and obstacle avoidance terms) by
assuming constant control inputs. The DWAwas extended by Seder and Petrović for
navigation in dynamic environments [21]. The Trajectory Rollout approach operates
in a similar manner as the original DWA, but rather samples a set of achievable
velocities over the entire forward simulation period [6]. In the context of car-like
robots, [15] restricts the search space of rotational velocities to the set of feasible
solution. However, due to the assumption of constant velocities in the prediction,
motion reversals which are required for car-like robots to navigate in confined spaces
are not explicitly considered during planning.

Fiorini and Shiller [3] present another approach called Velocity Obstacles to
velocity-based sampling in the state space. The search space is restricted to admis-
sible velocities that do not collide with dynamic obstacles within the prediction
horizon. Fulgenzi et al. extended this method in order to account for uncertainty in
the obstacle’s motion by means of a Bayesian Occupancy Filter [5].

The Elastic-Band approach deforms a path to the goal by applying an internal
contraction force resulting in the shortest path and external repulsive forces radiating
from the obstacles to receive a collision-free path [23]. However, this approach does
not incorporate time information. Hence, the robot’s kinodynamic constraints are not
considered explicitly and a dedicated path following controller is required. The 2-
Step-Trajectory-Deformer approach incorporates time information in a subsequent
planning stage [10]. Resulting trajectories are feasible for holonomic robots with
kinodynamic constraints. An extension to non-holonomic robots is presented by
Delsart and Fraichard [2]. Gu et al. [7] present a multi-state planning approach
which utilizes an optimization-free Elastic-Band to generate paths followed by a
speed planning stage for car-like robots.

Likewise, the TEB approach augments the Elastic-Band method with time infor-
mation in order to generate time-optimal trajectories [16]. The approachwas recently
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extended to parallel trajectory planning in spatially distinctive topologies [17] and to
car-like robot kinematics [19]. The TEB is efficiently integrated with state feedback
to repeatedly refine the trajectory w.r.t. disturbances and changing environments.
Desired velocities are directly extracted from the planned trajectory.

A variety of the previously presented approaches (DWA, Trajectory Rollout,
Elastic-Band and the Timed-Elastic-Band) are provided as local planner plugin in
the ROS navigation stack [12]. However, the TEB approach presented in this chapter
is currently the only local planner plugin that explicitly incorporates the estimated
future motions of dynamic obstacles into trajectory optimization.

The costmap_converter package presented in this chapter estimates the velocity
of dynamic obstacles according to a constant velocity model. More sophisticated
obstacle tracking approaches like the social forces model [11] take cooperative joint
motions among a group of agents into account. These models are currently not
included, but they might be implemented in potential future package versions.

3 Costmap-Based Obstacle Velocity Estimation

In the ROS navigation stack (see Fig. 1) the costmap represents an occupancy grid.
The status of each cell is either free (0), occupied (254), or unknown (255). Costmaps
are updated at a specific rate. Unfortunately, the costmap does not include histor-
ical data from which velocity and heading of moving obstacles could be inferred.
Therefore, the authors implemented a tracker and velocity estimation based on the
history of the costmap. The ego-motion is compensated by transforming the observed
obstacle velocities from the sensor frame to the global map frame w.r.t. the robot’s
odometry.

Typical tracking algorithms operate with rangemeasurements but make particular
assumptions about the sensor characteristics. Our tracking scheme merely relies on
the costmap with already aggregated sensor data, which facilitates its integration into
the navigation stack, but arguably sacrifices tracking accuracy and resolution. The
tracker is universally applicable as it requires no configuration or adaptation to differ-
ent types of sensors since data fusion is already accomplished at the costmap stage.
The tracker is implemented as a plugin to the existing costmap_converter package
which provides plugins that convert the static costmap to geometric primitives like
lines or polygons. The presented method converts only dynamic obstacles to geo-
metric primitives augmented with estimated location and velocity. Static obstacles
are not processed and remain point-shaped.

The foreground detection algorithm extracts dynamic obstacles from the local
costmap by subtracting the outputs of two running average filters resulting in a
bandpass filter. The binary map labels the cells of moving foreground objects as true,
and static and obstacle-free regions as false (see Fig. 2). The centroids and contours
of these obstacles are determined by a blob detector from computer vision. The
second step is concerned with clustering and tracking connected and coherent cells
to individual obstacles and to estimate their location and velocity.
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t = 0 s t = 1 s t = 2 s

Fig. 2 Evolution of the costmap (upper row) and the corresponding detected dynamic obstacles
(lower row) with two dynamic obstacles perceived by a static observer

3.1 Dynamic Obstacle Detection

Though the approach also works when the ego robot is moving, the discussion of the
theoretical background assumes that the observing robot and therefore the position
of the local costmap w.r.t. to the global frame remains static.

The foreground detection operates with a slow and a fast running average filter.
These filters are applied to each cell in the costmap. For a single cell these filters are
described by:

Pf(t + 1) = ((1 − αf) Pf(t) + αf C(t)) (1)

Ps(t + 1) = ((1 − αs) Ps(t) + αs C(t)) (2)

Pf(t) and Ps(t) represent the output of the fast and the slow running average filter
at time t , respectively. The gains αf and αs define the effect of the current costmap
C(t) on P and comply with:

0 ≤ αs < αf ≤ 1 (3)

For the detection of particular large objects, which form blocks of cells in the
local costmap, the Eqs. 1 and 2 are extended by a term that captures the running
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average filter of the cells nearest neighbors (NN). β denotes the ratio between the
contribution of the central cell filter and the effect of the neighboring cells to Pf(t)
and Ps(t).

Pf(t + 1) = β ((1 − αf) Pf(t) + αf C(t)) + (1 − β)

8

∑

i∈NN
Pf,i (t) (4)

Ps(t + 1) = β ((1 − αs) Ps(t) + αs C(t)) + (1 − β)

8

∑

i∈NN
Ps,i (t) (5)

These filters identify those cells that are occupied by moving obstacles if they
comply with two criteria that filter out high and low frequency noise. The fast filter
has to exhibit an activation that exceeds a threshold c1:

Pf(t) > c1 (6)

In addition, the difference between the fast and the slowfilter has to exceed a threshold
c2 in order to eliminate quasi-static obstacles with low frequency noise.

Pf(t) − Ps(t) > c2 (7)

Figure 3 shows the the filtered signal in the local costmap C of the fast filter Pf
and slow filter Ps in case of a dynamic obstacle that traverses the cell over a period
of two seconds together with the activation thresholds c1 and c2.

The thresholding operations generate a binary map that labels dynamic obstacles
as ones, whereas free space and static obstacles are labeled as zeros. The sequence of
erosion and dilation on the binary map results in a closing operation which reduces
noise in the foreground map.

A slightly modified version of OpenCV’s SimpleBlobDetector extracts
obstacle centroids and contours from the binary map. These obstacle features pro-
vide the input to the algorithm for simultaneous tracking and velocity estimation of
multiple obstacles.

3.2 Dynamic Obstacle Tracking

The centroid of dynamic obstacles progresses with each costmap update and subse-
quent foreground detection. The assignment of blobs in the current map to obstacle
tracks constitutes a data association problem. In order to disambiguate and track
multiple objects over time, the current obstacles are matched with the corresponding
tracks of previous obstacles. A new track is generated whenever a novel obstacle
emerges that is not tracked yet. Tracks that are not assigned to current objects in the
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Fig. 3 Slow and fast filter responses

foreground frame are temporarily maintained. The track is removed if it is no longer
confirmed by object detections over an extended period of time.

The assignment problem is solved by the so-called Hungarian algorithm, which
was originally introduced by [8]. The algorithm efficiently solves weighted assign-
ment problems by minimizing the total Euclidean distance between the tracks and
the current set of obstacle centroids.

A Kalman filter estimates the current velocity of tracked obstacles assuming a
first order constant velocity model. The constant velocity model sufficiently captures
the prevalent motion patterns of humans and robots in indoor environments for the
designated spatio-temporal horizon of motion planning.

4 Costmap_Converter ROS Package

This section introduces the technical aspects of the costmap_converter ROSpackage.
It handles the conversion of dynamic obstacles extracted from the local costmap
(in terms of a nav_msgs/OccupancyGrid message) into polygons augmented
with velocity and heading information. In addition, the package provides vari-
ous plugins to convert connected regions in the local costmap to geometric prim-
itives without estimating their velocities. The presentation here focuses on the
CostmapToDynamicObstacles plugin. The ROS wiki5 documents the addi-

5costmap_converter, http://wiki.ros.org/costmap_converter.

http://wiki.ros.org/costmap_converter


Online Trajectory Optimization and Navigation … 249

tional plugins. The utilized plugin can be selected prior to run-time via the parameter
costmap_converter_plugin. TheCostmapToDynamicObstacles plu-
gin pursues a two-step approach with the initial conversion and velocity estimation
of dynamic obstacles and the subsequent conversion of static obstacles by means
of an additional static plugin. The parameter static_costmap_converter_
plugin specifies the employed plugin for static costmap conversion.

The costmap_converter package is available for ROS Kinetic and Lunar. The
package defines a pluginlib6 interface and is primarily intended for direct embed-
ding in the source code. Some applications might prefer a dedicated subscriber
standalone_converter node to process nav_msgs/OccupancyGrid
messages.

4.1 Prerequisites and Installation

It is assumed that the reader is accustomed to basic ROS concepts such as navigating
the filesystem, creating and building packages, as well as dealing with rviz7, launch
files, topics, parameters and yaml files discussed in the common ROS beginner tuto-
rials. Familiarity with the concepts and components of ROS navigation such as local
and global costmaps and local and global planners (move_base node), coordinate
transforms, odometry, and localization is expected.

In the following, terminal commands are indicated by a leading $-sign. The
costmap_converter package is installed from the official ROS repositories by invok-
ing:

$ sudo apt-get install ros-kinetic-costmap-converter

More recent, albeit experimental, versions of the costmap_converter package can be
obtained and compiled from source:

$ cd ~/catkin_ws/src
2 $ git clone https://github.com/rst-tu-dortmund/

costmap_converter
$ cd ../

4 $ rosdep install --from-paths src --ignore-src --rosdistro
kinetic -y

$ catkin_make

6pluginlib, http://wiki.ros.org/pluginlib.
7rviz, http://wiki.ros.org/rviz.

http://wiki.ros.org/pluginlib
http://wiki.ros.org/rviz
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The user-created catkin workspace is assumed to be located at ~/catkin_ws.
Currently, the costmap_converter does not handle incremental costmap updates

published to thegrid_updates topic. In order to use this package, the full costmap
has to be published in every update cycle. Incremental updates can be deactivated
by enabling the costmap_2d8 parameter always_send_full_costmap. In the
tutorial scenarios introduced in this chapter, this parameter is already defined in the
costmap_common_params.yaml file.

4.2 Obstacle Messages

Converted obstacles are published as the novel message type ObstacleMsg specif-
ically designed for the purpose of publishing obstacles in conjunction with their
velocities. The compact definition of an ObstacleMsg is pictured below.

# Special types:
2 # Polygon with 1 vertex: Point obstacle
# Polygon with 2 vertices: Line obstacle

4 # Polygon with more than 2 vertices: First and last points are
assumed to be connected

6 std_msgs/Header header

8 # Obstacle footprint (polygon descriptions)
geometry_msgs/Polygon polygon

10

# Obstacle ID
12 # Specify IDs in order to provide (temporal) relationships

# between obstacles among multiple messages.
14 int64 id

16 # Individual orientation (centroid)
geometry_msgs/Quaternion orientation

18

# Individual velocities (centroid)
20 geometry_msgs/TwistWithCovariance velocities

An obstacle is represented by a polygon, i.e. array of vertices. Polygons with a single
vertex refer to point obstacles and polygons with two vertices denote line obstacles.
In case of true polygons with more than two vertices, the first and last points are
assumed to be connected in order to close the polygon perimeter. Additionally, the
message provides the velocities, orientation and id of obstacles. The
orientation and velocity of an obstacle are specified w. r. t. their respective centroid.

8costmap_2d, http://wiki.ros.org/costmap_2d.

http://wiki.ros.org/costmap_2d
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ObstacleMsgs are grouped to an ObstacleArrayMsg which can include
not merely the converted dynamic obstacles, but also the static background of the
costmap in terms of point-shaped obstacles.

4.3 Parameters

Most of the package parameters originate from OpenCV’s SimpleBlobDetector, for
which the reader is referred to the OpenCV documentation.9 This section explains
the additional parameters of the costmap_converter plugin for dynamic obstacle
conversion.

alpha_fast (α f )
Adaption rate of the fast running average filter in Eq. (4). A higher rate indicates a
higher confidence in the most recent costmap. alpha_fast has to be larger than
alpha_slow (see Eq. (3)).

alpha_slow (αs)
Adaption rate of the slow running average filter in Eq. (5). A higher rate indicates a
higher confidence in the most recent costmap. alpha_slow has to be smaller than
alpha_fast (see Eq. (3)).

beta (β)
Ratio, of the contribution to the running filterscenter cell relative to the neighboring
cells (see Eqs. (4) and (5)).

min_occupancy_probability (c1)
Threshold of the fast filter for classification of a cell as foreground.

min_sep_between_slow_and_fast_filter (c2)
Threshold of minimal difference between the slow and fast running average filters
for classification of the cell as foreground.

max_occupancy_neighbors
Maximum mean value of the 8-neighborhood for classification of the cell as fore-
ground.

morph_size
Size of the structuring element (circle) used for the closing operation applied to the
binary map after foreground detection.

9OpenCV SimpleBlobDetector,
http://docs.opencv.org/3.3.0/d0/d7a/classcv_1_1SimpleBlobDetector.html.

http://docs.opencv.org/3.3.0/d0/d7a/classcv_1_1SimpleBlobDetector.html
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dist_thresh
Maximum Euclidean distance between obstacles and tracks to be considered for
matching in the assignment problem.

max_allowed_skipped_frames
Maximum number of frames for which a dynamic obstacle is tracked without con-
firmation in the current foreground map.

max_trace_length
Maximum number of points representing in the object trace.

publish_static_obstacles
Include obstacles from the static background cells. By default, static costmap cells
are subsequently converted to polygons by the CostmapToPolygonsDBSMCCH
plugin for static costmap conversion.

4.4 Prototype Scenario for Obstacle Velocity Estimation

This section introduces a minimal stage10 simulation setup with costmap conversion
respectively velocity estimation for dynamic obstacles. The simulation setup consists
of an observing robot and a single dynamic obstacle moving in a simple square
environment. A costmap conversion scenario including navigation by means of the
teb_local_planner is discussed in Sect. 8.

Stage is a fast and lightweight mobile robot simulator. Although this tutorial
chapter refers to stage, the demo code is equally applicable to other simulation
environments such as gazebo.11 In case Stage is not yet installed along with the full
ROS distribution package invoke:

$ sudo apt-get install ros-kinetic-stage-ros

Clone (or download and unzip) the teb_local_planner_tutorials package12 for this
tutorial:

$ cd ~/catkin_ws/src
2 $ git clone -b rosbook_volume3 https://github.com/rst-tu-

dortmund/teb_local_planner_tutorials.git

10stage_ros, http://wiki.ros.org/stage_ros.
11gazebo_ros_pkgs, http://wiki.ros.org/gazebo_ros_pkgs.
12teb_local_planner_tutorials, https://github.com/rst-tu-dortmund/teb_local_planner_tutorials/
tree/rosbook_volume3.

http://wiki.ros.org/stage_ros
http://wiki.ros.org/gazebo_ros_pkgs
https://github.com/rst-tu-dortmund/teb_local_planner_tutorials/tree/rosbook_volume3
https://github.com/rst-tu-dortmund/teb_local_planner_tutorials/tree/rosbook_volume3
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The simulated environment in stage consists of a static map and other agents such
as robots or (dynamic) obstacles. The additional agents are included in a separate
definition file for the observing robot. Observe the robot and sensor definitions for
stage defined in myRobot.inc located in the subfolder stage. The following sensor
and robot definitions are utilized in the course of this tutorial:

define mylaser ranger
2 (

sensor
4 (

# just for demonstration purposes
6 range [ 0.1 25 ] # minimum and maximum range

fov 360.0 # field of view
8 samples 1920 # number of samples

)
10 size [ 0.06 0.15 0.03 ]

)
12

define myrobot position
14 (

size [ 0.25 0.25 0.4 ] # (x,y,z)
16 localization "gps" # exact localization

gui_nose 1 # draw nose on the model showing the heading
18 drive "diff" # diff-drive

color "red" # red model
20 mylaser(pose [ -0.1 0.0 -0.11 0.0 ]) # add mylaser sensor

)

The first code block defines a range sensor named mylaserwith a complete field of
view (fov 360.0). The second block defines a robot which utilizes the previously
defined ranging sensor. The dynamic obstacle model is defined in themyObstacle.inc
file in a similar way:

define myobstacle position
2 (

localization "gps" # exact localization
4 size [ 0.25 0.25 0.4 ] # (x,y,z)

gui_nose 1 # draw nose on the model showing the heading
6 drive "omni" # omni-directional movement possible

color "blue" # blue model
8 )

The stage environment along with robots and obstacles is defined in the file empty-
Box.world:
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## include our robot and obstacle definitions
2 include "robots/myRobot.inc"
include "robots/myObstacle.inc"

4

## Simulation settings
6 resolution 0.02
interval_sim 100 # simulation timestep in milliseconds

8

## Load a static map
10 model

(
12 name "emptyBox"

bitmap "../maps/emptyBox.png"
14 size [ 6.0 6.0 2.0 ]

pose [ 0.0 0.0. 0.0 0.0]
16 laser_return 1

color "gray30"
18 )

20 # throw in a robot and an obstacle
myrobot

22 (
pose [ -2.0 0.0 0.0 -90.0 ] # initial pose (x,y,z,beta[deg])

24 name "myRobot"
)

26

myobstacle
28 (

pose [ 0.0 1.0 0.0 0.0 ] # initial pose (x,y,z,beta[deg])
30 name "myObstacle"

)

The robot definition files are included in lines 2–3. General simulation settings are
defined in lines 6–7. Line 10–18 define the map model as an empty square box with
an edge length of 6m. The observing robot and the dynamic obstacle are defined
from line 21 onward. Next, we will inspect the costmap_conversion.launch file step
by step which is located in the launch subfolder of the package.

<!-- ************** Stage Simulator ***************** -->
2 <node pkg="stage_ros" type="stageros" name="stageros" args="$(find

teb_local_planner_tutorials)/stage/emptyBox.world">
<remap from="/robot_0/base_scan" to="/robot_0/scan"/>

4 </node>

6 <!-- ******************* Maps *********************** -->
<node name="map_server" pkg="map_server" type="map_server" args="$(find

teb_local_planner_tutorials)/maps/emptyBox.yaml" output="screen">
8 <param name="frame_id" value="map"/>
</node>
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These commands start the stageros and map_server nodes and load the emptyBox
map.

<!-- ******** Localization ********* -->
2 <!-- See stage world file for initial poses -->

<node pkg="tf" type="static_transform_publisher" name="perfect_loc_robot
" args="-2 0 0 -1.570796 0 0 /map robot_0/odom 100" />

4 <node pkg="tf" type="static_transform_publisher" name="
perfect_loc_obstacle" args="0 1 0 0 0 0 /map robot_1/odom 100" />

In this section static_transform_publishers are launched publishing the
transformations to the perfect robot and obstacle locations for localization.

<!-- ************* Navigation Ego Robot ************ -->
2 <group ns="robot_0">

<param name="tf_prefix" value="robot_0"/>
4

<node pkg="move_base" type="move_base" respawn="false" name="
move_base" output="screen">

6 <rosparam file="$(find teb_local_planner_tutorials)/cfg/diff_drive/
costmap_common_params.yaml" command="load" ns="global_costmap" />
<rosparam file="$(find teb_local_planner_tutorials)/cfg/diff_drive/
costmap_common_params.yaml" command="load" ns="local_costmap" />

8 <rosparam file="$(find teb_local_planner_tutorials)/cfg/diff_drive/
local_costmap_params.yaml" command="load" />
<rosparam file="$(find teb_local_planner_tutorials)/cfg/diff_drive/
global_costmap_params.yaml" command="load" />

10 <rosparam file="$(find teb_local_planner_tutorials)/cfg/diff_drive/
teb_local_planner_params.yaml" command="load" />

12 <param name="base_local_planner" value="teb_local_planner/
TebLocalPlannerROS" />
<param name="controller_frequency" value="5.0" />

14 <param name="controller_patience" value="15.0" />
<remap from="map" to="/map"/>

16 </node>
</group>

This code brings up the ROS navigation stack in the namespace of robot_0. Since
the navigation stack contains the costmap_2d package, it is required for costmap
conversion. Various parameter files for the local and global costmap are loaded. The
teb_local_planner is utilized as local planner, though other local planners can be
used for costmap conversion.
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<!-- ************* Costmap conversion ************ -->
2 <node name="standalone_converter" pkg="costmap_converter" type="

standalone_converter" output="screen">
<param name="converter_plugin" value="

costmap_converter::CostmapToDynamicObstacles" />
4 <param name="costmap_topic" value="/robot_0/move_base/local_costmap/

costmap" />
<param name="odom_topic" value="/robot_0/odom" />

6 </node>

These commands launch the costmap_converter standalone node with the previ-
ously introduced CostmapToDynamicObstacles plugin. The odom_topic
is required in order to compensate a robots ego motion while estimating obstacle
velocities. The costmap_converter subscribes to the costmap_2d and publishes
an ObstacleArrayMsgwith an array of ObstacleMsgs, each containing esti-
mated obstacle velocities and shapes.

<!-- ******************* Obstacles ******************* -->
2 <group ns="robot_1">

<param name="tf_prefix" value="robot_1"/>
4 <node name="Mover" pkg="teb_local_planner_tutorials" type="

move_obstacle.py" output="screen"/>
<node name="visualize_obstacle_velocity_profile" pkg="

teb_local_planner_tutorials" type="
visualize_obstacle_velocity_profile.py" output="screen" />

6 </group>

Two distinctive nodes are launched in the namespace of robot_1. The script
move_obstacle.py actuates the obstacle (by publishing a cmd_vel message to the
obstacles namespace) with a constant velocity by sampling a velocity in the opposite
direction in case of an encounter with the walls. The collision with a wall is detected
from the base_pose_ground_truth topic in the obstacles namespace. Addi-
tionally, a node which plots both the estimated and ground truth velocities of an
obstacle is started by the visualize_obstacle_velocity_profile.py script.

<!-- **************** Visualisation **************** -->
2 <node name="rviz" pkg="rviz" type="rviz" args="-d $(find

teb_local_planner_tutorials)/cfg/rviz_navigation_cc.rviz">
<remap from="/move_base_simple/goal" to="/robot_0/move_base_simple/

goal" />
4 </node>

This section starts up rviz and loads a predefined configuration file. Launch the
simulation by invoking:



Online Trajectory Optimization and Navigation … 257

roslaunch teb_local_planner_tutorials costmap_conversion.launch

stage and rviz pop up and display the simulated environment. The estimated footprint
of the dynamic obstacle is indicated by a green polygon in rviz. Estimated and ground
truth velocities are visualized in a live plot. In case of very slow obstacle velocities
the costmap_converter might consider the obstacle as static and therefore lose track
of the object. Try to customize the obstacle detection by changing the parameters of
the costmap_converter using the rqt_reconfigure tool:

$ rosrun rqt_reconfigure rqt_reconfigure

It is recommended to invoke costmap conversion in a separate thread since the con-
version of dynamic obstacles is a time critical task for safe navigation. The com-
putational effort for one cycle of obstacle detection in the local costmap, velocity
estimation and the publishing of these informations is depicted in Fig. 4. Regardless
of the number of tracked obstacles, the median for one conversion cycle is located
at around 1ms. These measurements were taken using an Intel Core i5-6500 proces-
sor along with 8GB RAM. As the default costmap conversion rate is 5Hz, costmap
conversion can also be performed on less powerful hardware.

In the following, the estimated velocities provide the basis for optimal spatio-
temporal trajectory planning by the teb_local_planner. Costmap conversion and
velocity estimation do not depend on the teb_local_planner package and might be
incorporated standalone into custom applications.
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Fig. 4 Computational performance of the costmap_converter
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Fig. 5 Discretized trajectory with n = 3 poses

5 Theoretical Foundations of TEB

This section introduces the fundamental concepts of the TEB trajectory planning
approach. It discusses the theoretical foundations for the successful integration
and customization of the teb_local_planner in mobile robot applications. A more
detailed description of online trajectory optimization with Timed-Elastic-Bands is
given in [17].

The tutorial chapter on kinodynamic motion planning with Timed-Elastic-Bands
published in the second volumeof this book [18] discusses the theoretical foundations
of the TEB approach. Even though the main features of TEB remain the same, for
the sake of a self-contained presentation the basic operation of TEB optimization is
explained in summary. The main modification is the extension from a quasi-static
environment to a dynamic world that explicitly takes the future poses of moving
obstacles into account for planning an optimal spatio-temporal trajectory.

5.1 Trajectory Representation and Optimization

A discretized trajectory b is defined by an ordered sequence of robot poses
sk = [xk, yk, βk]ᵀ ∈ R

2 × S1 with k = 1, 2, . . . , N and time stampsΔTk ∈ R>0 with
k = 1, 2, . . . , N − 1.

b = [
s1,ΔT1, s2,ΔT2, . . . , ΔTN−1, sN

]ᵀ
(8)

ΔTk denotes the transition timebetween twoconsecutive poses sk and sk+1, respec-
tively. Figure5 depicts an example trajectory with three poses. The reference frame
of the trajectory representation is denoted as map-frame.13

The optimal trajectoryb∗ is obtained byminimizing a cost functionwhich captures
partially conflicting objectives and constraints of motion planning. These objectives
include energy consumption, path length, the total transition time, or a weighted

13Conventions for names of common coordinate frames in ROS are listed at
http://www.ros.org/reps/rep-0105.html.

http://www.ros.org/reps/rep-0105.html
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combination of the above. Admissible solutions are restricted to a feasible set by
penalizing trajectories, which do not comply with the kinodynamic constraints of
the mobile robot.

TheTEBoptimization problem is defined as an aggregated nonlinear least-squares
cost function, which considers conflicting sets of objectives J and penalties P , each
weighted by a factor σi :

b∗ = argmin
b\{s1,sN }

∑

i

σi f
2
i (b) , i ∈ {J ,P} (9)

The notation b \ {s1, sN } implies that neither the start pose s1 = ss nor the goal
pose sN = sg are subject to optimization.During optimization the trajectory is clipped
at the current robot pose ss and the desired goal pose sg.

In order to account for the dynamic environment and to refine the trajectory
during runtime, a model predictive control scheme is applied. Thus, the optimization
problem (9) is solved repeatedly in each sampling interval14 with respect to the
current robot pose and velocity. The current robot pose and velocity are provided
by a localization scheme. In compliance with the basic concept of model predictive
control [13], during each time step only the first control action of the computed
trajectory is commanded to the robot. The teb_local_planner pursues a warm-start
approach, hence the optimal trajectory of the previous time interval serves as initial
solution for the subsequent optimization problem.

In the navigation stack, the base controller interface typically subscribes to a
cmd_velmessage (see Fig. 1) composed of translational and angular velocities. These
components can easily be extracted from the optimal trajectory b∗ by investigating
finite differences both on the position and orientation part. As car-like robots often
require the steering angle rather than the angular velocity, the steering angle can
be calculated from the turn rate and the car-like robot’s kinematic model, e.g. refer
to [19].

The TEB optimization problem is mapped onto a hyper-graph in which vertices
correspond to the poses sk and time intervals ΔTk that form the solution vector and
the (hyper)-edges denote the cost terms fi that set up the nonlinear program. In
addition, fixed vertices not subject to optimization include start and goal pose (s1
or sN ), obstacle positions Oi , or other static parameters. The prefix hyper indicates
that an edge connects an arbitrary number of vertices. An edge connecting various
parameters represents a cost term, that is dependent on these parameters.

The resulting hyper-graph is efficiently solved by the g2o-framework15 [9].
The framework exploits the sparse structure of the system matrix by using the
Levenberg–Marquardt Algorithm. The sparse structure emerges from a formulation
that expresses relationships in the solution by soft rather than hard constraints. The
computational efficiency of the algorithm benefits from the sparse structure in the

14The sampling interval can be adjusted by means of the parameter controller_frequency
provided by the move_base node of the navigation stack.
15libg2o, http://wiki.ros.org/libg2o.

http://wiki.ros.org/libg2o
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Cholesky-decomposition step. The hyper-graph formulation comes with the addi-
tional advantage of modularity which allows the seamless integration of additional
constraints and objectives.

Soft constraints tolerate a certain amount of violation at the price of an abrupt
increase in the cost function. Let B denote the entire set of potential trajectories such
that b ∈ B. An inequality constraint gi (b) ≥ a with gi : B → R is approximated by
a positive semi-definite penalty function which captures the amount of constraint
violation:

fi (b) = max{0,−gi (b) + a + ε} ∀i ∈ P (10)

The parameter ε adds a margin to the lower bound a of the inequality constraint
such that the cost merely vanishes for gi (b) ≥ a + ε. The theory of penalty optimiza-
tion methods [14] postulates that the weights of the individual penalty terms should
tend towards infinity in order to comply with the truly optimal solution. Unfortu-
nately, large weights result in a numerically ill-conditioned optimization problem
for which the underlying solver does not converge properly. For this reason, the TEB
approach approximates the optimal trajectory with finite weights in order to achieve
a computationally more efficient solution.

The TEB approach employs multiple cost terms fi for trajectory optimization.
For example, limited velocities and accelerations, compliance with non-holonomic
kinematics or transition to the goal pose in minimal time are considered. Section6.3
summarizes the currently implemented cost terms of the optimization problem (9).
The TEB cost structure is extended by a novel distinctive penalty term for dynamic
obstacles that complements the previous penalty term for static obstacles. The fol-
lowing section considers and analyzes different options for the configuration and
parametrization of the cost term for dynamic obstacles.

5.2 Transition Time Estimation for Dynamic Obstacles

Collision avoidance demands a minimal separation of the robot and obstacle poses.
The spatio-temporal distance between an obstacle and a pose sk along the trajectory
is calculated based on the predicted poses of dynamic obstacles at time Δtk rather
than their current location. The robot-obstacle distance calculations consider the
polygonal footprints of the robot and the obstacles. Distances between the robot and
obstacles are bounded from below by the minimal separation (a) and an additional
tolerance value ε. Hence, these distances can be directly inserted into the penalty
function for inequality constraints (10) along with parameters a and ε. The penalty
term itself is used in the optimization problem (9) for each penalty and each objective
term listed in Sect. 6.3.
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Under the assumption that dynamic obstaclesOi maintain their current (estimated)
speed v̂ and orientation the constant velocity model predicts the future obstacle
poses P̂(Oi , ).

P̂(Oi , t) = P(Oi , t0) + Δtk · v̂(Oi ) (11)

The current obstacle position P(Oi , t0) and the estimated velocity v̂(Oi ) are
provided by the costmap_converter package. The predicted obstacle pose depends
on the robot’s transition time Δtk between its current and its kth future pose.

This transition time amounts to the accumulated time steps
∑k

i=1 ΔTi up to pose
sk . However, the dependency of the total transition time Δtk on all previous time
intervalsΔTi with i ≤ k compromises the sparsity of the systemmatrix which causes
a degradation of computationally efficiency.

In order to preserve computational efficiency an improved strategy exploits the
iterative nature of the online trajectory optimization. Changes of the environment and
the underlying nonlinear program between two consecutive control cycles are rather
small. Thus it is valid to approximate the true total transition timeΔtk by summation
of the time intervals ΔT ′

k in the previous optimization step and consider the Δtk
as constant within the obstacle pose prediction step. This approximation maintains
the sparse structure of the system matrix and causes a significant improvement in
performance.

5.3 Planning in Distinctive Spatio-Temporal Topologies

The previously introduced TEB approach is subject to local optimization. Instead
of finding the globally optimal solution, the optimized trajectory might get stuck
in local minima due to the presence of obstacles. Identifying these local minima
coincides with exploring and analyzing distinctive topologies between start and goal
poses. For instance, the robot might circumnavigate an obstacle either on the left-
or right-hand side. In case of moving obstacles the concept of a traversal to left and
right are augmented by a traversal before or after passage of a dynamic obstacle.
Therefore the new trajectory optimization not only considers the spatial topology of
the trajectory but also its temporal dimension.

The approach rests upon two theorems of electromagnetism, the Biot–Savart and
Ampere’s law. It defines a new equivalence relation in order to distinguish among
trajectories of distinctive topologies in the three-dimensional x-y-t-space. Notice,
the additional temporal dimension that extends the mere spatial analysis of the pre-
vious TEB trajectory optimization [18]. The TEB ROS implementation explores and
optimizes multiple trajectories in distinctive spatio-temporal topologies in parallel
and selects the best candidate trajectory at each sampling interval. However, the the-
ory of this method is beyond the scope of this tutorial. For a detailed description of
this approach, the reader is referred to [1].
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6 teb_local_planner ROS Package

This section provides an overview of the teb_local_planner ROS package which
employs the previously described TEB approach for online trajectory optimization.
Since the prerequisites and basics of the teb_local_planner did not change since the
release of the last volume of this book, some fundamental parts from [18] are only
briefly revisited.

6.1 Prerequisites and Installation

To install and configure the teb_local_planner package for a particular application,
comply with the following limitations and prerequisites:

• Although current online trajectory optimization approaches feature mature com-
putational efficiency, their application still requires substantial CPU resources.
Depending on the desired trajectory length respectively resolution as well as the
number of considered obstacles, common desktop computers or modern note-
books usually cope with the computational burden. However, older and embedded
systems might not be capable to perform trajectory optimization at a reasonable
rate.

• Results and discussions on stability and optimality properties for online trajectory
optimization schemes are widespread in the literature, especially in the field of
model predictive control. However, since these results are often theoretical and
the planner is confronted with e.g., sensor and actuator uncertainty and dynamic
environments in real applications, finding a feasible and stable trajectory in every
conceivable scenario is not guaranteed. Especially due to noisy velocity estima-
tions for dynamic obstacles, planned trajectoriesmay oscillate. In order to generate
a feasible trajectory, the planner detects and resolves failures by post-introspection
of the optimized trajectory.

• Even though the presentation focuses on differential-drive robots, the package cur-
rently supports car-like and omnidirectional robots as well. For a detailed tutorial
on the setup and configuration of car-like robots, the reader is referred to [18].

• Officially supported ROS distributions are Kinetic and Lunar. Legacy versions of
the planner without support for dynamic obstacles are also available in Indigo and
Jade. Support of future distributions is expected. The package is released for both
default and ARM architectures.

Similar to the installation of the costmap_converter package, the teb_local_planner
is installed from the official ROS repositories by invoking:

$ sudo apt-get install ros-kinetic-teb-local-planner
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As before, the distribution name kinetic should be adapted to match the currently
installed distribution. As an alternative, compile the most recent versions of the
teb_local_planner from source:

$ cd ~/catkin_ws/src
2 $ git clone https://github.com/rst-tu-dortmund/

teb_local_planner.git --branch kinetic-devel
$ cd ../

4 $ rosdep install --from-paths src --ignore-src --rosdistro
kinetic -y

$ catkin_make

6.2 Integration with ROS Navigation

As a plugin for the ROS navigation stack, the teb_local_planner package replaces
the navigation stack’s default local planner (refer to Fig. 1). The global planner of
themove_base package plans a global path to the goal according to a global costmap
which corresponds to a known map of the environment and serves as initial solu-
tion for the local planner. However, the global costmap does not support dynamic
obstacles. Therefore, robocentric sensor readings are fused with the global costmap
in order to calculate a local costmap. The teb_local_planner computes a feasible
trajectory corresponding to the local costmap and publishes the associated velocity
commands. The robot is localized with respect to the global map by means of the
amcl node which employs an adaptive monte carlo localization algorithm which
compensates for the accumulated odometric error.

The package wiki page16 contains the complete list of teb_local_planner param-
eters which are nested in the relative namespace of the move_base node, e.g.
/move_base/TebLocalPlannerROS/param_name. Assuming a running
instance of the teb_local_planner, parameters are configured at runtime by launching
the rqt_reconfigure GUI:

$ rosrun rqt_reconfigure rqt_reconfigure

6.3 Included Cost Terms: Objectives and Penalties

The teb_local_planner optimizes the planned trajectory respectively current control
commands by minimizing a designated cost function (9) composed of objective and
penalty terms which are approximated by a penalty function (10). For a detailed
explanation of the mathematics behind these cost terms the reader is referred to [17].
Currently implemented cost terms fi , their respective weights σi and related ROS

16teb_local_planner, http://wiki.ros.org/teb_local_planner.

http://wiki.ros.org/teb_local_planner
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parameters are summarized below according to [18]. A distinction is made between
alternative cost functions for static and dynamic obstacles.

Minimal Total Transition Time (Objective)
Description: Minimizes the total transition time to the goal in order to find a time-
optimal solution.
Weight parameter: weight_optimaltime
Related parameters: selection_alternative_time_cost

Via-points (Objective)
Description: Minimizes the distance to specific via-points which define attractors
for the trajectory.
Weight parameter: weight_viapoint
Related parameters: global_plan_viapoint_sep

Compliance with Non-holonomic Kinematics (Objective)
Description: Enforces the geometric constraint for non-holonomic robots that
requires two consecutive poses sk and sk+1 to be located on a common arc of con-
stant curvature. Actually the compliance is an equality constraint ensured by a large
weight rather than an objective.
Weight parameter: weight_kinematics_turning_radius
Related parameters: min_turning_radius

Limiting Translational Velocity (Penalty)
Description:Constrains the translational velocity vk to the interval [−vback, vmax ]. vk
is computed for each time interval ΔTk with sk , sk+1 by means of finite differences.
Weight parameter: weight_max_vel_x
Related parameters: max_vel_x (vmax ), max_vel_x_backwards (vback)

Limiting Angular Velocity (Penalty)
Description: Constrains the angular velocity to |ωk | ≤ ωmax by means of finite dif-
ferences.
Weight parameter: weight_max_vel_theta
Related parameters: max_vel_theta ωmax

Limiting Translational Acceleration (Penalty)
Description: Constrains the translational acceleration to |ak | ≤ amax by means of
finite differences.
Weight parameter: weight_acc_lim_x
Related parameters: acc_lim_x (amax )

Limiting Angular Acceleration (Penalty)
Description: Constrains the angular acceleration to |ω̇k | ≤ ω̇max by means of finite
differences.
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Weight parameter: weight_acc_lim_theta
Related parameters: acc_lim_theta (ω̇max )

Limiting the Minimum Turning Radius (Penalty)
Description: This penalty enforces a minimum turning radius designated for car-like
robots with limited steering angles. Differential drive robots are able to turn in place
with a turning radius rmin = 0.
Weight parameter: weight_kinematics_turning_radius
Related parameters: min_turning_radius (rmin)

Penalizing Backward Motions (Penalty)
Description: This cost term reflects a bias for forward motions, even though small
weights still allow backward motions.
Weight parameter: weight_kinematics_forward_drive

Limiting Distance to Static Obstacles (Penalty)
Description: Enforces a minimum separation dmin of poses along the planned tra-
jectory to a static obstacle (incorporates the robot footprint). In addition, obstacle
inflation considers a buffer zone (larger than dmin in order to take effect) around an
obstacle.
Weight parameters: weight_obstacle, weight_obstacle_inflation
Related parameters: min_obstacle_dist (dmin), inflation_dist

Limiting Distance to Predicted Positions of Dynamic Obstacles (Penalty)
Description: Enforces a minimum separation dmin of poses along the planned trajec-
tory to the dynamic obstacle pose predicted according to a constant velocity model.
The distance refers to the obstacle pose at the corresponding time step according to
closest separation of the robot footprint and themost recent estimated obstacle shape.
Again, obstacle inflation accounts for a buffer zone. The obstacle motion prediction
is disabled by the parameter include_dynamic_obstacles which causes all
obstacles to be considered as static.
Weight parameters: weight_dynamic_obstacle,

weight_dynamic_obstacle_inflation
Related parameters: min_obstacle_distance (dmin),

dynamic_obstacle_inflation_dist,
include_dynamic_obstacles

7 Testing Spatio-Temporal Trajectory Optimization

The teb_local_planner package includes a basic test node (test_optim_node) for
testing and analysis of the trajectory optimization between a fixed start and goal
pose. It supports parameter configurations and performance validation on the target
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hardware. Obstacles are represented by interactive markers17 and can be animated
with the rviz GUI.

The teb_local_planner package provides a launch file in order to start up the
test_optim_node along with a preconfigured rviz node:

$ roslaunch teb_local_planner test_optim_node.launch

Rviz shows the planned trajectories and obstacles. The teb_local_planner plans
multiple trajectories in parallel and selects the optimal trajectory indicated by red
arrows. Select the menu button interact to move the obstacles around and observe the
optimization and reconfiguration of the planned trajectories. Trajectory optimization
is customized at runtime with:

$ rosrun rqt_reconfigure rqt_reconfigure

Select the test_optim_node from the list of available nodes and enable dynamic
obstacleswith the parameter include_dynamic_obstacles. Furthermore, set
the parameter visualize_with_time_as_z_axis_scale to some positive
number, e.g. 0.2 (refer to Fig. 6). The temporal evolution of the trajectory and obstacle
configuration (indicated by red line markers) is displayed along the z-axis according
to the scaling factor. Currently, the obstacles are static and maintain their pose.

Obstacles in the test_optim_node subscribe to individual topics, which specify
their velocities in themap-frame. The velocity of an obstacle is defined by publishing
a geometry_msgs/Twist message to the corresponding topic:

$ rostopic pub --once /test_optim_node/obstacle_0/cmd_vel
geometry_msgs/Twist ’{linear: {x: 0.2, y: 0.3, z: 0.0},
angular: {x: 0.0, y: 0.0, z: 0.0}}’

In order to define the velocities of the remaining obstacles, replace the respective
obstacle number. Admissible topics can be listed with:

$ rostopic list /test_optim_node/ | grep obstacle_

Only the translational x- and y-components of the message are considered. The
planned trajectory avoids dynamic obstacles according to the predictions of their
future positions. The current prediction operates with the ground-truth velocities
provided by the message published previously. In case of estimated obstacle veloci-
ties, these predictions are obviously less accurate, especially for remote poses. This
causes the planned trajectories to oscillate in particular as the uncertainties of pose
estimates increase with the transition time.

17Interactive markers, http://wiki.ros.org/interactive_markers.

http://wiki.ros.org/interactive_markers
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Fig. 6 Spatio-temporal obstacle avoidance in rviz

Switch back to the rqt_reconfigure GUI and customize the optimization with dif-
ferent parameter settings. Adjust parameters one at a time, as some parameters signif-
icantly influence the optimization performance. In case of insufficient performance
on your target system, either decrease the parameters no_inner_iterations
or no_outer_iterations to reduce the number of executed inner respectively
outer iterations per TEB optimization step. As an alternative, increase the reference
time step dt_ref slightly to obtain a coarser trajectory with fewer poses. These
workarounds may deteriorate the optimality of the planned trajectory.

8 Obstacle Motion Predictive Planning

This section introduces a simple albeit challenging scenario for local path planning
algorithms in a highly dynamic environment and illustrates the benefits of spatio-
temporal trajectory planning. The scenariomimics an arcade game inwhich the robot
traverses a corridor while evading intruders. Figure 7 illustrates the obstacles moving
back and forth across the corridor along parallel paths with a constant velocity.
Note, that the intruder motion proceeds blindly in a purely open loop manner. The
obstacle velocities are estimated from the costmap conversion and do not reflect
ground truth velocities. The analysis compares the static teb_local_planner with its
dynamic extension.
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Fig. 7 Setup of the corridor scenario

In the following details of the launch file parameters and configuration are
explained.

<!-- ************** Global Parameters *************** -->
2 <param name="/use_sim_time" value="true"/>

The global parameter use_sim_time enables ROS to operate with a simulated
clock rather than the CPU system time.

<!-- ************** Stage Simulator ***************** -->
2 <node pkg="stage_ros" type="stageros" name="stageros" args="$(find

dynamic_obstacle_test)/stage/corridor.world">
<remap from="/robot_0/base_scan" to="/robot_0/scan"/>

4 </node>

This command starts up the stage node and loads the environment configuration from
corridor.world file.

<!-- ******************* Maps *********************** -->
2 <node name="map_server" pkg="map_server" type="map_server" args="$(find

dynamic_obstacle_test)/maps/corridor.yaml" output="screen">
<param name="frame_id" value="map"/>

4 </node>

This code segment starts the map_server node with the parameters defined in the
corridor.yaml file.
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<!-- ************** Navigation ROBOT 0 ************* -->
2 <group ns="robot_0">

<param name="tf_prefix" value="robot_0"/>
4

<node pkg="tf" type="static_transform_publisher" name="
link1_broadcaster" args="2 3 0 0 0 0 1 /map /robot_0/odom 100" />

6

<node pkg="move_base" type="move_base" respawn="false" name="
move_base" output="screen">

8 <rosparam file="$(find teb_local_planner_tutorials)/cfg/diff_drive/
costmap_common_params.yaml" command="load" ns="global_costmap" />
<rosparam file="$(find teb_local_planner_tutorials)/cfg/diff_drive/
costmap_common_params.yaml" command="load" ns="local_costmap" />

10 <rosparam file="$(find teb_local_planner_tutorials)/cfg/diff_drive/
local_costmap_params.yaml" command="load" />
<rosparam file="$(find teb_local_planner_tutorials)/cfg/diff_drive/
global_costmap_params.yaml" command="load" />

12 <rosparam file="$(find teb_local_planner_tutorials)/cfg/diff_drive/
teb_local_planner_params.yaml" command="load" />

14 <!-- Here we load our costmap conversion settings -->
<!-- If you uncomment the following line, disable the
ground_truth_obstacles node at the bottom of this script! -->

16 <!-- rosparam file="$(find teb_local_planner_tutorials)/cfg/
diff_drive/costmap_converter_params.yaml" command="load" /-->

18 <param name="TebLocalPlannerROS/include_costmap_obstacles" value="
False" />
<param name="TebLocalPlannerROS/include_dynamic_obstacles" value="
True" />

20

<param name="base_global_planner" value="navfn/NavfnROS" />
22 <!--param name="base_global_planner" value="global_planner/

GlobalPlanner" />
<param name="planner_frequency" value="1.0" />

24 <param name="planner_patience" value="5.0" /-->

26 <param name="base_local_planner" value="teb_local_planner/
TebLocalPlannerROS" />
<param name="controller_frequency" value="5.0" />

28 <param name="controller_patience" value="15.0" />
<remap from="map" to="/map"/>

30 </node>
</group>

This code initializes the navigation stack and launches the move_base node in the
namespace of robot_0 (which corresponds to the observing robot). Several param-
eters regarding the local and global costmap are loaded. The utilized plugin for
the costmap_converter is specified in the costmap_converter_params.yaml file. The
teb_local_planner plugin replaces the default local planner.
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<!-- ****************** Obstacles ******************** -->
2 <group ns="robot_1">

<param name="tf_prefix" value="robot_1"/>
4 <node name="Mover" pkg="dynamic_obstacle_test" type="move_obstacle.py"

output="screen"/>
<param name="pos_ub" value="5.0" />

6 <param name="pos_lb" value="1.0" />
<param name="vel_y" value="0.3" />

8 </group>

Intruder obstacles are set in motion by a cmd_velmessage published by theMover
node in the obstacle’s namespace. The code is replicated for each obstacle with
its respective namespace. The Mover node in move_obstacle.py subscribes to the
base_pose_ground_truth topic published by stage. Each obstacle moves
back and forth between pos_lb and pos_ub with the velocity vel_y. In case
no velocity vel_y is specified, a random velocity is sampled at each turnaround.

<!-- **************** Visualisation **************** -->
2 <node name="rviz" pkg="rviz" type="rviz" args="-d $(find

teb_local_planner_tutorials)/cfg/rviz_navigation_cc.rviz">
<remap from="/move_base_simple/goal" to="/robot_0/move_base_simple/

goal" />
4 </node>

This code launches the visualization tool rviz and loads a configuration file which
contains some predefined rviz displays, e.g. the robots footprint.

<!-- ************ Ground Truth Obstacles ************ -->
2 <node name="ground_truth_obstacles" pkg="dynamic_obstacle_test" type="

publish_ground_truth_obstacles.py" output="screen" />

This code segment launches the node that publishes the ground truth velocities of
the obstacles. The node subscribes to the base_pose_ground_truth topic and
publishes an ObstacleArrayMsg further processed by the teb_local_planner.
Ground truth velocities of the obstacles are only utilized for comparison with the
ideal optimal collision avoidance maneuvers. Launch the simulation:

$ roslaunch teb_local_planner_tutorials corridor_scenario.
launch

rviz and stage show the simulation setup. The dynamic obstacles move across the
corridor. By default, dynamic obstacles are not explicitly considered during the tra-
jectory optimization. In order to monitor the reference trajectory planning without
motion prediction for dynamic obstacles, publish a navigation goal at the end of the
corridor using the ‘2D Nav Goal’ button in rviz. Observe the robots behavior when
obstacles cross its way. The robot responds only until the obstacle is located directly
in front of the robot. The static perspective severely compromises the planning due
to the mismatch of the static environment and its true status within the evolving
scenario. As a consequence, the robot merely relies on reactive control and exhibits
detours. In many cases, the planned trajectory lacks robustness frequently causing
collisions with the intruders. Close the simulation (Ctrl+C).
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Relaunch the simulation and enable obstacle motion predictive planning in the
rqt_reconfigure tool with the parameter use_dynamic_obstacles. Addition-
ally, the temporal dimension of the planned trajectory can be visualized as z-axis in
rviz bymeans of the parameter visualize_with_time_as_z_axis_scale.
Again, publish a navigation goal at the end of the corridor and observe the planned
trajectories. The robot avoids the obstacles ahead of time which not only signifi-
cantly reduces the total transition time to the goal but also results in less frequent
collisions. Customize trajectory planning with different optimization weights and
adapt the minimal distance to dynamic obstacles (min_obstacle_distace).

Activate costmap conversion by uncommenting the line loading the costmap con-
version settings in the corridor_scenario.launch file:

<rosparam file="$(find teb_local_planner_tutorials)/cfg/diff_drive/
costmap_converter_params.yaml" command="load" />

Disable the node that publishes ground truth data about the obstacles from the
simulation setup by removing the following lines from the launch file corri-
dor_scenario.launch:

<!-- ************ Ground Truth Obstacles ************ -->
2 <node name="ground_truth_obstacles" pkg="dynamic_obstacle_test" type="

publish_ground_truth_obstacles.py" output="screen" />

Relaunch the simulation, enable use_dynamic_obstacles in the
rqt_reconfigure tool, and publish a navigation goal at the end of the corridor using
the ’2D Nav Goal’ button. Footprints of the observed obstacles are visualized as
red polygons. Notice, the slight oscillations of the planned trajectory attributed to
the uncertainty of obstacle velocity estimations. Nevertheless, the robot avoids most
obstacles merely based on their predicted movements.

The enhanced trajectory planning of the teb_local_planner in dynamic environ-
ments due to the incorporation of estimated obstacle velocities is confirmed in sim-
ulations. Figure 8 depicts a comparison of the total transition times between the
legacy and the current version of the teb_local_planner. Compared to the default
configuration, these results were recorded with a slightly increased minimum dis-
tance to obstacles in order to increase the influence of the rather small obstacles.
In the introduced corridor scenario with random initial obstacle positions, the mean
transition time can be reduced by more than 20s. Additionally, the prediction of
obstacle movement results in a more robust trajectory which is shown by the reduced
collision probability (see Table1). Note, that the robot does not collide actively, but
rather passively due to too optimistic trajectory planning and the blind motion of
obstacles. Collisions occurring with the current version of the teb_local_planner are
mostly the result of abrupt changes in direction performed by dynamic obstacles at
corridor walls. In these cases the planned trajectory avoids the current motion of
an obstacle, but does not account for the sudden change in the obstacles movement
direction.
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(a) Legacy version of the teb local planner
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(b) teb local planner with dynamic obstacle support

Fig. 8 Comparison of total transition times

Table 1 Comparison of total transition times and collision probabilities

Legacy version Current version

Number of simulations 368 470

Number of collisions 117 96

Emp. collision probability 0,318 0,205

Emp. mean transition time [s] 92,64 71,00

Standard deviation [s] 15,71 8,41

9 Conclusion

This tutorial chapter provides a comprehensive step-by-step guide for the setup of
the teb_local_planner and costmap_converter ROS packages for mobile robot nav-
igation with explicit consideration of dynamic obstacles. The literature contains
several advanced approaches for optimal trajectory planning with motion predic-
tion of dynamic obstacles. However, these algorithms are currently not compatible
with the static local costmap representation of the ROS navigation stack. The pro-
posed costmap conversion exploits the established architecture of the navigation
stack and estimates velocities, orientations, and shapes of dynamic obstacles only
based on information on the local costmap. These informations are incorporated into
the Timed-Elastic-Band approach to calculate optimal spatio-temporal trajectories in
the presence of dynamic obstacles. Besides its ability to include dynamic obstacles
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explicitly into trajectory optimization, to our best knowledge, the teb_local_planner
is currently the only local planner plugin for the ROS navigation stack, which is
capable of trajectory planning for car-like robots without the use of an additional
low-level controller.

Future work addresses the automatic tuning of cost function weights in order to
improve the overall performance of the teb_local_planner. Furthermore, a bench-
mark suite for the comparative analysis of ROS local planners would be a valuable
addition to ROS in order to support users in their decision for the local planner most
suitable for their particular mobile robot applications.
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