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Abstract
The canonical setup of learning a reward model
(RM) from human preferences with binary feed-
back discards potentially useful samples (such as
“tied” between the two responses) and loses fine-
grained information (such as “slightly better”).
This paper proposes a framework for learning
RMs under ordinal feedback, generalizing the bi-
nary feedback to arbitrary granularity. We first
identify a marginal unbiasedness condition, which
generalizes the existing assumption of the binary
feedback. The condition is validated via the so-
ciological concept called “wisdom of the crowd”.
Under this condition, we develop a natural proba-
bility model and prove the benefits of fine-grained
feedback in terms of reducing the Rademacher
complexity, which may be of independent interest
to another problem: the bias-variance trade-off in
knowledge distillation. The framework also sheds
light on designing guidelines for human annota-
tors. Our numerical experiments validate that: (1)
fine-grained feedback leads to better RM learning
for both in- and out-of-distribution settings; (2)
incorporating a certain proportion of tied samples
boosts RM learning.

1. Introduction
Reinforcement learning from human feedback (RLHF)
(Christiano et al., 2017; Ziegler et al., 2019; Askell et al.,
2021; Ouyang et al., 2022) is vital to aligning large lan-
guage models (LLMs) with human preferences. The RLHF
involves either explicitly training a reward model (RM)
from human preferences data (Ouyang et al., 2022) or im-
plicitly using the LLM itself as one (Rafailov et al., 2024).
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However, there is an inconsistency between current ways
of collecting human preference data and the training of
reward models. For example, the Llama team collects fine-
grained human feedback: the annotations are made to 4
levels named “significantly better”, “better”, “slightly bet-
ter”, and “marginally better” (Llama Team, 2024), while
the post-training of Llama 3 treats “significantly better” and
“better” as the same and discard all the others. Such a process
wastes the potentially useful samples that cost the human an-
notators additional time and discards the useful information
hidden in the preference level.

In this paper, we study the problem of reward modeling un-
der ordinal feedback. We relate the annotator’s preference
feedback with the probability that one response is better than
the other on a population level. We introduce a marginal
unbiasedness condition that validates the probability setup
of the ordinal feedback system. The assumption is justified
in two ways: (1) its restricted version in the binary feedback
case is already widely adopted; (2) the assumption corre-
sponds to the “wisdom of the crowd” concept in sociology.
Under the assumption, we build a probability model of or-
dinal feedback. We also propose a learning objective as a
generalized version of the binary feedback by, for example,
replacing the binary-valued empirical probability with more
fine-grained values in the cross-entropy loss. Theoretically,
we establish the advantage of ordinal feedback, which draws
an interesting connection with the literature on soft labeling
and knowledge distillation.

Our paper is organized as follows:

In Section 2, we model the feedback by the probability that
one response is better than the other on a population level.
The binary feedback (Z = {0, 1}) is extended to the general
ordinal feedback (Z = {zj}mj=1 for 0 ≤ z1 < · · · < zm ≤
1), providing a way to transform the qualitative label into
quantitative ones.

In Section 3, we build up the probability model of ordinal
feedback. We present the assumption (Assumption 3.1) that
the annotators are labeling the human preference data in
a marginally unbiased sense to the population-wise oracle.
Such an assumption (which we call “wisdom of the crowd”)
is only a generalization of the Bernoulli feedback. In this
light, we suggest revising the annotation guideline by pro-
viding a direct quantitative description of the qualitative
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opinions.

In Section 4, we prove the statistical benefits of the ordi-
nal feedback. For example, the Rademacher complexity is
reduced if the cross-entropy loss is adopted. The result is
proved via a special coupling argument that we call hierar-
chical expectation, which also provides a new bias-variance
trade-off in knowledge distillation and soft labeling.

In Section 5, we conduct two numerical experiments. The
first experiment sets up four different ordinal feedback sys-
tems (oracle, 5-level, 3-level, and binary) and validates
the theoretical findings that fine-grained ordinal feedback
achieves higher accuracies in both in- and out-of-distribution
settings. The second experiment mixes the training data with
different proportions of tied and untied samples. With the
same number of training samples, we find out that a certain
level of tied samples boosts RM learning.

We defer more related works to Appendix A.

2. Problem Setup
Consider the task of reward modeling based on the pair-
wise preference data. Each sample consists of a tuple
(x, y1, y2, z) where x ∈ X denotes a prompt, y1, y2 ∈ Y
are two candidate responses to the prompt x, and Z is a
random variable (taking values in Z) that denotes the feed-
back (by either human annotators or advanced AI models)
indicating the preference between y1 and y2. The feedback
Z is a proxy of the probability that y1 is better than y2 for
the prompt x, denoted by P(y1 ≻ y2|x).

Reward modeling is the learning of a reward function
rθ(x, y) : X×Y → R with θ ∈ Θ from an annotated dataset
DZ := {(xi, yi,1, yi,2, Zi)}ni=1 and approximates the prefer-
ence accordingly. For example, the prevalent Bradley-Terry
model (Bradley & Terry, 1952) says:

P̂θ(y1 ≻ y2|x) =
exp

(
rθ(x, y1)

)
exp

(
rθ(x, y1)

)
+ exp

(
rθ(x, y2)

) ,
where the probabilities are approximated by the softmax
reward values.

Binary feedback: In the canonical setup ((Bai et al., 2022;
Ouyang et al., 2022) among others), the feedback Z takes
binary values, i.e., Z = {0, 1}. Here, one assumes Zi is a
Bernoulli random variable such that

P(Zi = 1) = 1− P(Zi = 0) = P (yi,1 ≻ yi,2|xi) . (1)

This assumption is the backbone of the training of many
reward models.

Ordinal feedback: In this paper, we consider the setting of
ordinal feedback, which gives a richer feedback structure
than the binary feedback above and is defined as follows.

Definition 2.1 (Ordinal Feedback). Suppose the feedback Z
takes values in Z := {z1, . . . , zm} where 0 ≤ z1 < · · · <
zm ≤ 1, we call Z an ordinal feedback and Z the ordinal
feedback set.

The binary feedback is a special case of the ordinal feed-
back by letting m = 2, z1 = 0, and z2 = 1. The motivation
to introduce the ordinal feedback definition is to capture
the richer options in practice, where the annotator is al-
lowed to choose from Ztext = {better/worse than, same as}
or Ztext = {better/worse than, slightly better/worse} to de-
scribe the preference between responses y1 and y2. We defer
to the next section the questions of how to match Ztext with
Z .

For now, suppose we have the dataset DZ taking values in
Z translated from Ztext. We propose to learn the reward
model by minimizing the following cross-entropy loss (for
other loss functions, see Appendix C.2)

min
θ

n∑
i=1

− Zi · log (σ (rθ(xi, yi,1)− rθ(xi, yi,2)))

− (1− Zi) · log (σ (rθ(xi, yi,2)− rθ(xi, yi,1))) ,

(2)

where σ(·) is the sigmoid function such that σ(x) =
exp(x)/(1 + exp(x)).

When the feedback is binary Zi ∈ {0, 1}, the above objec-
tive function reduces to exactly how people learn the reward
models under the Bradley-Terry assumption. We general-
ize the binary feedback to avoid: (1) discarding potentially
useful samples (for example, neglecting “same as”); or (2)
losing subtle information by merging different options (for
example, treating “better” and “significantly better” as the
same).

This generalization raises three questions: (1) How to trans-
late between qualitative Ztext and quantitative Z? (2) How
to relate the quantities in Z to P (y1 ≻ y2|xi)? (3) How
does this setup differ from the canonical binary feedback?
The first two questions are addressed in Section 3, and the
last is addressed theoretically in Section 4 and numerically
in Section 5.

3. Probability Model of Ordinal Feedback
For a population of human preferences, we first define the
oracle feedback as

zoracle(x, y1, y2) := P (y1 ≻ y2|x) .

This is the preference model that one aims to learn, regard-
less of whatever model is assumed (for example, BT model
or others). Here we should think of a human annotator as a
random draw from the population.
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Assumption 3.1 (Ordinal feedback probability model – wis-
dom of the crowd). We assume the ordinal feedback Z
defined in Definition 2.1 satisfies

E[Z|(x, y1, y2)] = zoracle(x, y1, y2)

for any (x, y1, y2) ∈ X × Y2.

As shown later, this assumption alone is sufficient to define
the probability model of the ordinal feedback setting and
validate the learning of the reward model. To interpret the
assumption, we note that it is not stricter than the existing
assumption (1) that people impose for the binary feedback
model. Under the binary feedback model where Z takes
values in Z = {0, 1}, Assumption 3.1 is equivalent to (1).

To see another example, consider the set Z = {0, 0.5, 1}
where the labels 0 and 1 denote “better” and “worse” respec-
tively, and the label 0.5 denotes “same as”. The assumption
requires that with Z taking values in this new Z with an ad-
ditional 0.5 option, its expectation matches the oracle value
zoracle on the sample (x, y1, y2). Under the general ordinal
feedback setting, human annotators label their preferences
on different scales, i.e.,

Z = {0, 1}, {0, 0.5, 1}, or {0, 0.25, 0.5, 0.75, 1}.

The assumption says that the change of granularity does not
introduce bias on the population level.

Sociological interpretation: We name the assumption by
“wisdom of the crowd”; the concept was first coined by the
article Vox Populi (Galton, 1907) for a social experiment
under the title “the voice of the people”. The social exper-
iment is about a weight-judging competition conducted in
England for random people to guess the weight of an ox.
The average of all 787 guesses was 1,197 pounds, while
the actual weight was 1,198 pounds, as shown in Figure
1. Each individual’s guess can be far off the target, yet
the population average tends to be very accurate. For the
context of preference annotation, Assumption 3.1 and the
current practice of human annotation exercise the wisdom
of the crowd in two folds: First, each individual annotator
has no access to the population preference zoracle, but their
annotation can be viewed as an unbiased random realization
of zoracle. Second, such unbiasedness does not change if a
difference annotation scale Z (feedback set) is used.

3.1. Implications on annotation guidance

In practice, annotators label in the set Ztext (e.g.
{better, same as, worse}), and this results in a gap towards
the set Z = {z1, ..., zm} used in the learning of the reward
model (2). For the binary or 3-level feedback setting, the
following conversion is natural and reflects the thinking
process of the annotator:

Ztext = {better than, worse than} ⇔ Z = {0, 1},

Ztext =

better than
same as
worse than

⇔ Z =

0
0.5
1

 .

For a more fine-grained 5-level feedback setting, it is less
clear how one can convert as follows,

Ztext =


better than
slightly better
same as
slightly worse
worse than

⇔ Z =


0
?%
0.5
1−?%
1

 .

In this light, our ordinal feedback model and Assumption 3.1
provide the following insights in guiding the annotations.
We suggest that rather than providing vague wording of
“better than” or “sightly better”, one can write the following
in the guidance to the human annotators:

Example annotation guideline. The label “slightly
better” represents that 75% of the population think re-
sponse y1 is better than response y2. The label “slightly
worse” represents that 25% of the population think
response y1 is better than response y2.

Such additional guidance endows the narrative labels inZtext
with a numerical meaning. The corresponding numerical
values can be directly used in the learning objective (2).

3.2. Existence of feedback probability model

In this subsection, we detour from the discussions of reward
modeling and show the existence of probability models that
satisfy Assumption 3.1, which ensures the assumption is
well-defined. The following theorem states that for any ordi-
nal feedback set Z and any oracle model zoracle, there exists
a probability model satisfying Assumption 3.1; furthermore,
the model is uniquely determined by the oracle zoracle (up to
convex combinations).

Theorem 3.2. For any ordinal feedback set Z =
{z1, . . . , zm} and any oracle model zoracle(x, y1, y2), if
zoracle(x, y1, y2) ∈ [zj , zk] for some j, k ∈ [m], then one
can set the marginal probability measure µj,k(z) := P(Z =
z|(x, y1, y2)) to be

µj,k(z) =


(zk − zoracle)

/
(zk − zj), if z = zj ,

(zoracle − zj)
/
(zk − zj), if z = zk,

0, otherwise.

The ordinal feedback Z under µj,k fulfills Assumption 3.1
(where the dependence on (x, y1, y2) is omitted when there
is no confusion).

On the other hand, for any ordinal feedback Z with marginal
probability measure µ(z) := P(Z = z|(x, y1, y2)) satis-
fying Assumption 3.1, there must exist non-negative real
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Figure 1. Wisdom of the crowd. Left: Each individual guess can be far off the target for an ox-weight-guessing social experiment, but
the average tends to be very accurate. Each human annotator has no access to the population oracle preference model zoracle, but their
annotation constitutes an unbiased realization of zoracle.

numbers
∑

j,k αj,k = 1 such that µ =
∑

j,k αj,k µj,k,
where the summation is made for all (j, k) pairs such that
zoracle ∈ [zj , zk].

The theorem says that all such distributions should be (con-
vex combinations of) some two-point distributions, where
the weights are assigned to interpolate the linear system{

µj,k(zj) · zj + µj,k(zk) · zk = zoracle,

µj,k(zj) + µj,k(zk) = 1.

For example, consider a reward model with ties where Z =
{0, 0.5, 1}. If the oracle feedback is, say, 0.8, then we can
construct feedback Z with probability masses µ(0.5) =
0.4 and µ(1) = 0.6 such that the unbiased assumption is
fulfilled. In this way, if we are (in an ideal world) given
an oracle model zoracle, we can generate different unbiased
ordinal feedback problem models accordingly, which is
applied in our numerical experiments (Section 5).

4. Statistical Benefits of Ordinal Feedback
In this section, we provide a theoretical explanation of the
benefits of ordinal feedback. The theory not only captures
the benefits of the ordinal feedback model but also provides
insights into the technique of soft labeling in knowledge dis-
tillation (Ba & Caruana, 2014; Hinton, 2015; Müller et al.,
2019; Phuong & Lampert, 2019; Yuan et al., 2020; Zhou
et al., 2021), which can be of independent interest. In short,
the theoretical result says that any feedback model satisfy-
ing Assumption 3.1 reduces the Rademacher complexity
compared to the canonical binary feedback model.

Before we proceed, we introduce the following affinity con-

dition of the loss function that is satisfied by the cross-
entropy loss (2) (and generalized hinge loss in Appendix
B.2, for example).

EZ

[
ℓ(Z, z)

]
= ℓ

(
E[Z], z) for any z ∈ [0, 1]. (3)

Introducing the affinity condition (3) enables us to com-
pare two ordinal feedback systems (say, Z and Z ′) if their
conditional expectation is the same under Assumption 3.1.
Specifically, if ℓ satisfies (3), then the population loss of Z
and Z ′ are the same for arbitrary same h (can be taken as
the reward function r, for example),

Ex,y,Z

[
ℓ
(
Z, h(x, y1, y2)

)]
= Ex,y,Z′

[
ℓ
(
Z ′, h(x, y1, y2)

)]
.

(4)

However, (4) only states that two population losses are the
same under the same function h; what if we get two different
learned reward models ĥ and ĥ′ from Z and Z ′ correspond-
ingly? In the following, we shall see that from the perspec-
tive of the generalization bound (specifically, Rademacher
complexity), a more fine-grained feedback system induces
a smaller population loss.

4.1. Finite-sample benefits

We first introduce the concepts of coupling and hierarchical
expectation.
Definition 4.1 (Coupling). For any two random variables ξ
and ξ′, if there exist two random variables ζ and ζ ′ over one
probability space such that ζ has the same distribution as ξ
and ζ ′ the same as ξ′, we call them a coupling of ξ and ξ′.
Definition 4.2 (Hierarchical Expectation). For any two or-
dinal feedback systems Z and Z ′ taking values in Z and Z ′
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over the same probability space (Ω,F ,P), we say that Z is
a hierarchical expectation of Z ′ if there exists a combina-
tion of random variables (W,W ′) over a probability space
(Ω̃, F̃ , P̃) such that: (a) (W,W ′) forms a coupling between
Z and Z ′; and (b) W = E[W ′|W ] holds almost surely.

The concept of hierarchical expectation defines the relative
granularity of the feedback system. In general, if Z is a
hierarchical expectation of Z ′, then we say Z is more fine-
grained than Z ′ since Z allows annotators to give more
subtle responses.

Proposition 4.3 (Existence of Hierarchical Expectation).
For any two ordinal feedback systems Z and Z ′ taking val-
ues in Z and Z ′ over the same probability space (Ω,F ,P),
suppose the marginal distribution of Z is of measure µ =∑

zi∈Z αiδzi and that of Z ′ is µ′ =
∑

z′
i∈Z′ α′

iδz′
i
, where

δ(·) is the Dirac delta distribution. If there exist real num-
bers βj,k ∈ [0, 1] such that

(a) zj is a convex combination of z′k’s with coefficients
βj,k’s. That is,∑

k,z′
k∈Z′ βj,k = 1 and

∑
k,z′

k∈Z′ βj,kz
′
k = zj for

any zj ∈ Z;

(b)
∑

j,zj∈Z βj,kαj = α′
k for any z′k ∈ Z ′;

Then Z must be a hierarchical expectation of Z ′. On the
other hand, if Z is a hierarchical expectation of Z ′ accord-
ing to coupling (W,W ′) on (Ω̃, F̃ , P̃), then there must exist
real numbers βj,k ∈ [0, 1] satisfying the above requirements
by setting βj,k = P̃(W ′ = z′k|W = zj).

The following corollary gives some concrete examples (per-
haps the most concerning ones).

Corollary 4.4. Suppose Z and Z ′ are two ordinal feedback
sets satisfying Assumption 3.1. Then Z is always a hier-
archical expectation of Z ′ if any one of the following two
conditions holds:

(a) Z is the oracle model such that Z = zoracle;

(b) Z ′ is the binary feedback such that Z ′ = {0, 1}.

With the above definitions, we are ready to characterize
the finite sample properties of different ordinal feedback
systems using Rademacher complexity.

Definition 4.5 (Rademacher Complexity). Let DZ =
{(xi, yi,1, yi,2, Zi)}ni=1 be a dataset with Z taking values in
Z . Consider a hypothesis classH of real-valued functions
over X × Y2 and a loss function ℓ. Then, the empirical
Rademacher complexity is defined as

RadDZ (ℓ◦H) :=
1

n
Eε

[
sup
h∈H

n∑
i=1

εiℓ
(
Zi, h(xi, yi,1, yi,2)

)]
,

where εi’s are independent random variables all taking val-
ues in {+1,−1} with equal chances. By assuming that
(xi, yi,1, yi,2, Zi)’s are i.i.d. and taking expectations over
the entire distribution P, we have the Rademacher complex-
ity as

RadZ,n(ℓ ◦ H) := EDZ∼Pn

[
RadDZ (ℓ ◦ H)

]
.

Rademacher complexity is a popular tool for describing
generalizing behavior. The following theorem says that
a more fine-grained feedback system leads to a smaller
(which is better) Rademacher complexity for any hypothesis
class H, where setting H = {rθ|θ ∈ Θ} yields results in
RM learning. We include how the Rademacher complexity
consequently affects the generalization bound in Appendix
B.10 for completeness.

Theorem 4.6. Suppose the loss function ℓ satisfies the affin-
ity to feedback condition (3) andH is a hypothesis class of
real-valued functions over X × Y2. For any two ordinal
feedback systems Z and Z ′ taking values in Z and Z ′ such
that Z is a hierarchical expectation of Z ′, we have

RadZ,n(ℓ ◦ H) ≤ RadZ′,n(ℓ ◦ H).

As a consequence, the following corollary states that any
feedback system that satisfies Assumption 3.1 can be viewed
as in the middle of the binary feedback system and the ideal
oracle feedback system zoracle. It is impossible to access the
population preference model zoracle through human annota-
tors in practice, but any ordinal feedback system provides
more fine-grained information and leads us towards zoracle.

Corollary 4.7 (Ordinal feedback better than binary). Sup-
pose Z is an ordinal feedback taking values in Z and Z ′ is
a binary feedback in Z ′ = {0, 1} over the same probabil-
ity space. If they both satisfy Assumption 3.1 and the loss
function ℓ satisfies condition (3), then

RadZoracle,n(ℓ ◦ H) ≤ RadZ,n(ℓ ◦ H) ≤ RadZ′,n(ℓ ◦ H).

The above discussions show that a more fine-grained feed-
back system can help reduce learning difficulties. The
problem of how large the benefit is has been discussed
in Appendix B.11. In short, the reduction of Radmacher
complexity results from Jensen’s inequality gap; the gap is
approximately the same order as the reduction of variance.

4.2. Implications on soft labeling

As noted earlier, the results developed above also have im-
plications for soft labeling/knowledge distillation. We will
show how the analysis can be applied to the context of
soft labeling and induce a novel bias-variance trade-off for
knowledge distillation. For general k-nary classification
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problems, the standard feedback (labeling of the target vari-
able) is a k-dimensional one-hot vector. However, these all-
zero-but-one labels might make the model overfit. Knowl-
edge distillation (Hinton, 2015) is a well-known technique
to regularize the model from fitting the noise. The original
data is used to train a teacher model whose predictions are
named soft labels. Then, a student model is trained to mimic
the predictions of the teacher model, that is, minimizing the
training loss against the soft labels generated by the teacher
model rather than the original ones.

Existing theoretical works (Phuong & Lampert, 2019; Zhou
et al., 2021; Pareek et al., 2024) are developed to under-
stand the benefits of knowledge distillation and soft label-
ing. Our theoretical perspective in the preceding subsection
provides a new perspective on that problem: the trained
teacher model could be viewed as one (possibly biased)
oracle feedback, and learning from the oracle eases the
overfitting via reducing the labeling variance (and hence a
smaller Rademacher complexity). Consider the following
four learning paradigms:
(a) Oracle(ideal): learn from oracle labeled samples (de-
noted as (x, yoracle)’s in this subsection). yoracle = E[y|x].
(b) Original: learn from the original samples (denoted as
(x, y)’s in this subsection), where y ∼ yoracle is a random
one-hot vector.
(c) Knowledge distillation: learn from the teacher model
T ’s output (denoted as (x, yT )’s in this subsection). The la-
bels yT ’s are random vectors where the randomness comes
from the teacher model T .
(d) Sampling from teacher: learn from the teacher model,
but not directly from yT ; instead, we use a sampled label
yT ∼ yT .

What is the “bias-variance” tradeoff in the learning paradigm
(c) compared to (b)? First, yoracle shares the same conditional
expectation with y, and so do yT and yT , where their pop-
ulation cross-entropy losses are the same due to (4). The
“bias” comes from yT as an imperfect estimation of yoracle,
while training according to (c) or (d) introduces an addi-
tional loss in the original population loss. That is the “bias”
term

Bias := ET

[
Ex,y′

[
ℓ(y′, h∗

T (x))
]
−Ex,y′

[
ℓ(y′, h∗(x))

]]
≥ 0,

where we set y′ to be i.i.d. as y to prevent the dependence
of T on y, and

h∗
T := argmin

h∈H
Ex,yT

[
ℓ(yT , h(x))

]
,

h∗ := argmin
h∈H

Ex,y

[
ℓ(y, h(x))

]
,

which are the corresponding hypotheses minimizing popu-
lation losses.

To explicitly show that the “variance” is reduced, we make

the following assumption that the marginal output of the
teacher model is unbiased:
Assumption 4.8 (Soft-labeling version of Assumption 3.1).
We assume that the teacher model is marginally unbiased.
That is,

ET [yT |x] = yoracle(x).

Here T is the teacher model trained from the original labels
y’s. The randomness of T comes from the randomness of
y’s and the training procedure (e.g. random seeds).

In general, the learned teacher model outputs yT ’s are bi-
ased estimations of yoracle’s, and the biases are towards the
original labels y’s (in the extreme case where T interpolates
all the labels, we have yT = y). We note that the assump-
tion only requires an unbiasedness in a marginal sense, that
those biases cancel out each other in the marginal sense. We
have the following result (analogous to Theorem 4.6).
Theorem 4.9. Under Assumption 4.8 and with the cross-
entropy loss, we have

Reduced variance := Rady(ℓ ◦ H)− RadyT (ℓ ◦ H) ≥ 0.

In this light, the notion of hierarchical expectation and the re-
duced Rademacher complexity in Theorem 4.9 render a new
bias-variance tradeoff for the knowledge distillation meth-
ods. Compared to that of Zhou et al. (2021), our approach
theoretically shows that the variance is always reduced by
introducing the soft labels, while Zhou et al. (2021) makes
the reduction an assumption and verifies it empirically.

5. Numerical Experiments
We perform numerical experiments to answer two questions:
(1) How do different granularities of the feedback model
affect the learning of the reward model? (2) Does the inclu-
sion of these ordinal feedback data with the objective (2)
benefit the learning of the reward model?

5.1. Experiment Settings

Datasets. In the following numerical experiments, we lever-
age the Skywork-Reward-Preference-80K-v0.2 dataset (Liu
et al., 2024a) as our base training dataset. We perform mul-
tiple runs and report the average performance (along with
the confidence intervals); for each run, we randomly sample
a 1024-sized subset as the hold-out evaluation dataset. In
addition, we use the RewardBench dataset (Lambert et al.,
2024) for the out-of-distribution evaluation task to compre-
hensively assess the performance of different trained models.
More details can be found in Appendix C.3.‘

Base Models. Our base models for the following experi-
ments include llama-3.2-1b-instruct (Llama Team, 2024),
gemma-2-2b-it (Gemma Team, 2024), and qwen2.5-1.5b-
instruct (Yang et al., 2024). All models are trained under
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under full-parameter fine-tuning. For the training parame-
ters and other details, we refer to Appendix C.4.

Ordinal Feedback. The original Skywork-Reward-
Preference-80K-v0.2 dataset only contains a binary feed-
back for each prompt x and a response pair y1 and y2.
To generate feedback labels with different levels of granu-
larities, we adopt a well-trained reward model, Skywork-
Reward-Gemma-2-27B-v0.2 (Liu et al., 2024a), as the or-
acle scoring model roracle : X × Y → R in this case. We
chose this model because (1) it was exclusively trained
on the to-be-labeled base training dataset, hence there is
hardly a risk of out-of-distribution mislabeling; (2) the
model ranks first on the RewardBench online leaderboard
up to the time of this paper, making its output oracle scores
more reliable. Accordingly, the induced oracle model be-
ing zoracle(x, y1, y2) = σ((roracle(x, y1)− roracle(x, y2))/T )
where T is a temperature parameter and σ(·) denotes the
sigmoid function.

We consider the following four types of feedback systems:

• Oracle: zoracle is directly used as the feedback label and
Zoracle ⊂ [0, 1].

• Binary: Zbinary ∼ Bernoulli(zoracle) and Z2 = {0, 1}.

• 3-level: the label is sampled as the process in Theorem
3.2 considering only the smallest interval containing
zoracle and Z3 = {0, 0.5, 1}.

• 5-level: the label is sampled as the process in Theorem
3.2 considering only the smallest interval containing
zoracle and Z5 = {0, 0.2, 0.5, 0.8, 1}.

We provide a label histogram in Appendix C.3 and adopt
the cross-entropy objective function (2) to train the model.

5.2. Fine-grained feedback benefits

As discussed earlier, a more fine-grained feedback system
should lead to better reward learning. For the four feedback
models listed above, they should have the following orders
in terms of performance:

Oracle “ ≥ ” 5-level “ ≥ ” 3-level “ ≥ ” Binary

where “ ≥ ” represents an advantage in model performance.

Here we perform numerical experiments to verify such in-
tuitions and for each combination of the reward model and
feedback system, we conduct 5 independent training runs
and report the average results. For the setting of learning
with oracle feedback, we set Zi = P (yi,1 ≻ yi,2|xi) =
zoracle(xi, yi,1, yi,2) in the learning objective (2). For more
fine-grained ordinal feedback, we sample the feedback ac-
cording to Section 5.1.

Table 1 (and Figure 2 in Appendix C.1) summarizes the
experiment results, which are aligned with the findings in
the previous sections. Three take-away messages are: First,
a more fine-grained feedback structure leads to better reward
learning for both in-distribution (ID) and out-of-distribution
(OOD) performance. Second, though we do not have access
to the oracle model in practice, the 5-level feedback system
provides a good proxy for that. Third, the learning objective
(2), as a generalization of the canonical cross-entropy loss
for binary feedback, is an effective one to handle the ordinal
feedback data.

5.3. Tied data benefits

Now we restrict our attention to the 3-level feedback setting
and investigate the effect of the proportion of the tied data
(samples with labels of y1 “same as” y2). Specifically, we
limit the training samples to 32,768 and consider 5 different
proportions of the tied data:

• 0%-tied: All the data samples are binary-labeled.

• 25%, 50%, 75% of the data samples are tied.

• 100%-tied: All the data samples are tied.

More details of data generation are deferred to C.3.

Table 2 (and Figure 3 in Appendix C.1) summarizes the ex-
periment results. We make the following observations. First,
the 100%-tied setting fails in that it results in a significantly
worse performance than the other settings. This is natural as
it leads to a reward collapse, as also observed in other semi-
supervised learning algorithms; to see this, if we are given
only the tied data, one way to learn the reward model is to
have all the rewards equal to a constant. Second, mixing a
proportion of the tied data and using the learning objective
function (2) leads to a better performance than the case of
0%-tied data. One subtle point here is that, in practice, if we
do not employ the learning objective (2) and simply drop
the tied samples, this will result in a smaller sample size for
learning the reward model, and an even worse performance
than the 0%-tied setting here.

Discussions on other ways to deal with tied data. Re-
cent works (Chen et al., 2024; Liu et al., 2024b) have no-
ticed the importance of incorporating tied samples and em-
ployed the Rao-Kupper model (Rao & Kupper, 1967), or the
Bradley-Terry model with Ties (BTT) abbreviated by Liu
et al. (2024b), for preference modeling and to explore the
benefits of leveraging ties. The BTT model represents pref-
erence probabilities as follows: P̂(y1 ≻ y2 | x) = e1

e1+λe2
,

P̂(y1 ∼ y2 | x) = (λ2−1)e1e2
(e1+λe2)(λe1+e2)

, where e1 and e2

are, respectively, abbreviations for exp
(
rθ(x, y1)

)
and

exp
(
rθ(x, y2)

)
, y1 ∼ y2 denotes a tie between y1 and y2
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Table 1. Model convergence statistics under different feedback models. ID stands for in-distribution. OOD stands for out-of-distribution.
The ID and OOD datasets are in Section 5.1. The oracle CE loss is computed by adopting zoracle as Zi regardless of the feedback type.

Model Feedback Oracle CE Loss ID Accuracy OOD Accuracy

Mean Std Mean Std Mean Std

Llama

Oracle 0.5711 0.0020 0.9382 0.0037 0.8193 0.0016
5-level 0.5714 0.0019 0.9372 0.0040 0.8100 0.0013
3-level 0.5715 0.0021 0.9359 0.0044 0.8016 0.0034
Binary 0.5736 0.0024 0.9329 0.0044 0.7667 0.0012

Gemma

Oracle 0.5698 0.0018 0.9401 0.0031 0.8697 0.0072
5-level 0.5704 0.0016 0.9371 0.0082 0.8584 0.0107
3-level 0.5704 0.0018 0.9381 0.0083 0.8580 0.0016
Binary 0.5709 0.0021 0.9368 0.0074 0.8237 0.0101

Qwen

Oracle 0.5740 0.0026 0.9411 0.0031 0.8543 0.0074
5-level 0.5746 0.0028 0.9394 0.0019 0.8422 0.0080
3-level 0.5749 0.0025 0.9388 0.0039 0.8352 0.0092
Binary 0.5756 0.0026 0.9378 0.0034 0.8232 0.0102

Table 2. Model convergence statistics under different tied data ratios. The evaluation dataset remains fixed across all ratio settings and is
directly sampled from the original dataset, ensuring its distribution closely matches that of the whole dataset.

Model Tied Ratio Oracle CE Loss ID Accuracy OOD Accuracy

Mean Std Mean Std Mean Std

Llama

0% 1.0421 0.0363 0.9224 0.0080 0.7661 0.0182
25% 0.3327 0.0051 0.9341 0.0173 0.7672 0.0093
50% 0.4187 0.0043 0.9336 0.0014 0.7545 0.0082
75% 0.5339 0.0052 0.9268 0.0180 0.7749 0.0008

100% 0.6931 0.0017 0.3428 0.0677 0.4424 0.0393

Gemma

0% 6.4762 0.3392 0.9355 0.0041 0.8319 0.0080
25% 0.6031 0.0019 0.9467 0.0117 0.8487 0.0100
50% 0.5775 0.0001 0.9526 0.0075 0.8277 0.0006
75% 0.6122 0.0006 0.9521 0.0069 0.8236 0.0084

100% 0.6931 0.0001 0.4814 0.0055 0.4928 0.0158

Qwen

0% 4.4457 0.1296 0.9313 0.0010 0.8215 0.0068
25% 0.6110 0.0037 0.9339 0.0060 0.8354 0.0046
50% 0.5796 0.0031 0.9336 0.0017 0.8267 0.0032
75% 0.6136 0.0030 0.9228 0.0093 0.8193 0.0092

100% 0.6933 0.0007 0.4342 0.0256 0.4616 0.0356

and λ ≥ 1 is a threshold hyperparameter that controls the
likelihood of assigning ties. Notably, when λ = 1, the BTT
model reduces to the canonical BT model.

The BTT model may not suit preference learning perfectly
as it introduces unnecessary complexity. First, the BTT
model introduces an additional hyperparameter λ designed
for other purposes (for example, predicting a football match).
The BTT model introduces a tunable λ to output an addi-

tional tied probability, which is useful when ties have real-
world implications. However, the ultimate goal of the RM
training is to provide a reference feedback function for the
following RLHF step rather than separately predicting each
probability. Second, even if the BTT model is suited for
the 3-level feedback case, it is not enough for the richer
feedback system that has already been adopted by those
LLM companies. Generalizing the BTT model to the more
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fine-grained case is challenging if the only solution is to
introduce more hyperparameters.

We defer more numerical experiments to Appendix C.

6. Conclusion
In this paper, we propose reward modeling with ordinal feed-
back as a generalization of binary feedback. Such a frame-
work fully utilizes the potentially useful samples and the
fine-grained information discarded by the binary feedback
practice. We generalize the assumption of the BT model
to the general marginal unbiasedness assumption named
by a sociological concept “wisdom of the crowd”. Under
the assumption, we build a natural probability model for
ordinal feedback. We also show that the Rademacher com-
plexity is reduced by adopting ordinal feedback. Numerical
results validate the theoretical findings. Further experiments
imply that mixing some tied preference samples benefits
RM learning, which may be worth future exploration. Our
results suggest that the annotation guideline should encour-
age the quantitative description (for example, 70%) of the
qualitative option (for example, “slightly better”). Our theo-
retical analysis based on hierarchical expectation may be of
independent interest to the field of knowledge distillation,
providing a novel bias-variance trade-off perspective.

Impact Statement
This paper contributes to advancing machine learning by
improving reward modeling with ordinal feedback. A key
societal implication is the potential to mitigate bias in AI
systems. Traditional binary feedback often oversimplifies
human preferences, leading to biased or unrepresentative
learning outcomes. By incorporating fine-grained ordinal
feedback, our approach captures more nuanced human judg-
ments, promoting fairer and more equitable AI decision-
making. While our method enhances preference modeling,
its effectiveness depends on the diversity and representa-
tiveness of annotators, an aspect that warrants further study.
Beyond this, our work may have additional societal impacts,
though none require specific emphasis at this time.
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A. Related Works
Reinforcement learning from human feedback (RLHF) originates from the idea of preference-based reinforcement learning
(Cheng et al., 2011; Akrour et al., 2011). The term RLHF is proposed by the large language model (LLM) community and
has been a mainstream framework for aligning LLMs with human preferences (Askell et al., 2021; Ouyang et al., 2022). For
a more detailed survey of the history of RLHF, we refer to Kaufmann et al. (2023). While many people have incorporated
the supervised fine-tuning (SFT) stage as a part of the RLHF pipeline (Ziegler et al., 2019; Ouyang et al., 2022; Ji et al.,
2023), our discussion would focus on the reward modeling and policy optimization via reinforcement learning (RL), which
takes a supervised fine-tuned model as the starting point.

Although proven effective for aligning LLMs with human preferences, the canonical RLHF suffers in several aspects,
including complicated implementation, difficult hyperparameter tuning, low sampling efficiency (Choshen et al., 2019), and
computational overhead (Yuan et al., 2024), which promotes the studies to optimize with the relative preferences without
depending on RL. One major alternative to the RLHF is the direct policy optimization (DPO) proposed by Rafailov et al.
(2024), which directly trains the language model to increase the probability of the preferred response and decrease the other.
Wang et al. (2023) discusses the influence of f -divergence as the constraint term in PPO and proposes f -DPO. Azar et al.
(2024) considers a general learning objective under pair-wise preferences, i.e., ΨPO, points out the potential overfitting
issue in RLHF and PPO, and further mitigates the problem with a specific instance of ΨPO, i.e., IPO. Zeng et al. (2024b)
investigates the optimization at a finer level and employs forward KL divergence constraints for each token to improve the
alignment. There are also some methods (Xu et al., 2024; Ethayarajh et al., 2024) that try to skip the SFT stage to lower the
costs and mitigate the issues while directly imitating the reference data. Liu et al. (2023) uses statistical rejection sampling
to address the mismatch between the training data and optimal policy data, hence enhancing the preference data collection.
Amini et al. (2024) proposes DPO with an offset (ODPO) that takes the preference strength into consideration, which forces
the language model to separate the probabilities of two responses in the training dataset by an offset. Compared to our work,
the authors do not theoretically prove the benefits of considering the reference strength, and their proposal requires tuning
the offset.

Parallel to previously mentioned efforts to overcome the dependence on RL, researchers also directly optimize the policy
under different loss functions with different types of preference data. We list some efforts non-exhaustively here, including
RAFT (Dong et al., 2023a), SLiC (Zhao et al., 2023), LiPO (Liu et al., 2024c), RRHF (Yuan et al., 2024), and PRO (Song
et al., 2024). For pairwise comparison data, Zhao et al. (2023) proposes a hinge-type loss to encourage the LLM to output
the chosen sequence more likely than the rejected one. For the list data that compares many different responses, Dong et al.
(2023a) selects the best response and fine-tunes the LLM on the best-of-K data. Yuan et al. (2024) adopts the ranking loss
in the same spirit of increasing the preferred sequence’s likelihood and summing up all the pairwise comparisons. Song et al.
(2024) replaces the pairwise comparison with the preferred one against the remaining responses and recursively iterates
from the most preferred one to the second-least preferred. All those ranking-based methods are purely based on the relative
positions without considering the preference strength, and forcing a rank among nearly tied responses introduces additional
noise. To mitigate this issue, Liu et al. (2024c) applies the LambdaLoss (Burges et al., 2006) to build a LiPO-λ objective
that takes the preference strength into the weights of the ranking loss. However, the proposed method has two drawbacks.
First, the loss is heuristically defined and lacks theoretical guarantees. Second, the requirement of labeling each response
with a quantitative reward is not easy for human annotators: on the contrary, the initial motivation behind the RLHF method
is to train a reward model by pure comparison data to avoid asking human annotators to quantify a reward precisely. In
contrast, our ordinal feedback only requires the human annotators to calibrate the qualitative comparison with a quantity.

With the rapid development of optimization frameworks, some scholars notice the issue of diverse preferences in reward
modeling, not only in the field of LLM (Dong et al., 2023b). Zeng et al. (2024a) proposes a multi-objective reward
learning method (MORE) to calibrate the reward models with the shared preferences and enhance alignment performance.
Chakraborty et al. (2024) introduces a MaxMin alignment objective to learn a mixture of diverse preference mixtures and
greatly improve the overall performance. Wang et al. (2024a) employs the multi-objective reward modeling and models
the preferences of users, implementing better objective control. Wang et al. (2024b) enhances the interpretability and
performance of reward models by combining multi-objective reward modeling and mixture-of-experts techniques. Different
from these works, our method considers a more practical scenario without requiring multiple labels for preference pairs and
constructs the probability model for the single-objective preference learning.

Two recent works (Chen et al., 2024; Liu et al., 2024b) incorporate the tied samples into the learning of the reward model
by considering some generalized versions (Rao & Kupper, 1967; Davidson, 1970) of the Bradley-Terry model (Bradley
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& Terry, 1952). By introducing a more complicated model, they enable the reward model to predict three probabilities:
better, worse, and tied. The authors directly use the cross-entropy loss for the trinary classification for the RM learning. As a
comparison, our ordinal feedback is more general and not limited to the Bradley-Terry model and the 3-level feedback. We
also avoid introducing additional hyperparameters and keep the original training paradigm.

B. Proofs and Theoretical Discussions
B.1. Proof of Theorem 3.2

Proof. We first prove that the constructed ordinal feedback Z ∼ µj,k satisfies Assumption 3.1, where

µj,k(z) =


(zk − zoracle)

/
(zk − zj), if z = zj ,

(zoracle − zj)
/
(zk − zj), if z = zk,

0, otherwise.

If zoracle = zi for any zi ∈ Z , then the constructed measure is the Dirac measure for zoracle, which automatically fulfills the
requirement.

We consider the cases where zoracle ∈ (zj , zk) for some zj , zk ∈ Z . Then the expectation of Z w.r.t. µj,k is

EZ∼µj,k
[Z] = µj,k(zj) · zj + µj,k(zk) · zk

= (zjzk − zoraclezj + zoraclezk − zjzk)
/
(zk − zj)

= zoracle.

For the second part of Theorem 3.2, we prove the conclusion case by case. Suppose we have an ordinal feedback Z : Ω→ Z
satisfying Assumption 3.1. If zoracle ∈ Z , for example, zoracle = zi0 , then

µj,i0 = µi0,k = δzi0 ,

implying we can set those coefficients αj,i0’s and αi0,k’s to be arbitrary non-negative real numbers such that
∑

j αj,i0 +∑
k αi0,k = µ(zi0) without affecting the measure on the other points.

Therefore, we can (without loss of generality) assume zoracle /∈ Z . Assume z1 < · · · < zm1
< zoracle < zm1+1 < · · · < zm.

Case (1): when there is only one point on each side of zoracle, that is, m1 = 1 and m1 + 1 = m.
Then by Assumption 3.1, we have

µ(z1) · z1 + µ(zm) · zm = zoracle.

Combining it with the constraint such that
µ(z1) + µ(zm) = 1,

we have
µ(z1) = (zm − zoracle)

/
(zm − z1), µ(zm) = (zoracle − z1)

/
(zm − z1),

which is exactly the same as µ1,m.

Case (2): when there is only one point larger than zoracle, that is, m1 + 1 = m.
Then we will prove that there exist non-negative real numbers αj,m such that

µ =
∑
j

αj,m µj,m.

In fact, we can construct (for any j ̸= m)

αj,m :=
µ(zj)

µj,m(zj)
.

13
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Then each αj,m is non-negative. Furthermore, by Assumption 3.1,

∑
j ̸=m

αj,mµj,m(zm) =
∑
j ̸=m

µ(zj)

µj,m(zj)
· µj,m(zm)

=

∑
j ̸=m µ(zj) · zoracle −

∑
j ̸=m µ(zj) · zj

zm − zoracle

=
(1− µ(zm)) · zoracle − (zoracle − µ(zm) · zm)

zm − zoracle

= µ(zm),

indicating that µ =
∑

j ̸=m αj,mµj,m.
By the property of probability measures, we can easily see that∑

j ̸=m

αj,m = 1.

Case (3): when there is only one point smaller than zoracle, that is, m1 = 1. This case can be proved similarly to Case (2).

Case (4): general cases where there are (possibly) multiple points on each side of zoracle. We prove it by induction. Suppose
there are a elements in Z smaller than zoracle and b elements larger than zoracle. Denote the case by (a, b). Suppose that the
conclusion has been proved for all the cases (a, b) if a < m1 or b < m−m1. Now we prove it for the case (m1,m−m1).
We first define the corresponding index (if there are multiple elements in a tie, select arbitrarily)

i1 := argmin
i
|zi − zoracle| · µ(zi). (5)

Without loss of generality, we assume zi1 < zoracle. Then we have m1 > 1 due to Assumption 3.1. We now construct a
coefficient αi1,m1+1 such that

αi1,m1+1 :=
µ(zi1)

µi1,m1+1(zi1)
.

By the definition (5), we have
µ(zm1+1) ≥ αi1,m1+1 · µi1,m1+1(zm1+1).

Hence we can construct a new measure

µ′(zi) =


0, if i = i1;(
µ(zm1+1)− αi1,m1+1 · µi1,m1+1(zm1+1)

)/
(1− αi1,m1+1), if i = m1 + 1;

µ(zi)
/
(1− αi1,m1+1), otherwise.

This measure can be easily verified as a probability measure with m1 − 1 elements smaller than zoracle. By induction
hypothesis, we can construct non-negative real numbers αj,k’s summing up to 1 such that

µ′ =
∑
j,k

α′
j,k · µj,k.

Then we have

µ = αi1,m1+1 · µi1,m1+1 +
∑
j,k

α′
j,k

1− αi1,m1+1
· µj,k,

of which the coefficients are non-negative and sum to 1.

14
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B.2. Validating (3)

Cross-entropy loss:

The cross-entropy loss is
ℓce(Z, z) = − [Z log(z) + (1− Z) log(1− z)] ,

where z ∈ [0, 1], which is the probability under the BT model. The cross-entropy loss is affine to Z:

EZ

[
ℓce(Z, z)

]
= −

∑
j,zj∈Z

P(Z = zj) · [zj · log(z) + (1− zj) · log(1− z)]

= −

( ∑
j,zj∈Z

P(Z = zj) · zj
)
· log(z) +

(
1−

( ∑
j,zj∈Z

P(Z = zj) · zj
))
· log(1− z)


= −

[
E[Z] · log(z) +

(
1− E[Z]

)
· log(1− z)

]
= ℓce

(
E[Z], z

)
.

Generalized hinge loss:

The hinge loss sets the loss to be

ℓhinge(Z, z) = 1{Z = 1} ·max
(
C − z, 0

)
+ 1{Z = 0} ·max

(
C + z, 0

)
,

where z ∈ R, which is the difference of the reward functions rθ(x, y1)− rθ(x, y2). We can generalize the hinge loss as

ℓhinge(Z, z) := Z ·max
(
C − z, 0

)
+ (1− Z) ·max

(
C + z, 0

)
The (generalized) hinge loss is affine to Z by a similar argument to the cross-entropy loss:

EZ

[
ℓhinge(Z, z)

]
=

∑
j,zj∈Z

P(Z = zj) ·
[
zj ·max

(
C + z, 0

)
+ (1− zj) ·max

(
C − z, 0

)]
=

( ∑
j,zj∈Z

P(Z = zj) · zj
)
·max

(
C + z, 0

)
+

(
1−

( ∑
j,zj∈Z

P(Z = zj) · zj
))
·max

(
C − z, 0

)
= E[Z] ·max

(
C + z, 0

)
+
(
1− E[Z]

)
·max

(
C − z, 0

)
= ℓhinge

(
E[Z], z

)
.

B.3. Validating (4)

We can prove a stronger conclusion such that for any (x, y1, y2) ∈ X × Y2,

EZ

[
ℓ
(
Z, h(x, y1, y2)

)∣∣∣(x, y1, y2)] = EZ′

[
ℓ
(
Z ′, h(x, y1, y2)

)∣∣∣(x, y1, y2)].
Since both Z and Z ′ satisfy Assumption 3.1, we have for any (x, y1, y2) ∈ X × Y2,

E[Z|(x, y1, y2)] = zoracle(x, y1, y2) = E[Z ′|(x, y1, y2)].

Then by the affinity condition (3), we have for any h ∈ H,

EZ

[
ℓ
(
Z, h(x, y1, y2)

)∣∣∣(x, y1, y2)]
= ℓ

(
E[Z|(x, y1, y2)], h(x, y1, y2)

)
= ℓ

(
zoracle(x, y1, y2), h(x, y1, y2)

)
.

The same arguments also lead to that

EZ′

[
ℓ
(
Z ′, h(x, y1, y2)

)∣∣∣(x, y1, y2)] = ℓ
(
zoracle(x, y1, y2), h(x, y1, y2)

)
,

which concludes the proof.
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B.4. Proof of Proposition 4.3

Proof. We construct (W,W ′) as follows: we set W to be identically distributed as Z, and

P̃(W ′ = z′k|W = zj) := βj,k.

Then by property (a) of βj,k’s, we have
E[W ′|W = zj ] = zj ,

indicating
W = E[W ′|W ].

By property (b) of βj,k’s, we have that the constructed W ′ has a marginal distribution identical to Z ′. Hence, (W,W ′) is a
coupling satisfying the hierarchical expectation requirements.

On the other hand, if we have a coupling (W,W ′) satisfying the hierarchical expectation condition, we can easily verify that
the conditional probabilities satisfy the requirements in Proposition 4.3.

B.5. Proof of Corollary 4.4

Proof. For case (a) such that Z = zoracle =: z1 almost surely, we have µ = δzoracle . By Assumption 3.1, the probability
measure µ′ of Z ′ satisfies ∑

k,z′
k∈Z′

µ′(z′k) z
′
k = zoracle

almost surely. Setting β1,k := µ′(z′k) fulfills the properties in Proposition 4.3.

For case (b) such that Z ′ = {z′1 := 0, z′2 := 1}, we can construct βj,k’s as

βj,1 = 1− zj , βj,2 = zj ,

for any zj ∈ Z . Then one can easily verify that the construction satisfies the requirement (a) in Proposition 4.3. For part (b),
by Assumption 3.1, we have ∑

j,zj∈Z
αjzj = zoracle,

and
α′
2 = zoracle.

Combining the above two equalities, we have ∑
j,zj∈Z

αjβj,2 = α′
2.

On the other hand, ∑
j,zj∈Z

αj(1− zj) = 1− zoracle,

and
α′
1 = 1− zoracle,

which implies that ∑
j,zj∈Z

αjβj,1 = α′
1.
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B.6. Proof of Theorem 4.6

Lemma B.1. Any affine function is also convex.

Lemma B.2. The pointwise supremum of a family of convex functions is still convex. In other words, for any family of
convex functions fs(·) where s ∈ S, we have sups∈S fs(·) still being convex.

We provide those two lemmas without proof since the proof can be found in any convex analysis textbook. A corollary is the
following.

Lemma B.3. If the loss function satisfies the affinity condition (3), then for any hypothesis classH, the following function

sup
h∈H

n∑
i=1

εiℓ
(
·, h(xi, yi,1, yi,2)

)
is convex for any realization of εi taking values in {+1,−1}.

Proof of Lemma B.3. The argument breaks up into three pieces: first, any linear combination of affine functions is still
affine (which is straightforward), hence

n∑
i=1

εiℓ
(
·, h(xi, yi,1, yi,2)

)
is affine as long as condition (3) holds.

Second, any affine function is also convex (Lemma B.1), therefore,

n∑
i=1

εiℓ
(
·, h(xi, yi,1, yi,2)

)
is also convex for any h ∈ H.

Third, the supremum of any class of convex functions is still convex (Lemma B.2), which means taking the supremum over
the hypothesis classH suffices.

Proof of Theorem 4.6. We denote the hierarchical expectation coupling of Z and Z ′ by (W,W ′). By direct inspection, we
have

RadZ′,n(ℓ ◦ H) =
1

n
Ex,y,Z′,ε

[
sup
h∈H

n∑
i=1

εiℓ
(
Z ′
i, h(xi, yi,1, yi,2)

)]

=
1

n
Ex,y,W,W ′,ε

[
sup
h∈H

n∑
i=1

εiℓ
(
W ′

i , h(xi, yi,1, yi,2)
)]

=
1

n
Ex,y,ε

[
EW,W ′

[
sup
h∈H

n∑
i=1

εiℓ
(
W ′

i , h(xi, yi,1, yi,2)
)]]

=
1

n
Ex,y,ε

[
EW

[
EW ′

[
sup
h∈H

n∑
i=1

εiℓ
(
W ′

i , h(xi, yi,1, yi,2)
)∣∣∣∣∣W

]]]

≥ 1

n
Ex,y,ε

[
EW

[
sup
h∈H

n∑
i=1

εiℓ
(
EW ′ [W ′

i |W ] , h(xi, yi,1, yi,2)
)]]

=
1

n
Ex,y,ε

[
EW

[
sup
h∈H

n∑
i=1

εiℓ
(
W,h(xi, yi,1, yi,2)

)]]

=
1

n
Ex,y,ε

[
EZ

[
sup
h∈H

n∑
i=1

εiℓ
(
Z, h(xi, yi,1, yi,2)

)]]
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=
1

n
Ex,y,Z,ε

[
sup
h∈H

n∑
i=1

εiℓ
(
Z, h(xi, yi,1, yi,2)

)]
= RadZ,n(ℓ ◦ H),

where the first equality is by definition, the second equality is because the coupling’s marginal distribution on W ′ is equal
to that of Z ′, the third equality is due to the exchangeability of the order of integration (by Fubini’s Theorem), the fourth
equality is because of the tower property of the conditional expectation, the first inequality is the result of Lemma B.3 and
Jensen’s inequality, the fifth equality is owing to the definition of the hierarchical expectation (Definition 4.2), the sixth is on
account of the property of the coupling again, the seventh thanks to Fubini’s Theorem again, and the last equality is the
definition of Rademacher complexity again.

B.7. Proof of Corollary 4.7

Proof. A straightforward conclusion of Theorem 4.6 and Corollary 4.4.

B.8. Proof of Theorem 4.9

Proof. Denote the one-hot vector at dimension j as ej . The following arguments are made for any x ∈ X , and we omit the
dependence on x for notation simplicity.

We only need to show that yT is a hierarchical expectation of y and the theorem is the result of Theorem 4.6. We construct
the coupling (w,w′) as follows:

w := yT ,

and
P(w′ = ej |w) := wj ,

where wj denotes the j-th entry of w. We now verify that (w,w′) is a coupling of (yT , y). The fact that w and yT have the
same distribution is easy. For w′ and y, we have

P(w′ = ej) = E[P(w′ = ej |w)]
= E[wj ]

= E[ȳT ,j ]

= yoracle,j

= P(y = ej),

where ȳT ,j (or yoracle,j) denotes the j-th entry of yT (or yoracle), and the dependence on x has been omitted. Here, the first
equality is the tower property of the conditional expectation, the second due to the definition of w′, the third because of the
construction of w, the fourth on account of Assumption 4.8, and the last is the definition of yoracle.

Hence (w,w′) is a coupling of (yT , y).

We combine that conclusion with the fact that
E[w′|w] = w,

leading to the conclusion that yT is a hierarchical expectation of y.

B.9. Generalizations to DPO

Our results naturally extend to the direct policy optimization (DPO) (Rafailov et al., 2024) case. We first give a quick
introduction to the DPO training objective. Suppose the ground-truth reward function for any prompt-response pair (x, y) is
r∗(x, y). Then, under the reinforcement learning objective of maximizing the reward (with a Kullback-Leibler divergence
regularization of strength β from the original policy πref), the optimal policy under the ground truth reward function r∗

should be

π∗(y|x) ∝ πref(y|x) · exp
(
1

β
r∗(x, y)

)
.
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Under the Bradley-Terry model, we have

P(y1 ≻ y2|x) = σ

(
β log

π∗(y1|x)
πref(y1|x)

− β log
π∗(y2|x)
πref(y2|x)

)
,

where the σ(·) is the sigmoid function σ(x) = exp(x)/(1 + exp(x)). Then the DPO training objective is to minimize the
cross-entropy loss under the binary feedback setting

min
θ

n∑
i=1

− Zi · log
(
σ

(
β log

πθ(yi,1|xi)

πref(yi,1|xi)

− β log
πθ(yi,2|xi)

πref(yi,2|xi)

))
− (1− Zi) · log

(
σ

(
β log

πθ(yi,2|xi)

πref(yi,2|xi)

− β log
πθ(yi,1|xi)

πref(yi,1|xi)

))
. (6)

By considering a richer feedback than the binary case Z = {0, 1}, we can use (6) to train the LLM πθ directly under the
ordinal feedback. The affinity condition (3) is fulfilled since the loss is still the cross-entropy loss. Thus, applying Theorem
4.6 for Π = {πθ, θ ∈ Θ} yields a similar result. We present here without repeating the proof.

Corollary B.4. Consider the corresponding loss function ℓ in the training objective (6) and a policy class Π = {πθ, θ ∈ Θ}.
For any two ordinal feedback systems Z and Z ′ taking values in Z and Z ′ such that Z is a hierarchical expectation of Z ′,
we have

RadZ,n(ℓ ◦Π) ≤ RadZ′,n(ℓ ◦Π).

B.10. Generalization bound under Rademacher complexity

The following proposition is a well-known generalization bound. We present it here only for the completeness of our
argument as the proof can be found in any statistical learning lecture notes.

Proposition B.5 (Generalization Bound). Suppose we have DZ as a dataset consisting of n i.i.d. samples. For any
hypothesis classH, we have with probability at least 1− δ that for every function h ∈ H,

E
[
ℓ
(
Zi, h(xi, yi,1, yi,2)

)]
≤ ÊDZ

[
ℓ
(
Zi, h(xi, yi,1, yi,2)

)]
+ 2RadZ,n(ℓ ◦ H) +

√
log(1/δ)

n
.

B.11. Lower bounds on reduction of Rademacher complexity

We take the cross-entropy loss as an example. Suppose we have two ordinal feedbacks Z and Z ′, taking values in Z and
Z ′, respectively. Suppose Z is a hierarchical expectation of Z ′, of which the coupling is formulated as (W,W ′). We make
further assumptions here besides the “wisdom of the crowd” assumption (Assumption 3.1).

Assumption B.6. Assume that each Zi (or Z ′
i) is independent. Furthermore, assume that each zj ∈ Z is bounded away

from 0 and 1 by
γ < zj < 1− γ.

The above assumption is not restrictive: the independence naturally holds if each annotation is independent. The boundedness
can be satisfied by clipping the feedback options, and is assumed to prevent those infinite values attained in the supremum
step due to logarithms (if ε = +1) while making sure those maxima can be obtained if ε = −1.

Assumption B.7. Assume that the function class H is rich enough (w.r.t. γ) with high probability (≥ 1 − δ). That is,
∃δ ≥ 0, s.t.

E :=
{
[γ, 1− γ]n ∈

{(
h(x1, y1,1, y1,2), . . . , h(xn, yn,1, yn,2)

)∣∣h ∈ H}}
holds with probability at least 1− δ.
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We denote the number of positive Rademacher variables (that is, those εi = +1) by τ (which is a random variable itself).
From the definition of τ , we know

Eε[τ ] =
n

2
. (7)

Without loss of generality, we assume that ε1 = · · · = ετ = +1, and ετ+1 = · · · = εn = −1. Due to the assumption that
each (xi, yi,1, yi,2, Zi) is i.i.d. (or Z ′

i), such a τ summarizes all the dependence on ε. The two Rademacher complexities are
(omitting the dependence on x, y1, y2 for notational simplicity and denoting hi := h(xi, yi,1, yi,2))

RadZ,n(ℓ ◦ H) =
1

n
Eτ,W

[
sup
h∈H

τ∑
i=1

−Wi · log(hi)− (1−Wi) · log(1− hi)

+

n∑
i=τ+1

Wi · log(hi) + (1−Wi) · log(1− hi)

]
,

and

RadZ′,n(ℓ ◦ H) =
1

n
Eτ,W

[
EW ′

[
sup
h∈H

τ∑
i=1

−W ′
i · log(hi)− (1−W ′

i ) · log(1− hi)

+

n∑
i=τ+1

W ′
i · log(hi) + (1−W ′

i ) · log(1− hi)

∣∣∣∣W]]
.

Lemma B.8. Under Assumptions 4.8 and B.6, if E holds, then the following holds (here, qi’s are real numbers independent
of hi’s):

sup
h∈H

τ∑
i=1

−Wi · log(hi)− (1−Wi) · log(1− hi) +

n∑
i=τ+1

Wi · log(hi) + (1−Wi) · log(1− hi)

= sup
h∈H

τ∑
i=1

−Wi · log(hi)− (1−Wi) · log(1− hi) + sup
qi∈[γ,1−γ]

n∑
i=τ+1

Wi · log(qi) + (1−Wi) · log(1− qi),

and

sup
h∈H

τ∑
i=1

−W ′
i · log(hi)− (1−W ′

i ) · log(1− hi) +

n∑
i=τ+1

W ′
i · log(hi) + (1−W ′

i ) · log(1− hi)

≥ sup
h∈H

τ∑
i=1

−W ′
i · log(hi)− (1−W ′

i ) · log(1− hi) + sup
qi∈[γ,1−γ]

n∑
i=τ+1

W ′
i · log(qi) + (1−W ′

i ) · log(1− qi).

Proof. From the fact that {(h1, . . . , hτ , qτ+1, . . . , qn)|h ∈ H} ⊂ {(h1, . . . , hn)|h ∈ H} under E, we know that

sup
h∈H

τ∑
i=1

−Wi · log(hi)− (1−Wi) · log(1− hi) +

n∑
i=τ+1

Wi · log(hi) + (1−Wi) · log(1− hi)

≥ sup
h∈H,qi∈[γ,1−γ]

τ∑
i=1

−Wi · log(hi)− (1−Wi) · log(1− hi) +

n∑
i=τ+1

Wi · log(qi) + (1−Wi) · log(1− qi)

= sup
h∈H

τ∑
i=1

−Wi · log(hi)− (1−Wi) · log(1− hi) + sup
qi∈[γ,1−γ]

n∑
i=τ+1

Wi · log(qi) + (1−Wi) · log(1− qi),

and

sup
h∈H

τ∑
i=1

−W ′
i · log(hi)− (1−W ′

i ) · log(1− hi) +

n∑
i=τ+1

W ′
i · log(hi) + (1−W ′

i ) · log(1− hi)
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≥ sup
h∈H,qi∈[γ,1−γ]

τ∑
i=1

−W ′
i · log(hi)− (1−W ′

i ) · log(1− hi) +

n∑
i=τ+1

W ′
i · log(qi) + (1−W ′

i ) · log(1− qi)

= sup
h∈H

τ∑
i=1

−W ′
i · log(hi)− (1−W ′

i ) · log(1− hi) + sup
qi∈[γ,1−γ]

n∑
i=τ+1

W ′
i · log(qi) + (1−W ′

i ) · log(1− qi).

From Assumption B.6, we know that ∀h ∈ H,

n∑
i=τ+1

Wi · log(hi) + (1−Wi) · log(1− hi) ≤
n∑

i=τ+1

−Ent(Wi) = sup
qi∈[γ,1−γ]

n∑
i=τ+1

Wi · log(qi) + (1−Wi) · log(1− qi),

which implies that

sup
h∈H

τ∑
i=1

−Wi · log(hi)− (1−Wi) · log(1− hi) +

n∑
i=τ+1

Wi · log(hi) + (1−Wi) · log(1− hi)

≤ sup
h∈H

τ∑
i=1

−Wi · log(hi)− (1−Wi) · log(1− hi) + sup
h∈H

n∑
i=τ+1

Wi · log(hi) + (1−Wi) · log(1− hi)

= sup
h∈H

τ∑
i=1

−Wi · log(hi)− (1−Wi) · log(1− hi) + sup
qi∈[γ,1−γ]

n∑
i=τ+1

Wi · log(qi) + (1−Wi) · log(1− qi).

Combining the above, we conclude the proof.

Lemma B.9. Denote the supremum over the cross-entropy as

f(z) := sup
q∈[γ,1−γ]

z · log(q) + (1− z) · log(1− q).

Then

RadZ′,n(ℓ ◦ H)− RadZ,n(ℓ ◦ H) ≥
1

n
Eτ,W

[
n∑

i=τ+1

EW ′
[
f(W ′

i )
∣∣Wi

]]
− 1

n
Eτ,W

[
n∑

i=τ+1

f(Wi)

]
.

Proof. Due to the property of supremum, the supremum taken over the entire (qτ+1, . . . , qn) ∈ [γ, 1− γ]n−τ is equivalent
to the supremum taken step by step (that is, by taking each qi’s supremum one by one). Therefore,

sup
qi∈[γ,1−γ]

n∑
i=τ+1

Wi · log(qi)+(1−Wi) · log(1−qi) =
n∑

i=τ+1

sup
qi∈[γ,1−γ]

Wi · log(qi)+(1−Wi) · log(1−qi) =
n∑

i=τ+1

f(Wi).

Similar conclusions also hold for W ′
i ’s. We conclude the proof by combining the facts with Lemma B.8.

Lemma B.10. Suppose w ∈ [γ, 1− γ] and w′ ∈ [0, 1]. Denote the clipped w′ by

w′
γ := max{γ,min{w′, 1− γ}}.

Then

f(w′) ≥ f(w) +
df

dz

∣∣∣∣
z=w

· (w′ − w) + 2(w′
γ − w)2.

Proof. For those w′ ∈ [γ, 1− γ], w′
γ = w′. The function f of w′ is the entropy, of which the second-order derivative is

d2f

dz2

∣∣∣∣
z=w′

=
1

w′(1− w′)
≥ 4.

Then by Taylor’s formula, we know that ∃θ ∈ [0, 1], s.t.

f(w′) = f(w) +
df

dz

∣∣∣∣
z=w

· (w′ − w) +
1

2
· d

2f

dz2

∣∣∣∣
z=θw+(1−θ)w′

· (w′ − w)2

21



Reward Modeling with Ordinal Feedback

≥ f(w) +
df

dz

∣∣∣∣
z=w

· (w′ − w) + 2(w′ − w)2.

For those w′ > 1− γ, w′
γ = 1− γ. The function f is linear in the interval [1− γ, 1], of which the first-order derivative is

df
dz |z=1−γ (easy to check f is continuously differentiable at 1− γ). Thus,

f(w′) = f(w′
γ) +

df

dz

∣∣∣∣
z=w′

γ

· (w′ − w′
γ)

≥ f(w′
γ) +

df

dz

∣∣∣∣
z=w

· (w′ − w′
γ)

≥ f(w) +
df

dz

∣∣∣∣
z=w

· (w′ − w′
γ + w′

γ − w) + (w′
γ − w)2,

which verifies the proof.

For those w′ < γ, the conclusion holds similarly.

Proposition B.11. Under Assumptions 3.1, B.6, and B.7, we have

RadZ′,n(ℓ ◦ H)− RadZ,n(ℓ ◦ H) = Ω (EW [Var(W ′|W )]) .

Proof. Denote the conditional distribution of W ′
i on observing Wi by PW ′

i |Wi
. From Lemmas B.9 and B.10, we obtain that

RadZ′,n(ℓ ◦ H)− RadZ,n(ℓ ◦ H)

≥ 1

n
Eτ,W

[
n∑

i=τ+1

EW ′
[
f(W ′

i )
∣∣Wi

]]
− 1

n
Eτ,W

[
n∑

i=τ+1

f(Wi)

]

=
1

n
Eτ,W

[
n∑

i=τ+1

∫
f(W ′

i )− f(Wi) dPW ′
i |Wi

]

≥ 1

n
Eτ,W

[
n∑

i=τ+1

∫
f(Wi) +

df

dz

∣∣∣∣
z=Wi

· (W ′
i −Wi) + 2(W ′

i,γ −Wi)
2 − f(Wi) dPW ′

i |Wi

]

=
1

n
Eτ,W

[
n∑

i=τ+1

∫
2(W ′

i,γ −Wi)
2 dPW ′

i |Wi

]
.

By Assumption B.6, we know that
(W ′

i,γ −Wi)
2

(W ′
i −Wi)2

= Ω(1),

which implies that∫
2(W ′

i,γ −Wi)
2 dPW ′

i |Wi
≥ Ω(1) ·

∫
(W ′

i −Wi)
2 dPW ′

i |Wi
= Ω

(
Var(W ′

i |Wi)
)
.

Since E[τ ] = n
2 , we know that

RadZ′,n(ℓ ◦ H)− RadZ,n(ℓ ◦ H) = Ω
(
Var(W ′

i |Wi)
)
.
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C. Complementary Numerical Results
In this section, we present some more experimental results that are not listed in the main paper due to space limitations.

C.1. Complementary figures

(a) In-distribution (ID) accuracy/llama models (b) Oracle CE loss/llama models

(c) In-distribution (ID) accuracy/gemma models (d) Oracle CE loss/gemma models

(e) In-distribution (ID) accuracy/qwen models (f) Oracle CE loss/qwen models

Figure 2. The evaluation dynamics of the three base models for different ordinal feedback labels. The horizontal axis “Steps” represents
the number of training samples; the rightward direction means a larger training set. The vertical axis represents the “accuracy” or the
“loss” separately. For the accuracies, the larger, the better. For the losses, the smaller, the better. We can see from the figure that more
fine-grained feedback leads to better RM learning.
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(a) ID accuracy/llama models (b) Oracle CE loss/llama models

(c) ID accuracy/gemma models (d) Oracle CE loss/gemma models

(e) ID accuracy/qwen models (f) Oracle CE loss/qwen models

Figure 3. The evaluation dynamics of the three base models for different tied data ratios. The horizontal axis “Steps” represents the
number of training samples; the rightward direction means a larger training set. The vertical axis represents the “accuracy” or the “loss”
separately. For the accuracies, the larger, the better. For the losses, the smaller, the better. The 100%-tied case is not plotted as it would
detract from the clarity and readability of the plot due to its failure. We can see from the figure that mixing a certain ratio of tied data
benefits the RM learning compared to 0% performance.

C.2. Reward modeling with ordinal feedback under hinge loss

In the main paper, we focus on reward modeling with ordinal feedback under the cross-entropy loss. Here we extend the
analysis to the case of hinge loss. Recall that the learning objective (2) in the main paper can be interpreted as an induction
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of the cross-entropy loss based on the Bradley-Terry model. Given the probabilistic model of ordinal feedback, the learning
objective can naturally be extended to incorporate other types of loss functions. Among these, hinge loss (Schölkopf
et al., 2004) is one of the most widely used, particularly in classification tasks, alongside cross-entropy loss. Hinge loss is
commonly associated with Support Vector Machines (SVM) and is characterized by its core principle of enforcing a margin
between distinct classes. Building on this observation, we define the learning objective under hinge loss as follows:

min
θ

n∑
i=1

Zi · [max (0, C − (rθ(xi, yi,1)− rθ(xi, yi,2)))] + (1− Zi) · [max (0, C − (rθ(xi, yi,2)− rθ(xi, yi,1)))] , (8)

where C is the margin hyperparameter that controls the separation between preference classes. When the feedback is binary,
i.e., Zi ∈ {0, 1}, the above objective simplifies to the hinge loss commonly used in reward modeling (Liu et al., 2024a).
In our experiments, the margin parameter is tuned with grid search, where the search space is {0.5, 1, 2, 4}, and we select
C = 1.

To further validate the conclusions presented in Section 5, we conduct analogous experiments under the learning objective
(8). The feedback in the oracle feedback setting is still kept as

Zi = P (yi,1 ≻ yi,2|xi) = zoracle(xi, yi,1, yi,2)

just as the cross-entropy setting. The feedback in the 5-level/3-level/binary settings is sampled as the process in Theorem
3.2 by considering only the smallest interval [zj , zj+1] ∋ zoracle. We then replicate the experimental setup from Section 5.2,
employing llama-3.2-1b-instruct as our base model. The experiment results are reported in Figure 4 and Table 3.

Experiments illustrate the same three conclusions in Section 5.2: (1) more fine-grained feedback structures result in better
learning for both ID and OOD performance; (2) the fine-grained feedback (e.g. 5-level) may be a good proxy for the oracle;
(3) the generalized hinge loss handle the feedback richer than binary well.

Apart from the observations analogous to Section 5.2, we observe that the hinge objective performs weaker than the
cross-entropy objective. We attribute this outcome to two key factors. First, the margin hyperparameter C significantly
impacts the model’s convergence speed and overall performance, which we only tune with a coarse grid due to computational
constraints. Second, the inherent nature of the hinge objective means that only a specific subset of data points influences the
final decision boundary. In contrast, the cross-entropy objective leverages the entire dataset during optimization. Given the
complexity of language modeling and the intricacies of semantic space, we hypothesize that preference data embeddings are
distributed in a noisy and overlapping manner such that the decision boundary may not be effectively established under the
hinge objective.

(a) ID accuracy (b) Oracle GH loss

Figure 4. The evaluation dynamics of llama models for different ordinal feedback labels under generalized hinge loss. The horizontal axis
“Steps” represents the number of training samples; the rightward direction means a larger training set. The vertical axis represents the
“accuracy” or the “loss” separately. For the accuracies, the larger, the better. For the losses, the smaller, the better.
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Table 3. Model convergence statistics for llama under generalized hinge loss.

Model Feedback Oracle CE Loss ID Accuracy OOD Accuracy

Mean Std Mean Std Mean Std

Llama

Oracle 0.6030 0.004 0.9359 0.0036 0.7798 0.0076
5-level 0.6046 0.0003 0.9345 0.0076 0.7660 0.0068
3-level 0.6037 0.0003 0.9326 0.0068 0.7617 0.0163
Binary 0.6072 0.0005 0.9322 0.0020 0.7580 0.0040

Algorithm 1 3-level Sampling Algorithm

Input: Oracle label zoracle ∈ [0, 1]
Output: Sampled label z ∈ Z3 = {0, 0.5, 1}
if zoracle < 0.5 then

Sample y ∼ Bernoulli
(
zoracle
0.5

)
z ← 0.5 · y

else if zoracle > 0.5 then
Sample y ∼ Bernoulli

(
zoracle−0.5

0.5

)
z ← 0.5 · y + 0.5

else
z ← 0.5

end if
return z

C.3. Dataset details

Skywork-Reward-Preference-80K-v0.2. The Skywork-Reward-Preference-80K-v0.2 (SRP) dataset is a curated subset of
publicly available preference data, spanning a wide range of knowledge domains. Reward models trained on this dataset
have achieved top performance in the Reward Bench benchmark. The released version contains 77,016 samples, with
approximately 5,000 overlapping samples removed compared to v0.1. In our experiments, we used Skywork-Reward-
Gemma-2-27B-v0.2 to annotate data pairs with oracle scores.

Rationale For Scaling. Instead of directly using the sigmoid values of the oracle model’s score differences, we introduce
a scaling parameter T because the raw output scores of the oracle model are highly concentrated, as shown in Figure 6a.
However, it is generally understood that people often hold diverse opinions on preference samples, meaning real-world
preference distributions should not be heavily concentrated near a probability of 1. To investigate, we consider two commonly
used preference datasets with fine-grained preference scores, UltraFeedback (Cui et al., 2023) and HelpSteer2 (Wang et al.,
2024c). A visualization of their preference ratings is provided in Figure 5, where many samples show no strong preference
but only weak agreement. Based on these observations, we carefully adjusted the scaling parameter T and chose T = 20

3 ,
ensuring it produces a peak within the slight agreement interval (approximately 0.6-0.7), as shown in Figure 6b. This choice
is further justified in the explanation of the tied sample experiments discussed later.
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(a) Preference strength distribution in UltraFeedback (b) Preference strength distribution in HelpSteer2

Figure 5. Distributions of preference strengths in the two datasets. For the UltraFeedback dataset, we compare the chosen and rejected
scores pairwisely and use their differences as preference strengths. For the HelpSteer2 dataset, its latest version provides a preference
strength label and we directly adopt it.

(a) Distribution of raw oracle scores (b) Distribution of scaled oracle scores

Figure 6. Distribution of oracle labels before and after scaling with T = 20
3

. Note that the oracle score is always recorded for the chosen
response relative to the rejected response, hence, all oracle scores are no less than 0.5.

Tied Samples. As presented in Section 5.1, we refer to preference pairs with a label z = 0.5 under the 3-level feedback
system Z3 = {0, 0.5, 1} as tied data or tied samples. We use the term “tied” because the labels z are generated based on the
oracle label zoracle using an interpolation paradigm, as described in Theorem 3.2. These labels represent preference samples
where people perceive (almost) equal advantages. The detailed sampling process is summarized in Algorithm 1. And it can
be easily extended to any ordinal feedback system.

Intuitively, the closer the oracle label of a preference pair is to 0.5, the more likely it is to be assigned a label of 0.5. An
important observation is that the sampled label distribution is dominated by zoracle. To ensure sufficient binary and tied data
for the tied ratio experiments, we aim for the binary and tied data to each constitute half of the dataset. After tuning, we
found that selecting T = 20

3 not only simulates a real-world preference data distribution but also satisfies the tied ratio
experiment requirements. This further justifies the choice of T .

RewardBench Evaluation. The RewardBench evaluation dataset combines multiple datasets across four categories: Chat,

27



Reward Modeling with Ordinal Feedback

Chat Hard, Safety, and Reasoning. The scoring follows a standard reward modeling paradigm, where success is defined as
the chosen response having a higher score than the rejected response for a given prompt. The evaluation score is computed
as a weighted average across all prompts in the selected subset.
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C.4. Training details

Table 4. Hyperparameter Search Space

Hyperparameter Search Range/Values

Learning Rate [1e-5, 5e-6, 2e-5]
Batch Size [64, 128]
Warm-up Ratio [0.03, 0.05, 0.10]

Table 5. Shared Hyperparameters

Hyperparameter Value

Batch Size 128
Optimizer paged adamw 32bit
Weight Decay 1e-3
Epochs 2
Scheduler Linear Warm-up + Cosine Decay

Table 6. Model-specified Hyperparameters

Hyperparameter Llama-3.2-1b Gemma-2-2b Qwen-2.5-1.5b

Learning Rate 1e-5 5e-6 5e-6
Warm-up Ratio 0.1 0.05 0.05

We choose some key training hyperparameters based on a grid search. The performance is assessed by in-distribution
evaluation (CE) loss under oracle label settings. The grid search space is shown in Table 4.

The base models share most of the training parameters, as given in Table 5. The different parameters are listed in Table 6.
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