
Extended Abstract Track 2022 NeurIPS Workshop on Symmetry and Geometry in Neural Representations

Hyperbolic and Mixed Geometry Graph Neural Network

Xinyue Cui xinyuecu@usc.edu
University of Southern California

Rishi Sonthalia rsonthal@math.ucla.edu

University of California, Los Angeles

Editors: Sophia Sanborn, Christian Shewmake, Simone Azeglio, Arianna Di Bernardo, Nina Miolane

Abstract

Hyperbolic Graph Neural Networks (GNNs) have shown great promise for modeling hi-
erarchical and graph-structured data in the hyperbolic space, which reduces embedding
distortion comparing to Euclidean space. However, existing hyperbolic GNNs implement
most operations through differential and exponential maps in the tangent space, which is
a Euclidean subspace. To avoid such complex transformations between the hyperbolic and
Euclidean spaces, recent advances in hyperbolic learning have formalized hyperbolic neural
networks based on the Lorentz model that realize their operations entirely in the hyper-
bolic space via Lorentz transformations Chen et al. (2022). Here, we adopt the hyperbolic
framework from Chen et al. (2022) and propose a family of hyperbolic GNNs with greater
modeling capabilities as opposed to existing hyperbolic GNNs. We also show that this
framework allows us to have neural networks with both hyperbolic layers and Euclidean
layers that can be trained jointly. Our experiments demonstrate that our fully hyperbolic
GNNs lead to substantial improvement in comparison with their Euclidean counterparts.

1. Introduction

The geometry of the representations learned by a neural network has proved to be impor-
tant. Recently, due to the realization that hierarchical data can be well represented in
hyperbolic space (Hamann, 2017; Dyubina and Polterovich, 1999), many algorithms have
been developed to embed data into hyperbolic space (Nickel and Kiela, 2017, 2018; Son-
thalia and Gilbert, 2020; Sala et al., 2018) and many different hyperbolic neural network
architectures have been proposed as well (see survey Peng et al. (2021)).

Given a manifold M whose geometry we want to use, the first issue with describing a
neural network is that we need to define a linear function from M to itself. The standard
method to do this is to use the tangent space. That is, we use the Logarithmic map
from the manifold to the tangent space, which is Euclidean. We perform one layer of a
neural network here and then we map back to the manifold using the Exponential map.
However, this has many issues. First, we need to know the Logarithmic and Exponential
maps. Second, even when these are known, they could be very computationally expensive
to calculate or could have numerical stability issues. In the case of hyperbolic manifolds, we
have additional numerical issues related to representing points on the manifold itself (Yu
and Sa, 2019). Recent work (Chen et al., 2022) proposed a new method to get around this
issue by parametrizing linear maps on Lorentz manifolds as maps on Euclidean space.

In this paper, we notice that the map defined in Chen et al. (2022) can be thought
of a map from Euclidean space to Euclidean space. So instead of needing Riemannian

© 2022 X. Cui & R. Sonthalia.



Cui Sonthalia

gradient descent, we can use standard gradient descent. This then allows us to seamlessly
mix different Euclidean and hyperbolic layers. Hence we have created mixed geometry
neural networks by replacing the linear layers by hyperbolic linear layers. We test the new
architectures on standard graph classification datasets and show that the mixed geometry
versions consistently outperform their Euclidean counterparts.

1.1. Related Work

Apart from Chen et al. (2022), there exists three prior papers on hyperbolic graph neural
networks (Chami et al., 2019; Liu et al., 2019; Zhang et al., 2021). Each of these uses the
older method of performing computations in the tangent space. See the survey Yang et al.
(2022) for more details.

2. Hyperbolic Manifold

First, we briefly introduce the Hyperboloid or Lorentzian model of the hyperbolic manifolds.
The Hyperboloid model Hk of the hyperbolic manifold is

Hk =

{
x ∈ Rk+1 : x0 > 0, x20 −

k∑
i=1

x2i = 1

}
.

Here distances are given via d(x, y) = arccosh

(
−

k∑
i=1

xiyi + x0y0

)
. For the Hyperboloid

model, we have explicit formulas for the exponential and logarithmic maps. Specifically, the

exponential map is given by expx(v) = cosh(∥v∥H)x+sinh(∥v∥H)
v

∥v∥H
, and the logarithmic

map is given by logx(y) =
arccosh(β)√

β2 − 1
(y − βx), where β = −x0y0 +

k∑
i=1

xiyi and ∥x∥H =

−x20 +
k∑

i=1

x2i .

2.1. Using Tangent Space.

We are now ready to describe the standard hyperbolic graph neural network layer. Let F
be any graph neural network layer on Euclidean space, then the corresponding hyperbolic
version is traditionally given as follows

HF (x) = log(F (exp(x)))

where exp, log are the Exponential and Logarithmic maps. In some cases, this can be
simplified. However, in most cases this is computationally expensive.

2.2. Fully Hyperbolic Network.

The fully hyperbolic framework proposed in Chen et al. (2022) selected the Lorentz model
as its feature space. The family of linear transformations between Lorentz models are called

2



Hyperbolic and Mixed Geometry Graph Neural Network

Lorentz transformations, which can be decomposed into Lorentz rotation and Lorentz boost.
The Lorentz rotation describes the rotation of spatial coordinates, while the Lorentz boost
describes relative motion with constant velocity and without rotation of spatial axes.

Definition 1 The Lorentz rotation matrices are given by R =

(
1 0⊤

0 R̃

)
, where R̃⊤R̃ = I

and det(R̃) = 1.

Definition 2 Given a velocity v ∈ Rn, ∥v∥ < 1 and γ = 1√
1−∥v∥2

, the Lorentz boost

matrices are given by B =

(
γ −γv⊤

−γv I+ γ2

1+γvv
⊤

)
.

Both Lorentz boost and Lorentz rotation are defined on the Lorentz model and can be
adopted as the basis for building fully hyperbolic neural networks.

In Lemma 2 in Chen et al. (2022), they show that maps that use the tangent space can
model certain types of “pseudo-rotations” and cannot model Lorentz boosts. Hence they

propose the following hyperbolic layer instead. Given a matrix M =

[
v
W

]
and an input x

of the hyperbolic linear layer, then the output is given by

z =

[√
∥Wx∥2−1

vT x
v

W

]
x.

They show that if x lives in the hyperbolic manifold then so does z.

3. Mixed Geometry Networks

In this paper, we simplify the above layer to define a linear layer that maps Rd → Hk. Here
given a matrix W ∈ Rk×d and a vector x ∈ Rd, we define the output of this layer as follows

x̂ = Wx

and then the output z is given by for i > 0, zi = x̂i and

z0 =

√√√√1 +
k∑

i=1

x̂i.

Thus, here we can see that given any vector x, then z lives in the Hyperboloid manifold.
Here we write z = HL(x;W ).

We then define the mixed geometric hyperbolic version of three different types of graph
neural network architectures. Specifically Graph Convolutional Neural Network (GCN) Kipf
and Welling (2017), Graph Conv (GC) Morris et al. (2019), and Residual Gated Graph Conv
(RGGC) Bresson and Laurent (2017).

3



Cui Sonthalia

3.1. GCN

A standard GCN layer is given by

X ′ = D̂−1/2ÂD̂−1/2XΘ,

where A is adjacency matrix, Â = A+I and D̂ is the degree matrix. For the mixed geometry
version, we modify the update rule to

X ′ = D̂−1/2ÂD̂−1/2HL(X; Θ).

3.2. GC

A standard GraphConv layer is given by

x′i = W1xi +W2

∑
j∈N (i)

ej,ixj ,

where ej,i is the edge weight of the edge from j to i. For the mixed geometry version, we
modify the update rule to

x′i = HL(xi;W1) +HL

 ∑
j∈N (i)

ej,ixj ;W2

 .

3.3. RGGC

A standard Residual Gated Graph layer is given by

x′i = W1xi +W2

∑
j∈N (i)

ηj,ixj ,

where ηj,i = σ(W3xi +W4xj). For the mixed geometry version, we modify the update rule
to

x′i = HL(xi;W1) +HL

 ∑
j∈N (i)

ηj,ixj .;W2

 ,

where ηj,i = σ(HL(xi;W3) +HL(xj ;W4)).

As we can see we have defined a mixed geometry layer as we compute the addition in
Euclidean space. This is different from Chen et al. (2022), which does the aggregation in
hyperbolic space.

4. Experiments

To verify the effectiveness of the new method, we test the architecture on 3 different node
classification datasets: Karate (Zachary, 1977), Cora (Yang et al., 2016), and PubMed
(Yang et al., 2016). To do a fair comparison, all models have 2 layers, with 128 hidden
dimensions. The models are trained for 10 epochs using Adam optimizer (Kingma and Ba,

4



Hyperbolic and Mixed Geometry Graph Neural Network

2015). The datasets and Euclidean implementations were taken from Pytorch Geometric
(Fey and Lenssen, 2019).

We trained each model for 10 times, and report the mean and standard deviation of test
accuracy in Table 1. As we can see from the table, the hyperbolic version outperforms their
Euclidean counterparts. Specifically, we see that not only does the mean accuracy increase,
but the variance decreases as well.

We hypothesize that the change to loss landscape from the reparametrization is the
reason for the improvement. In this way we postulate that Mixed Geometry Graph Neural
Networks outperform standard graph neural networks only due to the change in the loss
landscape. We also note that with our parametrization the symmetry between all of the
neurons in a layer of a neural network have now been broken with one neuron in every layer
being special.

Model Dataset
Karate Cora PubMed

GCN 0.46 ± 0.08 0.75 ± 0.05 0.74 ± 0.01
MGCN 0.47 ± 0.07 0.77 ± 0.02 0.75 ± 0.02

GC 0.53 ± 0.06 0.67 ± 0.03 0.62 ± 0.06
MGC 0.55 ± 0.03 0.78 ± 0.02 0.73 ± 0.02

RGGC 0.54 ± 0.09 0.68 ± 0.04 0.66 ± 0.07
MRGGC 0.57 ± 0.04 0.78 ± 0.01 0.73 ± 0.02

Table 1: Table comparing our models against their Euclidean counterparts on a variety of
benchmark datasets in terms of test accuracy. All accuracies reported are averaged
over 10 instances.

5. Future Work

While this provides initial evidence that this simple reparametrization can lead to improve-
ments, there is still a lot of work to be done. In particular, this comparison is only on 3
different data sets, and one network design. A more comprehensive comparison on more
datasets, more tasks (graph and edge classification), as well as comparison against prior
hyperbolic graph neural network architectures are needed.

References

Xavier Bresson and Thomas Laurent. Residual gated graph convnets. ArXiv,
abs/1711.07553, 2017.

Ines Chami, Rex Ying, Christopher Ré, and Jure Leskovec. Hyperbolic graph convolutional
neural networks. Advances in neural information processing systems, 32:4869–4880, 2019.

Weize Chen, Xu Han, Yankai Lin, Hexu Zhao, Zhiyuan Liu, Peng Li, Maosong Sun, and Jie
Zhou. Fully hyperbolic neural networks. In Proceedings of the 60th Annual Meeting of the

5



Cui Sonthalia

Association for Computational Linguistics (Volume 1: Long Papers), pages 5672–5686,
Dublin, Ireland, May 2022. Association for Computational Linguistics. doi: 10.18653/
v1/2022.acl-long.389. URL https://aclanthology.org/2022.acl-long.389.

Anna Dyubina and Iosif Polterovich. Explicit constructions of universal r-trees and asymp-
totic geometry of hyperbolic spaces. Bulletin of the London Mathematical Society, 33,
1999.

Matthias Fey and Jan E. Lenssen. Fast graph representation learning with PyTorch Geo-
metric. In ICLR Workshop on Representation Learning on Graphs and Manifolds, 2019.

Matthias Hamann. On the tree-likeness of hyperbolic spaces. Mathematical Proceedings of
the Cambridge Philosophical Society, 164:345 – 361, 2017.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. CoRR,
abs/1412.6980, 2015.

Thomas Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. ArXiv, abs/1609.02907, 2017.

Qi Liu, Maximilian Nickel, and Douwe Kiela. Hyperbolic graph neural networks. In
NeurIPS, 2019.

Christopher Morris, Martin Ritzert, Matthias Fey, William L. Hamilton, Jan Eric Lenssen,
Gaurav Rattan, and Martin Grohe. Weisfeiler and leman go neural: Higher-order graph
neural networks. ArXiv, abs/1810.02244, 2019.

Maximilian Nickel and Douwe Kiela. Poincaré embeddings for learning hierarchical repre-
sentations. In NIPS, 2017.

Maximilian Nickel and Douwe Kiela. Learning continuous hierarchies in the lorentz model
of hyperbolic geometry. In ICML, 2018.

Wei Peng, Tuomas Varanka, Abdelrahman Mostafa, Henglin Shi, and Guoying Zhao. Hy-
perbolic deep neural networks: A survey. IEEE transactions on pattern analysis and
machine intelligence, PP, 2021.

Frederic Sala, Christopher De Sa, Albert Gu, and Christopher Ré. Representation tradeoffs
for hyperbolic embeddings. Proceedings of machine learning research, 80:4460–4469, 2018.

Rishi Sonthalia and Anna C. Gilbert. Tree! i am no tree! i am a low dimensional hyperbolic
embedding. In NIPS, 2020.

Menglin Yang, Min Zhou, Zhihao Li, Jiahong Liu, Lujia Pan, Hui Xiong, and Irwin
King. Hyperbolic graph neural networks: A review of methods and applications. ArXiv,
abs/2202.13852, 2022.

Zhilin Yang, William W. Cohen, and Ruslan Salakhutdinov. Revisiting semi-supervised
learning with graph embeddings. ArXiv, abs/1603.08861, 2016.

6

https://aclanthology.org/2022.acl-long.389


Hyperbolic and Mixed Geometry Graph Neural Network

Tao Yu and Christopher De Sa. Numerically accurate hyperbolic embeddings using tiling-
based models. In NeurIPS, 2019.

Wayne Zachary. An information flow model for conflict and fission in small groups. Journal
of Anthropological Research, 33:452 – 473, 1977.

Yiding Zhang, Xiao Wang, Xunqiang Jiang, Chuan Shi, and Yanfang Ye. Hyperbolic graph
attention network. ArXiv, abs/1912.03046, 2021.

7


	Introduction
	Related Work

	Hyperbolic Manifold
	Using Tangent Space.
	Fully Hyperbolic Network.

	Mixed Geometry Networks
	GCN
	GC
	RGGC

	Experiments
	Future Work

