
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

TURN-BY-TURN DRIVING NAVIGATION: LEVERAGING
SEQUENCE MODEL FOR REAL-TIME AUDIO INSTRUC-
TIONS

Anonymous authors
Paper under double-blind review

ABSTRACT

Turn-by-turn (TBT) navigation systems are integral to modern driving experi-
ences, providing real-time audio instructions to guide drivers safely to destina-
tions. However, existing audio instruction policy often rely on rule-based ap-
proaches that struggle to balance informational content with cognitive load, po-
tentially leading to driver confusion or missed turns in complex environments. To
overcome these difficulties, we first model the generation of audio instructions as
a multi-task learning problem by decomposing the audio content into combina-
tions of modular elements. Then, we propose a novel deep learning framework
that leverages the powerful spatiotemporal information processing capabilities of
Transformers and the strong multi-task learning abilities of Mixture of Experts
(MoE) to generate real-time, context-aware audio instructions for TBT driving
navigation. A cloud-edge collaborative architecture is implemented to handle the
computational demands of the model, ensuring scalability and real-time perfor-
mance for practical applications. Experimental results in the real world demon-
strate that the proposed method significantly reduces the yaw rate compared to
traditional methods, delivering clearer and more effective audio instructions. This
is the first large-scale application of deep learning in driving audio navigation,
marking a substantial advancement in intelligent transportation and driving assis-
tance technologies.

1 INTRODUCTION

Navigation system in the era of mobile internet have improved the driving experience by providing
drivers with route information and directions in real-time via visual and audio instruction on the
navigation terminal Yang et al. (2024). Compared with visual information, drivers tend to rely more
on audio instructions for the sake of driving safety Zhong et al. (2022). However, current turn-by-
turn (TBT) driving navigation Fabrikant (2023) often find it challenging to strike a balance between
yaw rate, play timing, and play density for audio instruction. Overly complex audios can increase the
driver’s cognitive load, making it difficult to understand information quickly and safely. Conversely,
a simplistic audio may fail to provide sufficient guidance for navigating complex intersections and
intricate road networks, leading to yaw and compromised safety Large & Burnett (2014).

The principal difficulty in generating real-time audio instructions lies in how to play the accurate
and complete audio at the correct time. Current methods typically use rule-based policies or pre-
defined configuration tables Jensen et al. (2010); Large & Burnett (2014); Yang et al. (2021) that
lack the flexibility, makes it easy to fall into the seesaw effect between yaw rate, play timing, and
audio density. These approaches may result in audio instructions that are either too general, failing
to convey critical information, or too verbose, overloading the driver with unnecessary details.

To address these challenges, we propose a novel pipeline for audio instruction generation: firstly,
decomposing the audio context into modular elements, then the audio instruction model in charge
of element recall, play timing, and order selection, and finally generating coherent speech via text-
to-speech (TTS) module Kaur & Singh (2023). This pipeline transforms the complex task of audio
instruction generation into manageable components, allowing for precise and adaptable instructions
that effectively balance informational content with cognitive load.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Building upon this formalization, we introduce the first deep learning framework utilizing sequence
models for real-time, context-aware audio instruction generation in practical TBT driving naviga-
tion. Our method captures the complex dependencies and variations inherent in driving scenarios.
By leveraging sequence modeling, our approach effectively handles complex intersections and ef-
fectively reduces the yaw rate.

Our main contributions are as follows:

• The First Deep Learning Based TBT Driving Navigation: To the best of our knowledge,
we are the first to implement the deep learning based audio instruction for practical appli-
cations, utilizing sequence models to capture spatiotemporal dependencies and address the
seesaw effect between yaw rate, play timing, and audio density.

• Novel Audio Navigation Framework: To the best of our knowledge, we are the first to
formulate audio instructions as elements recall, play trigger, and order prediction, which
helps probe multi-task learning quantitatively and opens a new paradigm for TBT driving
navigation research and application.

• Data-Driven Paradigm for TBT Optimization: We introduce the data-driven paradigm
for optimizing TBT driving navigation, which shifts from rule-based to data-driven opti-
mization results in continuous performance improvements.

2 PRELIMINARIES AND BACKGROUND

TBT driving navigation refers to a navigational aid system that provides step-by-step instructions to
drivers, guiding them from a starting location to the destination. This system utilizes real-time driv-
ing data, often incorporating Global Positioning System (GPS) technology, to help with wayfinding
problems during driving Schwering et al. (2017); Fabrikant (2023). Instructions are typically deliv-
ered via audio prompts and visual cues, indicating when and where to make turns, lane changes, and
other operations.

Road

Navigation point

GPS locating point

Segment

Turn left
xxx Action instruction audio

About to turn left

In @distance turn left xxx Info instruction audio

In @distance overspeed camera check

Navigation path

Figure 1: TBT driving navigation. The figure displays the essential cue content and key terminol-
ogy used in the TBT driving navigation, along with the paradigm of the audio instruction while the
car moves through the path.

The basic flow of audio instructions is presented in Figure 1, illustrating key concepts within the
TBT driving navigation we have defined. The navigation point represents the location where the
navigation system expects the driver to make a steering to avoid yawing, typically at a fork in the
road. The directed connecting line between two neighboring navigation points is called as segment.
All segments form the navigation path. The primary goal of the audio instruction policy during
navigation is to select the appropriate content at the proper time to prevent the driver from yawing or
violating traffic rules, where yawing refers to the driver deviating from the planned route provided
by the navigation system, which usually means that the instruction content is wrong or poorly timed,
causing the driver to go the wrong way.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

The audio content must follow a standardized approach and be brief to ensure quick comprehension
by the driver. Consequently, when generating instruction audio, sentence diversity is not a consider-
ation, unlike other language generation tasks. This allows us to organize instructional audio content
using key elements and consistent connectors, where the key information entities related to driving
are called elements. We define a set of elements Eelem = {Eaction,Einfo} that encapsulate the key
information to be conveyed through audio instructions. These elements are categorized into:

• Action Elements Eaction: Elements that require the driver needs to turn the wheel following
the audio instruction, such as “turn left” or “merge right.”

• Info Elements Einfo: Elements that provide information without requiring to turn the wheel,
such as “speed camera ahead” or “exceeding speed limit, reduce your speed”.

Each audio instruction contains multiple action elements, at most one info element, play timing,
and play order in the segment. We have listed all the element types in the appendix A.1. Based on
this, we structure an instruction audio as: the elements that need to be revealed, the order within the
segment, and the play timing of the audio. The play timing is indicated by the relative distance from
the audio playing position to the navigation point. The term ”order” refers to the position of the
current audio in the segment after all audios are sorted by play position. It is related to the selection
of the connectors. Figure 1 shows the connections of play order in the segment and the organization
of audio content through an example: 3 green boxes represent 3 different instruction audios, each
with the same element ”turn left”. However, the connectors for the element vary depending on the
play order, resulting in corresponding content changes.

Many studies have been devoted to optimizing the content and timing of audio navigation messages
to improve driving safety and experience. Some researchers Yang et al. (2021); Bian et al. (2021)
investigated the effects of different cue timing patterns and cue message types through a driving
simulation experiment. They found that the interaction between cue timing and cue messages sig-
nificantly affected drivers’ psychological state and vehicle operation. And some studies investigated
the initiation function of in-vehicle audio commands and found that audio commands can effectively
facilitate drivers’ quick and safe responses to the road environment Keyes et al. (2019). Wunderlich
et al. propose to use landmark augmented audio navigation to enhance the spatial awareness for
drivers Wunderlich et al. (2023).

While these studies have advanced the understanding of how navigation prompt messages impact
driver behavior, they primarily rely on handcraft or rule-based audio instructions. While these meth-
ods have yielded commendable results in simulation or specific scenes, the ever-changing and intri-
cate nature of real-world roadways renders it manifestly inadequate to depend solely on handcrafted
or rule-based audio instructions to guarantee effective instructions under all conditions. Enhancing
the audio density might reduce yaw rates at straightforward intersections; however, the consequent
increase in instructional content can infringe upon the timing of subsequent audio at complex inter-
sections. This encroachment can lead to the compression or omission of critical elements, thereby
inducing driver confusion and route deviation. This dilemma is referred to as the seesaw effect
among yaw rate, audio density, and play timing in audio instruction. Nonetheless, by integrating
deep learning into TBT driving navigation and training neural network-based audio instruction pol-
icy on carefully curated high-quality data that exemplifies effective guidance, it becomes feasible to
leverage the robust generalization capabilities of neural networks. Such an approach holds the po-
tential to transcend the seesaw effect mentioned above, thereby further enhancing the performance
and reliability of dio instructionsaui systems.

3 METHOD

In this section, we will delve into the details of our approach, covering the following aspects: Firstly,
Section 3.1 formalizes the audio instruction problem as multi-task learning. Then, Section 3.2 intro-
duces the sequence model for audio instruction, along with the cloud-edge collaboration for model
deployment. Finally, Section 3.3 outlines the model training.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

3.1 PROBLEM FORMALIZATION

To address the challenges in generating real-time, context-aware instructions, we model the audio in-
struction in TBT driving navigation as a multi-task learning problem. Enables the model to optimize
the necessary components for generating the audio simultaneously.

As presented in Section 2, the audios within each segment have a strong spatiotemporal correlation,
so segments are selected as the granularity for modeling driving scenarios oriented towards audio
instruction. We sample features for the audio instruction model in segments at 1-second intervals:
xt1 , xt2 , . . . , xtT , where T is the total number of time steps the car passes the segment. The feature
components are listed in Appendix Table 9.

Considering the importance of feature sequences for the audio instruction task, we aim to learn a
function that maps the input sequence data to several outputs to compose audio instructions:

f : Xt → {ytrigger, yaction, yinfo, yvo}, (1)

where Xt = {xt−n, ...,xt−1,xt} represents the input sequence features, where n is the sequence
length. ytrigger represents the ratio of the relative distance from the audio play position to the naviga-
tion point dpp and the relative distance from the current driver’s position to the navigation point dnp:
ytrigger =

dpp

dnp
, indicating the audio play timing. yaction ∈ {0, 1}|Eaction| is a binary vector indicating

which action elements should be included in the audio. yinfo ∈ {0, 1}|Einfo| is a binary vector indi-
cating which info elements should be included. yvo ∈ {1, 2, . . . , O} represents the play order of the
audio instruction within the segment, where O is the maximum number of possible orders.

By formalizing the problem in this way, we can model the mapping function from input features to
outputs via deep neural networks based on maximum likelihood estimation to fit the distribution of
high-quality data to learn a better audio instruction policy.

3.2 SEQUENCE MODELING

edge history
element feature

embed

edge history
other feature

embed

cloud context
feature embed

cloud info
feature embed
cloud action

feature embed

edge position
feature embed

edge info
feature embed

edge action
feature embed

speed seq
feature
embed

speed seq
feature
embed

seq
position
embed

MLP MLPabs pos
embedding

MHA MHA

sequence data

MHAConcat

CrossNet

MoE

VoiceOrder
decoder

Action
decoder

Info
decoder

Trigger
decoder

audio template

data preprocessing

cloud embedding
request

text to speech

Turn right

generate element

MLP + position embed

+

MLPGPT decoder

Concat

+

Figure 2: Overview of TBT audio instruction model. In the dashed box is the proposed audio
instruction model. The red box represents the model component, the blue box represents the edge-
side data embedding, and the green box represents the cloud-side data embedding. To the left of the
dashed box is the engineering design for model real-time playing and data preparation.

Figure 2 shows the audio instruction model and its application framework in the TBT driving nav-
igation system. The model adopts a cloud-edge cooperative architecture, considering scalability,

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

real-time computation, and resource optimization. The responsibility of the cloud side is to embed
features that are relatively static in the segment. The edge side is responsible for embedding other
features that have high real-time requirements and then performing model inference on the edge side
along with the feature embedding sent down from the cloud. Detailed description and analysis of
the advantages of the cloud-edge architecture is provided in the appendix A.2.

Since the current audio content generation is strongly correlated with the historical play within the
segment we combine the features of the current timestep with the features of the previous n − 1
moments in chronological order as sequence data Xt = {xt−n, ...,xt−1,xt} for model input. If
there is less than n audio data in the segment, zero padding is applied to the missing portion of the
sequence. Unlike conventional sequence labeling tasks, the TBT audio instruction task encounters
challenges in calculating sequence loss Huang et al. (2015) due to the inability to predetermine the
input sequence. Furthermore, the TBT audio instruction task does not conform to the autoregres-
sive training paradigm employed by large language models Zhao et al. (2023), as the current audio
instruction cannot be inferred solely from historical audios but is also strongly correlated with the
current driving context. Therefore, we have tailored a sequence model for TBT audio instruction by
integrating the spatiotemporal information processing capabilities of the Transformer.

Upon completion of model inference, the predicted timing by the trigger head is used to assemble
a complete sentence by combining the inferred action via the action head and information elements
via the info head with connecting word templates based on the voice order head. The sentence is
then converted into speech via a Text-to-Speech (TTS) module and ultimately plays in the driver’s
navigation terminal. This process is iteratively executed throughout the entire navigation path, con-
stituting a comprehensive TBT audio instruction system.

It should be noted that the action head and the info head are responsible for recalling elements
required in the current play content, while all candidate elements are given to the model as input
features. The candidate elements in the input features are generated per segment by the scheduling
unit based on the current road graph and path planning information.

The model architecture illustrated within the dashed box in Figure 2 can be broadly divided into 4
levels: the Feature Encoder, the Deep CrossNet Zheng et al. (2018), the GPT Decoder Brown et al.
(2020), and the MoE Prediction Layer:

Initially, the sequence data undergoes Feature Encoder. All element-related features are embedded
and concatenated, which are indicated by the orange arrows in Figure 2. The element embeddings
are then fully encoded and mixed through the Multi-Head Attention (MHA). After that, the mixed
element embedding is encoded via a Multi-Layer Perceptron (MLP) along with other input fea-
tures. The Feature Encoder transforms the high-dimensional sparse feature representations into
low-dimensional dense vectors while capturing and preserving the intrinsic structure and semantic
information of the data, facilitating subsequent model processing.

Subsequently, the encoded element features are combined with position embeddings. Different from
the existing position embedding method Vaswani et al. (2017); Devlin et al. (2019); Su et al. (2024),
we integrate domain-specific prior knowledge to transform the conventional absolute position em-
bedding into a combination of temporal sequence encoding and spatial semantic encoding. Tempo-
ral sequence encoding targets each effective time slice in the sequence, performing reverse indexing
and learning through a position embedding matrix. As for spatial semantic encoding, considering
that the density of audio instruction increases as the car approaches the next navigation point dnp, a
distance-based weight discount γ is applied. The greater dnp, the smaller γ. A detailed description
of the position embedding is given in Appendix A.3.

The data is then processed through the Deep CrossNet, which constructs and learns high-order cross-
feature combinations. The data is then merged through a residual connection and further encoded
by an MLP before being input into the next part.

The GPT Decoder is designed to exploit the spatiotemporal coupling information inherent in se-
quential data. Each time slice in the data can establish associations with other time slices in the
sequence, rather than relying solely on adjacent time slice data. By computing the attention map,
the model adaptively captures the rich semantic information within the sequence. We choose a
GPT-like architecture for the spatiotemporal data processing module because its self-supervised
training paradigm naturally aligns with predicting current audio based on sequence features. This

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

autoregressive framework allows the model to effectively learn temporal dependencies within the
sequence data, enhancing its capacity to generate accurate and context-aware audio instructions.

Finally, the sequence data processed by the GPT Decoder is fed into the MoE Prediction Layer for
multi-task learning. This layer simultaneously learns to predict 4 sub-tasks necessary for generating
an instruction audio: the audio trigger time, the action-type elements included in the audio, the
information-type elements included in the audio, and the audio play order within the segment. The
underlying shared features are learned using the MoE. Through different combinations of these
expert networks, each subsequent sub-task head can efficiently focus on the features most pertinent
to its specific requirements.

3.3 MODEL TRAINING

As illustrated in Figure 2, the outputs of the TBT audio instruction model are divided into 4 sub-task
outputs: trigger, action, info, and voice order. Each sub-task has a unique loss function tailored to
its specific prediction task:

The trigger decoder is responsible for predicting the normalized play timing of the audio instruc-
tion, with its scalar output ŷtrigger ∈ [0, 1]. The mean squared error (MSE) is employed as the loss
function:

Ltrigger = (ytrigger − ŷtrigger)
2, (2)

where ytrigger is the audio play timing label.

The action decoder is responsible for predicting the action-type elements that should be included
in the audio instruction from the available action elements in the segment. Since a single audio
instruction may contain multiple action-type elements, the action decoder outputs a prediction vector
with a length equal to the number of action-type elements. Each probability prediction value pi ∈
[0, 1] in the prediction vector corresponds to an action element i. If pi > 0.5, the action element is
included in the audio; otherwise, it is excluded. The loss function is defined as follows:

Laction = (yaction − ŷaction)
2, (3)

where yaction is the label vector for action elements. The position corresponding to the element
contained in the audio is 1, otherwise 0.

The info decoder is tasked with predicting the information-type elements that should be included
in the audio instruction from the available information elements in the segment. Since one audio
instruction can contain at most one information-type element, cross-entropy loss is employed:

Linfo = −
25∑
i=1

yinfo,i · log ŷinfo,i, (4)

where 25 is the total number of information-type elements plus one, with the additional position
indicating the probability that no information-type element is included in the audio instruction. yinfo
is the one-hot label representing the information-type element included in the audio instruction.

The voice order decoder is responsible for predicting the play order of the audio instruction within
the segment. It uses one-hot encoding to classify the order into five categories, ranging from 0 to
4, where 0 indicates that the current audio instruction should not be played, and 1 to 4 represents
the play order of the audio relative to the endpoint of the navigation segment. Cross-entropy loss is
employed:

Lvo = −
5∑

i=1

yvo,i · log ŷvo,i, (5)

where yvo is a one-hot encoded label indicating the play order of the audio instruction within the
segment. ŷvo represents the predicted play order of the current audio instruction within the segment.

To address the issue of varying learning difficulties across different sub-tasks in multi-task training
and to avoid subpar performance in certain sub-tasks, the total loss function is computed using the
geometric mean:

Ltotal = (Ltrigger ·Laction ·Linfo ·Lvo)
1
4 , (6)

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

where Ltrigger, Laction, Linfo, and Lvo are the individual loss functions for the trigger, action, info,
and voice order decoders, respectively. The geometric mean ensures a balanced contribution from
each sub-task, mitigating the risk of any single sub-task dominating the overall training process and
leading to more robust model performance across all tasks.

4 EXPERIMENTS

In Section 4.1, we first introduce the dataset and model configurations. Subsequently, in Section
4.2, we demonstrate the advantages of our approach through an AB test by deploying the model in
real-world driving navigation and comparing it with the existing HMM-based TBT audio instruction
policy. Then, in Section 4.3, we evaluate the impact of key components of the model on the overall
performance of the neural network through offline ablation experiments. Finally, in Section 4.4,
we randomly invited 100 drivers to participate in a blind evaluation of our model and the existing
HMM-based TBT audio instruction policy. This evaluation covered 6 scenarios that are prone to
yaw. The purpose of this assessment was to focus on the in-car experience of drivers in order to
evaluate the effectiveness of our method on another dimension.

4.1 DATASET AND MODEL CONFIGURATIONS

To train and evaluate our TBT audio instruction model, we construct a large-scale dataset derived
from real-world driving navigation logs. We collect navigation trajectory data from actual drivers
over 8 days, from June 11 to June 18, 2023. The audio instruction policy for online data collec-
tion is a language generation policy modeled using Hidden Markov Models, which will be denoted
as “HMM” in subsequent experiments. HMM is described in more detail in Appendix A.4. To
maintain data quality and relevance, we have strict selection criteria. Only navigation paths initi-
ated by cars are included, and we exclude trajectories with muted driver terminals, abnormal driving
speeds, yawing, and GPS drifting during navigation. We then apply a secondary filter to the naviga-
tion trajectories based on our domain knowledge. This helps us to identify high-quality navigation
trajectories with normal element transmission and audio play timing that meets the expectations
within each segment. Finally, these filtered high-quality real online trajectories are used to construct
the dataset for the audio instruction model training. A more detailed dataset generation process is
presented in Appendix A.4.

The datasets are partitioned into training, validation, and test sets. Feature standardization is per-
formed using the mean and standard deviation calculated over the dataset. Sequential sample data
are constructed by concatenating individual positioning point samples. The final dataset comprises
approximately 1.56 billion sequence samples, with 1.1 billion samples in the training set (including
10 million supreme quality samples for supervised fine-tuning), 140 million samples in the valida-
tion set, and 320 million samples in the test set. This extensive dataset provides a robust foundation
for training model and assessing its performance in generating effective TBT audio instructions.

The model input features have 2139 dimensions, as detailed in Table 9 in the appendix. The length
of sequence data is set to 3. The MoE part contain 3 experts. The model comprises 4 output heads:
the trigger head outputs a scalar activated by the sigmoid function, the action head outputs a 28-
dimensional vector also activated by the sigmoid function, the info head outputs a 25-dimensional
vector activated by the softmax function, and the voice order head outputs a 5-dimensional vector
activated by the softmax function. The model parameters are 1,147,943. During training, the learn-
ing rate is set to 0.001, the batch size is 800, and the model is trained for 400,000 steps, which takes
approximately 38 hours on 8 NVIDIA T4 GPUs. Additional training parameters are provided in
Table 10 in the appendix.

For online deployment, the model trained with float32 is converted to the float16 model. The model
is split into two parts: one for the edge device and one for the cloud server, which is deployed on
the user’s navigation terminal and cloud server, respectively. The cloud part primarily consists of
cloud feature embeddings. After converting the model to ONNX using TensorRT, the model size
is approximately 807 KB, and it is inferred on the cloud server. The end part of the model is first
converted to ONNX using TensorRT and then to MNN Jiang et al. (2020), resulting in a model size
of approximately 2.3 MB. This part of the model is inferred on the user’s navigation terminal.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

4.2 REAL-WORLD A/B TEST

To empirically validate the effectiveness of our model, we deploy the TBT audio instruction model
online, in order to compare with the HMM audio instruction policy widely used in driving navigation
system. Our navigation system offers 4 modes to meet the different needs of drivers: detail, concise,
minimalist, and intelligent. Drivers can select these modes based on their preferences. The detail
and intelligent modes have more frequent audio prompts and are suitable for navigating unfamiliar
roads, while the concise and minimalist modes have fewer prompts and are ideal for familiar routes.

detail concise minimalist intelligent
mode

4.7

4.8

4.9

5.0

5.1

5.2

5.3

5.4

5.5

ya
w

ra
te

(%
)

5.37%

4.92%

4.77%

5.01%

5.38%

4.97%

4.82%

5.00%

sequence model
hmm

(a)

detail concise minimalist intelligent
mode

0

20

40

60

80

100

120

140

wo
rd

s p
er

 se
gm

en
t

121

57

25

111
119

53

23

107

sequence model
hmm

(b)

detail concise minimalist intelligent
mode

150

200

250

300

350

400

450

500

550

m
ai

n
ac

tio
n

pl
ay

 ra
te

(%
)

428.93%

332.57%
295.93%

426.98%
409.73%

305.28%

207.8%

396.28%

sequence model
HMM

(c)

Figure 3: Real-world A/B test results. Green represents the sequence model and orange represents
the existing HMM policy. (a) Yaw rate, lower yaw rates represent more effective audio instruction;
(b) Words density, lower word density means more streamlined audio; (c) Main action element play
rate, higher means more frequent TBT message alerts.

The A/B test experiment period collected vehicle navigation data via our navigation system from
August 28, 2024, to September 3, 2024, spanning a week and encompassing data from about 600
million segments. The primary results of the online experiment are illustrated in Figure 3. The
comparison mainly focuses on the yaw rate, the average words played per segment and the average
play density of elements. The yaw rate is the ratio of yaw segments to all segments. Lower yaw rate
means more accurate audio instruction. The play density of an element is define as the element play
counts divided by the number of segments which can play this element. The average word count
is positively related to the driver’s difficulty in comprehending the content of the instruction audio,
and the element play rate is positively related to the amount of information in the output content of
the audio instruction model. In general, the more elements that are played with fewer average words
represents a better content organization ability of the audio instruction model.

Compared to existing HMM-based approaches, our sequence model achieves a significant reduction
in yaw rate. As shown in Figure 3 (a), except for the intelligent mode which has a slightly higher
yaw, our model achieves a significant yaw rate reduction on all other modes, especially concise and
minimalist. Note that since our daily online user volume is billions, 0.01% reduction in the yaw rate
represents success in helping hundreds of thousands people drive to their destinations correctly. So
the yaw improvement on the order of 0.01% is also significant.

Moreover, the increase in the average number of words played per segment, as illustrated in Figures
3(b) and 3(c), indicates that our model incorporates more main action elements with only 2-4 words
increase. More element play rates are revealed in Appendix A.5, and for most of them, the play
rate increases. This indicates that our sequence model breaks through the seesaw effect of yaw rate,
play density, and timing: with almost no increase in audio play words, the audio information density
increase is achieved by significantly increasing the element play rates, and the impact on the play
timing is few because the audio text length is almost unchanged. This in turn reduces the yaw rate.

In summary, the results of the real-world A/B test validate the effectiveness of our method in pro-
viding real-time, context-aware audio instructions that significantly reduce the yaw rate. In addition,
our model can adapt to drivers’ diverse navigation detail preferences, as evidenced by its superior
performance in different modes, highlighting its robustness and generalizability under real-world
driving conditions.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

4.3 ABLATION STUDY

To investigate the necessity and effectiveness of each component in our model, we conducted a
comprehensive ablation study offline by systematically removing or altering individual components
and observing the impact on overall performance. The results are summarized in Table 1.

Model Type Trigger 10m Trigger 30m Action Info VoiceOrder
our model 83.3% 96.3% 97.0% 98.6% 90.7%
BERT decoder −2.0% −0.8% −0.1% −0.3% −0.1%
w/o position embedding −2.5% −2.1% −0.2% −0.1% −1.9%
w/o MoE −0.5% −0.1% −0.4% −0.2% −0.5%
w/o CrossNet −3.0% −3.8% −4.1% −2.0% −2.1%
w/o sequence −5.5% −1.4% −0.3% −0.2% −1.5%

Table 1: Ablation study

The metrics used in this section are defined as follows: Trigger 10m: The accuracy of the trigger
head predictions within a 10-meter range; Trigger 30m: The accuracy of the trigger head predictions
within a 30-meter range; Action: The accuracy of the action head predictions; Info: The accuracy
of the info head predictions; VoiceOrder: The accuracy of the voice order head predictions.

Our model achieved a trigger 10m accuracy of 83.3%, a trigger 30m accuracy of 96.3%, an action
accuracy of 97.0%, an info accuracy of 98.6%, and a voice order accuracy of 90.7%. These results
affirm the robustness and high performance of our proposed method.

When we replaced the GPT decoder with a BERT decoder, we observed a slight decrease in per-
formance across all metrics. Specifically, trigger 10m and trigger 30m accuracies dropped by 2.0%
and 0.8%, respectively, while action, info, and voice order accuracies decreased marginally. This
indicates that the GPT decoder is better suited for capturing the spatial and temporal dependencies
of sequence data in audio instruction tasks compared to BERT.

Removing the position embedding resulted in a more pronounced decline in performance, partic-
ularly for trigger 10m, trigger 30m, and voice order accuracies. This indicates that sequence and
element position information is critical to the model prediction of timing and order.

Eliminating the MoE component led to a moderate reduction in performance, with the most signif-
icant impact observed on the action and voice order accuracies. This suggests that the multi-task
learning capabilities of the MoE framework play a crucial role in effectively handling the diverse
and interrelated sub-tasks of the TBT audio instruction model.

The removal of the CrossNet resulted in the most substantial performance degradation across all
metrics, with Trigger 10m and Action accuracies decreasing by 3.0% and 4.1%, respectively. This
highlights the critical role of high-order feature interactions in capturing the complex relationships
between different input features.

Finally, when we omitted the sequential input features, which means reducing the sequence length
from 3 to 1, we observed a significant drop in Trigger 10m accuracy by 5.5% and a noticeable
decline in other metrics. This demonstrates the necessity of incorporating sequence information for
providing accurate and context-aware audio instructions. More experiments on sequence length and
selection of the number of MoE experts are presented in Appendix A.6.

In conclusion, the ablation study confirms that each component of our model contributes signifi-
cantly to its overall performance. The superior results achieved by our full model validate the design
choices made during development and underscore the effectiveness of leveraging advanced deep
learning techniques for real-time, context-aware TBT audio instructions.

4.4 BLIND EVALUATION

To further assess the effectiveness of our proposed sequence model in real-world driving scenarios,
we conducted a blind evaluation comparing our model’s TBT audio instructions with those gen-
erated by the existing HMM-based policy. The goal was to evaluate the in-car experience from

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

the driver’s perspective, focusing on how well the audio instructions aid in navigating challenging
driving situations that are prone to yaw.

We randomly recruited 100 drivers to participate in this study. Each driver was presented with pairs
of audio instructions generated by our model and the HMM-based policy for six different driving
scenarios known to cause navigational difficulties, which are described in detail in Appendix A.7.

For each scenario, the drivers were asked to listen to the audio instructions without knowing which
model generated them and to rate which one they preferred or if they found them equally effective.
The results are summarized in Table 2.

Scenario Sequence Model Better HMM Better No Difference
Near double bend 21% 12% 67%
Mix fork 28% 22% 50%
Roundabout 54% 18% 28%
Short segment 45% 15% 40%
Double traffic light 21% 17% 62%
Tunnel 11% 18% 69%

Table 2: Results of the blind evaluation comparing the Sequence Model and HMM policy across
different challenging driving scenarios.

In the roundabout and short segment, a significant proportion of drivers preferred the audio in-
structions generated by our sequence model over those from the HMM-based policy. These results
indicate that our model provides clearer and more effective guidance in complex scenarios where
precise timing and content of instructions are critical. The enhanced performance in these situa-
tions can be attributed to our model’s ability to capture spatiotemporal dependencies and generate
context-aware audio instructions that adapt to the driving environment in real time.

In the near double bend, mix fork, and double traffic light, the majority of drivers found little differ-
ence between the two models, with a slight preference for our sequence model. It suggests that while
both models perform adequately in these scenarios, our model still offers marginal improvements.

In the tunnel scenario, slightly more drivers preferred the HMM policy (18%) over our model (11%).
This may be due to the unique challenges posed by tunnels, such as GPS signal loss, which can affect
real-time data processing.

Overall, the blind evaluation demonstrates that our sequence model outperforms the traditional
HMM-based policy in delivering timely and contextually appropriate audio instructions, especially
in complex driving conditions prone to navigation errors. By effectively balancing informational
content with cognitive load and adapting to dynamic driving contexts, our model enhances the
driver’s situational awareness and decision-making, thereby improving safety and navigation effi-
ciency. These findings validate the practical applicability and advantages of leveraging deep learning
in TBT audio instruction systems.

5 CONCLUSION

In this paper, we introduce a novel deep-learning framework leveraging sequence models for real-
time, context-aware audio instructions in TBT driving navigation. By formalizing the audio in-
struction generation into modular elements and utilizing a cloud-edge collaborative architecture, our
approach effectively balances informational content with cognitive load. Extensive experiments,
including real-world A/B tests and blind evaluations, demonstrated that our model significantly re-
duces yaw rates compared to HMM-based policies, successfully incorporates more informative ele-
ments into audio instructions without overwhelming the driver. And the ablation studies confirmed
the critical contributions of each component in our model.

Our method represents the first large-scale application of deep learning in practical driving audio
navigation, marking a substantial advancement in intelligent transportation technologies. Future
work will focus on further optimizing model performance in complex scenarios and exploring per-
sonalized navigation experiences by integrating individual driver preferences and behaviors.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

6 REPRODUCIBILITY STATEMENT

We have made significant efforts to ensure the reproducibility of our results presented in this paper.
The complete implementation of our model, including the model structure, inference code, and part
of the training code, is provided in the supplementary materials. This includes detailed descriptions
of the model architecture, hyperparameter settings, training procedures, and the cloud-edge collabo-
rative deployment as discussed in Section 3 and detailed in Appendix A.2 and Appendix A.8. While
our dataset and complete training flow cannot be open-sourced due to user privacy and commercial
confidentiality considerations, we have provided a comprehensive explanation of the data collection
process, selection criteria, preprocessing steps, and dataset composition in Section 4.1 and Appendix
A.4. We have also thoroughly described the feature engineering and input representations in Ap-
pendix A.1 and Appendix A.8. All experimental settings, evaluation metrics, and analysis methods
are detailed in Section 4, with additional experimental results and ablation studies presented in Sec-
tion 4.3 and Appendices A.5 and A.6. By providing the code and comprehensive descriptions of our
methodologies and experiments, we aim to facilitate the replication and validation of our work by
the research community.

REFERENCES

Yang Bian, Xiaolong Zhang, Yiping Wu, Xiaohua Zhao, Hao Liu, and Yuelong Su. Influence of
prompt timing and messages of an audio navigation system on driver behavior on an urban ex-
pressway with five exits. Accident Analysis & Prevention, 157:106155, 2021. ISSN 0001-4575.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal,
Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.
Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin,
Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford,
Ilya Sutskever, and Dario Amodei. Language models are few-shot learners, 2020.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In North American Chapter of the Associ-
ation for Computational Linguistics, pp. 4171–4186. Association for Computational Linguistics,
2019.

Sara Irina Fabrikant. Exploring the Effects of Decoupling the Design Space for Mobile Navigation
Technologies. doctor’s thesis, University of St.Gallen, 2023.

Zhiheng Huang, Wei Xu, and Kai Yu. Bidirectional lstm-crf models for sequence tagging, 2015.

Brit Susan Jensen, Mikael B. Skov, and Nissanthen Thiruravichandran. Studying driver attention
and behaviour for three configurations of gps navigation in real traffic driving. In Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems, pp. 1271–1280. Association
for Computing Machinery, 2010. ISBN 9781605589299.

Xiaotang Jiang, Huan Wang, Yiliu Chen, Ziqi Wu, Lichuan Wang, Bin Zou, Yafeng Yang, Zongyang
Cui, Yu Cai, Tianhang Yu, Chengfei Lyu, and Zhihua Wu. Mnn: A universal and efficient infer-
ence engine. In Machine Learning and Systems, volume 2, pp. 1–13, 2020.

Navdeep Kaur and Parminder Singh. Conventional and contemporary approaches used in text to
speech synthesis: A review. Artificial Intelligence Review, 56(7):5837–5880, 2023.

Helen Keyes, Antony Whitmore, Stanislava Naneva, and Daragh McDermott. The priming function
of in-car audio instruction. Quarterly Journal of Experimental Psychology, 72(3):643–650, 2019.

David R. Large and Gary E. Burnett. The effect of different navigation voices on trust and attention
while using in-vehicle navigation systems. Journal of Safety Research, 49:69.e1–75, 2014. ISSN
0022-4375.

Angela Schwering, Jakub Krukar, Rui Li, Vanessa Joy Anacta, and Stefan Fuest. Wayfinding
through orientation. Spatial Cognition & Computation, 17(4):273–303, 2017.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Jianlin Su, Murtadha Ahmed, and Bo Yunfeng Liu. Roformer: Enhanced transformer with rotary
position embedding. Neurocomputing, 568(Feb.1):127063.1–127063.12, 2024.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In International Conference
on Neural Information Processing Systems, pp. 6000–6010. Curran Associates Inc., 2017. ISBN
9781510860964.

Anna Wunderlich, Sabine Grieger, and Klaus Gramann. Landmark information included in turn-by-
turn instructions induce incidental acquisition of lasting route knowledge. Spatial Cognition &
Computation, 23(1):31–56, 2023.

Liping Yang, Yang Bian, Xiaohua Zhao, Jianming Ma, Yiping Wu, Xin Chang, and Xiaoming Liu.
Experimental research on the effectiveness of navigation prompt messages based on a driving
simulator: a case study. Cognition, Technology & Work, 23:439–458, 2021.

Liping Yang, Xiaohua Zhao, Yang Bian, Mengmeng Zhang, and Yajuan Guo. Effects of the amount
of information from navigation voice guidance on driving performance. Sustainability, 16(14):
5906, 2024.

Yiming Yang, Dengpeng Xing, and Bo Xu. Efficient spatiotemporal transformer for robotic rein-
forcement learning. IEEE Robotics and Automation Letters, 7(3):7982–7989, 2022.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou, Yingqian Min,
Beichen Zhang, Junjie Zhang, Zican Dong, Yifan Du, Chen Yang, Yushuo Chen, Zhipeng Chen,
Jinhao Jiang, Ruiyang Ren, Yifan Li, Xinyu Tang, Zikang Liu, Peiyu Liu, Jian-Yun Nie, and
Ji-Rong Wen. A survey of large language models, 2023.

Haitian Zheng, Mengqi Ji, Haoqian Wang, Yebin Liu, and Lu Fang. Crossnet: An end-to-end
reference-based super resolution network using cross-scale warping. In European conference on
computer vision, pp. 88–104. CVF, 2018.

Qi Zhong, Gang Guo, and Jinyi Zhi. Address inputting while driving: a comparison of four alterna-
tive text input methods on in-vehicle navigation displays usability and driver distraction. Traffic
injury prevention, 23(4):163–168, 2022.

Shan Zhou. Generating natural language discripting for vehicle trajectories based on hmm. master’s
thesis, Beijing University of Posts and Telecommunications, 2012.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 ELEMENT TYPE AND SUB-TYPE

Element name Onehot index Description
Mainaction 0 The main action element, which represents the action

that the driver needs to take at the next navigation point,
must be present in every segment.

Assistaction 1 The assist action element. Supplementary information
to the main action element usually reveals information
about the next segment so that drivers can better under-
stand instruction.

Slope 2 Existence of uphill or downhill.
Lane 3 Lane related instructions for multi-lane roads

WideLane 4 Wide lane reminder
MixLane 5 Driving lane reminder

TunnelLane 6 Driving lane reminder for entering tunnel
Longsolidlane 7 Existence of long solid lines

Linkturn 8 Significant curvature of the road in the middle of the
segment, but no turnoffs

Mixfork 9 Two same direction turnoffs close to each other at the
navigation point(dnp = 0)

AroundFork 10 Pass the roundabout exit
ExitRoad 11 Exit road for highway or urban expressway

TunnelSimpleLane 12 Tunnel lane confirmation
Nextbrname 13 Enter XXX road and head towards XXX

NextMainaction 14 Main action element in next segment
NextAssistaction 15 Assist action element in next segment

NextSlope 16 Slope element in next segment
NextSegNextbrname 17 Nextbrname element in next segment

NextLane 18 Lane element in next segment
NextNextAct 19 Main action element in the segment after next
NextExitRoad 20 ExitRoad element in next segment

SolidLane 21 Existence of solid lines
Nonnavigation 22 Fork not at navigation points, generally straight ahead

Mixfork1 23 Two same direction turnoffs close to each other before
the navigation point(dnp > 0)

NextMixfork0 24 Mixfork0 element in next segment
ShortNonNaviLane 25 Next sub-segment lane

RTKSingelPlay 26 Real-time kinematic lane instruction played separately
RTKCombinePlay 27 Real-time kinematic lane instruction played together

with other elements

Table 3: Action type element

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Element name Onehot index Description
Camera 0 Current road camera

NextCamera 1 Next road camera
Intervalcamera 2 Average speed check camera

IntervalCameraStart 3 Average speed check camera start position
IntervalCameraEnd 4 Average speed check camera end position

IntervalCameraOverSpeed 5 Overspeed warning during average speed check
IntervalCameraPass 6 Passing average speed check camera start position

IntervalCameraHalfway 7 Half pass average speed check
CameraPass 8 Passing road camera

Speedlimitsign 9 Speed limit sign
Buslane 10 Restricted bus lane reminder

RetrogradeRoad 11 Retrograde reminder
TurnLight 12 Attention for the right (left) turn signal

GlobalBridge 13 Bridge ahead
GlobalFacility 14 Sharp turn ahead

GlobalCity 15 Switching city reminder
GlobalCheckpoint 16 Checkpoint ahead

GlobalCarwalk 17 Destination is reached on foot reminder
GlobalForbidden 18 Restricted road reminder

GlobalAvoidfacilitynavi 19 Inescapable height limit ahead
GlobalService 20 Service area reminder

GlobalSpeedLimitSection 21 Speed limit section reminder
GlobalCurve 22 Curve ahead

GlobalSpeedLimitSign 23 Speed limit sign
MixforkRemind 24 Mix fork reminder

Table 4: Info type element

Onehot index Play text
0 Null
1 Turn left
2 Turn right
3 Turn left ahead
4 Turn right ahead
5 Turn left and back
6 Turn right and back
7 Turn around
8 Go straight
9 Keep left

10 Keep right
11 Exit the roundabout
12 Enter the roundabout
13 Slow down
14 Merge into straight
15 Tunnel
16 Waypoint
17 Fork
18 Destination

Table 5: Sub-type of main action

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A.2 CLOUD-EDGE COLLABORATION

cloud server

audio template

text to speech

Turn right

cloud

load config

generate cloud
feature

cloud
embedding

edge

client
embedding

cloud-client
embedding fusion

client model inference

generate client
feature

scheduling unit
request per segment

driver

Figure 4: Cloud-edge collaboration framework. The left side shows the user’s driving behavior,
and the edge device in the middle determines whether it needs to generate audio instruction based on
the driving progress, as well as the start of each segment requesting cloud feature embedding from
the cloud server on the right side.

As shown in Figure 4, we implement a cloud-edge collaborative architecture that cloud-edge collab-
oration framework for practical applications. This design leverages the strengths of both platforms
to enhance real-time performance, system scalability, and driving experience.

By deploying the model inference on edge devices, we capitalize on the computational capabilities
of user hardware. Processing data locally allows for real-time responsiveness, which is crucial for
delivering timely audio instructions in navigation. It minimizes latency and ensures that drivers
receive immediate feedback, enabling them to make quick and safe decisions on the road.

Offloading inference tasks to the edge also reduces the computational burden on the cloud servers.
This not only decreases operational costs but also enhances the system’s scalability by allowing
it to support a larger user base without proportionally increasing cloud resources. It prevents the
wastage of cloud server resources that would occur if all computations were centralized, especially
considering that edge devices often have underutilized processing power.

While the edge devices handle real-time inference, the cloud server performs pre-processing tasks
and generates embeddings for static and complex features such as road graph data, a part of element
features, and personalized driver features. These computations benefit from the cloud’s superior pro-
cessing power and centralized data storage, which allows for up-to-date and comprehensive feature
embeddings that can be periodically updated without impacting the edge devices. The scheduling
unit on the edge is responsible for requesting the cloud-side model embedding for this segment from
the cloud at the beginning of each segment and for orchestrating the edge-side play model inference.

An important advantage of this cloud-edge collaboration is the flexibility it provides in updating the
model. With the inference model on the edge and feature embeddings on the cloud, we can update
components independently. This modularity accelerates the iteration cycle of the model, reducing it
from a monthly to a weekly timeframe. As a result, we can deploy updates and improvements more
rapidly, responding promptly to user feedback and evolving requirements. This agility opens up
greater possibilities for supporting additional features in the future, enhancing the system’s adapt-
ability and longevity.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Moreover, differentiating the tasks based on their timing requirements optimizes system perfor-
mance. Real-time processing is handled by the edge, meeting the immediate demands of navigation
instructions. In contrast, the cloud handles tasks that can be pre-computed, like embedding updates,
which do not require instant processing. This separation ensures efficiency by aligning computa-
tional tasks with the most suitable platform.

In conclusion, our cloud-edge collaborative approach effectively balances efficiency, effectiveness,
and cost. By leveraging the computational strengths of edge devices for real-time inference and the
cloud for intensive pre-processing tasks, we optimize resource utilization. The flexibility in updating
the model enhances iterative efficiency, allowing for faster deployment of improvements and new
features. This architecture not only improves the scalability and performance of the TBT navigation
system but also significantly enhances the driver’s experience by providing timely, accurate, and
context-aware audio instructions.

A.3 POSITION EMBEDDING

We design the position embedding as in Equation 7, where features with smaller distances to the next
navigation point dnp will receive more attention during the multi-head attention computation. This is
essentially an additional inductive bias that we provide to the multi-head attention computation based
on domain knowledge. Similar design has been verified as valid in past research on transformers
Yang et al. (2022).

γ =

1

2⌊
dnp
50

−1⌋
, 0 ≤ dnavi ≤ 300

1

2⌊
dnp
100

+2⌋
, 300 ≤ dnavi ≤ 600

1

2⌊
dnp
200

+6⌋
, 600 ≤ dnavi ≤ 1000

1

2⌊
dnp
500

+9⌋
, 1000 ≤ dnavi ≤ 3000

1
214 , dnp ≥ 3000

(7)

A.4 DATA COLLECTION

Raw
navigation log

Data
aggregation
and filtering

Feature
and label
generate

Dateset

Figure 5: Dataset production process. The TBT log is
restored offline based on the actual navigation trajectory
logs of real online drivers. Then model input features,
and labels are generated accordingly. Finally, the dataset
is completed.

Figure 5 illustrates the procedural work-
flow for constructing the dataset uti-
lized in model training. The production
of samples involves approximately four
steps:

The first step entails extracting raw nav-
igation trajectory logs that meet specific
selection criteria into a temporary ta-
ble. This step solely focuses on data
preservation without processing, ensur-
ing that any issues encountered in sub-
sequent processes can be swiftly traced
back to either this step or the upstream
processes. Additionally, this facilitates
data validation against the raw data. The selection criteria include choosing navigation paths initi-
ated by cars, excluding paths where the driver’s terminal was muted, eliminating data with anoma-
lies, and discarding paths with yaws.

In the second step, the raw data undergoes aggregation and filtration: Initially, point data are merged
based on whether they belong to the same navigation path. Subsequently, segment data is consol-
idated into point data, simplifying the subsequent processing of point data by avoiding multiple
associations with segment information. During this process, data is subjected to rounds of cleaning
to remove outliers. For data exhibiting poor performance in real navigation (such as drift GPS points
or yaws), negative labeling is applied. Following this, simulated driving behavior and GPS signals
are recreated offline based on the parsed trajectory points and segment information, thereby restor-
ing the complete trajectory points and other information on the path. Finally, the model prediction
points and corresponding audios to be predicted are determined.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

The third step involves generating features and labels for the model prediction points, which are then
merged to form the samples.

The last step consolidates data produced in different batches, partitioning it into training, validation,
and test datasets. Feature standardization is performed using the mean and standard deviation of the
features. Subsequently, single positioning point sample data is concatenated into sequential sample
data. And finally, the dataset for model training is complete.

The complete dataset consists of sequence samples totaling 1.561 billion. This includes 1.101 billion
in the training set, with 1.1 billion for pretrain and 10 million high-quality samples for finetune. 140
million in the validation set, and 320 million in the test set. These data were derived from 8 days of
online real navigation logs collected from June 11 to June 18, 2023.

It is worth noting that the online TBT audio instruction mechanism used in data collection is not
implemented through a neural network model but rather employs a Hidden Markov Model (HMM)
for mapping and Viterbi inference to select the elements and timing for audio instruction Zhou
(2012). We refer to this as the HMM model. The HMM model determines the number of elements
to be played based on the remaining distance dnp to the next navigation point and infers the layers
accordingly. Starting from the last audio at the navigation point, the inference is conducted towards
the current driver position. It then combines segment history audios, driver information, and other
contextual features, scoring each candidate node in each layer based on a ranking score system to
ultimately decide the audio content and timing. The observation probability of a node is calculated
as the average score of the element combination at the node:

P (Ot | St) =
1

2
(Savg + Scum) (8)

where P (Ot | St) is the observation probability of the node at time t. Ot is the observation of the
current node, which is the audio instruction consisting of the selected element and timing, and St

is the state of the current node, which judges the value of the audio instruction represented by the
current node. Savg is the average element combination score, calculated as the geometric mean of
the scores of individual elements in the node’s element combination. The individual element score
is setted based on prior knowledge. Scum is the cumulative element combination score, evaluating
the attachment strength of the element combined with the main action element.

The transition probability primarily evaluates the accuracy and reasonableness of transitions between
nodes in different layers:

P (St | St−1) = Sdiff · Srep · Strans (9)
where P (St | St−1) is the state transition probability from the node at time t − 1 to the node at
time t. Sdiffis the information difference score, evaluating the information gain during the transition
between two nodes, including information increase, decrease, and repetition. Srepis the segment
repetition score, considering the global historical features within the segment and down-weighting
elements that have already been played. Strans is the transition reasonableness score. Evaluating the
rationality of state transfers based on priori rule constraints Finally, the optimal path and nodes are
determined by computing the Viterbi algorithm over all possible paths.

A.5 SUPPLEMENTARY DATA FOR REAL-WORLD A/B TEST

The detailed element play rates presented in Table 6 further corroborate the effectiveness of our se-
quence model in enhancing the informativeness of audio instructions. Notably, the play rates of el-
ements strongly correlated with yaw rate—specifically Mainaction, Assistaction, and Lane—have
significantly improved across all modes compared to the HMM-based method. For instance, the
play rate of Mainaction in the ”Minimalist” mode increased by 88.14%, while Assistaction saw
a substantial rise of 36.26% in the ”Concise” mode. The Lane element also experienced improve-
ments, with a 3.36% increase in the ”Detail” mode. These enhancements indicate that our model
more effectively delivers critical navigational cues, ensuring drivers receive timely and essential
information necessary for safe driving.

Moreover, the average element play rate across all modes has improved, demonstrating that our
sequence model successfully integrates more informative content into the audio instructions without
overwhelming the driver. This balance between informativeness and cognitive load is crucial; by
increasing the play rates of key elements, the model provides drivers with the necessary guidance

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Scene/Mode Detail Concise Minimalist Intelligent
Scene/Method HMM Sequence Model Difference HMM Sequence Model Difference HMM Sequence Model Difference HMM Sequence Model Difference
ET AroundFork 151.16% 149.55% -1.61% 150.09% 145.70% -4.39% 122.75% 128.14% 5.39% 150.53% 148.53% -1.99%
ET Assistaction 44.13% 70.15% 26.02% 28.55% 64.81% 36.26% 16.89% 45.68% 28.78% 41.03% 68.45% 27.43%
ET Buslane 4.41% 4.22% -0.19% 4.63% 4.48% -0.15% 0.15% 0.14% -0.01% 4.19% 4.07% -0.12%
ET Camera 174.98% 163.40% -11.58% 82.03% 84.53% 2.51% 28.07% 29.24% 1.17% 145.37% 135.73% -9.64%
ET CameraPass 37.01% 33.57% -3.44% 37.54% 35.99% -1.55% 0.68% 0.36% -0.32% 32.21% 30.17% -2.03%
ET ExitRoad 23.54% 25.50% 1.97% 0.09% 0.03% -0.05% 0.11% 0.09% -0.01% 19.23% 20.81% 1.58%
ET GlobalBridge 5.42% 5.48% 0.06% 0.17% 0.13% -0.04% 0.24% 7.99% 7.75% 4.45% 4.47% 0.01%
ET GlobalCarwalk 0.08% 0.07% -0.01% 0.08% 0.07% -0.01% 0.07% 0.08% 0.01% 0.08% 0.07% -0.01%
ET GlobalCity 4.76% 4.54% -0.22% 0.10% 0.08% -0.02% 0.28% 0.23% -0.05% 3.88% 3.75% -0.13%
ET GlobalCurve 0.91% 1.23% 0.31% 4.39% 2.16% -2.23% - 0.03% - 0.79% 1.08% 0.29%
ET GlobalFacility 55.68% 56.41% 0.73% 0.17% 0.14% -0.04% 0.45% 0.40% -0.05% 40.63% 40.79% 0.16%
ET GlobalForbidden 0.02% 0.01% -0.01% 0.02% 0.01% -0.01% - - - 0.01% 0.00% -0.01%
ET GlobalService 19.81% 19.69% -0.12% 7.96% 7.54% -0.42% 0.30% 0.23% -0.07% 16.76% 16.56% -0.20%
ET GlobalSpeedLimitSign 42.28% 45.86% 3.57% 0.23% 0.14% -0.09% 0.27% 0.20% -0.07% 33.77% 38.42% 4.65%
ET IntervalCameraEnd 5.89% 5.90% 0.01% 5.48% 5.46% -0.02% 0.10% 0.18% 0.08% 5.32% 5.32% 0.00%
ET IntervalCameraHalfway 3.55% 3.49% -0.06% 2.98% 2.91% -0.07% 0.06% 0.28% 0.23% 3.26% 3.26% 0.00%
ET IntervalCameraOverSpeed 3.46% 3.87% 0.40% 2.99% 3.49% 0.50% 2.79% 4.17% 1.38% 3.25% 3.50% 0.25%
ET IntervalCameraPass 3.23% 3.15% -0.08% 2.93% 2.86% -0.08% 0.08% 0.19% 0.12% 2.94% 2.87% -0.07%
ET IntervalCameraStart 7.15% 6.79% -0.36% 6.38% 6.32% -0.06% 0.14% 0.21% 0.07% 6.19% 5.94% -0.26%
ET Lane 89.89% 93.25% 3.36% 0.70% 0.78% 0.07% 0.40% 0.77% 0.37% 78.83% 82.13% 3.30%
ET Linkturn 2.75% 0.84% -1.91% 2.35% 0.44% -1.92% 1.66% 0.21% -1.45% 2.54% 0.64% -1.90%
ET Longsolidlane 6.54% 9.71% 3.17% 5.42% 5.88% 0.46% 5.99% 6.35% 0.36% 5.55% 8.80% 3.25%
ET Mainaction 409.73% 428.93% 19.19% 305.28% 332.57% 27.29% 207.80% 295.93% 88.14% 396.28% 426.98% 30.70%
ET Mixfork 110.80% 87.31% -23.50% 80.14% 85.34% 5.21% 70.66% 75.14% 4.48% 92.75% 113.13% 20.38%
ET MixforkRemind 8.15% 8.59% 0.44% 15.00% 0.96% -14.04% 100.00% 0.69% -99.31% 7.28% 8.02% 0.74%
ET MixLane 4.21% 5.05% 0.84% 16.67% 14.29% -2.38% 3.54% 4.27% 0.73%
ET NextAssistaction 1.10% 1.55% 0.45% 1.12% 1.52% 0.41% 2.88% 2.67% -0.20% 1.05% 1.57% 0.52%
ET Nextbrname 85.94% 87.41% 1.48% 28.20% 32.63% 4.43% 0.36% 0.34% -0.01% 74.98% 78.75% 3.77%
ET NextExitRoad 0.16% 0.18% 0.02% 0.12% 0.13% 0.01%
ET NextLane 5.81% 6.58% 0.78% 7.43% 7.42% -0.02% 0.16% 0.63% 0.47% 5.73% 6.43% 0.69%
ET NextMainaction 30.21% 24.36% -5.85% 21.93% 22.62% 0.69% 16.56% 17.74% 1.19% 29.74% 25.32% -4.42%
ET NextMixfork0 0.20% 0.24% 0.04% 0.21% 0.25% 0.05% 0.01% 20.00% 19.99% 0.18% 0.23% 0.05%
ET NextNextAct 0.28% 0.24% -0.04% 0.11% 0.11% 0.22% 0.22% 0.00%
ET NextSegNextbrname 7.83% 7.48% -0.35% 2.28% 1.83% -0.46% 3.15% 5.53% 2.37% 7.28% 6.79% -0.49%
ET NextSlope 2.83% 1.81% -1.02% 8.47% 16.00% 7.53% 20.00% 2.27% 1.37% -0.90%
ET Nonnavigation 148.75% 144.01% -4.74% 28.06% 28.15% 0.09% 1.29% 1.32% 0.03% 128.39% 124.84% -3.55%
ET RetrogradeRoad 0.23% 0.21% -0.02% 0.10% 0.11% 0.01% 0.08% 0.14% 0.05% 0.22% 0.19% -0.03%
ET ShortNonNaviLane 3.79% 4.58% 0.79% 0.07% 0.08% 0.01% 0.11% 0.13% 0.02% 3.35% 3.71% 0.36%
ET Slope 21.23% 23.63% 2.40% 10.18% 22.03% 11.85% 13.61% 0.35% -13.25% 18.79% 22.17% 3.37%
ET SolidLane 0.05% 0.05% 0.01% 0.05% 0.07% 0.01% 0.07% 0.08% 0.01% 0.04% 0.04% 0.00%
ET TunnelLane 17.47% 17.20% -0.26% 10.33% 14.19% 3.86% 38.46% 6.49% -31.98% 16.38% 16.80% 0.42%
ET TurnLight 1.15% 1.08% -0.07% 0.98% 1.05% 0.07% 3.79% 3.76% -0.03% 1.20% 1.17% -0.03%
ET UnSlope 0.00%
Total 46.26% 49.38% 3.12% 28.86% 33.46% 4.60% 33.49% 47.70% 14.21% 40.87% 44.54% 3.67%

Table 6: Element play rates

to navigate complex intersections and road networks confidently. When combined with the results
shown in Figure 3,(b), which illustrates that the words per segment have only marginally increased,
it becomes evident that our model enhances informational content efficiently. This efficient delivery
contributes to reduced yaw rates, as drivers are better prepared and less likely to deviate from the
intended route, ultimately validating the benefits of our approach in real-world driving scenarios.

A.6 SUPPLEMENTARY DATA FOR ABLATION STUDY

Sequence length Trigger 10m Trigger 30m Action Info VoiceOrder
3 (our model) 83.3% 96.3% 97.0% 98.6% 90.7%
1 −5.5% −1.4% −0.3% −0.2% −1.5%
2 −5.0% −2.0% −0.1% 0.0% −0.3%
4 0.1% 0.0% 0.1% −0.1% −0.0%
5 0.0% 0.0% 0.1% 0.0% 0.0%

Table 7: Sequence length ablation study

We conducted an ablation study to determine the optimal sequence length for our model by varying it
from 1 to 5 and observing the impact on performance metrics. As presented in Table 7, reducing the
sequence length to 1 and 2 resulted in a significant decline in performance. This indicates that shorter
sequences fail to capture sufficient temporal dependencies, adversely affecting the model’s ability
to predict audio instruction timing within a critical 10-meter range. The minimal decreases in other
metrics further underscore the importance of sequence data in accurately modeling spatiotemporal
patterns essential for effective navigation instructions.

Conversely, increasing the sequence length beyond 4 yielded diminishing returns. Extending the
sequence length to 5 did not provide additional benefits. These observations suggest that while in-
corporating historical data enhances the model’s predictive capabilities, excessive sequence lengths
introduce redundant information without meaningful gains. Therefore, a sequence length of 3 strikes
an optimal balance between capturing adequate historical context and maintaining computational ef-
ficiency. This choice allows the model to effectively leverage spatiotemporal dependencies inherent
in driving scenarios, enhancing the accuracy and contextual relevance of real-time audio instructions
without incurring unnecessary computational overhead.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

MoE expert number Trigger 10m Trigger 30m Action Info VoiceOrder
3 (our model) 83.3% 96.3% 97.0% 98.6% 90.7%
2 −0.2% −0.1% −0.1% 0.0% −0.2%
1 −0.5% −0.2% −0.2% 0.1% −0.4%

Table 8: MoE expert number ablation study

A.7 COMPLEX DRIVING SCENARIOS

The 6 complex scenarios mentioned in Experiment 4.4 are described in this section. The meanings
of all the symbols in the following figure are the same as those presented in the legend of Figure
1, with the black solid line representing the edge of the road, the red car representing the current
GPS-located driver’s position, the directed path made up of blue dashed arrows representing the
navigation path planned by the navigation system, one blue dashed arrow representing a segment,
and the orange dots representing the navigation points.

Figure 6: Near double bend. The next segment is short, and the driver is about to face two con-
secutive turns. The elements of the next segment should be pre-played into the current segment to
avoid incomplete transmission due to short navigation.

Mix fork

Figure 7: Mix fork. If one or more forks are closer to the next navigation point in the same segment,
and the fork roads are facing in the same direction as the turn needed for the next navigation point,
these forks are called mix forks. They are shown in the orange dotted box. Drivers should be warned
not to turn early at this point.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Figure 8: Roundabout. A roundabout comprises a circular roadway and a central island, designed
so that traffic approaching from any direction must enter the roundabout and circulate in a single,
consistent direction around the central island until reaching the desired exit. Multiple exits may exist
within the roundabout. The audio instruction policy should alert drivers to exit at the correct fork.

Figure 9: Short segment. Short segment scenarios refer to instances where the driver enters a short
segment. Given the brevity of these segments, it is essential to condense the audio to prevent them
from being overshadowed by previous instructions or delayed in delivery.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Figure 10: Double traffic light. The double traffic light scenario involves the presence of two traffic
lights, where the driver should execute a turning operation at the second light. It is crucial to remind
the driver of the traffic light sequence and provide clear guidance. The audio instruction policy
should recall the turning information at the second traffic light when approaching the first.

In tunnel Out tunnel

Figure 11: Tunnel. The tunnel scenario pertains to the situation where a driver is traversing through
a tunnel. Given that entering a tunnel often results in the loss of signal and GPS positioning on the
user’s navigation device, it is hard to communicate with the navigation system in real-time. There-
fore, it is necessary to preemptively retrieve the required cloud-based information before entering
the tunnel. Additionally, audio instructions for post-tunnel driving operations should be provided
within the tunnel to ensure the driver has ample time to change lanes upon exiting.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

A.8 MODEL HYPERPARAMETERS AND FEATURES

Meaning Embedding device Dimension
Road network feature cloud 414

Action element feature cloud 168
Info element feature cloud 150
Personalized feature cloud 99

Position feature edge 299
Action element feature edge 196

Info element feature edge 175
History play feature edge 638

Table 9: Model input feature

Name Value Description
max len 3 Input feature length

predict max len 3 Model predict length
speed max len 10 The max speed feature length
mlp hid dim 156 MLP hidden dimension

lr 1e-3 Learning rate
adam weight decay 1e-7 Adam weight decay

adam beta1 0.9 Adam β1

adam beta2 0.999 Adam β2

hidden 256 Hidden dimension for GPT decoder
layers 1 Layers for GPT decoder

attn heads 4 GPT decoder attention head
batch size 800 Batch size for training
att head 32 MHA attention head
att hid 128 MHA hidden dimension
att emb 79 MHA input embedding dimension

speed att head 2 Speed MHA attention head
speed att hid 2 Speed MHA hidden dimension

mlp layer num 2 Number of MLP layer
decoder mlp hid dim 64 MLP dimension for model output decoder

decoder mlp layer num 2 Number of layer for model output decoder
mlp emb dim 8 Embedding dimension for input feature

Table 10: Hyperparameters

22

	Introduction
	Preliminaries and Background
	Method
	Problem Formalization
	Sequence modeling
	Model Training

	Experiments
	Dataset and Model configurations
	Real-world A/B Test
	Ablation Study
	Blind Evaluation

	Conclusion
	Reproducibility Statement
	Appendix
	Element type and sub-type
	Cloud-edge collaboration
	Position Embedding
	Data Collection
	Supplementary data for real-world A/B test
	Supplementary data for ablation study
	Complex Driving scenarios
	Model hyperparameters and features

