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Abstract

Song lyrics possess a natural hierarchical struc-
ture that remains unexploited in computational
models, creating a significant gap in emotion
recognition systems. We introduce Struct-
Former, a novel framework that leverages the
symbolic structure of lyrics and the hierar-
chical nature of emotions by encoding them
in hyperbolic space. Our approach incorpo-
rates paragraph-line structure as an inductive
bias and employs a multi-level supervision
strategy with both fine-grained and coarse-
grained labels. The key innovations include
three theoretically-grounded components: (1)
a structure-aware embedding module that fuses
semantic and structural information through
computationally efficient gated alignment, (2) a
hyperbolic projection that captures hierarchical
relationships among emotion labels with math-
ematical guarantees, and (3) geometric consis-
tency losses that enforce coherence between
structural segmentation and emotional represen-
tation. Extensive experimental results demon-
strate that StructFormer achieves substantially
improved embedding coherence while main-
taining competitive classification performance
across diverse emotion categories compared to
state-of-the-art baselines.

1 Introduction

Emotion recognition from lyrics serves as a critical
complement to acoustic features, enhancing appli-
cations from personalized music recommendation
to creative AI systems (Revathy et al., 2023; Ma
et al., 2021). Lyrics present unique analytical chal-
lenges due to their inherent hierarchical composi-
tion (song → paragraph → line) and emotional pro-
gression. Despite these structural properties, con-
ventional Music Emotion Recognition (MER) mod-
els predominantly process lyrics as flat sequences,
neglecting critical organizational cues (Yin et al.,
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2021; Zhang and McAuley, 2020). While struc-
tural modeling approaches—including hierarchi-
cal attention mechanisms (Yang et al., 2016) and
graph-based encoders (Zhang and Yu, 2021)—have
advanced sentiment analysis in general NLP, they
remain underutilized in lyrical analysis. Similarly,
emotion taxonomies naturally form hierarchical re-
lationships (e.g., amusement, pride → joy) (Goel
et al., 2022), yet current MER systems rarely lever-
age these inherent structures.

From a geometric perspective, Euclidean spaces
face fundamental limitations when embedding hier-
archical structures due to their fixed zero curvature.
Bourgain’s theorem (Bourgain, 1985) demonstrates
that trees cannot be embedded into Euclidean space
with arbitrarily low distortion, regardless of di-
mension, with complete binary trees requiring at
least Ω(

√
log n) distortion. In contrast, hyperbolic

spaces can embed any tree into a 2-dimensional
Poincaré disk with arbitrarily low distortion (1+ ε)
for any ε > 0. While recent work applies hyper-
bolic embeddings to label representations (Peng
et al., 2023), no approach integrates structural pri-
ors from input text with suitable non-Euclidean
geometry.

We introduce StructFormer, the first unified
framework that jointly encodes paragraph-line
structure and emotion hierarchies in hyperbolic
space. As shown in Figure 1, our model fuses se-
mantic and structural features via gated alignment,
projects them into hyperbolic space using Möbius
operations, and optimizes a multi-objective func-
tion enforcing classification accuracy and geomet-
ric consistency. Extensive Experiments show that
StructFormer yields superior embedding coherence
and competitive performance against strong base-
lines, validating our theoretical contributions. Our
work makes three key contributions to emotion
recognition in lyrics:

• Structure-Aware Embedding: A gated fu-
sion mechanism that adaptively integrates se-



Figure 1: Overview of StructFormer. The model integrates structured embeddings (paragraph and line indices),
semantic representations (BERT CLS), and non-Euclidean projection (Mobius addition) for fine- and coarse-grained
emotion recognition. Gated fusion and structural losses align semantic and structural space.

mantic content with structural information
(paragraph-line positions) for the first time
in lyrical emotion modeling.

• Hyperbolic Geometric Framework: A uni-
fied projection mechanism that captures hier-
archical emotion relationships with mathemat-
ical guarantees, overcoming Euclidean space
limitations for tree structures.

• Geometric Consistency Losses: Novel loss
functions that enforce coherence between
structural segmentation and emotional repre-
sentation through theoretically-grounded dis-
tance constraints.

2 Related Work

Music Emotion Recognition. Early MER meth-
ods relied on acoustic features with statistical clas-
sifiers (Kim et al., 2010; Yang and Chen, 2012),
while recent approaches incorporate lyrics (Yin
et al., 2021) or multimodal fusion (Zhang and
McAuley, 2020; Huang and Yang, 2020). How-
ever, most treat lyrics as flat sequences and model
emotions independently, overlooking the hierarchi-
cal relationships among emotion categories (e.g.,
joy → pride, amusement).

Structure-Aware Emotion Modeling. Struc-
tural modeling has advanced sentiment analysis
via recursive networks (Socher et al., 2013), hi-
erarchical attention (Yang et al., 2016), and tree-
structured encoders (Tai et al., 2015), yet remains
underexplored in lyrics despite inherent paragraph-
line structure (Malheiro et al., 2021). Models like
HiBERT (Zhang et al., 2019) have not been adapted
to jointly leverage structure and non-Euclidean ge-
ometry for emotion representation.

Hyperbolic Emotion Embedding. Hyperbolic
spaces provide exponential capacity for modeling
scale-free and hierarchical structured data (Nickel
and Kiela, 2017; Chami et al., 2019; Yang et al.,
2022a), with applications in taxonomies (Dhingra
et al., 2020), sentence embeddings (Ganea et al.,
2018), recommender systems (Sun et al., 2021;
Yang et al., 2022b,b; Chen et al., 2022), and knowl-
edge graphs (Balazevic et al., 2019). Recent emo-
tion work embeds label hierarchies (Peng et al.,
2023) but omits structural input. Our model fills
this gap by jointly encoding emotional and struc-
tural hierarchies within a unified hyperbolic frame-
work.

Fine-Coarse Label Supervision. Hierarchical
emotion taxonomies like Plutchik’s wheel and



Ekman’s basic emotions provide valuable frame-
works for emotion classification (Cowen and Kelt-
ner, 2021). Recent approaches have leveraged
these hierarchies through multitask learning, si-
multaneously predicting fine and coarse emotion
labels to improve both interpretability and perfor-
mance (Goel et al., 2022; Poria et al., 2018). While
effective, these models typically overlook the in-
teraction between label hierarchies and input struc-
ture, relying instead on standard Euclidean repre-
sentations without explicit geometric constraints to
model hierarchical relationships.

Research Gaps. Prior music emotion recogni-
tion research, despite extensive work on audio-
text fusion and label hierarchies, has three key
limitations (Araño et al., 2021; Schmeier et al.,
2019; Raboy and Taparugssanagorn, 2024): lyrics
are rarely treated as structured text despite clear
paragraph-line organization; emotion taxonomies
are often flattened rather than hierarchically mod-
eled; and standard Euclidean representations fail
to capture the natural hierarchical properties of
both emotions and lyrical structure. Our work in-
troduces StructFormer to address these gaps by
unifying structural encoding, hierarchical supervi-
sion, and hyperbolic representations within a single
coherent framework.

3 Methodology

3.1 Problem Formulation

Let D = {(xi, pi, li, yfine
i , ycoarse

i )}Ni=1 denote a
dataset of N lyric lines, where xi represents the
textual content, pi and li indicate structural po-
sitional information (paragraph and line indices
respectively), and yfine

i ∈ Yfine, ycoarse
i ∈ Ycoarse

are hierarchical emotion labels at fine-grained and
coarse-grained levels. Our objective is to learn a
representation function that maps each lyric line
to a vector hi ∈ Rd that effectively captures both
semantic content and structural context, support-
ing emotion classification in both Euclidean and
hyperbolic geometric spaces.

3.2 Overall Framework

We introduce StructFormer, a framework that
addresses the limitations of existing approaches
through three key innovations: (1) a structure-
aware embedding module with gated fusion, (2)
a hyperbolic projection mechanism with mathemat-
ical guarantees for hierarchical relationships, and

(3) geometric consistency losses that enforce co-
herence between structural segmentation and emo-
tional representation. For each lyric line xi, we
extract contextual features using BERT to obtain a
semantic representation hcls, encode structural in-
formation through position embeddings, and adap-
tively fuse these signals before projecting them into
hyperbolic space for classification.

3.3 Structure-Aware Embedding
Our first key innovation is a computationally effi-
cient structure-aware embedding module that cap-
tures positional context while maintaining semantic
richness. The semantic content of each lyric line is
first encoded using a pretrained BERT model:

hcls = BERT(x) ∈ Rd. (1)

While this captures linguistic features, it lacks
structural context. To address this limitation, we
encode structural information through a dedicated
embedding pathway:

hstruct = MLPstruct([ep; el]) ∈ Rd, (2)

where ep ∈ Rds and el ∈ Rds are learnable embed-
dings for paragraph and line positions with dimen-
sion ds ≪ d for parameter efficiency, [·; ·] denotes
vector concatenation, and MLPstruct is a multi-layer
perceptron with two linear transformations and a
ReLU activation:

MLP(x) = W2σ(W1x+ b1) + b2, (3)

where W1 ∈ Rdh×2ds , W2 ∈ Rd×dh , b1 ∈ Rdh ,
and b2 ∈ Rd are learnable parameters.

To adaptively integrate these complementary sig-
nals, we employ a content-dependent gating mech-
anism:

g = σ(MLPg(hstruct)), (4a)

h = g ⊙ hstruct + (1− g)⊙ hcls. (4b)

Here, σ is the sigmoid function, and ⊙ denotes
element-wise multiplication. This computation-
ally efficient gated alignment allows the model to
dynamically adjust the influence of structural in-
formation based on content, avoiding the need for
more complex attention mechanisms.

3.4 Hyperbolic Projection and Classification
Our second key innovation is a hyperbolic projec-
tion mechanism that provides mathematical guar-
antees for representing hierarchical relationships.



A fundamental challenge in modeling hierarchi-
cal structures in Euclidean space is the exponen-
tial growth in volume required to maintain dis-
tance relationships. To address this limitation, we
project the fused representation into the Poincaré
ball model Hd:

h̃ = exp0(h) ∈ Hd, (5)

where the exponential map exp0 transforms vectors
from Euclidean space to the hyperbolic manifold
Hd = {x ∈ Rd : ∥x∥ < 1}. This guarantees
exponential capacity for representing hierarchies
with theoretical embedding distortion bounds.

For classification, we employ a nearest-
prototype approach:

ŷcoarse = argmin
c

dH(h̃, µc), (6)

where µc ∈ Hd is a learnable prototype and dH is
the Poincaré distance:

dH(u, v) = arcosh

(
1 + 2

∥u− v∥2

(1− ∥u∥2)(1− ∥v∥2)

)
.

(7)

3.5 Supervision and Loss Functions
Our third key innovation is a set of geometric con-
sistency losses that enforce coherence between
structural segmentation and emotional represen-
tation. Our training objective integrates four com-
plementary components:

L = λfineLfine + λcoarseLcoarse

+ λalignLalign + λgeomLgeom, (8)

where the weights are set to λfine = 1.0, λcoarse =
0.5, λalign = 0.4, and λgeom = 0.05.

For emotion classification, we employ standard
cross-entropy losses:

Lfine = −
∑
k

I(yfine = k) log p̂fine
k , (9a)

Lcoarse = −
∑
j

I(ycoarse = j) log p̂coarse
j , (9b)

where I(·) is the indicator function and p̂ are
softmax-normalized probabilities.

The alignment loss ensures structural representa-
tions remain semantically meaningful:

Lalign = E
[
(1− cos(h, hstruct))

2
]
. (10)

The curvature is set to -1.

Our novel geometric consistency loss explicitly
enforces structural relationships in both spaces:

Lintra =
∑
p

log
(
1 + d̄

(p)
H

)
− log

(
1 + d̄

(p)
E

)

(11a)

Linter =
∑
(i,j)

L(i,j)
inter , where

L(i,j)
inter =


max (0, dH(i, j)− dE(i, j) + δ) ,

if |i− j| = 1

max (0, dE(i, j)− dH(i, j) + δ)

if |i− j|. ≥ 2

(11b)

Here, d̄(p) represents average within-paragraph
distances and d(pi, pj) denotes paragraph centroid
distances. This loss enforces a crucial structural-
emotional coherence property: adjacent paragraphs
(likely with similar emotions) should be closer in
hyperbolic space than in Euclidean space, while
non-adjacent paragraphs should be further apart.
The complete geometric loss is:

Lgeom = Lintra + Linter. (12)

This theoretically-grounded approach ensures
that the geometric properties of our representation
space align with the inherent hierarchical and struc-
tural properties of both lyrical organization and
emotion taxonomies.

4 Experiments

4.1 Dataset Preprocessing
We construct our dataset from the DALI
corpus (Meseguer-Brocal et al., 2020), ex-
tracting lyric lines with paragraph and line
indices. Emotion labels are assigned using
the monologg/bert-base-cased-goemotions
model (Park, 2022), yielding 26 fine-grained
emotions mapped to 7 coarse categories and 3
sentiment polarities. To balance the dataset, we
include all songs for rare emotions (¡50 examples)
and sample up to 50 songs for common ones,
resulting in 1,041 songs, 10,001 paragraphs, and
73,796 lyric lines with complete hierarchical
annotation.

4.2 Experimental Setup
We evaluate StructFormer-Hyper against three base-
lines (BERT, Multi-task BERT, HAN) under con-
trolled conditions. Models are trained with batch



Table 1: Fine-to-Coarse Label Mapping with Sentiment
Polarity

Coarse Category Fine Labels Sentiment Polarity

Joy amusement,
pride,
excitement,
relief,
optimism

Positive

Sadness sadness,
grief, disap-
pointment,
remorse

Negative

Anger anger,
annoyance,
disapproval

Negative

Fear fear, embar-
rassment,
nervousness

Negative

Surprise surprise,
realization,
confusion

Neutral

Love love,
gratitude,
desire

Positive

Neutral neutral,
curiosity,
approval

Neutral

size 16, learning rate 1 × 10−5, and dropout 0.1
(seed=42). StructFormer-Hyper uses Riemannian
Adam (Klimenko et al., 2020) for hyperbolic opti-
mization, while baselines use standard Adam. The
dataset contains 1,041 DALI songs with 20/10/70%
train/validation/test splits. Structural embedding
dimension is 8. Ablation studies use identical hy-
perparameters on 300 randomly selected songs for
10 epochs. Experiments ran on an NVIDIA RTX
4090 GPU (24GB VRAM) and Intel Xeon Gold
6430 (16 vCPUs, 120GB RAM), requiring approx-
imately 8 hours of training.

Model Comparisons. We evaluate four mod-
els: (1) StructFormer-Hyper (ours) encodes
paragraph-line structure with BERT embeddings
via gated fusion, projects into hyperbolic space, and
employs four specialized losses; (2) BERT (Devlin
et al., 2019) uses only the [CLS] token without
structural awareness; (3) Multi-task BERT (Goel
et al., 2022) adds coarse-level classification but
lacks structural modeling; and (4) HAN (Yang
et al., 2016), adapted for lyrics, uses hierarchical
attention without hyperbolic geometry.

4.3 Evaluation Metrics

Classification Performance Metrics. We em-
ploy multiple F1-score variants to comprehensively
evaluate classification performance across differ-
ent granularities and perspectives. The weighted
F1-score measures overall classification effective-
ness across all 26 fine-grained emotion labels, with
automatic adjustment for class imbalance through
sample-weighted averaging. This metric provides a
holistic view of model performance while account-
ing for the skewed distribution inherent in emo-
tion datasets. The sentiment F1-score evaluates
performance at a higher abstraction level by aggre-
gating results over three sentiment polarities (pos-
itive, negative, neutral) derived from our coarse-
grained emotion groupings, enabling comparison
with sentiment analysis baselines. Finally, the
macro F1-score per coarse category provides de-
tailed breakdowns of average performance within
each of the seven coarse emotion categories (joy,
sadness, anger, fear, surprise, love, neutral), offer-
ing insights into model consistency for fine-grained
classification within broader emotional groups.

Representation Quality Assessment. To evalu-
ate the geometric properties and structural coher-
ence of learned representations, we compute the
silhouette coefficient over the latent embeddings
of lyric lines. This metric quantifies how well-
separated and internally cohesive the emotional
clusters are in the learned embedding space, with
scores ranging from -1 (poor clustering) to +1 (well-
separated clusters). The silhouette score serves as
a crucial indicator of whether our hyperbolic ge-
ometric approach successfully captures meaning-
ful emotional distinctions and hierarchical relation-
ships, complementing classification accuracy with
an assessment of representational quality that is
independent of supervised labels.

4.4 Comparison and Evaluation

We evaluate StructFormer-Hyper against three
strong baselines (BERT, Multi-task BERT, and
HAN) on our curated dataset comprising 73,796
lyric lines across 1,041 songs, following standard
evaluation protocols.

Classification Performance. Table 2 shows
that all transformer-based models achieve high
weighted F1 scores (≥ 0.91), with our model show-
ing particular strength in challenging negative and
neutral sentiment categories. Despite compara-



Table 2: Main experimental results with emotion polarity and coarse label breakdown. Silhouette score marked with
* indicates statistical significance (p < 0.1) compared to other models using the Wilcoxon signed-rank test.

Model Sentiment Weighted F1 Sentiment F1 Macro F1 per Label Silhouette

StructFormer-Hyper positive
0.96

0.88 joy: 0.19, love: 0.25
0.77*negative 0.95 sadness: 0.13, anger: 0.22, fear: 0.16

neutral 0.98 surprise: 0.28, neutral: 0.12

BERT positive
0.96

0.92 joy: 0.25, love: 0.28
0.55negative 0.97 sadness: 0.18, anger: 0.25, fear: 0.25

neutral 0.98 surprise: 0.30, neutral: 0.12

Multi-task BERT positive
0.96

0.90 joy: 0.23, love: 0.26
0.60negative 0.96 sadness: 0.17, anger: 0.24, fear: 0.23

neutral 0.98 surprise: 0.28, neutral: 0.11

HAN positive
0.91

0.66 joy: 0.15, love: 0.18
-0.09negative 0.86 sadness: 0.10, anger: 0.20, fear: 0.12

neutral 0.96 surprise: 0.19, neutral: 0.09

ble overall metrics, baselines struggle with fine-
grained emotion distinctions—especially for low-
resource categories like fear and anger. This vali-
dates our theoretical assumption that hierarchical
structure modeling is critical for capturing nuanced
emotional distinctions that flat sequence represen-
tations fundamentally miss.

Representational Coherence. The significant
improvement in silhouette score (0.77 vs baseline’s
0.55, p < 0.1) confirms StructFormer-Hyper’s
superior embedding organization and our hyper-
bolic approach’s advantage for emotion hierarchies.
HAN’s negative score (-0.09) reveals that struc-
tural information alone is insufficient without ap-
propriate geometric constraints, demonstrating the
essential synergy between structure and geometry.

Embedding Visualization. The UMAP plots
in Figure 2 reveal striking differences in emo-
tional representation quality. StructFormer-Hyper
produces distinctly separated clusters with clear
boundaries between semantically related emo-
tions—especially evident in positive categories like
joy and love—demonstrating its superior capac-
ity to capture emotional hierarchies. In contrast,
baselines exhibit either densely collapsed repre-
sentations (BERT), diffuse boundaries (Multi-task
BERT), or fragmented clusters (HAN) with signifi-
cantly less discriminative structure. These visual-
izations validate our quantitative silhouette metrics
and highlight the fundamental representational ad-
vantages of our hyperbolic geometric approach.

Loss Curve Analysis. Figure 3 shows that
all models exhibit stable convergence within 20

epochs. StructFormer-Hyper reduces its composite
loss steadily without abrupt plateaus, indicating ef-
fective multi-objective optimization. As loss mag-
nitudes are not directly comparable across models,
we focus on their respective convergence behav-
iors.

4.5 Ablation Study

To verify that our performance gains are attributed
to our theoretical innovations rather than imple-
mentation details, we conducted systematic abla-
tion experiments on 300 randomly selected songs,
isolating each component’s contribution.

Component Analysis. Table 3 reveals critical
insights into our model’s architecture. While
StructFormer-NoHyper achieves marginally higher
classification accuracy (0.95 F1), it suffers from
significantly degraded structural coherence, empir-
ically confirming hyperbolic geometry’s essential
role in capturing hierarchical relationships.
Interestingly, StructFormer-NoProj shows strong
silhouette scores (0.33) but at the cost of classifica-
tion performance. The severe performance degra-
dation of StructFormer-NoCoarse (silhouette -0.13)
demonstrates the critical importance of hierarchi-
cal supervision signals. These results validate our
theoretical premise that effective emotional repre-
sentation requires both appropriate geometry and
explicit structural guidance.

Representation Quality. Figure 4 reveals how
our model components affect emotion mappings.
StructFormer-Hyper produces sharp, discrimina-
tive alignments while variants exhibit increasingly



Figure 2: UMAP visualization of embedding spaces for all models, colored by fine-grained emotion labels.
StructFormer-Hyper (top-left) shows more distinct clustering with clearer boundaries between emotion categories
compared to baseline models, particularly for semantically related emotions.

Figure 3: Training loss trajectories over 20 epochs
on a log scale. All models show stable convergence,
though absolute loss values are not directly compara-
ble due to differing loss formulations and objectives.
StructFormer-Hyper exhibits consistent reduction de-
spite optimizing multiple competing objectives.

diffuse, cross-category activations. NoHyper par-
ticularly struggles with sadness/anger distinctions,
empirically confirming the necessity of both geo-
metric and structural encoding for effective emo-
tional representation.

5 Conclusion and Discussion

We presented StructFormer, the first unified archi-
tecture that successfully integrates structural hier-

Table 3: Ablation study results on StructFormer variants.
No statistics reported as results reflect architectural vari-
ants, not independent models.

Model Weighted-F1 Silhouette

StructFormer-Hyper 0.92 0.19
StructFormer-NoStruct 0.90 0.32
StructFormer-NoHyper 0.95 0.16
StructFormer-NoProj 0.91 0.33
StructFormer-NoCoarse 0.90 -0.13

archy with hyperbolic geometry for emotion recog-
nition in lyrics. By embedding both paragraph-line
structure and emotional taxonomies within non-
Euclidean space, our model achieves improved rep-
resentational coherence while maintaining compet-
itive classification performance. Despite its advan-
tages, StructFormer faces limitations. The model’s
emphasis on structural coherence may constrain its
ability to capture abrupt emotional transitions that
cross structural boundaries.

Key future directions include extending Struct-
Former to multimodal settings with synchronized
audio-lyric data, exploring temporal emotion dy-
namics across song progressions, and applying our
hyperbolic structural framework to other domains
with nested hierarchical properties. Investigating



Figure 4: Heatmaps of fine-to-coarse label alignment across StructFormer variants. StructFormer-Hyper exhibits
clearer hierarchical mappings, while the removal of structural or projection components leads to more diffuse
alignments.

more efficient hyperbolic optimization techniques
could mitigate computational costs and broaden
applicability.
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