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Abstract

How can a scientist use a Reinforcement Learning
(RL) algorithm to design experiments over a
dynamical system’s state space? In the case of
finite and Markovian systems, an area called
Active Exploration (AE) relaxes the optimization
problem of experiments design into Convex
RL, a generalization of RL admitting a wider
notion of reward. Unfortunately, this framework
is currently not scalable and the potential of
AE is hindered by the vastness of experiment
spaces typical of scientific discovery applications.
However, these spaces are often endowed with
natural geometries, e.g., permutation invariance
in molecular design, that an agent could leverage
to improve the statistical and computational effi-
ciency of AE. To achieve this, we bridge AE and
MDP homomorphisms, which offer a way to ex-
ploit known geometric structures via abstraction.
Towards this goal, we make two fundamental
contributions: we extend MDP homomorphisms
formalism to Convex RL, and we present, to
the best of our knowledge, the first analysis
that formally captures the benefit of abstraction
via homomorphisms on sample efficiency.
Ultimately, we propose the Geometric Active
Exploration (GAE) algorithm, which we analyse
theoretically and experimentally in environments
motivated by problems in scientific discovery.

1. Introduction
The problem of optimal experimental design (OED)
(Chaloner & Verdinelli, 1995) refers to the task of optimally
selecting experiments to minimize a measure of uncertainty
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of an unknown quantity of interest f : S → R, where S
denotes a space of experiments. Typically, the problem con-
siders a limited budget of resources, e.g., number of exper-
iments, and assumes the possibility to directly sample f at
arbitrary inputs s ∈ S . Conceptually, an optimal design can
be interpreted as a distribution over experiments determin-
ing the probability with which these should be carried out in
order to minimize the uncertainty of f (Pukelsheim, 2006).

Interestingly, in a wide variety of applications the input
space S corresponds to the state space of a dynamical
system (Mutny et al., 2023). Therefore, the agent carrying
out the experiments must respect the underlying dynamics
and cannot teleport from any experiment, now interpreted
as a state s ∈ S, to any other experiment. For instance,
consider the environmental sensing problem illustrated
in Figure 1, where an agent aims to actively estimate
the amount of air pollution caused by the diffusion of
a chemical substance released from a point source. To
address this problem, the agent chooses sampling policies to
minimize an estimation error of the amount of pollutant f .

In the case of time-discrete and Markovian dynamical
systems, this problem is known as Active Exploration
(AE) (Mutny et al., 2023; Tarbouriech & Lazaric, 2019;
Tarbouriech et al., 2020). AE frames the experiments design
task as an instance of Convex Reinforcement Learning (Con-
vex RL) (Hazan et al., 2019; Zahavy et al., 2021), a recent
generalization of RL where the agent aims to minimize a
convex functional of the state-action distribution induced by
a policy interacting with the environment.

The AE formulation of the OED problem on dynamical sys-
tems is promising as it allows to learn (from data) optimal
sampling policies that respect the system dynamics while
minimizing a measure of uncertainty of f . Nonetheless,
solving an instance of Convex RL typically entails solving
a sequence of Markov Decision Processes (MDPs) and
estimating the visitation density at each iteration (Hazan
et al., 2019). As a consequence, current Active Exploration
methods are not scalable, hindering their use in real-world
scientific discovery problems where experiment spaces are
generally immense (Wang et al., 2023; Thiede et al., 2022).

Luckily, these spaces are often endowed with natural geome-
tries, as in the case of permutation invariances in molecular
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Figure 1. Radial diffusion process of a pollutant from a central point source. On the left, original MDP where each circle is an f -
equivalence class, Lg denotes a state symmetry acting on f , Ks

g denotes a state-dependent action symmetry acting on P . On the right, the
abstract MDP obtained via the MDP homomorphism h = (ψ, {ϕs | s ∈ S}), where ψ maps f -equivalence classes to abstract states.

design (Cheng et al., 2021; Elton et al., 2019), or roto-
translation and reflection invariances in environmental sens-
ing (Krause, 2008; van der Pol et al., 2020b). Let us take the
example reported in Figure 1. One can expect locations that
are equally distant from the point source (center) to have
almost identical amounts of pollutant i.e., the quantity of in-
terest f follows radial symmetries.1 Therefore, by sampling
f in one location, the agent gains information on f in all
the other symmetric locations as well. As a consequence, in
this work we first aim to answer the following question:

How can a RL agent exploit geometric structure to increase
the statistical and computational efficiency of AE?

First, we introduce a novel geometric estimation error and
corresponding AE objective (Sec. 3 and 4). Then, we find
optimal sampling strategies for the introduced AE objective
by bridging Active Exploration with the area of MDP ho-
momorphisms (Ravindran & Barto, 2001; van der Pol et al.,
2020b), which offers an algorithmic scheme to leverage
known geometric structure in RL via abstraction. Unfortu-
nately, MDP homomorphisms are not directly usable in AE
as it is not a classic RL problem. Thus, we extend MDP
homomorphisms to Convex RL and introduce Geometric
Active Exploration (GAE), an algorithm that solves the AE
problem by exploiting known geometric structure via ab-
straction (Sec. 5). To the best of our knowledge, we provide
the first analysis that formally captures the benefit of ab-
straction on sample efficiency via MDP homomorphisms
(Sec. 6). Finally, we showcase experimentally the statistical
and computational advantages of GAE in illustrative envi-
ronments inspired by scientific discovery problems (Sec. 7).

To sum up, we make the following contributions:

• An Active Exploration objective that leverages known
invariances of the quantity of interest f (Sec. 3 and 4).

• Geometric Active Exploration (GAE), an algorithm that

1Note that in the paper we conceptualize symmetries to be
exact while they may be approximate in practice. Extending this
work to deal with approximate symmetries is a nice direction for
future works.

extends MDP homomorphism to Convex RL and solves
AE via abstraction (Sec. 5).

• The first analysis that sheds light on the benefits of ab-
straction on sample efficiency via MDP homomorphisms,
here specialized for the AE problem (Sec. 6).

• An experimental evaluation of the performance of GAE
against a classic AE algorithm (Sec. 7).

Our analysis capturing the benefit of geometric structure
on sample efficiency may be of independent interest for RL
and Convex RL.

2. Background and Notation
Let X be a set, we denote with ∆(X) the probability
simplex over X . We define [N ] := {1, . . . , N}, and given
a number x, we denote x+ := max{1, x}.

2.1. Markovian Processes and Active Exploration

In the following, we briefly introduce basic RL notions and
the Active Exploration (AE) problem.

Discrete Markovian Processes. A (discrete) Controlled
Markov Process (CMP) is a tuple M := (S,A, P, µ),
where S is a finite state space (|S| = S), A is a finite action
space (|A| = A), P : S × A → ∆(S) is the transition
model, such that P (s′|s, a) denotes the conditional proba-
bility of reaching s′ ∈ S when selecting a ∈ A in s ∈ S,
and µ : ∆(S) is the initial state distribution. A CMP M
paired with a function r : S ×A → R, i.e., Mr := M∪ r,
is a Markov Decision Process (MDP) (Puterman, 2014).

An agent interacting with a CMP starts from an initial state
s0 ∼ µ. Then, at every time-step t, the agent takes an
action at, collects a reward r(st, at) (when defined) and
transitions to st+1 ∼ P (·|st, at). The agent’s actions are
sampled from a stationary policy π : S → ∆(A) such that
π(a|s) denotes the conditional probability of a in s.

Active Exploration. In the Active Exploration problem,
an agent interacts with a MDP Mf = (S,A, P, µ, f)
where f is an unknown and deterministic quantity of interest
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providing a noisy observation x ∼ y(s) = f(s) + ν(s)
at state s. Here, ν is a distribution with zero mean and
unknown heteroscedastic variance σ2(s) ∈ [0, σ2

max] and
x ∈ [0, Fmax]. In AE, the agent aims to learn a policy
to minimize a measure of uncertainty over f through
interactions with Mf . Notice that, as a sub-case of AE, f
can be interpreted as a reward function that an agent wishes
to estimate rather than maximize (Lindner et al., 2022).

2.2. Invariances and MDP Homomorphisms

In the following, we introduce basic concepts from abstract
algebra and the notion of MDP homomorphism.

Equivalence, Invariance, and Symmetries. When a func-
tion f : X −→ Y maps two inputs x, x′ to the same value
f(x) = f(x′), we say that x and x′ are f -equivalent. The
set [x] of all points f -equivalent to x is called equivalence
class of x. We say that f is invariant across [x]. Con-
sider a transformation operator Lg : X −→ X , where G =
({Lg}g∈G, ·) is a group, G is an index set, and · denotes
composition. Given a function f : X −→ Y , if Lg satisfies:

f(x) = f(Lg[x]) ∀g ∈ G,∀x ∈ X (1)

then we say that f is invariant to Lg , and we call {Lg}g∈G

a set of symmetries of f .

MDP Homomorphisms. An MDP homomorphism h is
a mapping from an original MDP Mr = (S,A, P, µ, r)
to an abstract MDP Mr = (S,A, P , µ, r) defined by a
surjective map h : S × A → S × A. In particular, h is
composed of a tuple (ψ, {ϕs | s ∈ S}), where ψ : S → S
is the state map and ϕs : A → A is the state-dependent
action map. These maps are built to satisfy the conditions:

r(ψ(s), ϕs(a)) = r(s, a) (2)

P (ψ(s′) | ψ(s), ϕs(a)) =
∑

s′′∈[s′]

P (s′′ | s, a) (3)

for all s, s′ ∈ S, a ∈ A. Moreover, given a state s such
that s := ψ(s), we denote the equivalence class of s (and s)
induced by ψ as [s] = [s] := {s′ ∈ S : ψ(s′) = ψ(s)} and
indicate with Es := Es = |[s]| its cardinality.

Policy Lifting. Given a MDP homomorphism h, the
Optimal Value Equivalence Theorem by Ravindran & Barto
(2001) states that an optimal policy π for the abstract MDP
can be transformed to an optimal policy π for the original
MDP via the lifting operation:

π(a|s) := π(a|ψ(s))
|{a ∈ ϕ−1

s (a)}|
∀s ∈ S, a ∈ ϕ−1

s (a) (4)

3. Problem Setting
Consider the AE problem in a MDP Mf = (S,A, P, µ, f)
with known dynamics P , and unknown quantity of interest

f : S → B ⊂ R. Typically, an agent aims to minimize an
estimation error of f of the form:

(Classic) Estimation Error

ξn =
1

S

∑
s∈S

∣∣f̂n(s)− f(s)
∣∣ (5)

where f̂n(s) denotes the empirical estimate of f(s) after
n steps in the environment (Tarbouriech & Lazaric, 2019).

In this work, we consider the case where f and the dy-
namics P have convenient geometric structures. In a vast
variety of applications, the quantity of interest f is known to
have certain group-structured symmetries Lg : S −→ S and
state-dependent action symmetries Ks

g : A → A. For all
g ∈ G, s ∈ S, a ∈ A, f and P are invariant according to2

f(s, a) = f(Lg[s],K
s
g [a]) (6)

P (s′ | s, a) = P (Lg[s
′] | Lg[s],K

s
g [a]) (7)

For instance, in the diffusion process in Fig. 1, f follows ra-
dial symmetries, while P has roto-translation symmetries as
in most physical systems (van der Pol et al., 2020b, Table 1).

An MDP with this structure, often denoted as MDP with
symmetries (van der Pol et al., 2020b), naturally defines
an MDP homomorphism h = (ψ, {ϕs | s ∈ S}) that can
be efficiently built, as illustrated in Figure 1, by mapping
state-action pairs across which f and P are invariant to a
unique abstract state-action pair (van der Pol et al., 2020b;
Ravindran & Barto, 2001). The main intuition with respect
to our estimation process, is that all sets of states [s] across
which f is invariant, will map along ψ to an abstract state
s := ψ(s) = ψ(s′) ∈ S ∀s, s′ ∈ [s].

We consider the case where such an MDP homomorphism
h encoding the underlying geometric structure is known.
This is a fair assumption for a large class of applications,
where geometric priors can easily be represented via a MDP
homomorphism (van der Pol et al., 2020b). Nonetheless, in
Section 9 we briefly discuss how the contributions presented
in this work can be leveraged in the case of unknown MDP
homomorphism. In the following, we introduce a novel
geometric estimation error that makes it possible to leverage
geometric priors both while learning an optimal sampling
strategy, and in inference, when the gathered data is used
to compute estimates of the unknown quantity of interest f .

3.1. Geometric Function Estimation

First, we introduce some quantities updated by the agent
when obtaining a noisy realization of f at every time-step i,
namely xi ∼ y(si), where si indicates the current state at

2Here we extend f such that f(s, a) := f(s) ∀a ∈ A and
consider y to satisfy the same set of invariances as f .
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time-step i ∈ [t]. After t interaction steps we have:

Tt(s) :=

t∑
i=1

I{si = s} (8)

f̂t(s) :=
1

T+
t (s)

t∑
i=1

xiI{si = s} (9)

σ̂2
t (s) :=

1

T+
t (s)

t∑
i=1

x2i I{si = s} − f̂t(s)
2 (10)

which are respectively the visitation counts, the empirical
mean and empirical variance. Now, we define the geometric
estimation error given n samples from f as follows.

Geometric Estimation Error

ξ̄n =
1

S

∑
s∈S

∣∣f̂An (s)− f(s)
∣∣ (11)

where f̂An (s) is an empirical mean obtained by weighted av-
eraging across all states within the same f -equivalence class
[s]. Formally, given T+

n ([s]) :=
∑

s′∈[s] T
+
n (s′), we have:

f̂An (s) :=
1

T+
n ([s])

∑
s′∈[s]

Tn(s
′)f̂n(s

′) (12)

Interestingly, the geometric estimation error (Eq. 11)
generalizes the classic AE estimation error (Tarbouriech
& Lazaric, 2019), which corresponds to the limit case of
ours where there are no f -invariances and therefore every
equivalence class is composed of only one state.

Given the geometric estimation error ξ̄n, any ϵ > 0 and
δ ∈ (0, 1), we say that an estimate of f is (ϵ, δ)-accurate if:

P(ξ̄n ≤ ϵ) ≥ 1− δ (13)

Notice that, in this case, the RL agent is used as an
algorithmic tool to estimate an external property of the
environment and can be interpreted as an active sampler
of the underlying Markov chain. In particular, we aim to
design an algorithm that minimizes the sample complexity
needed to estimate f nearly-optimally in high probability.

Definition 1 (Sample Complexity Geometric Estimation).
Given an error ϵ > 0 and a confidence level δ ∈ (0, 1), the
sample complexity to solve the geometric function estima-
tion problem is:

nξ̄(ϵ, δ) := min{n ≥ 1 : P(ξ̄n ≤ ϵ) ≥ 1− δ} (14)

4. From Experimental Design to Convex RL
In this section, we derive a principled objective to minimize
the sample complexity of geometric estimation (Def. 1).

We first show that ξ̄n (Eq. 11) can be rewritten as a function
of abstract states s ∈ S, making it well-defined over the
abstract MDP.

Proposition 1. The geometry-aware estimation error ξ̄n
can be rewritten as a function of abstract states as:

ξ̄n =
1

S

∑
s∈S

Es | f̂n(s)− f(s) | (15)

While Proposition 1 is proved in Appendix B, here we
briefly mention the main intuition. Since the empirical
estimator f̂An (s) aggregates over experiments s ∈ [s] across
which f is invariant, the estimation error can be rewritten by
considering only a representative of the f -equivalence class
[s], namely an abstract state s = ψ(s) ∈ S. Then, equality
is obtained by reweighting with the cardinality Es of [s].

4.1. Tractable formulation via Convex RL

Proposition 1 gives ξ̄n as a function of abstract states, for
which we derive the upper bound below (proof in Apx. B).

Proposition 2 (Convex Upper Bound of ξ̄n). With proba-
bility at least 1− δ and n interactions with f we have:

ξ̄n ≤ C(n, S, δ)

S

∑
s∈S

F(s; T+
n ) (16)

with C(n, S, δ) := max
{
log(nS/δ),

√
log(nS/δ)

}
and

F(s; T+
n ) := Es

(√
2σ2(s)

T+
n (s)

+
Fmax

T+
n (s)

)

where T+
n (s) := T+

n ([s]) are the visitation counts of s.

As an abstract state represents an f -equivalence class of
original states, i.e., s = ψ(s) = ψ(s′) ∀s, s′ ∈ [s], one can
notice that Equation 16 captures two interesting facts. First,
equivalence classes [s] that are under-visited (small T+

n (s))
with high variance (large σ2(s)) lead to higher estimation
error. Second, the cardinality of an equivalence class Es

is proportional to how much its estimation quality impacts
the overall estimation error.

While the upper bound in Equation 16 is convex, the
constraint set of admissible visitation counts T+

n is
non-convex (Tarbouriech et al., 2020), rendering this for-
malization a NP-hard problem (Welch, 1982; Tarbouriech &
Lazaric, 2019). Nonetheless, problems of this form present
a hidden convexity in the asymptotic relaxation (n→ ∞) of
the dual problem. Given the set Λ of admissible asymptotic
state-action distributions

Λ := {λ ∈ ∆(S ×A) : ∀s ∈ S,
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b∈A

λ(s, b) =
∑

(s′,a)∈S×A

P (s|s′, a)λ(s′, a)}

we introduce the following η-smoothened objective.

Geometric Estimation Objective

L∞,η(λ) :=
1

S

∑
s∈S

Es

√
2σ2(s)∑

s∈[s](λ(s) + η)
(17)

Where λ(s) :=
∑

a∈A λ(s, a). Crucially, in the following
statement, we show that L∞,η(λ) is an upper bound of the
estimation error ξ̄n and therefore that minimizing L∞,η(λ)
is a principled objective to minimize the sample complexity
in Definition 1.
Proposition 3 (Tractable Convex Upper Bound of ξ̄n). Let
an empirical state-action frequency at time t be defined as
λt(s, a) = Tt(s, a)/t, then for Esη ≤ 1

n we have:

ξ̄n ≤ 2S√
n
C(n, S, δ)

[
L∞,η(λn) +

SFmax

S
√
nη

]
(18)

Interestingly, in the next section we show that this problem
can be solved by computing optimal sampling policies for
abstract MDPs only.

5. Geometric Active Exploration (GAE)
In this section, we introduce Geometric Active Exploration
(GAE), an algorithm for AE that leverages the power of ab-
straction to improve statistical and computational efficiency.
Alike classic AE algorithms (Tarbouriech & Lazaric, 2019;
Hazan et al., 2019), GAE is based on a Frank-Wolfe (FW)
scheme (Jaggi, 2013) that reduces the problem

min
λ∈Λ

L∞,η(λ) (19)

to a sequence of K linear programs, each corresponding to
a classic MDP Mk

f with reward rkλ defined as

∇L+

tk−1(λ)[s,a] =
−Es

[√
2σ̂2

tk−1(s) + α(tk − 1, s, δ)
]

2S
(∑

s∈[s](
∑

b∈A λ(s, b) + η)
) 3

2

where the unknown variances are optimistically bounded
via a quantity α(t, s, δ) according to the following result.
Lemma 5.1 (Variance Concentration (Panaganti & Kalathil,
2022)). For all s ∈ S, with probability at least 1 − δ we
have∣∣∣√σ2(s)−

√
σ̂2
t (s)

∣∣∣ ≤ Fmax

√
2
log(2St2/δ)

T+
t (s)

:= α(t, s, δ)

We show that optimistic gradients (rkλ) of Equation 19 satisfy
state-action invariances induced by f (proof in Apx. C).

Algorithm 1 Geometric Active Exploration (GAE)

1: Input: η, h,M, δ, {τk}k∈[K−1]

2: Compute abstract CMPM induced by h,M
3: Initialize λ1 = 1/S̄Ā
4: for k = 1, 2, ...,K − 1 do
5: Compute abstract reward r̄k

λk
∀s ∈ A, a ∈ A

r̄kλk
(s, a) :=

−Es

[√
2σ̂2

tk−1(s) + α(tk − 1, s, δ)
]

2S
(
λk(s) + Esη

) 3
2

6: π+
k+1 ←− MDP-SOLVER

[
Mk

r̄ =
(
S,A, P , µ, r̄k

λk

)]
7: Lift abstract policy

π+
k+1(a|s) =

π+
k+1(a|ψ(s))
|{a ∈ ϕ−1

s (a)}|
, ∀s ∈ S, a ∈ ϕ−1

s (a)

8: Deploy policy π+
k+1 inMf for τk steps

9: Compute f̂tk+1−1 and υ̃k+1

10: Aggregate estimates according toMk
f

f̂tk+1−1(s) =
1

T+
tk+1−1(s)

∑
s∈[s]

T+
tk+1−1(s)f̂tk+1−1(s)

υ̃k+1(s, a) =
∑
s∈[s]

υ̃k+1(s, a)

11: Update the abstract state-action frequency λk+1

λk+1 =
τk

tk+1 − 1
υ̃k+1 +

tk − 1

tk+1 − 1
λk

12: end for
13: Return: f̂tK−1

Proposition 4 (Gradient-Reward Invariances). If f is
invariant over states s and s′, then ∀s, s′ ∈ [s],∀a, a′ ∈ A

∇λL
+

tk−1(λ)[s, a] = ∇λL
+

tk−1(λ)[s
′, a′]

Intuitively, Proposition 4 is due to the fact that the
invariances of f propagate to the gradient via σ̂, because
of its definition in Equation 10. As a consequence, we can
define the optimistic abstract reward as:

r̄k
λ
(s, a) :=

−Es

[√
2σ̂2

tk−1(s) + α(tk − 1, s, δ)
]

2S
(
λ(s) + Esη

) 3
2

(20)

where λ ∈ Λ ⊆ ∆(S × A) is an admissible abstract
state-action distribution.3 Given the reward r̄k

λ
and the

invariances on the dynamics P in Equation 3, the MDP
Mk

f at each step k ∈ [K] of the FW scheme can be solved
by computing the optimal policy for the abstract MDP Mk

f

and then lifting it back along the MDP homomorphism h

3Notice that the set of admissible abstract state-action distribu-
tions Λ can be defined analogously to Λ.
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(Eq. 4). This observation unlocks the power of abstraction
for AE in MDPs, and leads to the GAE algorithm, for which
we report the pseudocode in Algorithm 1.

First, GAE computes the abstract CMP M given the
homomorphism h and the original CMP M (line 2). This
operation is computationally efficient as we can perform
one sweep over SA to compute SA by applying ψ and ϕs
to original states and actions respectively. The empirical
visitation frequency λ1 is initialized in line 3. At each
iteration, GAE computes the optimal abstract policy π+

k+1

(line 6), e.g., via value iteration, for the abstract MDP
Mk

r̄ = M∪ {r̄k
λk
}, where r̄k

λk
is an estimate of the opti-

mistic gradient in (20) based on the samples gathered via
policy π+

k during the previous iteration. Then, it computes
an optimal policy for the original MDP, namely π+

k+1 by
lifting the optimal abstract policy (line 7), which is deployed
for τk steps (line 8). The gathered samples of f and the
state-action visitation counts are used to update the abstract
empirical mean of f , namely f̂tk+1−1(s), and compute
the abstract empirical state-action distribution υ̃k+1 by
aggregating υ̃k+1 across states within the same equivalence
class (lines 8-9). Then, the empirical visitation frequency
λk+1 is updated to serve for the gradient estimation at the
next iteration. GAE outputs the aggregated estimates of f .

Benefits of Abstraction. Since AE typically entails solving
a sequence of MDPs, encoding each instance via a (smaller)
abstract MDP (line 6) gives significant computational bene-
fits, as shown in Section 7. From a statistical perspective, the
fundamental advantage of GAE is leveraging known invari-
ances during the density estimation process (lines 8-10) com-
mon in previous works (Hazan et al., 2019; Tarbouriech &
Lazaric, 2019), leading to faster convergence. However, how
do different degrees of geometric structure benefit the statis-
tical efficiency of the problem? In the next section, we for-
mally answer this question by presenting a sample complex-
ity result showcasing a geometric compression term. In the
following, we denote by sampling strategy the empirical dis-
tribution λn over S×A induced by the policies {π+

k }k∈[K].

6. Theoretical Analysis
In this section, we present an upper bound on the regret
and the sample complexity achieved by GAE against an
optimal sampling strategy. The latter result captures the
impact of abstraction on the complexity of the problem via
the following notion of geometric compression.

Definition 2 (Geometric Compression Term). We denote
as geometric compression term Φ the ratio between the
cardinalities of the abstract and original state spaces,
formally:

Φ := S/S ∈ (0, 1] (21)

Before presenting these results, we state two assumptions
we employed for deriving them.

Assumption 6.1 (Homogeneous Equivalence Classes). The
equivalence classes induced by f over S are homogeneous
i.e., they have same cardinality, Es = Es′ ∀s, s′ ∈ S.

Moreover, due to the non-episodic nature of our setting we
need to assume the following.

Assumption 6.2 (Ergodicity). The Markov chain induced
by any Markovian stationary policy is ergordic.

6.1. Regret Analysis

Given an empirical state-action distribution λn ∈ ∆(S×A)
induced by a sequence of sampling policies interacting with
the environment, we define its regret against the optimal
sampling strategy as follows

Rn(λn) := L∞,η(λn)− L∞,η(λ
∗) (22)

where λ∗ := argminλ∈Λ L∞,η(λ) is an optimal state-
action distribution. Notice that, while common in AE (Tar-
bouriech & Lazaric, 2019), this notion of regret is not stan-
dard in RL (Szepesvári, 2009).

Theorem 6.1 (Regret Guarantee). If algorithm GAE is
run with a budget of n samples and τk = 3k2 − 3k + 1
then w.p. at least 1− δ, it holds that:

Rn = Õ

((
Φ

1
2S

1
2AFmax

√
σ2
max

η
5
2

)
1

n1/3

)

In the following, we present a brief sketch of the proof,
while complete derivations are deferred to Apx. D.

Step 1. We derive the result w.r.t. the abstract variables via
a Frank-Wolfe analysis, taking into account (i) the effect
of the optimistic gradient and (ii) the error due to the gap
between the empirical and stationary distribution induced by
the policy at each iteration (Tarbouriech & Lazaric, 2019).

Step 2. Since the density estimation step of GAE is carried
out w.r.t. a distribution defined over S ×A, we notice that
it can be analysed with respect to the abstract variables.

Step 3. Finally, in order to state the result w.r.t. the original
MDP variables, we leverage the geometric compression
term Φ (Def. 2).

In the following, we report the sample complexity bound
capturing the effect of abstraction on learning with high
probability a nearly-optimal sampling strategy w.r.t. the
geometric estimation objective (17).
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Figure 2. Comparison of GAE with AE. GAE shows better statistical and computational efficiency. Experiments were carried out over 15
seeds and confidence intervals shown are± one standard deviation. 2a the statistical advantage of GAE with compression Φ against AE for
deterministic dynamics in the diffusion environment. 2b same setting as 2a, but with stochastic dynamics. 2c the (classic) estimation error
taken over the abstract state space. 2d computational advantage of GAE over AE for different degrees of compression (standardized). 2e
the statistical advantage of GAE over AE in the strings environment. 2f the strings environment and the invariance of f under permutation.

Theorem 6.2 (Sample Complexity of Geometric Esti-
mation Objective). If algorithm GAE is run with τk =
3k2 − 3k + 1, for:

n = Õ

(
Φ

3
2S

3
2A3F 3

max(σ
2
max)

3
2

η
15
2 ϵ3

)

samples, then we have that with probability at least 1−δ:

P
(∣∣L∞,η(λn)− L∞,η(λ

∗)
∣∣ ≤ ϵ

)
≥ 1− δ

Crucially, setting Φ = 1 recovers the case where abstraction
is not leveraged by the algorithm.

6.2. Geometric Compression in MDP with Symmetries

If the MDP Mf has symmetries (see Eq. 6 and 7), it is pos-
sible to make explicit the dependency of Φ on the cardinality
of the state symmetries group G = ({Lg}g∈G, ·).

Proposition 5 (Compression via Group Cardinality).
Given a set of group-structured state symmetries G =
({Lg}g∈G, ·) and Stab(s) = Stab(s′) ∀s, s′ ∈ S then:

Φ =
|Stab(s)|

|G|

where Stab(s) := {g ∈ G : Lg[s] = s}.

Proposition 5, which we proved via the Orbit-Stabilizer
Theorem (Rotman, 2010, Theorem C-1.16), sheds light on
the intuition that a higher number of symmetries leads to
a higher degree of compression.

7. Experiments
In this section, we perform a thorough experimental eval-
uation of GAE analysing its statistical and computational
efficiency on two tasks where the unknown quantity f
represents: (1) the amount of pollutant emerging from a
point source (see Fig. 1), and (2) the toxicity of chemical
compounds generated from a set of base elements (see Fig.
2f). In all experiments, unless otherwise specified, we com-
pare the data gathering performances of GAE with classic
AE, an implementation based on Convex RL and analogous
to GAE, but not exploiting symmetries (Tarbouriech &
Lazaric, 2019). More explicitly, AE is the same as GAE
(see Alg. 1) in the case when the homomorphism h is an
identity map and hence Φ = 1 and M = M.

(1) Pollutant Diffusion Process. We consider the problem
of actively estimating the amount of pollution released
in the environment from a point source and following a
diffusion process with radial symmetries, as illustrated
in Figure 1 and introduced in Section 2. The agent can
measure the pollution at 30 different radii and at 8 different
angles, resulting in S = 240 states, and can select actions

7
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A = {in, out, clockwise, anticlockwise, stay}. In Figure
2a, we show the sample efficiency of GAE compared with
AE for several values of Φ in the case of deterministic
dynamics. We observe a significant effect of different
degrees of compression to the data efficiency of the
algorithm. Similarly, Figure 2b shows the same comparison
for stochastic dynamics. In Figure 2c, we show that
omitting the inductive bias in the inference step, specifically
the absence of weighted averaging across equivalence
classes, worsens the performance of AE, thus showing
the role of exploiting geometric structure also in inference.
Ultimately, in Figure 2d, we compare the normalized
runtime of GAE and AE for several degrees of compression,
showing the effect of leveraging geometric structure on
computational efficiency and hence practical scalability.

(2) Toxicity of Chemical Compounds. In this experiment,
we consider the problem of actively estimating the toxicity
of chemical compounds that can be generated using some
base chemical elements. Similar to prior work (Thiede et al.,
2022; Dong et al., 2022), we associate with states chemi-
cal compounds represented as strings (see Fig. 2f). Each
character of the string thereby stands for a base chemical
element. In our simplified setting, we consider three base
elements A, B, C and every compound may consist of at
most 5 base elements, resulting in a total of S = 363 states.
The actions correspond to the three base elements and a
stay action. If the agent picks an action that corresponds
to a base element, this is appended to the current string,
resulting in a new compound to which the agent transitions
and gets a noisy observation of its toxicity. We consider
toxicity to be invariant w.r.t. string permutations, resulting in
S = 55 states and Φ ≈ 0.15. Figure 2e shows the statistical
performances of GAE compared with AE. We observe that
even a relatively small compression leads to a significant
statistical advantage.

An extensive discussion of the environments, homomor-
phisms, and implementation details is deferred to Apx. F.

8. Related Works
In the following, we present relevant works in MDP
Homomorphisms, Active Exploration, and Convex RL.

MDP Homomorphisms. Ravindran & Barto (2001)
were among the first to identify the benefits of solving
MDPs via MDP homomorphisms. Recently, these have
been extended to Deep RL (van der Pol et al., 2020b),
approximate invariances (Ravindran & Barto, 2004; Jiang
et al., 2014; Ravindran & Barto, 2002), and continuous
domains (Rezaei-Shoshtari et al., 2022; Biza & Platt,
2018; Zhao, 2022). While in this work we have built
a fundamental connection between Active Exploration
and abstraction via MDP homomorphisms, extending the

contributions presented to the mentioned settings, namely
Deep RL, approximate abstraction, and continuous domains,
is an interesting and relevant direction of future work.

Active Exploration. The AE problem has been introduced
in (Tarbouriech & Lazaric, 2019) with a non-episodic setting
assuming ergodicity and reversibility of the induced Markov
chain. Afterwards, the framework has been extended to
perform transition dynamics estimation in high probabil-
ity (Tarbouriech et al., 2020). Compared with these works,
by smoothening the objective (Sec. 4), we remove the need
to solve an LP program at every iteration paving the way for
more efficient dynamic programming methods, e.g., value
iteration (Puterman, 2014, Chapter 6). Recently, Mutny
et al. (2023) introduced an episodic version of the problem,
where the agent can reset its state, but ergodicity is not re-
quired, while the unknown quantity f is assumed to be an
element of a reproducing kernel Hilbert space with known
kernel (Mutny et al., 2023). While this setting can capture
the correlation structure of f , it does not leverage known
geometric structure of the dynamics and therefore cannot
compress the original MDP into an abstract one to render the
algorithm more scalable from a computational perspective.

Convex RL. The algorithmic scheme presented in this
work is an instance of a general framework that has received
significant attention recently, generally under the name of
Convex RL (Hazan et al., 2019; Zhang et al., 2020; Zahavy
et al., 2021; Geist et al., 2022; Mutti et al., 2022a; 2023;
2022b). In this framework, a learning agent interacts with a
CMP to optimize an objective formulated through a convex
function of the state-action distribution induced by the agent
policy. Different choices of this convex function allow to
cover several domains of practical interest beyond active
exploration, such as pure exploration (e.g., Hazan et al.,
2019), imitation learning (e.g., Abbeel & Ng, 2004), and
risk-averse RL (Garcıa & Fernández, 2015) among others.

9. Conclusions
In this paper, we presented how abstraction can be
leveraged to solve the Active Exploration problem with
better statistical complexity and computational efficiency.
Before presenting some concluding remarks, we briefly
mention a few important discussion points.

Beyond Known Geometric Structure. In a wide set
of applications e.g., molecular design or environmental
sensing, geometric priors on f and P are known and can
be easily encoded in an abstract MDP as considered in this
work. Nonetheless, for a arguably wider set, geometric
structure is not known or it is not human-interpretable. In
these cases, one can leverage algorithms that automatically
discover symmetries in the environment (Angelotti et al.,
2021; Narayanamurthy & Ravindran, 2008) or directly
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learn a MDP homomorphism (Mavor-Parker et al., 2022;
Biza & Platt, 2018; Wolfe & Barto, 2006; Mondal et al.,
2022). Interestingly, in both these cases, the GAE algorithm
can be run with the machine-learned homomorphism.

Abstraction in Convex RL. The presented algorithmic
scheme (Alg. 1) and theoretical analysis (Sec. 6) are not tied
to the AE problem treated in this paper and can be straight-
forwardly extended to leverage abstraction in a variety of
Convex RL application areas, including those mentioned
within Section 8.

Benefit of Abstraction on Statistical Efficiency. Ab-
straction, via MDP homomorphisms or close variants, has
been leveraged in a large body of works (Rezaei-Shoshtari
et al., 2022; van der Pol et al., 2020b;a; 2022; Soni & Singh,
2006; Ravindran, 2003; Zhu et al., 2022; Ravindran & Barto,
2002; Mahajan & Tulabandhula, 2017; Ravindran, 2003)
showcasing experimental advantages on the sample com-
plexity in the context of RL. Nonetheless, to the best of our
knowledge, this work is the first that formally captures the
effect of abstraction via MDP homomorphisms on sample
complexity (Sec. 6). Moreover, we believe the main ideas
within our analysis can be leveraged to treat a large extent
of RL settings.

To summarize, in this work we have presented a principled
Active Exploration objective that makes it possible to lever-
age geometric priors on an unknown quantity f and the
system dynamics to solve the estimation problem via an
abstraction process, thus increasing statistical and compu-
tational efficiency. We introduced an algorithm, Geometric
Active Exploration, which we believe could render Active
Exploration more practical for a wide variety of real-world
settings. Then, we have presented, to the best of our knowl-
edge, the first analysis capturing the effect of abstraction on
the sample complexity of the Active Exploration problem,
and more in general in RL. Ultimately, we have performed
a thorough experimental evaluation of the proposed method
on tasks resembling real-world scientific discovery prob-
lems while showing promising performances.
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A. List of symbols

General Mathematical Objects
∆(X) ≜ Probability simplex over X
x+ ≜ max{1, x}
X ≜ Abstract counterpart of variable X

MDP
Mr ≜ Markov decision process Mr = (S,A, P, µ, r)
S ≜ State space
A ≜ Action space
P ≜ Transition model P : S ×A → ∆(S)
r ≜ Scalar state function e.g., reward r : S ×A → ∆([0, R])

µ ≜ Initial state distribution µ ∈ ∆(S)
S ≜ Size of the state space S = |S|
A ≜ Size of the action space A = |A|
s ≜ State s ∈ S
a ≜ Action a ∈ A
π ≜ Stationary Markovian policy π : S → ∆(A)

λ ≜ Stationary state-action distribution λ ∈ Λ

Λ ≜ Set of admissible state-action distribution, expression within Section 3

Symmetries, MDP Homomorphisms
Lg ≜ state transformation or symmetry Lg : S → S
Ks

g ≜ state-dependent action transformation or symmetry Lg : A → A
G ≜ Algebraic group structure e.g., G = ({Lg}g∈G, ·)4

g ≜ Index of group element g ∈ G

[s] ≜ Equivalence class of f -invariant states [s] ⊆ S
h ≜ MDP homomorphism between Mf and Mf , h : S ×A → S ×A, h = (ψ, {ϕs | s ∈ S})
ψ ≜ Homomorphism state map ψ : S → S
ϕ ≜ Homomorphism state-dependent action map ϕs : A → A
[s] ≜ Equivalence class of f -invariant states mapping to s along ψ, [s] = {s′ ∈ S : ψ(s′) = ψ(s)}
Es ≜ Cardinality of equivalence class [s], Es = |[s]| = |[s]| = Es

Φ ≜ Geometric compression coefficient, Φ = S/S

GAE Algorithm
f ≜ Unknown state quantity f : S → B ⊂ R
ν ≜ Noise random variable with zero mean and unknown variance σ2

y ≜ Noisy random variable y(s) = f(s) + ν(s)

Tt(s) ≜ Visitation counts for state s after t steps, see Equation (8)
f̂t(s) ≜ Empirical mean for state s after t steps, see Equation (9)
σ̂2
t (s) ≜ Empirical variance for state s after t steps, see Equation (10)
f̂At (s) ≜ Average empirical mean for equivalence class [s], see Equation (12)
f̂t(s) ≜ Empirical mean for abstract state s after t steps
ξ̄n ≜ Geometric estimation error, see Equation (11)
ϵ ≜ Controllable approximation error for PAC guarantees
δ ≜ Controllable probability of error for PAC guarantees
nξ̄(ϵ, δ) ≜ Sample complexity for PAC estimation of geometric estimation error ξ̄n, see def. 1
n ≜ Sample complexity for PAC optimality of geometric estimation objective, see def. 6.2

4we do not explicitly specify the identity and inverse elements of the group as we do not use them in the following
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Ln ≜ Finite-samples Convex RL Objective (31)
L∞,η ≜ Asymptotic and smoothened Convex RL Objective (19)
r̄k
λk

≜ Abstract reward estimated at iteration k via empirical density λk

π+
k+1 ≜ Optimal abstract policy w.r.t. MDP Mk

r̄

π+
k+1 ≜ Optimal original policy at iteration k obtained by lifting πk+1

τk ≜ Length of trajectory of policy deployed at iteration k
υ̃k+1 ≜ Empirical state-action distribution induced during iteration k
υ̃k+1 ≜ Abstract state action distribution obtained at iteration k by aggregating υ̃k+1

λk+1 ≜ Updated state-action frequency at end of k-th iteration

Regret and Sample Complexity Analysis
υ+k+1 ≜ state-action distribution induced by π+

k+1

λ
∗

≜ optimal abstract state-action distribution of the learning problem
λ∗ ≜ optimal state-action distribution of the learning problem
υ∗k ≜ optimal state-action distribution of the MDP Mk

r

∇L̂tk−1 ≜ empirical gradient of objective L∞,η

∇L̂+
tk−1 ≜ empirical optimistic gradient of objective L∞,η
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B. Proofs Section 3
Proposition 1. The geometry-aware estimation error ξ̄n can be rewritten as a function of abstract states as:

ξ̄n =
1

S

∑
s∈S

Es | f̂n(s)− f(s) | (15)

Proof. By the definition of ξ̄n we have

ξ̄n :=
1

S

∑
s∈S

|f̂An (s)− f(s)| (23)

(1)
=

1

S

∑
s∈S

∣∣∣∣∣ 1

T+
n (s̄)

∑
s′∈[s]

Tn(s
′)f̂n(s

′)− f(s)

∣∣∣∣∣ (24)

(2)
=

1

S

∑
s∈S

|[s]|

∣∣∣∣∣ 1

T+
n (s̄)

∑
s′∈[s]

Tn(s
′)f̂n(s

′)− f(s)

∣∣∣∣∣ (25)

(3)
=

1

S

∑
s∈S

Es

∣∣f̂n(s)− f(s)
∣∣ (26)

where in step (1) we used that f̂An (s) := 1
T+
n ([s])

∑
s′∈[s] Tn(s

′)f̂n(s
′), in step (2) we used f invariances and in step (3) we

used that Es := |[s]| and f̂n(s) := 1
T+
n (s̄)

∑
s∈[s] Tn(s)f̂n(s).

Proposition 2 (Convex Upper Bound of ξ̄n). With probability at least 1− δ and n interactions with f we have:

ξ̄n ≤ C(n, S, δ)

S

∑
s∈S

F(s; T+
n ) (16)

with C(n, S, δ) := max
{
log(nS/δ),

√
log(nS/δ)

}
and

F(s; T+
n ) := Es

(√
2σ2(s)

T+
n (s)

+
Fmax

T+
n (s)

)

where T+
n (s) := T+

n ([s]) are the visitation counts of s.

Proof. To prove the statement, we employ a Bernstein type inequality from Lemma 7.37 in (Lafferty et al., 2008), where
we upper bound 2/3 by 1 in the second summand. Then, given a δ′, we have that for all t ∈ [n]:

P

(∣∣∣f̂t(s)− f(s)
∣∣∣ ≤√2σ2(s) log(1/δ′)

T+
n (s)

+
Fmax log(1/δ

′)

T+
n (s)

)
≥ 1− δ′ (27)

where T+
n (s) =

∑
s∈[s] T

+
n (s) and f̂t(s) = 1

T+
t (s)

∑
s∈[s] Tt(s)f̂t(s). For notational simplicity, we will define:

Bδ′(s) =

√
2σ2(s) log(1/δ′)

T+
n (s)

+
Fmax log(1/δ

′)

T+
n (s)

Then, by using a standard union bound, over s ∈ S and t ∈ [n]:

P

 ⋂
t∈[n]

⋂
s∈S

{∣∣∣f̂t(s)− f(s)
∣∣∣ ≤ Bδ′(s)

} = 1− P

 ⋃
n∈[t]

⋃
s∈S

{∣∣∣f̂t(s)− f(s)
∣∣∣ > Bδ′(s)

}
14
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≥ 1−
∑
t∈[n]

∑
s∈S

P
(∣∣∣f̂t(s)− f(s)

∣∣∣ > Bδ′(s)
)

(4)
≥ 1− nSδ′ (28)

where in step (4) we have used Equation (27). Then:

1− δ
(5)
≤ P

 ⋂
t∈[n]

⋂
s∈S

{∣∣∣f̂t(s)− f(s)
∣∣∣ ≤ Bδ′(s)

}
= P

 ⋂
t∈[n]

⋂
s∈S

{
Es

∣∣∣f̂t(s)− f(s)
∣∣∣ ≤ EsBδ′(s)

} (29)

≤ P

⋂
s∈S

{
Es

∣∣∣f̂n(s)− f(s)
∣∣∣ ≤ EsBδ′(s)

}
(6)
≤ P

∑
s∈S

Es

∣∣∣f̂n(s)− f(s)
∣∣∣ ≤∑

s∈S

EsBδ′(s)


= P

Sξ̄n ≤
∑
s∈S

EsBδ′(s)


= P

ξ̄n ≤ 1

S

∑
s∈S

EsBδ′(s)


where in (5) we used Equation 28 and in step (6) we used the trivial fact that since the inequality in Equation 29 holds for
every s ∈ S therefore it holds also for the respective sums over S . Then, we get that with probability at least 1− δ:

ξ̄n ≤ 1

S

∑
s∈S

Es

(√
2σ2(s) log(nS/δ)

T+
n (s)

+
Fmax log(nS/δ)

T+
n (s)

)

≤ 1

S
max

{
log(nS/δ),

√
log(nS/δ)

}∑
s∈S

Es

(√
2σ2(s)

T+
n (s)

+
Fmax

T+
n (s)

)

=
1

S
max

{
log(nS/δ),

√
log(nS/δ)

}∑
s∈S

F(s; T+
n )

=
C(n, S, δ)

S

∑
s∈S

F(s; T+
n )

Proposition 3 (Tractable Convex Upper Bound of ξ̄n). Let an empirical state-action frequency at time t be defined as
λt(s, a) = Tt(s, a)/t, then for Esη ≤ 1

n we have:

ξ̄n ≤ 2S√
n
C(n, S, δ)

[
L∞,η(λn) +

SFmax

S
√
nη

]
(18)

Proof. First, we define the following:

F(s ;λ) := Es

(
F1(s ;λ) + F2(s ;λ)

)
(30)

15
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with

F1(s ;λ) =

√
2σ2(s)∑

a∈A
∑

s∈[s] λ(s, a) +
1
n

F2(s ;λ) =
1√
n

Fmax∑
a∈A

∑
s∈[s] λ(s, a) +

1
n

and the following auxiliary objective:

Ln(λ) :=
1

S

∑
s∈S

F(s ;λ) (31)

Then, given an empirical state-action frequency at time t, defined as λt(s, a) = Tt(s, a)/t, we have that:

ξ̄n
(7)
≤ 2√

n
C(n, S, δ)

∑
s∈S

F(s ;λn)

(8)
=

2S√
n
C(n, S, δ)Ln(λn)

≤ 2S√
n
C(n, S, δ)

[
L∞,η(λn) +

SFmax

S
√
nη

]
where in step (7) we employed Equations 30 and 16 and the fact that T+

n (s) = max(Tn(s), 1) ≥ (Tn(s) + 1)/2. In step (8)
we used the definition of the objective in Equation 31 and in the last inequality we used Lemma D.4.

16
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C. Proofs Section 5
Lemma 5.1 (Variance Concentration (Panaganti & Kalathil, 2022)). For all s ∈ S , with probability at least 1− δ we have

∣∣∣√σ2(s)−
√
σ̂2
t (s)

∣∣∣ ≤ Fmax

√
2
log(2St2/δ)

T+
t (s)

:= α(t, s, δ)

Proof. From (Panaganti & Kalathil, 2022), we have that for a fixed time k ≤ t, it holds that with probability at least 1− δ̃:

∣∣∣√σ2(sk)−
√
σ̂2
t (sk)

∣∣∣ ≤ Fmax

√
2
log(2S/δ)

T+
t (s)

Since we want the result to hold ∀k ≤ t, we simply union bound over time which leads to the desired result.

Proposition 4 (Gradient-Reward Invariances). If f is invariant over states s and s′, then ∀s, s′ ∈ [s],∀a, a′ ∈ A

∇λL
+

tk−1(λ)[s, a] = ∇λL
+

tk−1(λ)[s
′, a′]

Proof. The proof simply follows by computing the gradient explicitly. In particular, we have that

∇λL̂+
tk−1(λ)[s,a] =

−Es

[√
2σ̂2

tk−1(s) + α(tk − 1, s, δ)
]

2S
(∑

s∈[s]

∑
b∈A λ(s, b) + Es η

) 3
2

= ∇λL̂+
tk−1(λ)[s′,a′]

Indeed, we notice that the gradient does not directly depend on the actions a and a′ since in the denominator we are summing
over all the possible actions. Furthermore, since both s, s′ ∈ [s], the gradient remains unchanged since it depends exclusively
on the abstract state s and not directly on s and s′. In particular, since s and s′ are in the same equivalence class, then the
corresponding abstract state s is the same.

17
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D. Proofs Section 6
Theorem 6.1 (Regret Guarantee). If algorithm GAE is run with a budget of n samples and τk = 3k2 − 3k + 1 then w.p. at
least 1− δ, it holds that:

Rn = Õ

((
Φ

1
2S

1
2AFmax

√
σ2
max

η
5
2

)
1

n1/3

)

Proof. The analysis follows a classic Frank-Wolfe (FW) scheme analysis while taking into account the approximation error
due to the optimistic estimate of the gradient, and the estimation error due to the gap between the asymptotic distribution
associated with π+

k+1 and the induced empirical frequences λk+1 at each iteration k. It diverges from previous analysis
for non-episodic AE settings (Tarbouriech & Lazaric, 2019; Tarbouriech et al., 2020) in two main ways: (i) by leveraging
ergodicity and hence uniqueness of the stationary distribution induced by Markovian stationary policies, we study the density
estimation process via (Mutny et al., 2023, Lemma 5), (ii) we introduce a dependency on the geometric compression term Φ
(Definition 2) in order to show the effect of compression on the final sample complexity result in Theorem 6.2.

As the regret in Convex RL is interpreted as a suboptimality gap (Mutti et al., 2023; 2022a; Tarbouriech & Lazaric, 2019),
we first derive an upper bound on the approximation error, as defined in Equation 22, achieved at the end of iteration
k ∈ [K] of Algorithm 1. In the following we denote with tk+1 the number of samples gathered until the end of iteration k,
formally tk+1 :=

∑k
j=1 τj , where τj is the number of steps policy π+

k+1 has been released in iteration k. Then by defining
L := L∞,η , we derive the following.

ρk+1 := L(λk+1)− L(λ∗) (32)

= L((1− βk)λk + βkυ̃k+1)− L(λ∗) (where βk := τk/(tk+1 − 1))
(9)
≤ L(λk)− L(λ∗) + βk⟨∇L(λk), υ̃k+1 − λk⟩+ Cηβ

2
k

= L(λk)− L(λ∗) + βk⟨∇L(λk), υ∗k+1 − λk⟩+ βk⟨∇L(λk), υ̃k+1 − υ∗k+1⟩+ Cηβ
2
k

(10)
≤ L(λk)− L(λ∗) + βk⟨∇L(λk), λ

∗ − λk⟩+ βk⟨∇L(λk), υ̃k+1 − υ∗k+1⟩+ Cηβ
2
k

(11)
≤ (1− βk)ρk + Cηβ

2
k + βk ⟨∇L(λk), υ+k+1 − υ∗k+1⟩︸ ︷︷ ︸

ϵk+1

+βk ⟨∇L(λk), υ̃k+1 − υ+k+1⟩︸ ︷︷ ︸
∆k+1

(33)

where in step (9) we use Cη-smoothness of L, in step (10) we use the definition of the update step of FW and the fact that
υ∗k+1 is optimal and in (11) we use again Cη-smoothness to bound ⟨∇L(λ̃k), λ∗ − λ̃k⟩. Note that in the first term ϵk+1,
we take into account the discrepancy between the state-action distribution υ∗k+1 induced by the optimal policy w.r.t. the
MDP with the exact gradient as reward, and our exact solution υ+k+1 of the MDP with the optimistic gradient as reward.
In the second term ∆k+1, we take into account the error due to the gap between the state-action distribution υ+k+1 and the
empirical distribution υ̃k+1 induced by deploying policy π+

k+1 for τk steps. In the following, we upper bound independently
the terms ∆k+1 and ϵk+1.

D.1. Upper Bound ∆k+1

We derive a PAC guarantee on the density estimation error by using Lemma E.1 with ηt(s) = η(s) = λ(s), as in our case λ
is fixed within one FW iteration and set fs(·) = fst (·) := 1

T ⟨·, δs⟩, where δs is the vector of all zeros except in position s
where it has a one and where ⟨·, ·⟩ denotes the inner product. In particular, in this case, fs corresponds to the evaluation
functional of a probability distribution in state s. Note that this functional is clearly linear as requested by the proposition as
the inner product is linear. Furthermore, we can notice that ||fs||∞ = 1

T and hence we can restate the bound presented in
the Lemma as follows:∣∣∣∣∑τ

t=1 I{st = s}
τ

− λ(s)

∣∣∣∣ ≤
√

2

τ
log

(
2

δ′

)
with probability at least 1− δ′

18
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Since we want the statement above to hold uniformly for every state s ∈ S and for every possible abstract policy, we set
δ = δ′

SA
S

and apply a union bound, obtaining:

∣∣∣∣∑τ
t=1 I{st = s}

τ
− λ(s)

∣∣∣∣ ≤
√√√√√2

τ
log

2SA
S

δ

 with probability at least 1− δ (34)

Then, we can bound ∆k+1 as follows.

∆k+1 = ⟨∇L(λk), υ̃k+1 − υ+k+1⟩

= − 1

2S

∑
s

Es

√
2σ2(s)(

λk(s) + Esη
) 3

2

∑
a

(
υ̃k+1(s, a)− υ+k+1(s, a)

)
(12)
= − 1

2S

∑
s

Es

√
2σ2(s)(

λk(s) + Esη
) 3

2

(
υ̃k+1(s)− υ+k+1(s)

)
(13)
≤ − 1

2S

∑
s

E
− 1

2

s

√
2σ2(s)

η
3
2

(
υ̃k+1(s)− υ+k+1(s)

)
(14)
≤

Φ1/2S
√
σ2
max

Sη3/2

∣∣∣∣υ̃k+1 − υ+k+1

∣∣∣∣
∞

(15)
≤

Φ3/2
√
σ2
max

η3/2

√√√√√ 2

τk
log

2SA
S

δ

 with probability at least 1− δ (35)

where in (12) we consider the state densities by summing over the actions, in (13) we lower bound λ(s) ≥ 0, in (14) we use
that Es =

1
Φ in addition to taking the infinity norm and in (15) we use the PAC bound in Equation 34.

D.2. Upper Bound ϵk+1

Next, we define as ∇L̂+
tk−1(λ) the empirical optimistic gradient it iteration k, defined as in Equation 20, but replacing the

true variance with its empirical counterpart, and by using Lemma 5.1 we upper bound the true gradient ∇L(λ) with a term
containing the gradient estimate ∇L̂tk−1(λ) (same as ∇L̂+

tk−1(λ) but without the α). More explicitly, we have that:

∇L̂+
tk−1(λ)(s, a) =

−Es

[√
2σ̂2

tk−1(s) + α(tk − 1, s, δ)
]

2S
(
λ(s) + Esη

) 3
2

∇L̂tk−1(λ)(s, a) =
−Es

√
2σ̂2

tk−1(s)

2S
(
λ(s) + Esη

) 3
2

∇L(λ)(s, a) =
−Es

√
2σ2(s)

2S
(
λ(s) + Esη

) 3
2

In particular, we obtain that with probability at least 1− δ:

∇L̂+
tk−1(λ)(s, a) = ∇L̂tk−1(λ)(s, a)−

1

2ΦS

α(tk − 1, s, δ)(
λ(s) + Esη

)3/2 ≤ ∇L(λ)(s, a) and (36)

∇L(λ)(s, a) ≤ ∇L̂tk−1(λ)(s, a) +
1

2ΦS

α(tk − 1, s, δ)(
λ(s) + Esη

)3/2 (37)
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Hence, we get that:〈
∇L

(
λ
)
, υ+k+1

〉
=
∑
s,a

υ+k+1(s, a)∇L
(
λ
)
(s, a)

(16)
≤
∑
s,a

υ+k+1(s, a)∇L̂tk−1

(
λ
)
(s, a) +

1

2ΦS

∑
s,a

υ+k+1(s, a)
α (tk − 1, s, δ)(
λ(s) + Esη

)3/2
(17)
≤
∑
s,a

υ+k+1(s, a)∇L̂+
tk−1

(
λ
)
(s, a) +

1

ΦS

∑
s,a

υ+k+1(s, a)
α (tk − 1, s, δ)(
λ(s) + Esη

)3/2
=
〈
∇L̂+

tk−1

(
λ
)
, υ+k+1

〉
+

1

ΦS

∑
s,a

υ+k+1(s, a)
α (tk − 1, s, δ)(
λ(s) + Esη

)3/2
(18)
≤
〈
∇L̂+

tk−1

(
λ
)
, υ⋆k+1

〉
+

1

ΦS

∑
s,a

υ+k+1(s, a)
α (tk − 1, s, δ)(
λ(s) + Esη

)3/2
(19)
≤
〈
∇L

(
λ
)
, υ⋆k+1

〉
+

3

2ΦS

∑
s,a

υ+k+1(s, a)
α (tk − 1, s, δ)(
λ(s) + Esη

)3/2 (38)

where in (16) we used Equation 37, in (18) we used the optimality of υ+k+1 and in (17) and (19) we used Equation 36.

Using the definition of ϵk+1 from Equation (33), by rearranging the terms in Equation (38) we get:

ϵk+1 = ⟨∇L(λk), υ+k+1 − υ∗k+1⟩

≤ 3

2ΦS

∑
s,a

υ+k+1(s, a)
α (tk − 1, s, δ)(
λk(s) + Esη

)3/2
≤ 3

2ΦS

∑
s,a

υ+k+1(s, a)
α (tk − 1, s, δ)

(Esη)
3/2

(39)

where in the last inequality we simply lower-bound λk(s) ≥ 0.

In the following we denote with Tk(s) := Ttk−1(s) the number of visits of state s from the start until iteration k − 1 of the

FW scheme (i.e., at time tk−1 ). We now plug in the definition of α (t, s, δ) = Fmax

√
2 log(2St2/δ)

Tt(s)
, coming from Lemma

5.1, in Equation 39, leading to:

ϵk+1 ≤
∑
s,a

υ+k+1(s, a)
3Fmax

2ΦS( 1
Φη)

3/2

√√√√2 log

(
2S (tk − 1)

2

δ

)
1√
Tk(s)

=
∑
s,a

υ+k+1(s, a)
3Φ1/2Fmax

2Sη3/2

√√√√2 log

(
2S (tk − 1)

2

δ

)
1√
Tk(s)

≤ c0
∑
s,a

υ+k+1(s, a)
1√
Tk(s)

(20)
= c0

∑
s,a

υ̃k+1(s, a)
1√
Tk(s)︸ ︷︷ ︸

γk

+ c0
∑
s,a

(
υ+k+1(s, a)− υ̃k+1(s, a)

) 1√
Tk(s)︸ ︷︷ ︸

Γk+1

(40)

with c0 = 3Φ1/2Fmax

2Sη3/2

√
2 log

(
2ST 2

δ

)
, where T := tK − 1 and K is the total number of FW iterations and where in (20) we

simply added and substracted a term c0
∑

s,a υ̃
+

k+1(s, a)
1√
Tk(s)

. We can now bound Γk+1 similarly to ∆k+1 using Lemma
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E.1. In particular, by upper-bounding 1√
Tk(s)

≤ 1, we get that with probability at least 1− δ, we have that:

Γk+1 ≤ c0S

√√√√√ 2

τk
log

2SA
S

δ


Finally, by plugging in the bound of Γk+1 we just derived into Equation 40, we have that with probability at least 1− δ:

ϵk+1 ≤ c0γk + c0S

√√√√√ 2

τk
log

2SA
S

δ

 where c0 =
3Φ1/2Fmax

2Sη3/2

√
2 log

(
2ST 2

δ

)
and γk =

∑
s,a

υ̃k+1(s, a)√
Tk(s)

(41)

In the next steps, we will introduce an explicit time dependency on τk, which we will use to simplify the expression of the
approximation error and finally perform a recursion leading to the final expression of the regret.
First, we recall from Equation 33 that with probability at least 1− δ, we have:

ρk+1 ≤ (1− βk)ρk + Cηβ
2
k + βkϵk+1 + βk∆k+1

By plugging in the upper bounds of ϵk+1 and ∆k+1 that we derived in (35) and (41), we get:

ρk+1 ≤ (1− βk)ρk + Cηβ
2
k + βk

c0γk + c0S

√√√√√ 2

τk
log

2SA
S

δ


+ βk

Φ3/2
√
σ2
max

η3/2

√√√√√ 2

τk
log

2SA
S

δ



= (1− βk)ρk + Cηβ
2
k + βk

(
c0S +

Φ3/2
√
σ2
max

η3/2

)√√√√√ 2

τk
log

2SA
S

δ


︸ ︷︷ ︸

c1/
√
τk

+βkc0γk (42)

Choosing tk = τ1(k − 1)3 + 1, we get:

τk = tk+1 − tk = τ1(3k
2 − 3k + 1) ≥ 3τ1k

2 and βk =
τk

tk − 1
≤ 3

k
(43)

Hence, using (43) and the fact that τ1 ≥ 1, we can further upper-bound together the second and third terms in Equation (42)
as follows:

Cηβ
2
k + βk

c1√
τk

≤ 9
Cη

k2
+

√
3c1
k2

=:
bδ
k2

(44)

Plugging this in (42) gives:

ρk+1 ≤ (1− βk)ρk +
bδ
k2

+ βkc0γk (45)

We now want to compute the recursion on ρ in order to find the approximation error after K iterations. In order to do so,
we will closely follow the steps from (Tarbouriech & Lazaric, 2019), which we will report for completeness. We choose

q ≥
(
S/τ1

) 1
3 + 1 for later use, and we introduce the sequence (uk)k≥q with uq = ρq and

uk+1 =

(
1− 1

k

)
uk +

bδ
k2

+ βkc0γk (46)
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From Inequality 45, we have ρk ≤ uk and by induction we can see that (uk) ≥ 0. By rearranging the terms in (46), we get:

(k + 1)uk+1 − kuk =
−uk
k

+
bδ(k + 1)

k2
+ (k + 1)βkc0γk ≤ bδ(k + 1)

k2
+ (k + 1)βkc0γk

LetK ≥ q. We can now apply a telescoping sum starting at q and ending atK and exploit the fact that βk ≤ 3/k ≤ 6/(k+1)
which leads to:

KuK − quq ≤ 2bδ

K−1∑
k=q

1

k
+ 6c0

K−1∑
k=q

γk ≤ 2bδ log

(
K − 1

q − 1

)
+ 6c0

K−1∑
k=q

γk (47)

where the quq term appears as it corresponds to the first term of the telescoping sum.

By rearranging the terms in (47) and using that ρK ≤ uK as previously observed, we have with probability at least 1− δ:

ρK ≤ uK ≤ qρq + 2bδ logK

K
+

6c0
K

K−1∑
k=q

γk (48)

=
τ
1/3
1

(tK − 1)
1/3

+ τ
1/3
1

qρq + 2bδ logK + 6c0

K−1∑
k=q

γk

 (49)

By employing (Tarbouriech & Lazaric, 2019, Lemma 6) with q ≥
(
S/τ1

)1/3
+ 1 as previously set, we get the following

upper bound:

ρK ≤ τ
1/3
1

(tK − 1)1/3 + τ
1/3
1

(
qρq + 2bδ logK + 6c0

√
Σ

τ1

)

where Cη is the smoothness constant of the objective function, which can be bounded as in Lemma E.2 and Σ :=

S log( τ1(K−1)3

S
).

To showcase better interpretability of the final result and in particular to show the advantage of exploiting symmetries as in
our method, we now upper-bound the error ρK in such a way to make its dependence on the compression coefficient explicit.
We choose the tightest possible q and by using the bounds for qρq and bδ from Lemma D.3 and Lemma D.2 we get:

ρK = Õ
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1
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1
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where in the last step we used that n =
∑K

k=1 τk =
∑K

k=1 Θ(k2) = Θ(K3) = Θ(tK) and where T = tK − 1.
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Theorem 6.2 (Sample Complexity of Geometric Estimation Objective). If algorithm GAE is run with τk = 3k2 − 3k + 1,
for:

n = Õ

(
Φ

3
2S

3
2A3F 3

max(σ
2
max)

3
2

η
15
2 ϵ3

)
samples, then we have that with probability at least 1− δ:

P
(∣∣L∞,η(λn)− L∞,η(λ

∗)
∣∣ ≤ ϵ

)
≥ 1− δ

Proof. The result simply follows by inverting the regret guarantee in Theorem 6.1.

Lemma D.1. We have the following bound for the approximation error at time q:

ρq ≤
√
Φ
√
2σ2

max√
η · q

+
2bδ log q

q
+

9 · Φ1/2Fmax

Sη3/2

√
2 log

(
2S̄q6

δ

)
Proof. We begin by noting that we can derive an equivalent bound of the error at time q in the same way as in Equation 48
by deploying the telescoping series from 1 to q − 1 hence getting:

ρq ≤ ρ1 + 2bδ log q

q
+

6c0
q

q−1∑
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γk

=
ρ1 + 2bδ log q

q
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6c0
q

q−1∑
k=1

∑
s,a

υ̃k+1(s, a)√
Tk(s)

≤ ρ1 + 2bδ log q

q
+

6c0
q

q−1∑
k=1

∑
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≤ ρ1 + 2bδ log q

q
+ 6c0 (50)

We now proceed in bounding the error ρ1, by first recalling the definition we gave in Equation 22:

ρ1 := L
(
λ̄2
)
− L (λ∗)︸ ︷︷ ︸

≥0

≤ L
(
λ̄2
)

≤
√
Φ
√
2σ2

max√
η

where in the last inequality we use Lemma E.3.
Hence, by plugging this bound in Equation 50 and expliciting c0 as given in Equation 41, we get:

ρq ≤
√
Φ
√
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Lemma D.2. It holds that:

bδ = Õ

(
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√
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)
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Proof. Using the definition of bδ from Equation 44, we have:

bδ =
√
3c1 + 9Cη (51)
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where in 21 we plug in the value of c1 from Equation 42 and we use the upper bound of the smoothness constant from
Lemma E.2 and in 22 we plug in the definition of c0 from Equation 50. Hence, we have:
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Lemma D.3. It holds that:
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Proof. From Lemma D.1 we get:
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where in the second equality we used the fact that q ≥ (S/τ1)
1/3 + 1 and 1

τ1
≤ 1. Next, we plug in the result of Lemma

D.2 into bδ in the last equation to get:
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Lemma D.4. For Esη ≤ 1
n and ∀λ ∈ Λ, we can bound the non asymptotic objective function as:

Ln (λ) ⩽ L∞,η (λ) +
SFmax

S
√
nη
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Proof.
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where in (23) we used that Esη ≤ 1
n and in the last inequality we lower bounded λ(s, b) ≥ 0.

E. Auxiliary Lemmas
Lemma E.1 ((Mutny et al., 2023), Lemma 5). Let {ηt}t=1 be an adapted sequence of probability distributions on X ,P(X )
with respect to filtration Ft−1. Likewise let {ft}t=1 be an adapted sequence of linear functionals ft : P(X ) → R s.t.
||ft||∞ ≤ Bt. Also, let xt ∼ ηt, and δt(x) = I{xt=x}, then:
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Lemma E.2 (Bound of Smoothness constant). The smoothness constant Cη can be bounded by:
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A
√
2Φ5
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Proof. Given the objective L(λ), we have that its Hessian is made up of second order partial derivatives of the form

∂2L(λ)
∂λ(s′, a′)2

=
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when both partial derivatives are taken w.r.t. the same coordinate, while the mixed second order partial derivatives are given
by:

∂L(λ)
∂λ(s′, a′)∂λ(s′′, a′′)

= 0 (57)

Hence the the Hessian H(L) is a diagonal matrix, thus containing only its eigenvalues. In particular, we can upper bound
the value of the biggest eigenvalue as:

max
v∈σ(H(L))

v ≤
∑

(s,a)∈S×A

H(L)(λ)((s,a),(s,a)) (58)

which corresponds to summing all entries on the diagonal of the Hessian, and where σ(A) stands for the spectrum of A.
Hence, noting that Es =

1
Φ we have that ∀ λ ∈ Λ:

max
v∈σ(H(L))
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∑
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=
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where in the last step we have used the fact that λ ∈ Λ.
Since L is twice continuously differentiable over Λ, by (Nesterov, 2014, Theorem 2.1.6) , we have that:
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where I is the identity matrix, implying that for Cη ≤
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η5/2 , L is Cη-smooth on Λ.

From this, we have that:
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where in the last step we used the fact that A ≤ A, since we want to give a bound depending on the quantities of the original
MDP.

Lemma E.3. The following bound holds for the asymptotic objective:
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where in (24) we used that λ(s) ≥ 0, in (26) we used that Es =
1
Φ and in (26) we used that S = ΦS.
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Proposition 5 (Compression via Group Cardinality). Given a set of group-structured state symmetries G = ({Lg}g∈G, ·)
and Stab(s) = Stab(s′) ∀s, s′ ∈ S then:

Φ =
|Stab(s)|

|G|
where Stab(s) := {g ∈ G : Lg[s] = s}.

Proof. We consider the set S, the group G = ({Lg}g∈G, ·) = (G, ·) of transformations acting on S via the group action
∗ : G× S → S. Due to Assumption 6.1 we have the following.

1

Φ

(27)
= Es (64)

= |[s]| (65)
(28)
= |Orbit(s)| (66)

(29)
=

|G|
|Stab(s)|

(67)

where step (27) is due to Assumption 6.1, in step (28) we employ the definition of Orbit (Rotman, 2010, Chapter C-1, page
6), and in step (29) we leverage the Orbit-Stabilizer Theorem (Rotman, 2010, Theorem C-1.16).
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F. Experimental Details
In the following, we provide further details about the experiments carried out in this work. We first present the environments,
their invariances and resulting abstract environments. Subsequently, we provide additional information regarding the
implementation of GAE.

F.1. Pollutant Diffusion Process

MDP: We consider the problem of actively measuring the amount of pollutant released to the environment. The pollutant is
released from a point source and spreads radially outwards through a diffusion process. The measurement setup is displayed
in Figure 1. As can be seen, the measurement stations are aligned in two ways. 1) Radially outwards from the point source.
This allows to measure the variation of the pollutant amount in the radial direction. We will refer to a set of states that are
aligned in this way as a ray. 2) Along circles of different radii to measure the variation in the azimuthal direction. We will
refer to a set of states aligned in this way as a circle. Each measurement station corresponds to a state in the MDP where the
agent obtains noisy measurements of the pollutant amount. In our setup, there are a total of 30 circles and 8 rays, leading to
a total of 240 states. The action space consists of five actions, {in, out, clockwise, anticlockwise, stay}. We consider both
deterministic and stochastic dynamics. In the deterministic case, if the agent chooses action in it moves one state closer to
the point source along the ray (one further away for out). The actions leading to transitions along the circle are clockwise
and anticlockwise. The action stay, makes the agent to remain in the same state and repeat the experiment. In the case
of stochastic transitions, the agent moves to it’s intended state with probability q and with probability 1 − q to another
reachable state randomly chosen. In the experiments conducted we used q = 0.98.

Invariances of f : We consider the case where the diffusion process is radially symmetric, meaning that for all the states
on a circle, the pollution is the same. Therefore, f is invariant over different rays, as illustrated already in 1.

Abstract MDP: The aforementioned invariances on f make it possible to define MDP homomorphisms h mapping the
original MDP to abstract MDPs. In the experiments conducted, we considered three different homomorphisms, resulting
in three different geometric compression terms Φ. The homomorphisms simply differ by how the rays are compressed.
The first homomorphism h1, maps two consecutive rays into one, resulting in a compression of the 8 rays into 4. The
second homomorphism h2, compresses the 8 rays into 2 and the third h3 maps all 8 rays into 1 resulting in the compression
illustrated in Figure 1. The state map ψ therefore maps states on consecutive rays together. The state-dependent action map
ϕs corresponds to the identity map.

Implementation Details: The function f(s), is modeled as increasing the closer the state is to the source. From the first
equivalence class on the innermost circle to the 30th equivalence class consisting of the outermost circle, f decreases in
steps of 300, starting at 9300. The noise ν(s) is modeled as increasing with function value as often large measurements are
associated with larger variances. The corresponding standard deviations are hence also decreasing from the states closest to
the source to the outermost states. The standard deviations decrease by steps of 100, starting at 3100. The distribution of
ν(s) was taken to be a 0 mean Gaussian with the standard deviations given above. As an example, for a state s on the 21st
circle we have f(s) = 3000 and ν(s) ∼ N (0, 1000). The smoothness parameter was chosen to be η = 0.001, and δ = 0.01
for both, deterministic and stochastic dynamics. Furthermore, we found that in practice, a constant number of interactions
τk = τ for all the K iterations of GAE works well, especially for remarkably low τ . In this setting, we chose τ = 3, which
makes the algorithm more adaptive, resulting in the rapid exploration of different equivalence classes.To update the abstract
state-action frequency λk+1, we also use a constant update step of 0.005/S. The initial state of the agent was chosen on the
outermost circle. n as 210, resulting in K = 70 iterations of GAE. All the experiments were repeated over 15 random seeds.
The computational time was measured using a standard time library in Python. The main part of the computational time
can be attributed to solving the MDP using value iteration. We applied the Bellman optimality operator until there was no
change in the value function up to the 5th digit.

F.2. Toxicity of Chemical Compounds

MDP: As a second experiment we consider the experimental design problem of estimating the toxicity of chemical
compounds. Similarly as in (Schreck et al., 2019; Dong et al., 2022; Thiede et al., 2022), we consider an MDP where
a chemical compound is represented as a string where every character in the string stands for a base chemical element.
The goal of the agent is to estimate the toxicity associated to all possible compounds that can be generated using the base
chemical elements. In our setting we consider three base chemical elements A, B, and C. We limit the maximum length of
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the string to 5. The state space therefore consists of all possible chemical compounds that have at most 5 base elements and
the cardinality is S = 363. The action space consists of the three base elements, and an action that makes the agent stay in
the same state A = {A,B,C, stay}. By taking an action corresponding to a base element, the agent appends this element to
the current compound. Once the agent reaches a compound with 5 base elements it can either choose to measure the toxicity
of that compound again by picking the action stay or pick a new base element to start another compound. The agent may
therefore transition from one compound s of length l to another compound s′ of length l + 1 if the first l base elements are
the same.

Invariances of f : We assume that the toxicity of a chemical compound is invariant under permutations of the compound,
such that f(s) = f(s′) if s is a permutation of s′. The abstract state-space therefore has a cardinality of S = 55

Abstract MDP: These invariances on f again allow us to define an MDP homomorphism that maps the original MDP to
an abstract one. In this case the state map ψ maps all the states which are equivalent up to permutation to one abstract state.
The state-dependent action map ϕs is simply the identity. This results in an abstract MDP where the agent can transition
from one abstract state s to another one s′ if all the base compounds making up s are also contained in s′ and the agent
chooses the action corresponding to the chemical compound that is not yet in s′. As an example consider s = CABA and
s′ = AABCC, then the agent may transition from s to s′ by choosing action C

Implementation Details: We model the toxicity of the chemical compounds and the noise as a piecewise constant functions
of it’s base chemical elements. For every A in the compound, f is increased by 200, for every B, C there is an increase
of 400 and 600 respectively. Similarly, to the diffusion environment, we assume that higher measurements of toxicity are
associated with higher standard deviations and that the noise has a Gaussian distribution with 0 mean. For every A the
standard deviation increases by 100, for every B, C, the standard deviations increase by 200 and 300 respectively. As an
example consider the compound AABC, then f(AABC) = 1400 and ν(AABC) ∼ N (0, 700). We let GAE run for n = 2400
with a constant step size of τk = 20 ∀k ∈ [K], resulting in a total of K = 80 iterations of GAE. The smoothness constant
chosen was η = 0.0007 and δ = 0.01. To update the abstract state-action frequency λk+1, we also use a constant update
step of 0.005/S. The experiments were repeated over 15 different random seeds.
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