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ABSTRACT

With the advancement of AIGC (AI-generated content) technologies, an increasing number
of generative models are revolutionizing fields such as video editing, music generation,
and even film production. However, due to the limitations of current AIGC models, most
models can only serve as individual components within specific application scenarios and
are not capable of completing tasks end-to-end in real-world applications. In real-world
applications, editing experts often work with a wide variety of images and video inputs,
producing multimodal outputs—a video typically includes audio, text, and other elements.
This level of integration across multiple modalities is something current models are unable
to achieve effectively. However, the rise of agent-based systems has made it possible
to use AI tools to tackle complex content generation tasks. To deal with the complex
scenarios, in this paper, we propose a multimedia content generation agent system designed
to automate complex content creation. Our agent system includes a data generation pipeline,
a tool library for content creation, and a set of metrics for evaluating preference alignment.
Notably, we introduce the skill acquisition theory to model the training data curation and
agent training. We designed a two-stage correlation strategy for plan optimization, including
self-correlation and model preference correlation. Additionally, we utilized the generated
plans to train the MultiMedia-Agent via a three stage approach including base/success plan
finetune and preference optimization. The comparison results demonstrate that the our
approaches are effective and the MultiMedia-Agent can generate better multimedia content
compared to GPT4o.

1 INTRODUCTION

AI-generated content, such as images, videos, audio, etc., has gradually been applied to various aspects
of everyday life (Liu et al., 2024a; Esser et al., 2024). However, the needs of the real world are complex
and diverse. Taking the field of video generation as an example, a user’s input may not only be text or a
single image but could also include materials like images, music, etc, and the model needs to integrate these
materials to generate an appropriate video. Moreover, on the output side of the model, the video that the
user requires may not only consist of video frames but also include suitable background music, voiceovers,
subtitles, and so on. Clearly, a single generative model at present cannot accomplish this task. One possible
solution to handle such complex situations is to use an agent system to understand user needs while integrating
different downstream tools to process complex inputs and outputs (Wang et al., 2024c;a). Some existing
agent systems (Shen et al., 2024) can call upon multiple tools to handle content generation, but they are not
specifically designed for content generation, nor do they take into account the diverse needs of real life.

Therefore, in this paper, we will explore whether multimodal agent can learn such complex workflows
of multi-media content creation in a manner similar to humans. Specifically, we will investigate whether
the multimodal agent can progressively acquire complex skills from scratch, following the stages of skill
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acquisition theory (DeKeyser, 2020), which mirrors the way of how humans learn skills step by step.
Precisely, skill acquisition theory consists of three stages:

1. Cognitive Stage: In this stage, beginners need to learn the fundamental operations and knowledge,
attempting to understand the basic concepts related to the new skill.

2. Associative Stage: At this stage, learners begin to engage in conscious, targeted practice, refining
their skills through repeated operations.

3. Autonomous Stage: To reach this stage, learners require continuous feedback and improvement,
including both self-correction and external supervision.

We first developed a multi-media content playground based on real-world scenarios, incorporating a feedback
mechanism. This playground includes 18 common multimodal generation scenarios tailored to real-world
needs and features a content creation tool library that supports the editing, generation and retrieval of images,
videos, audio, speech, and text. Then, to provide data for training the multimodal agent, we constructed
different levels of plans from the perspective of the three stages of skill acquisition theory. First, we used
GPTo as a teacher to generate a base plan for each question within each task. Of course, this base plan may
not always execute successfully, so further optimization is needed. In the second step, we had GPT4o reflect
on and perform self-correction on the base plan generated in the first stage, thereby improving the plan’s
quality. In the final step, we introduced external preference models to evaluate the plan from the second step,
and then allowed GPT4o to optimize it further. In this way, we obtained three different levels of plans to train
the multimodal agent.

During the training of the multimodal agent, we followed the three stages of Skill Acquisition Theory. First,
in the Model Cognitive Stage, we fine-tuned the agent using all the generated plans. This allowed the agent to
quickly grasp the purposes of the tools, their output formats, and basic operational principles—similar to
how a human beginner learns foundational knowledge and basic concepts from a large amount of data. In
the Model Associative Stage, we fine-tuned the agent using only successfully executed plans. At this stage,
the agent learns more advanced logic, such as the composition of workflows and the relationships between
tools, building upon its foundational understanding of tool usage. Finally, in the Model Autonomous Stage,
we performed post-training using paired preference data constructed based on the model’s preferences. This
stage enables the multimodal agent not only to complete tasks but also to perceive and apply emotional or
aesthetic needs, such as human preferences, to tool execution.

It is worth noting that the MultiMedia-Agent differs significantly from previous models and methods. We
present the differences between MultiMedia-Agent, other tool-agents, and content creation agent systems in
the Table 1. Most of the methods listed in the table support multimodal content generation. For multimodal
content understanding, HuggingGPT (Shen et al., 2024) can indirectly handle multimodal understanding
by invoking APIs, NExT-GPT (Wu et al., 2023c) and MLLM-Tool can directly understand multimodal
data. AutoDirector (Ni et al., 2024) can only process text input and cannot generate content based on
user-provided materials. While our model is capable of accepting multi-modal and multiple inputs. In terms
of planning ability, ToolLLM (Qin et al., 2023) and HuggingGPT can plan the use of multiple tools based
on user instructions, whereas NExT-GPT and ModaVerse (Wang et al., 2024c) can only output a single
piece of content in one forward pass. Multimodal Interaction refers to whether the model can generate and
integrate multiple types of modalities based on user needs. Currently, only works like AutoDirector have
such capabilities but only limited to video scenario. Our MultiMedia-Agent can handle the plan generation
for multiple scenarios based on the user’s query. As for content generation scenarios, none of the existing
models perform preference alignment on the generated content, whereas MultiMedia-Agent incorporates
human-preference-based evaluation models to handle this aspect.

In summary, our contributions are as follows:
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Multimodal
Generation

Multimodal
Understanding

Planning
Ability

Multimodal
Interaction

Preference
Alignment

ToolLLM ✗ ✗ ✓ ✗ ✗
HuggingGPT ✓ ✗ ✓ ✗ ✗
NExT-GPT ✓ ✓ ✗ ✗ ✗
ModaVerse ✓ ✓ ✗ ✗ ✗

AutoDirector ✓ ✗ ✓ ✓ ✗
MultiMedia-Agent ✓ ✓ ✓ ✓ ✓

Table 1: A comparison of our MultiMedia-Agent with notable tool agents or content creation agents.

1. We build a plan generation system for multi-media content generation, including a data generation
pipeline, tool library and evaluation metrics.

2. We design a two-stage correlation of plan curation specifically for multi-media content generation
according to skill acquisition theory. Utilizing self-correlation and preference model correlation
strategies for plan optimization.

3. We propose a three-stage training pipeline for multimedia content generation agent based on skill
acquisition theory. This pipeline enables the agent to effectively learn the generation of complex
plans from scratch. The agent demonstrated exceptional performance across various tasks.

2 RELATED WORK

2.1 TOOL AGENT

With the rise of LLM agents (Mei et al., 2024; Liu et al., 2023; 2024b; Zhao et al., 2024), enabling agents
to call external APIs to solve user problems has become a crucial research topic. Toolformer (Schick
et al., 2024) pioneered the exploration of connecting large language models (LLMs) with external tools.
HuggingGPT (Shen et al., 2024) leveraged an agent to call HuggingFace’s API, allowing it to solve a wide
range of complex problems. Subsequent research has extended this integration to fields like healthcare
support (Ma et al., 2023b), code synthesis (Wang et al., 2024b), and web searching (Ma et al., 2023a).
ToolLLM (Qin et al., 2023) focused on executing complex tasks in real-world scenarios. GPT4Tools (Yang
et al., 2024) and Visual ChatGPT (Wu et al., 2023a) integrated visual foundation models after decomposing
tasks into manageable components. For multimodal tool agents, MLLM-Tool (Wang et al., 2024a) employed
multimodal large models as agents to call Hugging Face APIs. Similarly, ModaVerse (Wang et al., 2024c)
used multimodal large models for any-to-any generation. In our MultiMedia-Agent, we focus primarily on
the planning and alignment capabilities of multimodal agents, aiming to enhance content generation quality.

2.2 ANY-TO-ANY GENERATION

The earliest any-to-any model was CoDi (Tang et al., 2024), followed by NextGPT and EMU (Sun et al., 2023),
which introduced further improvements in data and model design. EMU2 (Sun et al., 2024) introduced a
unified autoregressive objective to predict the next multimodal element, either by regressing visual embeddings
or classifying textual tokens. CM3Leon (Yu et al., 2023) and Chameleon (Team, 2024) used mixed image
and text data to train token-based autoregressive models. More recently, TransFusion (Zhou et al., 2024) and
Show-o (Xie et al., 2024) combined large language models with diffusion models to enhance performance.

However, any-to-any models are typically limited to generating a single modality without considering the
relationships and connections between modalities. This is precisely the area that our MultiMedia-Agent
focuses on, emphasizing the interplay between different modalities for richer content generation.
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Audio/Video to Audio Audio/Video to Text Audio/Video to Video
Image/Audio to Text Image/Audio to Video Image/Video to Audio
Image/Video to Text Image/Video to Video Multiple Audios to Image

Multiple Audios to Text Multiple Audios to Video Multiple Images to Audio
Multiple Images to Text Multiple Images to Video Multiple Videos to Audio

Multiple Videos to Image Multiple Videos to Text Multiple Videos to Video

Table 2: 18 real world task types.

3 DATA CURATION

In this section, we will systematically analyze the procedures we took to construct our dataset. To generate
complex multi-modal media content, we first built a multimodal tool library, from which the agent can select
appropriate tools to form the plan. Next, we construct differentiated plans based on different types of requests
and feedbacks. Finally, we designed a series of metrics to evaluate and provide model preference feedback of
the content generated by these plans, thereby enabling the assessment and ranking of the plans.

3.1 MULTI-MEDIA TASKS

Due to the lack of datasets that can model real-world multimodal demand-solution scenarios, as shown in
Table 2, we first constructed scenarios based on various real-world needs. For example, A user might want
to automatically convert a series of photos into a video slideshow, possibly for a wedding or event photo
montage. This can be summarized as a multi-images-to-video task. Another scenario could be: A person has
taken some photos and wants to use them along with selected background music to generate a video, like
creating a travel memory video. This can be categorized as an image-audio-to-video task. In this case, we
designed 18 types of tasks, involving modalities such as image, video, audio, speech, and text. Next, we
constructed user queries for each task and collected corresponding multimedia data. Specifically, we first
gathered publicly available multimedia data from the web, then used GPT-4o to generate user queries under
different circumstances by combining the multimedia data with task type information. As a result, we built a
diverse dataset of multimedia tasks, with corresponding user queries and multimedia data for each task.

3.2 TOOL LIBRARY

Considering the complex relationships and connections between different modalities, we built this tool library
from three main perspectives: Multimodal Understanding Tools, Multimodal Generation/editing Tools, and
Auxiliary Tools. We present the whole tool library in Appendix A.1.

Multi-modal Understanding Tools. A good agent system should first perceive the environment before
taking action. Therefore, we designed understanding models for each modality, enabling the agent system
to perceive information from different types of modal data, leading to better plan curation. Specifically, we
introduced five any-to-text models, corresponding to the five modalities: image, video, speech, audio, and
text.

Generative/editing Tools. At the same time, our agent system requires the capability to generate and edit data
across different modalities. Therefore, we introduced a suite of generation and editing tools, encompassing the
creation and modification of images, video, audio, and speech. Additionally, we incorporated several non-deep
learning tools, such as video transition effects and audio effects, to provide comprehensive multimedia editing
capabilities.

Auxiliary Tools. In addition, we introduced Auxiliary tools, which include essential multimedia data
processing utilities that cannot be overlooked, such as tools for video-to-video concatenation, video-to-audio
synchronization, video retrieval tools and other basic operations.
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Figure 1: Two-stage correlation of plan curation for content creation.

We organized the information for each tool into JSON file. The keys in the prompt consist of the following
part: Tool name and execution model name: We first defined the tool names and their corresponding models.
When designing the tool names, we considered that our agent involves multiple modalities and various
input-output models, which can easily lead to incorrect file formats being generated during the planning
stage. To address this, we fixed the file formats for the four modalities as follows: Image: .png; Video: .mp4;
Audio & Speech: .mp3; Text: .txt. We also included both the input and output formats in the tool name, for
example, text txt to video mp4, to ensure more stable plan curation. Additionally, the JSON file defines the
model names associated with each tool, which are used to index the models during execution. Required
parameters: Due to the complexity of our tasks and data, for each required parameter, we provide a detailed
description of its purpose. For example, in the object removal tool, where the input parameters include a text
description and the input image name, the required input parameters are defined as: {”text”, ”description
of the object to be removed”} and {”image”, ”image file from which object needs to be removed”}. This
approach helps ensure that the model can output the tool information more accurately. Tool Description:
Including the functionality and description of the tool is essential to better prompt the agent model.

3.3 HIERARCHICAL PLAN CURATION

Once we have constructed the user queries, corresponding multimedia data, and the tool library, we utilized
GPT-4o to generate the plans. The plans are organized into a list of dictionaries, where each dictionary
includes the information of the tool.

To enable the multimodal agent to better learn complex skills, we need to incorporate feedback into the
model’s training data. Unlike conventional tool agents, content-generation-oriented tool agents must not only
consider the execution success rate of the plan but also ensure that the generated multimedia content meets
human needs and aesthetic standards. In other words, the agent we are training must not only possess the
ability to complete complex tasks using tools but also be responsible for the outcomes produced by these tools,
ensuring that the results align with human needs and preferences. To address this, we designed a two-stage
correlation approach for tool plan curation. After generating the base plan, we first employ GPT4o to perform
self-correction, identifying issues within the plan and optimizing it to obtain a self-corrected plan. Next, we
execute the self-corrected plan to produce the multimedia result. We then employ a series of model-based
preference evaluation metrics to assess the quality of the multimedia result. Using these metrics, the LMM
further refines the plan to optimize it, ultimately yielding the final plan.
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3.3.1 TWO-STAGE CORRELATION OF PLAN CURATION

Stage 1: Self-correlation

After inputting the user query, materials, and tool information into GPT-4o to generate the base plan, we
further prompt GPT-4o to evaluate the quality of the current plan based on all available information. Our
evaluation criteria focus on two main aspects: Plan execution success rate: We prompt GPT-4o to assess
whether the plan can be successfully executed, and if not, make necessary modifications. Inclusion of
user-requirement-aligned, common-sense optimizations: We assess whether the plan includes additional
optimization tools that meet the user’s needs and adhere to common sense, such as adding background music
to a video or incorporating voiceovers in audio generation.

This ensures the plan is both executable and aligned with user expectations.

Stage 2: Model Preference Correlation

To further evaluate the generated plans, in Stage 2 we assess the results of content generation plans using
model-based preference feedback metrics for the four output modalities: image, video, audio, and text. Our
evaluation focuses on three primary aspects: whether the generated multimedia content meets human needs,
conveys emotional expression, and aligns across modalities.

• Text output metrics. We use GPT-4o to evaluate the alignment between the input and output
content.

• Image output metrics. GPT-4o assesses whether the images meet human needs and convey
emotions, while Pick Score Kirstain et al. (2023) is used to evaluate aesthetics.

• Audio output metrics. We apply speech-to-text and audio-to-text models to convert the audio into
text, and GPT-4o evaluates the fulfillment of human needs and emotional expression based on user
requirements and input content.

• Video output metrics. Similar to image outputs, GPT-4o evaluates whether the video meets human
needs and conveys emotions, while Dover Score (Wu et al., 2023b) is used for aesthetic and quality
evaluation. If the video includes embedded audio, we apply the same evaluation methods used for
audio outputs. Additionally, we introduce a audio-video alignment metric, where GPT-4 scores the
alignment between the transcribed audio text and the video content.

By integrating these metrics, we provide a comprehensive evaluation of any type of plan execution output,
reflecting the overall quality of the plan. We use the optimized plans from Stage 1 to generate multimedia
content and then apply the above metrics for evaluation. The evaluation results are fed back to GPT-4o, which,
based on the feedback and previous information, generates a new plan. We show a generated plan in the
Appendix A.2.

3.4 DATA STATISTICS

In this section, we primarily present the statistics of the dataset we constructed, including success rate, average
steps, and average metrics. For each task type, we generated 70 user requests under different conditions.
For each individual user request, we constructed three plans. We first calculated the number of steps in
each plan for each task type, as shown in Table 3. Here, ”T” represents ”Text,” ”A” represents ”Audio,”
”V” represents ”Video,” ”I” represents ”Image,” and ”M” represents ”Multi-input.” We can observe that for
more complex tasks like video generation, the plans tend to include more steps to complete the task, whereas
for text generation, the model requires fewer steps to accomplish the task. Additionally, as the plans are
optimized, the number of steps required to complete the tasks increases, indicating that Self-correlation and
Model Preference Correlation introduced more tool usage in the plan generation process.

6
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We further illustrate the success rates of the generated plans in the Table 4. When combined with the number
of steps in each plan, it becomes evident that as the number of steps in a plan increases, the success rate of the
plan decreases.

Table 3: Average steps for different tasks.

AV-A AV-T AV-V IA-T IA-V IV-A IV-T IV-V MA-I
Plan 1 5.8 2.9 4.1 3.0 4.8 4.3 3.0 6.3 5.1
Plan 2 6.1 3.1 5.4 3.0 5.6 8.4 3.0 6.6 5.2
Plan 3 6.2 3.1 5.6 3.0 6.2 9.2 3.1 7.8 6.3

MA-T MA-V MI-A MI-T MI-V MV-A MV-I MV-T MV-V
Plan 1 4.0 8.1 4.2 4.1 8.5 7.6 12.0 4.1 6.0
Plan 2 4.1 9.4 5.5 4.1 8.8 8.0 12.2 4.1 6.4
Plan 3 4.4 11.8 8.2 4.5 10.6 9.2 12.8 4.1 7.4

Table 4: Success rate (%) for different tasks.

AV-A AV-T AV-V IA-T IA-V IV-A IV-T IV-V MA-I
Plan 1 100 100 100 100 100 100 100 100 91.42
Plan 2 100 100 100 100 90.00 98.57 100 88.57 97.14
Plan 3 90.00 98.60 10.00 100 74.29 91.42 100 12.86 92.86

MA-T MA-V MI-A MI-T MI-V MV-A MV-I MV-T MV-V
Plan 1 100 47.14 100 100 74.29 91.42 90.00 100 90.00
Plan 2 100 42.86 100 100 47.14 91.42 90.00 100 91.43
Plan 3 85.71 24.28 67.14 85.71 27.14 95.71 71.42 98.60 80.00

4 MULTIMEDIA-AGENT

4.1 AGENT SKILL ACQUISITION

We further used our data to train an multimodal agent. To better encode the tool information and the
behaviors from the plan into the multimodal model, we designed a three-stage training approach based on
skill acquisition theory.

1. Model Cognitive Stage. At this stage, the agent primarily focuses on learning the basic usage of
tools and understanding the input-output JSON formats. We trained the model using all available
data.

2. Model Associative Stage.At this stage, we trained the model using only successful plans, the agent
begins to learn established action trajectories from successfully executed plans to ensure smooth
execution and accurate output of future plans.

3. Model Autonomous Stage. At this stage, the agent not only needs to develop the ability to synthesize
complex plans but also must ensure that the generated content aligns with human aesthetics and
preferences. So, we categorized the plans into winning and losing plans based on the metric model’s
scores. Then, we applied DPO (Direct Preference Optimization) to align the model with these
preferences.

7



329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375

Under review as a conference paper at ICLR 2025

Multimedia-Agent 

Execution Multimedia 
Contents

Tool
Library

User 
Query

Any Combination/Amount
Multimedia Contents

Multi-image 
Encoder

Audio/Speech 
to Text

Multimedia 
Content 

Generation Plan

Figure 2: The detailed structure of MultiMedia-Agent.

4.2 EXPERIMENT SETTINGS

We use Minicpm-v2 (Yao et al., 2024) as our backbone to train out MultiMedia-Agent. The agent structure
is shown in Figure 2. Specifically, when processing videos, we extract 3 evenly spaced frames to represent
the entire video. Since the number of input videos and images is not fixed, we concatenate all the images
into a single large image before feeding it into the model. For audio and speech, we first use audio-to-text or
speech-to-text models to convert the input into text, which is then passed into the LLM for further processing.
The training details are attached in the Appendix. For model validation, we generated an additional 10 user
queries for each task and used GPT-4o as a comparison method. The metrics we selected for evaluation
included not only success rate but also model preference feedback.

4.3 ANALYSIS OF THE RESULT

4.3.1 SKILL ACQUISITION THEORY CAN BENEFIT TOOL AGENT TRAINING

We first present a comparison between our MultiMedia-Agent and GPT-4o in terms of success rate. As
observed, the agent trained through the Model Associative Stage shows a significant improvement in success
rate. However, upon completion of the Model Autonomous Stage, we noticed a decline in success rate. This
may be due to the tendency of the model to generate longer plans after the Model Autonomous Stage, and
given the model’s limited capacity, errors are more likely to occur when generating extended text. This issue
is also evident from the comparisons shown in Table 3 and Table 4. This highlights that ensuring the agent
outputs a stable plan format is a key challenge for tool agents when dealing with complex scenarios.

We further analyzed the model preference feedback results for content generated by MultiMedia-Agent at
different stages compared to GPT-4o. All reported metric results are the average model feedback scores for
successfully executed plans.

Due to space limitations, we only present the results for text generation and video generation here. Other
reults are presented in Appendix A.4. MultiMedia-Agent-1/2/3 correspond to the agents after each of the three
training stages, respectively. As shown in the table, after Stage 1 (Model Cognitive Stage), the MultiMedia-
Agent produces fairly average results. Following the second stage of training (Model Associative Stage), the
scores dropped, which may be due to the fact that successful plans tend to have fewer steps, leading to weaker
alignment. Moreover, after Stage 3 (Model Autonomous Stage), MultiMedia-Agent showed significant
improvements across various metrics. This demonstrates that the rewards from the preference model can
effectively optimize the tool agent’s plan generation. Our three-stage training enables the model to effectively
learn the generation of complex plans as well as plans aligned with human preferences.

8
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AV-A AV-T AV-V IA-T IA-V IV-A IV-T IV-V MA-I
GPT4o 100 100 100 100 100 100 100 100 100

MultiMedia-Agent-1 80 50 50 70 50 60 70 80 90
MultiMedia-Agent-2 100 90 80 100 90 90 90 100 100
MultiMedia-Agent-3 100 90 40 100 60 80 100 40 90

MA-T MA-V MI-A MI-T MI-V MV-A MV-I MV-T MV-V
GPT4o 100 60 100 100 70 100 90 100 80

MultiMedia-Agent-1 90 10 70 80 50 50 70 60 60
MultiMedia-Agent-2 100 40 80 100 70 80 90 90 80
MultiMedia-Agent-3 70 30 50 90 40 90 80 90 80

Table 5: Comparison of success rate for GPT4o and MultiMedia-Agent.

MA-T MV-T IV-T MA-T MI-T MV-T
GPT4o 4.2 4.2 4.5 4.2 4.8 4.8

MultiMedia-Agent-1 4.1 4.2 4.4 4.2 4.8 4.9
MultiMedia-Agent-2 4.1 4.2 4.4 4.0 4.8 4.8
MultiMedia-Agent-3 4.2 4.3 4.5 4.5 4.8 4.9

Table 6: Comparisons for text generation tasks with text output metrics.

4.3.2 VISUALIZATION RESULTS

As seen from the Figure 3, the plan generated by MultiMedia-Agent-1 lacks corresponding audio and special
effects. MultiMedia-Agent-2 added sound effects to the plan, although they did not match the atmosphere of
the video. In contrast, MultiMedia-Agent-3 generated content that included both subtitles and special effects,
as well as appropriate ocean wave audio.

5 DISCUSSION

5.1 LIMITATION

Firstly, for tool selection, we currently use a prompt-based approach. However, considering the vast number
of tools available in real-world scenarios, techniques like Retrieval-Augmented Generation (RAG) can be
employed to optimize tool selection. Secondly, when it comes to solving complex tasks, multi-agent systems

No Audio

The sound of 
singing

MultiMedia-Agent-1

MultiMedia-Agent-2

MultiMedia-Agent-3 The sound of 
the waves

Figure 3: Visualization of the multimedia content created from the plan generated by MultiMedia-Agent. The
user query is: use the images and the corresponding video to create a satisfying video.
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MA-T MV-T IV-T MA-T MI-T MV-T
GPT4o 4.5 3.8 4.2 3.7 4.0 4.7

MultiMedia-Agent-1 4.4 3.7 4.0 3.8 4.1 4.5
MultiMedia-Agent-2 4.4 3.7 4.0 3.8 4.1 4.5
MultiMedia-Agent-3 4.6 3.9 4.1 3.9 4.2 4.6

MA-T MV-T IV-T MA-T MI-T MV-T
GPT4o 3.8 3.9 3.6 4.0 4.2 3.6

MultiMedia-Agent-1 3.8 3.7 3.6 4.1 4.1 3.8
MultiMedia-Agent-2 3.7 3.6 3.6 4.1 4.2 3.6
MultiMedia-Agent-3 4.3 3.9 3.8 4.3 4.1 3.9

MA-T MV-T IV-T MA-T MI-T MV-T
GPT4o 2.1 1.6 1.7 1.4 1.7 2.3

MultiMedia-Agent-1 2.0 1.6 1.8 1.3 1.6 2.2
MultiMedia-Agent-2 2.0 1.5 1.8 1.5 1.4 2.2
MultiMedia-Agent-3 2.0 1.9 1.8 1.6 1.8 2.2

MA-T MV-T IV-T MA-T MI-T MV-T
GPT4o 3.6 3.8 3.1 3.9 3.1 3.2

MultiMedia-Agent-1 3.3 3.9 3.2 3.9 3.2 3.2
MultiMedia-Agent-2 3.3 3.9 3.0 4.0 3.2 3.1
MultiMedia-Agent-3 3.9 3.9 3.6 4.2 3.3 3.5

MA-T MV-T IV-T MA-T MI-T MV-T
GPT4o 2.8 2.9 2.9 3.2 3.0 3.0

MultiMedia-Agent-1 3.0 2.9 2.7 3.4 3.0 3.1
MultiMedia-Agent-2 2.9 2.8 2.7 3.4 3.0 3.1
MultiMedia-Agent-3 3.1 3.1 2.9 3.4 3.2 3.2

MA-T MV-T IV-T MA-T MI-T MV-T
GPT4o 4.1 4.2 3.5 4.7 3.8 3.9

MultiMedia-Agent-1 3.9 4.1 3.4 4.6 3.9 4.0
MultiMedia-Agent-2 3.9 4.2 3.3 4.5 3.9 3.9
MultiMedia-Agent-3 4.2 4.1 3.6 4.8 3.9 4.1

Table 7: Comparisons for video generation tasks with video output metrics. From top to down: Video
Human Alignment; Video Psychological Appealing; Video Aestheic Score; Audio Human Alignment; Audio
Psychological Appealing; Audio Video Alignment.

are generally more effective than single-agent systems. In our future work, we plan to explore the use of
multi-agent systems to tackle complex content generation tasks.

5.2 CONCLUSION

In this paper, we design a multimedia content generation agent system that leverages the skill acquisition
theory to significantly enhance the capabilities of AIGC technologies in creating complex, multimodal content.
By integrating a robust data pipeline, diverse tool library, and innovative evaluation metrics, our approach
not only refines the content generation process but also aligns it more closely with real-world applications.
The deployment of our MultiMedia-Agent, which outperforms traditional models like GPT4o, showcases
the effectiveness of embedding skill acquisition into AI training regimens. This paves the way for further
advancements in automated content creation, promising richer and more effective multimedia outputs.
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A APPENDIX

A.1 TOOL LIBRARY

We present all the tools we used for the agent system in Table 8 . Including tools for image, video, audio,
speech and text, Also includes task type such as editing, generation, retrieval, etc.

Tool Name Corresponding Model(s)
speech mp3 to text txt openai wisper
audio mp3 to text txt audio to text
image png to text txt openai gpt4o, image to text
video mp4 to text txt openai gpt4o, video to text
text txt to txt txt openai gpt4o, text to text
text txt to speech mp3 text to speech
text txt to image png text to image
text txt to audio mp3 text to audio
text txt and image png to video mp4 text and image to video
image png quality assessment openai gpt4o, image quality assessment
video mp4 quality assessment openai gpt4o, video quality assessment
audio mp3 text alignment audio to text, openai gpt4o
retrieve image from web to image png search images
retrieve video from web to video mp4 search videos
retrieve audio from web to audio mp3 retrieve audio from web to audio mp3
text txt image png object removal to image png instruct pix2pix, Remove the
image png watermark removal to image png instruct pix2pix, Remove the watermark
text txt image png object adding to image png instruct pix2pix, Add
video mp4 object removal to video mp4 instruct pix2pix, Remove the
video mp4 watermark removal to video mp4 instruct pix2pix, Remove the watermark
video mp4 object adding to video mp4 instruct pix2pix, Add
image png crop base on text to image png image crop base on text
image png desnowing to image png diff plugin img, desnow
image png dehazing to image png diff plugin img, dehaze
image png deblurring to image png diff plugin img, deblur
image png deraining to image png diff plugin img, derain
image png face restoration to image png diff plugin img, face
image png demoreing to image png diff plugin img, demoire
image png low light enhancement to image png image low light enhance
video mp4 desnowing to video mp4 diff plugin vid, desnow
video mp4 dehazing to video mp4 diff plugin vid, dehaze
video mp4 deblurring to video mp4 diff plugin vid, deblur
video mp4 deraining to video mp4 diff plugin vid, derain
video mp4 face restoration to video mp4 diff plugin vid, face
video mp4 demoreing to video mp4 diff plugin vid, demoire
video mp4 cut to video mp4 video cut
video mp4 key frame to image png video key frame to image
video mp4 extraction to audio mp3 video extract audio
video mp4 super resolution to video mp4 video super resolution to video
image png super resolution to image png image super resolution to image

13
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image png video concatenate to video mp4 image video concatenate
video mp4 video concatenate to video mp4 video video concatenate
video mp4 audio concatenate to video mp4 video audio concatenate
video mp4 subtitle concatenate to video mp4 video sutitle concatenate
video mp4 speed up to video mp4 clip.fx(vfx.speedx, factor)
video mp4 speed down to video mp4 clip.fx(vfx.speedx, 1/factor)
effect video mp4 fade to video mp4 moviepy video, fade
effect video mp4 horizontal mirror to video mp4 moviepy video, horizontal mirror
effect video mp4 vertical mirror to video mp4 moviepy video, vertical mirror
effect video mp4 brightness adjustment to video mp4 moviepy video, brightness adjustment
effect video mp4 change black and white to video mp4 moviepy video, black and white
audio mp3 audio concatenate to audio mp3 sox audio, audio concatenate
audio mp3 speed up to audio mp3 sox audio, speed up
audio mp3 speed down to audio mp3 sox audio, speed down
audio mp3 change volume to audio mp3 sox audio, change volume
effect audio mp3 add reverb to audio mp3 sox audio, add reverb
effect audio mp3 add echo to audio mp3 sox audio, add echo
effect audio mp3 fade in to audio mp3 sox audio, fade in
effect audio mp3 fade out to audio mp3 sox audio, fade out
effect audio mp3 add stereo widening to audio mp3 sox audio, add stereo widening
text txt image png object detection to image png image object detection
image png resize to image png image ffmpeg, image resize
effect image png rotate to image png image ffmpeg, image rotate
effect image png vertical flip to image png image ffmpeg, image vertical flip
effect image png horizontal flip to image png image ffmpeg, image horizontal flip
effect image png trim to image png image ffmpeg, image trim
effect image png change brightness to image png image ffmpeg, image change brightness
effect image png contrast to image png image ffmpeg, image contrast
effect image png saturation to image png image ffmpeg, image saturation
effect image png hue to image png image ffmpeg, image hue
effect image png blur to image png image ffmpeg, image blur
effect image png sharpen to image png image ffmpeg, image sharpen
effect image png noise to image png image ffmpeg, image noise
effect image png emboss to image png image ffmpeg, image emboss
effect image png sketch to image png image ffmpeg, image sketch
effect image png mosaic to image png image ffmpeg, image mosaic
image png add subtitle to image png add caption to image png
add subtitle to video mp4 add subtitle to video mp4

Table 8: Tool Library

A.2 EXAMPLE OF GENERATED PLAN

We first show the format of the tool library; tool calling function and Generated plan in the Figure. 4. Then
we show an example plan in the Table. A.2.

• Step 1: Text to Speech
– Tool: text txt to speech mp3

14
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– Instruction: The ocean at sunset is a tranquil and mesmerizing scene, evoking a sense of calm
and reflection.

– Output: audio 1 0.mp3
• Step 2: Create Video from Image and Text

– Tool: text txt and image png to video mp4
– Input: mixkit-sea-waves-reflecting-the-sunset-1927 1.png
– Output: video 2 0.mp4

• Step 3: Create Video from Another Image and Text
– Tool: text txt and image png to video mp4
– Input: mixkit-sea-waves-reflecting-the-sunset-1927 2.png
– Output: video 3 0.mp4

• Step 4: Create Video from a Third Image and Text
– Tool: text txt and image png to video mp4
– Input: mixkit-sea-waves-reflecting-the-sunset-1927 3.png
– Output: video 4 0.mp4

• Step 5: Concatenate Videos (Step 2 and Step 3)
– Tool: video mp4 video concatenate to video mp4
– Input: video 2 0.mp4, video 3 0.mp4
– Output: video 5 0.mp4
– Depends: 2, 3

• Step 6: Concatenate with Another Video (Step 5 and Step 4)
– Tool: video mp4 video concatenate to video mp4
– Input: video 5 0.mp4, video 4 0.mp4
– Output: video 6 0.mp4
– Depends: 5, 4

• Step 7: Apply Fade Effect
– Tool: effect video mp4 fade to video mp4
– Input: video 6 0.mp4
– Output: video 7 0.mp4
– Depends: 6

• Step 8: Add Audio to Video
– Tool: video mp4 audio concatenate to video mp4
– Input: video 7 0.mp4, audio 1 0.mp3
– Output: video 8 0.mp4
– Depends: 7, 1

• Step 9: Add Subtitle
– Tool: video mp4 subtitle concatenate to video mp4
– Instruction: The ocean at sunset is a tranquil and mesmerizing scene, evoking a sense of calm

and reflection.
– Input: video 8 0.mp4
– Output: video 9 0.mp4
– Depends: 8

15
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Tool Library Tool Call Generated Plan

{ 
 “Name”:  “tool name”,
 “Description”: “tool 
description”,
 “Required Parameters”: {“
  “parameter1”: {
   “type”,
   “description”: “”,
   “default”: “”, 
  },
  “parameter2”: …
 ”},
 “Model name”: “”,
… More Parameters
}

{ 
 “ID”: 0
 “Name”:  “tool name”,
 “Required Parameters”: {“
  “parameter1”: {
   “value1”,
  },
  “parameter2”:”: {
   “value2”,
  },
 ”},
 “Depends”: “[]”,
}

{ 
 “User Query”:  “Use the input 
audio and video to create a video.”,
 “global input data type”: “”,
 “global output data type”: “”,
 “input data name”: “[

 xxx.mp3, 
 xxx.mp4]”,
“plan 0”:”{
 “tool 1”: {},
 “tool 2”: {},
 }”,
“plan 1”:  …
“global outputs”: ”[xxx.mp4]”,

}

Figure 4: Formats for tool library and generated plan.

A.3 TRAINING DETAILS OF MULTIMEDIA-AGENT

For the first stage, we train the Minicpm-v2 with a learning rate of 2e− 6. Weight decay is 0.1, training step
is 10000, warmup ratio is 0.01. For the second stage, we degrade the training step into 2000 and the learning
rate to 1e− 6. For the third stage, we degrade the training step to 1000 and the learning rate to 5e− 7, all the
experiments were conducted on 4×A5000 GPU.

A.4 RESULTS FOR IMAGE AND AUDIO GENERATION

Here, we present the results for image generation and audio generation. For the image generation results, the
metrics from top to bottom are:Image Human Alignment, Image Psychological Appeal, and Image Aesthetic
Score. For the audio generation results, the metrics from top to bottom are: Audio Human Alignment and
Audio Psychological Appeal.

MA-I MV-I
GPT4o 4.0 4.5

MultiMedia-Agent-1 4.1 4.2
MultiMedia-Agent-2 4.2 4.1
MultiMedia-Agent-3 4.5 4.6

MA-I MV-I
GPT4o 3.8 4.0

MultiMedia-Agent-1 3.8 3.5
MultiMedia-Agent-2 3.7 3.4
MultiMedia-Agent-3 4.0 4.0

MA-I MV-I
GPT4o 6.2 7.1

MultiMedia-Agent-1 6.3 7.4
MultiMedia-Agent-2 6.1 7.3
MultiMedia-Agent-3 6.5 7.5
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AV-A IV-A MI-A MV-A
GPT4o 4.3 4.0 3.5 3.5

MultiMedia-Agent-1 4.2 3.8 3.6 3.6
MultiMedia-Agent-2 4.3 3.7 3.4 3.5
MultiMedia-Agent-3 4.5 3.9 3.5 3.6

AV-A IV-A MI-A MV-A
GPT4o 4.3 3.8 3.5 3.4

MultiMedia-Agent-1 4.0 3.7 3.6 3.5
MultiMedia-Agent-2 3.7 3.6 3.5 3.5
MultiMedia-Agent-3 4.4 3.6 3.7 3.7
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