
Treatment-RSPN: Recurrent Sum-Product Networks
for Sequential Treatment Regimes

Adam Dejl
MIT

adamdejl@mit.edu

Harsh Deep
MIT

hdeep@mit.edu

Jonathan Fei
MIT

jyfei@mit.edu

Ardavan Saeedi
Optum Labs∗

av.saeedi@gmail.com

Li-wei H. Lehman
MIT, MIT-IBM Watson AI Lab

lilehman@mit.edu

Abstract

Sum-product networks (SPNs) have recently emerged as a novel deep learning
architecture enabling highly efficient probabilistic inference. Since their introduc-
tion, SPNs have been applied to a wide range of data modalities and extended to
time-sequence data. In this paper, we propose a general framework for modelling
sequential treatment decision-making behaviour and treatment response using re-
current sum-product networks (RSPNs). Models developed using our framework
benefit from the full range of RSPN capabilities, including the abilities to model
the full distribution of the data, to seamlessly handle latent variables, missing
values and categorical data, and to efficiently perform marginal and conditional
inference. Our methodology is complemented by a novel variant of the expectation-
maximization algorithm for RSPNs, enabling efficient training of our models. We
evaluate our approach on a synthetic dataset as well as real-world data from the
MIMIC-IV intensive care unit medical database. Our evaluation demonstrates
that our approach can closely match the ground-truth data generation process on
synthetic data and achieve results close to neural and probabilistic baselines while
using a tractable and interpretable model.

1 Introduction

Modelling of the sequential decision-making process of physicians, as well as the patient response to
different treatments, has a wide range of useful applications. Transparent and interpretable models of
human decision-making behaviour have been proposed as tools for understanding, quantifying and
replicating policies in clinical practice [1, 2], while the treatment response models can help to inform
clinician’s choices when choosing among multiple available therapies [3].

Unfortunately, the currently widely used modelling methods suffer from considerable limitations.
Neural-based models are highly expressive but do not represent tractable probabilistic distributions
and are thus unable to support exact joint, marginal or conditional inference, greatly limiting their
versatility. This also means that such models are inherently opaque and incapable of quantifying the
uncertainty of their predictions in a principled way. Meanwhile, conventional probabilistic models
commonly rely on highly specialised approaches for training and inference, incur high computational
costs when evaluating certain probabilistic queries and are often insufficiently expressive to faithfully
represent more complex systems.

∗Work is not related to the research done at Optum Labs.

Workshop on Learning from Time Series for Health, 36th Conference on Neural Information Processing Systems
(NeurIPS 2022).

Sum-product networks (SPNs) [4, 5], a deep learning architecture based on probabilistic circuits,
largely address the above limitations, as they are highly expressive while still guaranteeing tractability.
Additionally, SPNs are capable of performing fast inference on high treewidth dependencies [6],
which is considered impossible for other classes of probabilistic models such as Bayesian networks
[7]. Due to these appealing properties, SPNs have been successfully applied in a variety of settings,
including face image completion [4], robot navigation [8], image segmentation [9], speech modelling
[10] or activity recognition in videos [11]. SPNs have also been generalized to time-series data of
variable length, giving rise to recurrent sum-product networks (RSPNs) [12].

In this work, we introduce a probabilistic deep generative approach, Treatment-RSPN, that leverages
RSPNs for joint modelling of treatment decision-making and the dynamics of the patient’s response
to different treatments. As part of our framework, we develop a method for transforming conventional
probabilistic graphical models (PGMs), such as dynamic Bayesian networks (DBNs) [13], into
RSPNs, allowing us to bootstrap our models with a structure informed by domain knowledge and the
specific task. Initializing the models in that way also benefits interpretability, as the random variables
from the underlying PGM and the dependencies between them are faithfully reflected in the resulting
RSPN. In order to train our models on data, we introduce a variant of the expectation-maximization
(EM) algorithm optimizing the parameters of the RSPN and optionally updating its structure to more
closely represent the considered distribution.

Treatment-RSPN provides interpretable and tractable models for sequential treatment regimes in
partially observed settings. Additionally, these models benefit from the full range of the appealing
properties of SPNs, including the existence of generic algorithms for fast and efficient evaluation
of joint, marginal and conditional probabilistic queries, seamless handling of latent variables and
a high degree of extensibility offered by structure learning algorithms adapting the network to
better match the data. Our code will be made available at https://github.com/ML-Health/
treatment-rspn.

2 Background

The models developed using the Treatment-RSPN framework are based on recurrent sum-product
networks (RSPNs) [12], a generalization of SPNs specifically adapted for modelling time-series
data. Each RSPN is composed of a top network, a template network and a bottom network. The
template network serves as a generic interconnecting component representing the variables in the
intermediate slices of the considered temporal sequences, while the top and bottom networks enable
the special-case handling of the variables in the first and last time slices, respectively. The three
networks can be stacked together to form a regular, unrolled SPN capable of representing sequences
up to a certain finite length L. In this process, the top network of the RSPN is taken as the root
component, the template network is repeated L− 2 times and interconnected with other components
via dedicated placeholder nodes, and the bottom network is added as the terminating component with
no further outgoing connections.

The unrolled SPN is a rooted directed acyclic graph with leaf nodes representing base distributions
over random variables (such as Categorical or Gaussian) and internal nodes representing sums and
products of probability functions of their children. Each edge leading from a sum node to a child
node is associated with a non-negative parameter indicating the weight of the corresponding child.
The weights of the edges originating at a single sum node must be normalized. A key component of
the SPN inference and training methods is the SPN evaluation. Given a (partial or full) assignment to
the variables in the scope of an SPN x, the value S(x) of an SPN can be computed as follows:

S(x) =


PS(X = x) if S is a leaf∑

Ci∈children(S) wiCi(x) if S is a sum∏
Ci∈children(S) Ci((x)) if S is a product

The value S(x) corresponds to the probability of the assignment x under the distribution modelled
by the given SPN [4].

The possibility of evaluating an SPN on a partial variables assignment provides a straightforward
way for performing marginal inference, as the variables not included in an assignment are being
effectively marginalized over during the computation of the probability of the assignment. This can
be used for handling latent variables and missing values during both training and inference, as well as
an efficient evaluation of conditional queries, leveraging the fact that P (q|e) = P (q,e)

P (e) .

2

https://github.com/ML-Health/treatment-rspn
https://github.com/ML-Health/treatment-rspn

3 Treatment-RSPN

3.1 Treatment-RSPN Initialization

The first step of developing a model within our framework is the initialization of its structure. This
step is of particular importance for RSPNs, as their structure directly affects the assumed dependencies
between the variables in the scope of the model. In general, there are multiple ways in which the
structure can be initialized, including learning the structure directly from the data using one of the
structure learning algorithms (such as local search [12] or oSLRAU [14]), crafting the structure
manually or basing it on a known probabilistic model.

In this work, we opt for the last approach, though we may have chosen one of the other options
without changing the rest of our methodology. Specifically, we base the initial structure of our RSPN
models on an input-output hidden Markov model (IOHMM) [15, 16]. IOHMMs model sequences
composed of inputs u1, ..., un, unobserved (latent) states z1, ..., zn and outputs x1, ..., xn. This makes
them highly suited for modelling sequential treatment regimes, as the treatment actions at each time
step can be considered as inputs, while the patient physiological variables or test results can be
considered as outputs. Additionally, the dependencies between the variables in an IOHMM model
are rather simple and intuitive, leading to a more interpretable model.

In order to transform an IOHMM into an RSPN structure, we first consider an unrolled Bayesian
network (BN) representation of the model over a fixed number of time slices. We then convert this
network into an SPN structure, gradually constructing layers for the individual variables.

The construction procedure processes the variables in the BN representation of the model in topo-
logical order, maintaining metadata about their dependent child variables. When processing each
variable, our procedure first constructs an SPN sum layer with one node for each possible assignment
of this variable as well as variables whose children have not yet been fully processed. This sum layer
is then extended with an additional structure, which may either be composed of variable indicators
or product nodes connected to such indicators. The product nodes are used in cases in which the
currently processed variable has children in the network and facilitate conditioning on this variable
during the SPN evaluation. The weights on the edges between the sum nodes and product nodes are
determined by the conditional probability distributions modelled by the Bayesian network. We give a
detailed algorithmic description of this step of the initialization in the appendix B.

After the initial conversion, the repeated portions of the resulting SPN structure modelling the
variables in the intermediate time slices can be straightforwardly extracted into a template network,
while the structures for the first and the last time slices can be turned into the top and bottom networks,
respectively. This results in the initial form of the RSPN. Note that our transformation is fully general
and could be applied to an arbitrary model as long as it is expressible as a (dynamic) Bayesian
network. We provide an illustrative example of an IOHMM and its associated RSPN representation
in appendix D.

3.2 Treatment-RSPN Training

After deriving the initial structure for the RSPN model, we need to learn its parameters based on data.
We opt to use an adapted version of the expectation-maximization (EM) algorithm. Compared to
other formulations in the literature [4, 17], our variant of the EM algorithm does not require the use of
differentiation and is straightforwardly applicable to RSPNs in addition to regular SPNs. Additionally,
our approach is capable of adjusting the structure of the learned RSPN so that it more closely matches
the distribution of the training data.

Our EM algorithm first unrolls the RSPN for a fixed number of time steps required to fit the given
training data, internally assigning identical identifiers to the nodes repeated in the unrolled SPN. This
ensures that the parameters of these nodes are updated jointly and do not diverge during the training
process. The algorithm then alternates between the expectation and maximization steps. In an E-step,
the procedure computes the likelihood of each data point "reaching" each node, i.e. the probability of
this point having been generated by the node. In an M-step, the algorithm updates the weights on the
edges leading from the sum nodes as well as the internal parameters of the leaves according to these
likelihoods. Optionally, the algorithm can also replace the SPN leaves with a more complex learned
structure by clustering the data points weighted by their likelihoods at the given leaf and creating a

3

Model Log-likelihood (↑)
Mean ± SD

Reference IOHMM -18842.82 ± 131.44

Treatment-RSPN -18885.07 ± 129.20

Table 1: Log-likelihood of the synthetic test data under the reference IOHMM model used for their
generation and the learned Treatment-RSPN model

Model AUROC (↑) F1 macro (↑) Brier score (↓)
Mean ± SD Mean ± SD Mean ± SD

Interpole 0.88 ± 0.020 0.87 ± 0.023 0.042 ± 0.021
PO-MB-IL 0.58 ± 0.088 0.49 ± 0.010 0.108 ± 0.065

PO-IRL 0.57 ± 0.016 0.44 ± 0.020 0.437 ± 0.003
Off. PO-IRL 0.57 ± 0.054 0.49 ± 0.009 0.484 ± 0.003

LSTM 0.85 ± 0.030 0.85 ± 0.023 0.049 ± 0.021
Predict most common 0.50 ± 0.000 0.49 ± 0.009 0.098 ± 0.061

Treatment-RSPN 0.91 ± 0.010 0.86 ± 0.008 0.045 ± 0.024

Table 2: Classification and calibration performance of the evaluated models on the one-step-ahead
treatment action prediction task using the MIMIC-IV sepsis dataset. The values highlighted in bold
mark significantly better results at 0.05 confidence level.

new sum node with multiple leaves modelling the clusters. We give a detailed description of our EM
algorithm in the appendix C.

3.3 Interpretability

We argue that our model is more interpretable compared to other (especially neural-based) methods
due to its increased transparency associated with tractability as well as its basis in a human-intuitive
IOHMM model with clearly defined dependencies between the involved variables. The tractability of
Treatment-RSPN allows its probing with arbitrary joint, marginal or conditional queries, which may
be used to answer questions about the learned probabilistic beliefs of the model.

Additionally, the latent, hidden states introduced by the underlying IOHMM model can also be used
to produce explanations of the model behaviour. For example, it is possible to inspect the latent
states most commonly associated with certain predictions and to visualize their associated emission
distributions, which can provide insight about typical clinical states of patients for which the model
suggests a particular treatment. We give examples and more details on the interpretability of our
approach in the appendix F.

4 Experiments

We evaluate the performance of the Treatment-RSPN models on a synthetically generated dataset as
well as real-world data from the MIMIC-IV intensive care unit medical database [18, 19].

In the synthetic data experiment, we test whether the Treatment-RSPN can closely match the
parameters of a ground truth data generation process based on an IOHMM with two inputs, two
states and four possible categorical observations. As shown in table 1, the log-likelihood of the
Treatment-RSPN differs from the log-likelihood of the ground-truth model by less than 0.25%,
indicating a near-perfect match.

In the first MIMIC-IV experiment, we apply Treatment-RSPN to one-step-ahead treatment action
prediction of the administration of vasopressors, with discretized minimum blood pressure and the
total volume of intravenous fluids received by the patient serving as covariates. The task is set up
as a binary classification problem, with the target values indicating whether any vasopressors were

4

Model HR RMSE (↓) MBP RMSE (↓) RR RMSE (↓) AVG RMSE (↓)
Mean ± SD Mean ± SD Mean ± SD Mean ± SD

LSTM 10.81 ± 0.525 14.57 ± 0.938 5.35 ± 0.137 10.24 ± 0.487

Treatment-RSPN 9.54 ± 0.267 13.09 ± 0.453 4.46 ± 0.209 9.03 ± 0.286

Table 3: Regression performance of the evaluated models on the one-step ahead treatment response
prediction task using the MIMIC-IV sepsis dataset. The values highlighted in bold mark significantly
better results at 0.05 confidence level.

administered at the corresponding time step. We compare the performance of our model to baselines
from [1], as well as a basic model always predicting the most common treatment action. The results
of the experiment are captured in table 2. The Treatment-RSPN achieved a statistically significantly
improved result over all baselines in the AUROC score and is on par with Interpole [1] (the best
performing baseline) in terms of F1 macro and Brier score.

In the second MIMIC-IV experiment, we evaluate the performance of Treatment-RSPN on one-
step-ahead continuous treatment response prediction, using vasopressors and intravenous fluids
administration indicators as inputs and heart rate, minimum blood pressure and respiratory rate as
the predicted treatment outcome variables. This task can thus be seen as a regression task with three
predicted variables. The results of Treatment-RSPN and an LSTM baseline [20] on this task are
shown in table 3. We can see that the Treatment-RSPN model significantly outperforms the LSTM
baseline.

In both MIMIC-IV experiments, the Treatment-RSPN achieved a performance competitive with the
baselines, demonstrating the promise of the method.

5 Conclusion and Future Work

In this paper, we introduced a framework for tractable and interpretable modelling of clinical decision-
making and treatment response mechanisms using recurrent-sum-product networks. We discussed
the process for constructing the initial network structure for the RSPN models, as well as an adapted
version of the EM algorithm suitable for their training. In the future, we would like to extend the
structure-learning capabilities of our training algorithm and further explore how the interpretability
and tractability of our models could be used to provide more informative predictions. We would
also like to explore the potential use of Treatment-RSPN for counterfactual prediction to estimate
treatment effects under a dynamic treatment regime [21].

Acknowledgments and Disclosure of Funding

The first author was financially supported by the Turing Scheme. L. Lehman was in part funded by
the MIT-IBM Watson AI Lab. We thank the anonymous reviewers for their helpful suggestions.

References
[1] Alihan Hüyük, Daniel Jarrett, Cem Tekin, and Mihaela Van Der Schaar. Explaining by imitating:

Understanding decisions by interpretable policy learning. In International Conference on
Learning Representations, 2020.

[2] Alizée Pace, Alex Chan, and Mihaela van der Schaar. POETREE: Interpretable policy learning
with adaptive decision trees. In International Conference on Learning Representations, 2022.

[3] Bryan Lim. Forecasting treatment responses over time using recurrent marginal structural
networks. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and
R. Garnett, editors, Advances in Neural Information Processing Systems, volume 31. Curran
Associates, Inc., 2018.

5

[4] Hoifung Poon and Pedro Domingos. Sum-product networks: A new deep architecture. In
2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops), pages
689–690. IEEE, 2011.

[5] Adnan Darwiche. A differential approach to inference in bayesian networks. Journal of the
ACM (JACM), 50(3):280–305, 2003.

[6] Antonio Vergari, Nicola Di Mauro, and Floriana Esposito. Simplifying, regularizing and
strengthening sum-product network structure learning. In Joint European Conference on
Machine Learning and Knowledge Discovery in Databases, pages 343–358. Springer, 2015.

[7] Johan H. P. Kwisthout, Hans L. Bodlaender, and L. C. van der Gaag. The necessity of bounded
treewidth for efficient inference in bayesian networks. In Proceedings of the 2010 Conference
on ECAI 2010: 19th European Conference on Artificial Intelligence, page 237–242, NLD, 2010.
IOS Press.

[8] Kaiyu Zheng, Andrzej Pronobis, and Rajesh Rao. Learning graph-structured sum-product
networks for probabilistic semantic maps. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 32, 2018.

[9] Abram L Friesen and Pedro Domingos. Submodular sum-product networks for scene under-
standing, 2016.

[10] Robert Peharz, Georg Kapeller, Pejman Mowlaee, and Franz Pernkopf. Modeling speech
with sum-product networks: Application to bandwidth extension. In 2014 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 3699–3703, 2014.

[11] Mohamed R Amer and Sinisa Todorovic. Sum product networks for activity recognition. IEEE
transactions on pattern analysis and machine intelligence, 38(4):800–813, 2015.

[12] Mazen Melibari, Pascal Poupart, Prashant Doshi, and George Trimponias. Dynamic sum
product networks for tractable inference on sequence data. In Conference on Probabilistic
Graphical Models, pages 345–355. PMLR, 2016.

[13] Thomas Dean and Keiji Kanazawa. A model for reasoning about persistence and causation.
Computational intelligence, 5(2):142–150, 1989.

[14] Agastya Kalra, Abdullah Rashwan, Wei-Shou Hsu, Pascal Poupart, Prashant Doshi, and Geor-
gios Trimponias. Online structure learning for feed-forward and recurrent sum-product networks.
Advances in Neural Information Processing Systems, 31, 2018.

[15] Yoshua Bengio and Paolo Frasconi. An input output hmm architecture. In G. Tesauro, D. Touret-
zky, and T. Leen, editors, Advances in Neural Information Processing Systems, volume 7. MIT
Press, 1994.

[16] Y. Bengio and P. Frasconi. Input-output hmms for sequence processing. IEEE Transactions on
Neural Networks, 7(5):1231–1249, 1996.

[17] Robert Peharz, Robert Gens, Franz Pernkopf, and Pedro Domingos. On the latent variable
interpretation in sum-product networks. IEEE transactions on pattern analysis and machine
intelligence, 39(10):2030–2044, 2016.

[18] Alistair Johnson, Lucas Bulgarelli, Tom Pollard, Steve Horng, Leo Anthony Celi, and Roger
Mark. MIMIC-IV (version 1.0). PhysioNet, 2021.

[19] Ary L Goldberger, Luis AN Amaral, Leon Glass, Jeffrey M Hausdorff, Plamen Ch Ivanov,
Roger G Mark, Joseph E Mietus, George B Moody, Chung-Kang Peng, and H Eugene Stanley.
Physiobank, physiotoolkit, and physionet: Components of a new research resource for complex
physiologic signals. Circulation, 101(23):e215–e220, 2000.

[20] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Comput.,
9(8):1735–1780, nov 1997.

6

[21] Rui Li, Stephanie Hu, Mingyu Lu, Yuria Utusumi, Prithwish Chakraborty, Daby Sow, Piyush
Madan, Mohamed Ghalwash, Zach Shahn, and Li-wei H Lehman. G-net: a recurrent network
approach to g-computation for counterfactual prediction under a dynamic treatment regime.
Proceedings of Machine Learning for Health, 2021.

[22] D Jarrett and Mihaela van der Schaar. Inverse active sensing: modeling and understanding
timely decision-making. In ICML, 2020.

[23] T Makino and J Takeuchi. Apprenticeship learning for model parameters of partially observable
environments. In ICML, 2012.

[24] P Englert, A Paraschos, J Peters, and M.P. Deisenroth. Probabilistic model-based imitation
learning. Adaptive Behavior, 21:388–403, 2013.

[25] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

A Treatment-RSPN Overview Diagram

An overview diagram illustrating our approach is provided in figure 1.

B Conversion Procedure

We give our procedure for converting a Bayesian network into an SPN in algorithm 1.

Algorithm 1: BN to SPN conversion procedure
Given a Bayesian network N to convert to an SPN

1. Set V s to be the variables (nodes) in N in the topological order.

2. Set c = ∅ to be the set of variables currently conditioned on.

3. Set d = {} to be a map of unresolved variable dependencies (mapping from parent variables to lists of child
variables).

4. For V in V s:

4.1. Construct a layer of sum nodes s, one for each possible assignment xsi of variables in c or a single sum
node if c is empty. Attach the layer to the previous product layer p if any, with edges leading between
nodes np

j and ns
i whenever xpj and xsi for these nodes are compatible.

4.2. If V has children in N :
a. Add V to c.
b. Remove all occurrences of V from d, remove any variables with empty child list in d from c.
c. Add V 7→ childrenN (V) to d.
d. Add a product layer p with one node for each possible assignment xpj of variables in c, each

connected to an indicator leaf for V = vj where vj is the value of V in xpj . Connect the product
layer to the previous sum layer s, with edges leading between nodes ns

i and np
j whenever xsi and xpj

for these nodes are compatible and edge weights determined by PN (V = vj |xsi).
Otherwise:

a. Construct a layer of leaf nodes for V with distributions and connections to the previous layer l
representing the distribution PN (V |xli) for each node nl

i with assignment xli in l.

C EM Algorithm

We detail our variant of the RSPN expectation maximization procedure in algorithm 2.

7

Xn-1

Zn-1 Zn

Xn

Zn+1

Xn+1

Un-1 Un Un+1

Sequential Treatment Data

Probabilistic Model

Treatment-RSPN

EM Training

Initialization

?

?

?

Treatment Decision Modelling Treatment Response Modelling

Applications

Top Network

Template Network Bottom Network

Figure 1: Overview of the Treatment-RSPN framework. Treatment-RSPN is initialised based on a
probabilistic model (e.g. IOHMM) and trained on sequential treatment data using our expectation
maximization algorithm. The resulting model can be applied to different tasks, such as treatment
action prediction and treatment response prediction.

8

Algorithm 2: RSPN expectation maximization
Given an RSPN R and the training dataset D

1. Unroll R into a regular SPN S matching the length of the sequences in D and using shared node identifiers for
repeated nodes.

2. Evaluate S on D using procedure described in appendix 2, store the value computed at each node.

3. Set pl = {(nil, root(R)) 7→ 1} to be the map of data point likelihoods passed to each node by its parents. The
root node has no parents, and is thus passed likelihood of 1 for each point.

4. Set l = {(id(p), id(c)) 7→ 0} for all pairs of parents and children (p, c) in S. l stores the aggregated
likelihoods of data points reaching nodes from their parents.

5. Set lp, lw = {}, {} to store data points and their likelihoods at each leaf.

6. For n in nodes(S), processed from top to bottom:

6.1. Set dl =
∑

p∈parents(n) pl[p, n] to be the likelihoods of reaching the current node for each data point,
passed to n by its parents.

6.2. Increment l[id(p), id(n)] by
∑

d∈D pl[p, n, d] for all p in parents(n).
6.3. If n is a sum:

a. Set cl = {c 7→ weight(n, c) × value(c)} for all c in children(n) to store the base likelihood of each
child.

b. Normalize the likelihoods of the children in cl

c. Set pl[n, c]= cl[c] × dl

If n is a product:
a. Set pl[n, c] = dl for all c in children(n)

If n is a leaf node:
a. Store the current data D and their likelihoods at this node dl in lp[n] and lw[n].

7. Update the weights of each edge between a sum node s and its child node c to l[id(s),id(c]∑
c′∈children(s) l[id(s),id(c′)]

8. Update the distributions in leaves according to the weighted data in lp and lw or cluster the weighted data and
introduce a sub-structure to model the mixture.

D IOHMM and Treatment-RSPN Diagrams

To gain more intuition about the transformation process and the structure of the resulting Treatment-
RSPN, consider the example IOHMM in figure 2 and the corresponding RSPN obtained using our
conversion procedure in figure 3. There are several key observations to note. First, notice how the
product nodes are naturally used to model conditioning on a variable represented by leaves attached
to them. This is exploited by the transformation algorithm, which constructs a product layer for each
variable with children in the underlying BN. Second, note how the converging connections from
multiple product nodes effectively “cancel” conditioning on a variable. For example, the edges from
the product nodes for the assignments u1 = 0, z1 = 0 and u1 = 1, z1 = 0 leading into a single node
stop the conditioning on the variable U1. Finally, note that the probabilities from the conditional
probability tables associated with the IOHMM model are repeated several times in the network.
During the training of our model, we assign identical parameters to the nodes surrounding the edges
with these probabilities, which ensures that they are updated in unison.

E Experiment Baselines

Treatment Action Prediction. We compare our model with the baselines from [1]. We utilize
Interpole [1], which is a Bayesian method for interpretable treatment policy learning, PO-IRL, which
is based on inverse reinforcement learning [22], Off. PO-IRL, which is an offline variant of PO-
IRL [23], PO-MB-IL, which performs model-based imitation learning [24], and an LSTM, a gated
recurrent network. The PO-IRL and Off. PO-IRL are initialized using the conventional algorithms for
learning an IOHMM and further trained using Markov chain Monte Carlo sampling, while PO-MB-IL
is trained using an EM algorithm after initialization. The LSTM is trained using Adam optimizer
[25] with learning rate of 0.001. Further details about these baselines can be found in the original
paper [1]. All the baselines are trained with their default parameters. Additionally, we also report

9

Xn-1

Zn-1 Zn

Xn

Zn+1

Xn+1

Un-1 Un Un+1

P(Un = 0) P(Un = 1)

0.5 0.5

U1 P(Z1 = 0 | U1) P(Z1 = 1 | U1)

0 0.6 0.4

1 0.3 0.7

Zn-1 Un P(Zn = 0 | Zn-1, Un) P(Zn = 1 | Zn-1, Un)

0 0 0.8 0.2

0 1 0.25 0.75

1 0 0.65 0.35

1 1 0.1 0.9

Un Zn P(Xn = 0 | Un, Zn) P(Xn = 1 | Un, Zn)

0 0 0.9 0.1

0 1 0.45 0.55

1 0 0.65 0.35

1 1 0.1 0.9

Figure 2: A simple IOHMM with discrete variables for the inputs, latent states and observations.

S112S111

P121 P122 P123 P124

0.5 0.50.50.5

Ul = 0 Ul = 1

S132 S133 S134S131

P141 P142 P143 P144

Zl = 0 Zl = 1

0.8

0.2

0.9

0.1

0.250.35
0.65 0.75

S152 S153 S154S151

Xl = 0 Xl = 1

0.9
0.10.1

0.9

0.45 0.35
0.55 0.65

0.5

P21 P22

S11

0.5

U1 = 0 U1 = 1S32S31

P41 P42 P43 P44

0.6 0.70.30.4

Z1 = 0 Z1 = 1

S52 S53 S54S51

X1 = 0 X1 = 1

0.9
0.10.1

0.9

0.45 0.35
0.55 0.65

Top network

Bottom networkS62S61

P71 P72 P73 P74

0.5 0.50.50.5

Un = 0 Un = 1

S82 S83 S84S81

P91 P92 P93 P94

Zn = 0 Zn = 1

0.8

0.2

0.9

0.1

0.250.35
0.65 0.75

S102 S103 S104S101

Xn = 0 Xn = 1

0.9
0.10.1

0.9

0.45 0.35
0.55 0.65

Template network

Figure 3: An RSPN corresponding to the IOHMM model shown in figure 2. This model can be
obtained by running our initialization procedure described in section 3.1.

10

(a) States for negative vasopressor treatment (b) States for positive vasopressor treatment

Figure 4: States with the highest likelihoods before a negative/positive vasopressor treatment

Figure 5: Emission distributions for selected states with the highest probabilities before positive
vasopressor treatment (states 1 and 3) and negative vasopressor treatment (state 12)

the valuation results for a simple classifier which always predicts the most likely treatment (with the
probability equal to the portion of time steps with this treatment).

Treatment Response Prediction. We compare our model with an LSTM [20]. The network is
composed of an LSTM unit with a hidden size of 32 and a linear output layer. We train the network for
30 epochs using the Adam optimizer (running further training iterations did not have any significant
effect on the results).

F Interpretability

In section 3.3 of the main text, we argued that Treatment-RSPN is more interpretable compared to
the other approaches due to its probabilistic nature, tractability and basis in a known probabilistic
graphical model with intuitive dependencies between the variables. Here, we show an illustrative
example of how these properties could be practically utilized to gain insight into the learned beliefs
of the model. In our analysis, we focus on the Treatment-RSPN model used for the treatment action
prediction experiment.

As a first step, we determine the most likely states to occur immediately before the positive or negative
vasopressor treatment action. This is done by computing the likelihoods of the different states at each
time step of each temporal sequence in the test set and aggregating them appropriately. The results
are visualized in figure 4, showing that the most likely state before a negative vasopressor treatment
is state number 12, while the most likely states before a positive vasopressor treatment are states
number 1 and 3.

In order to gain further insight into the characteristics of these states, we can examine the emission
distributions associated with them. These are visualized in figure 5. Each heatmap depicts the
probabilities for the observed outcomes in the current time step based on the hidden state. Both
states 1 and 3 occur at timesteps where the observed blood pressure is low. This corresponds with the

11

expectations, as clinicians are likely to begin vasopressor therapy for urgently hypotensive patients. It
thus seems that the beliefs of the model are clinically meaningful, as it has learned that vasopressors
must be administered after low blood pressure. In comparison, patients in state 12, which is predictive
of negative vasopressor treatment, are much more likely to have higher blood pressure, indicating
that the therapy is not needed.

In addition to the above observations, we can also note that the model apparently learned to distinguish
between patients who have been administered a larger volume of intravenous fluids (state 3) and
patients who have not received much of these fluids (state 1). This may potentially be helpful for
determining the point at which the vasopressor treatment is more likely to cease.

G Discrete Treatment Response Prediction Experiment

In addition to the experiments described in section 4, we also evaluated our model on the “mirror”
task to MIMIC-IV experiment one, in which the model performs a one-step-ahead prediction of the
discretized covariates (minimum blood pressure and the total volume of intravenous fluids). The
results for this task are shown in table 4.

Model F1 weighted (↑) AUROC weighted (↑) Brier score (↓)

Mean ± SD Mean ± SD Mean ± SD
LSTM 0.64 ± 0.054 0.93 ± 0.012 0.49 ± 0.058

Predict most common 0.10 ± 0.062 0.50 ± 0.000 0.87 ± 0.031

Treatment-RSPN 0.60 ± 0.059 0.93 ± 0.011 0.52 ± 0.062

Table 4: Classification performance of the evaluated models on the one-step ahead treatment response
prediction task using the MIMIC-IV sepsis dataset

12

	Introduction
	Background
	Treatment-RSPN
	Treatment-RSPN Initialization
	Treatment-RSPN Training
	Interpretability

	Experiments
	Conclusion and Future Work
	Treatment-RSPN Overview Diagram
	Conversion Procedure
	EM Algorithm
	IOHMM and Treatment-RSPN Diagrams
	Experiment Baselines
	Interpretability
	Discrete Treatment Response Prediction Experiment

