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Abstract

In this paper, we study the stochastic multi-armed bandit problem, where the reward1

is driven by an unknown random variable. We propose a new variant of the Upper2

Confidence Bound (UCB) algorithm called Hellinger-UCB, which leverages the3

squared Hellinger distance to build the upper confidence bound. We prove that4

the Hellinger-UCB reaches the theoretical lower bound(O(T)). As a real-world5

example, we apply the Hellinger-UCB algorithm to solve the cold-start problem6

for a content recommender system of a financial app. With reasonable assumption,7

the Hellinger-UCB algorithm has an important lower latency feature, closed-form8

UCB. The online experiment also illustrates that the Hellinger-UCB outperforms9

both KL-UCB and UCB1 in the sense of a higher click-through rate (CTR), 33%10

higher than the KL-UCB and almost 100% higher than the UCB1.11

1 Introduction12

1.1 Stochastic multi-armed bandit problem13

The stochastic multi-armed bandit problem(MAB) [10] is a sequential decision problem defined by14

a payoff function and a set of actions. At each step t ∈ 1, 2, ..., T , an action At is chosen from the15

action set A = {1, 2, 3, ...K} by the agent. And the associated reward rt(At), which is independent16

and identically distributed(i.i.d.), is obtained. The goal of the agent is to find the optimal strategy that17

maximizes the cumulative payoff obtained in a sequence of decisions18

SAt
(T ) =

T∑
s=1

rt(At). (1)

The agent must come up with a strategy to maximize the cumulative payoff by dealing with the19

dilemma between exploitation and exploration. The pseudo-regret R̄T is introduced to evaluate the20

performance of a strategy. It is defined as the maximized expectation of the difference between the21

cumulative payoff of consistently choosing the best action and that of the strategy in the first T steps22

R̄T = max
i=1,2,...,K

E[
T∑

s=1

rt(i)−
T∑

s=1

rt(At)] (2)

Lai and Robbins(1985)[8] showed that if for all ϵ > 0 and θ, θi ∈ Θ with µ(θ) > µ(θi), there23

exists δ > 0 such that |KL(θ, θi)−KL(θ, θj)| < ϵ whenever µ(θi) < µ(θj) < µ(θi) + δ, and the24

following theorem is true. Let Ni(t) denote the number of times the agent selected action i in the25

first t steps,26
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Theorem 1 If a policy has regret R̄T = o(T a) for all a > 0 as T → 0, the number of draws up to27

time t, Ni(t) of any sub-optimal arm i is lower bounded28

lim inf
T→∞

Ni(T )

log(T )
⩾

1

infθ∈Θi:Eθ>µ∗ KL(θi, θ)
(3)

Therefore, the regret is lower-bounded29

lim inf
T→∞

R̄T

log(T )
⩾

∑
i:∆i⩾0

∆i

infθ∈Θi:Eθ>µ∗ KL(θi, θ)
(4)

.30

The stochastic multi-armed bandit problem has been extensively studied [4, 7, 9]. Under the para-31

metric setting, a type of policy called upper-confidence bound (UCB) is proposed and proved to32

be promising[3]. Agrawal[1] introduced a family of index policies that is easier to compute. Auer,33

Nicolo and Paul[3] proposed an online, horizon-free procedure which is called upper-confidence34

bound(UCB) and proved its efficiency. Audibert and Bubeck[2] presented an improvement to the35

UCB1 called MOSS which is optimal for finite time. A variant of UCB which builds UCB based on36

the Kullbakc-Leibler divergence(KL) KL-UCB was presented by Garivier, Cappé[6].37

2 Setup And Notations38

We consider a stochastic multi-armed bandit problem with finite arms A = {1, 2, 3, ...K}. Each39

arm i is associated with a reward distribution pi(θ) over R. It is assumed that pi(θ) is from some40

one-parameter exponential family P(θ) with unknown expectation µi.41

It is also common to use a different formula for the pseudo-regret for a stochastic problem. Write42

µ∗ = maxi=1,2,...,K E[µi] as the expected reward of the optimal action. Then ∆i = µ∗ − µi, and we43

have44

R̄T =

K∑
i=1

E[Ni(T )]µ
∗ − E[

K∑
i=1

Ni(T )µi] =

K∑
i=1

∆iE[Ni(T )] (5)

3 The Hellinger-UCB Algorithm45

The goal of the UCB algorithm is to make sequential decisions in the stochastic environment. The46

reward distribution of each arm is unknown. The only way to collect information and estimate the47

distribution is to pull the arm. But each trial comes with risk which is measured by regret. Hence48

exploration-exploitation trade-off is important in this case. The motivation of the UCB algorithm is49

being optimistic about the reward distributions as one always believes that the expected reward is the50

highest value within the confidence region. Hence the key in the UCB algorithm is constructing the51

confidence region.52

53

The formula of the squared Hellinger distance makes it computationally efficient. With this property,54

we propose a new UCB type algorithm, the Hellinger-UCB which constructs the UCB based on55

the squared Hellinger distance. The new algorithm achieves the theoretical lower bound and has a56

closed-form UCB for some distributions, for example, binomial distribution. The latter property is57

favorable in some low-latency applications.58

3.1 Main algorithm59

We briefly describe the process of Hellinger-UCB here. Let A = {i}Ki=1 be the action set where K,60

the number of actions, is a positive integer. For each arm i ∈ A, the reward distribution Pθi is in some61

one-parameter exponential family with expectation µi. At the first |K| rounds, the agent chooses62

each arm once. After that, at each round t > |K|, the agent makes a decision At = i based on the63

collected observations of each arm and gets the reward gt(At) from PAt
. The upper confidence64

bound for arm i is65

Ui(t) = sup{ψ̇(θ) : H2(Pθ̂i,t−1
, Pθ) ⩽ 1− e

−c
log(t)
Ni(t) } (6)
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where Pθ̂i,t−1
is the estimated reward distribution based on the past observations and Ni(t) the66

number of pulls of arm i. In the right hand side term, c ∈ ( 14 ,
1
2 ] and usually achieves optimal67

performance with c slightly greater than 1
4 in practice. This is a convex optimization problem and can68

be solved efficiently. The agent will choose the action i with the maximal Ui(t). Algorithm 1 shows69

the pseudo-code of the Hellinger-UCB algorithm.70

Algorithm 1 Hellinger-UCB
1. Known Parameters: T (time horizon), K(action set), i ∈ K(action), rt(i)(reward given

action)
2. For t = 1 to |K|:

(a) At = i = t%|K|
(b) Ni(t) = 1

(c) Si(t) = rt(At)

end for
3. For t = |K|+ 1 to T :

(a) At = argmaxisup{ψ̇(θ) : H2(Pθ̂i,t−1
, Pθ) ⩽ 1− e

−c
log(t)
Ni(t) }, where Pθ̂t−1

is the max-
imum likelihood estimation(MLE) of the reward distribution based on the past observa-
tions.

(b) r = rt(At)

(c) Ni(t)+ = I{At = i}
(d) Si(t)+ = r

end for

3.2 Optimality of Hellinger-UCB71

As a UCB-based algorithm for the stochastic multi-armed bandit problem, we are interested in whether72

the pseudo regret of the Hellinger-UCB algorithm is optimal. The following theorem guarantees the73

optimality of this algorithm. We first derive the upper bound of each sub-optimal arm’s expected74

number of pulls.75

Theorem 2 Consider a multi-armed bandit problem with K arms and the associated payoffs are76

some distributions in a one-parameter exponential family. Let a∗ denote the optimal arm with77

expectation µ∗ and i denote some sub-optimal arm with expectation µi such that µi < µ∗. For any78

T > 0, the number of picks of arm i by Hellinger-UCB is Ni(T ). For any ϵ > 079

E[Ni(T )] ⩽ − c log(T )

log(1− H2(µ∗,µi)
1+ϵ )

+
C1(ϵ)

TC2(ϵ)
+

T∑
t=1

1

t2c
+

e−2H2(µ∗,µi)

1− e−2H2(µ∗,µi)

where C1(ϵ) = − c

log(1−H2(µ∗,µi)

1+ϵ )
> 0 and C2(ϵ) =

(
√
1+ϵ−1)2

1+ϵ > 0.80

if c > 1
4 ,81

E[Ni(T )] ⩽ − c log(T )

log(1− H2(µ∗,µi)
1+ϵ )

+
C1(ϵ)

TC2(ϵ)
+O(1)

Proof: See Appendix A for details of the proof □82

Then the upper bound of the pseudo-regret is just a direct result of Theorem 3.183

Theorem 3 The regret of Hellinger-UCB satisfies:84

R̄T ⩽
∑

i:µi⩽µ∗

∆iE[Ni(T )] (7)

.85
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4 Numerical result86

The long-run online experiment is conducted in the front page content recommendation business87

of JD Finance App. The recommendation system is designed to provide personalized multi-type88

content recommendations to the users. For each request, the cold start model is required to rank a89

set of articles and tweets, and then present the top-rank contents to the users. All three algorithms,90

UCB1, KL-UCB, and Hellinger-UCB, rank about ten thousand of contents(Financial articles) from91

the cold start pool with estimated CTR. CTR is modeled as the mean reward of a series of Bernoulli92

trials, which is the exact historical clicks and impression information. Three UCB algorithms share93

the whole traffic and the final impression is generated by randomly selecting one of three results94

uniformly. The system records 1 point as a reward to the corresponding algorithm when the user has95

any positive interaction (click/like/comment) with the content. Under this setting, the comparison of96

rewards among the three algorithms will give an insight into CTR for each algorithm. We show the97

upper confidence bound of UCB1, KL-UCB, and Hellinger-UCB in the appendix.98

Figure 1 shows the cumulative reward plot of three algorithms in a two-month experiment from Oct.99

2020 to Nov. 2020. It is very clear that Hellinger-UCB (blue line) significantly outperforms KL-UCB100

(orange line) and UCB1 algorithm (green line). In fact, the Hellinger-UCB algorithm achieves about101

33% more clicks than the KL-UCB algorithm and almost 100% more clicks than the UCB1 algorithm.102

Hellinger-UCB algorithm obtains more clicks in the early period and then achieves even more clicks103

as the learning continues. This is an encouraging illustration of the potential power of Hellinger-UCB104

in real applications.105

Figure 1: Cumulative reward plot of different UCB algorithms. The y-axis is reward points. The
x-axis is a time stamp recorded as 9 digits integer.

5 Conclusion106

We presented the Hellinger-UCB algorithm for the stochastic multi-armed bandit problem. In107

the case that the reward is from an unknown exponential family, we provide the detailed formula108

of the algorithm and an optimal regret upper bound that achieves O(log(T )). We present real109

numerical experiments that show significant improvement over other variants of UCB algorithms.110

The cumulative reward form the proposed algorithm is higher. We also show the algorithm has a111

closed-form UCB when the reward is a bernoulli distribution, which is a beneficial property for112

low-latency applications.113
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A Appendix138

A.1 Proof of Theorem 3.1139

Proof: Hellinger-UCB algorithm relies on the following upper confidence bound for µi:140

ui(t) = max{q > µ̂i(t) : H
2(µ̂i(t), q) ⩽ 1− exp{−c log(t)

Ni(t)
}} (8)

The expectation of Ni(T ) is upper-bounded by using the following decomposition. When a sub-141

optimal arm i is pulled, then the upper confidence bound of the optimal arm u∗(t) based on historical142

observations is either greater or less than its true expectation µ∗. In the latter case,143

E[Ni(T )] = E[
T∑

t=1

I{At = i}] (9)

= E[
T∑

t=1

I{At = i, µ∗ > u∗(t)}] + E[
T∑

t=1

I{At = i, µ∗ ⩽ u∗(t)}] (10)

⩽
T∑

t=1

P{µ∗ > u∗(t)}+ E[
T∑

t=1

I{At = i, µ∗ ⩽ u∗(t)}] (11)

⩽ C1(ϵ) log(T ) +
(C2(ϵ)H

2(µ∗, µi))
−1

T 2C1(ϵ)C2(ϵ)H2(µ∗,µi)
(12)

+
e−2H2(µ∗,µi)

1− e−2H2(µ∗,µi)
+

T∑
t=1

1

t2c
(13)
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The last inequality is from Lemma 1144

T∑
t=1

P{µ∗ > u∗(t)} ⩽
T∑

t=1

1

t2c
(14)

and Lemma 3145

E[
T∑

t=1

I{At = i, µ∗ ⩽ u∗(t)}] (15)

⩽C1(ϵ) log(T ) +
(C2(ϵ)H

2(µ∗, µi))
−1

T 2C1(ϵ)C2(ϵ)H2(µ∗,µi)
+

e−2H2(µ∗,µi)

1− e−2H2(µ∗,µi)
(16)

If c > 1
4 , according to Lemma 2 and Lemma 3, we have146

E[Ni(T )] ⩽ C1(ϵ) log(T ) +
(C2(ϵ)H

2(µ∗, µi))
−1

T 2C1(ϵ)C2(ϵ)H2(µ∗,µi)
+O(1) (17)

The details of these lemmas are in the following section. □147

A.2 THE PROOF OF THE THEOREM148

This concentration inequality[5] will be used several times149

P{µ̂(n) > µ,KL(µ̂(n), µ) >
f(n)

n
} ⩽ e−f(n) (18)

. The following lemmas support the proof of the main theorem.150

Lemma 1
T∑

t=1

P{µ∗ > u∗(t)} ⩽
T∑

t=1

1

t2c
.151

Proof: µ̂∗(t) is the M.L.E. of µ∗, then152

P{µ∗ > u∗(t)} (19)

⩽P{µ∗ > µ̂∗(t), H2(µ∗, µ̂∗(t)) ⩾ 1− exp{−c log(t)
N∗(t)

}} (20)

Since for exponential family − log(1−H2(µ∗, µ̂∗(t))) ⩽ 1
2KL(µ̂

∗(t), µ∗), (20) becomes153

P{µ∗ > u∗(t)} (21)

⩽P{µ∗ > µ̂∗(t), 1− e−
1
2KL(µ̂∗(t),µ∗) ⩾ (1− exp{−c log(t)

N∗(t)
})} (22)

⩽P{µ∗ > µ̂∗(t),KL(µ̂∗(t), µ∗) ⩾ 2c
log(t)

N∗(t)
} (23)

⩽e−2c log(t) (24)

=
1

t2c
(25)

. Then154
T∑

t=1

P{µ∗ > u∗(t)} ⩽
T∑

t=1

1

t2c
(26)

□155

Lemma 2 If c > 1
4 in156

u∗(t) = max{q > µ̂i(t) : H
2(µ̂∗(t), q) ⩽ 1− exp{−c log(t)

N∗(t)
}}

then157
∞∑
t=1

P{µ∗ > u∗(t)} = O(1)

.158
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Proof: µ̂∗(t) is the M.L.E. of µ∗ at t159

P{µ∗ > u∗(t)} (27)

⩽P{µ∗ > µ̂∗(t), H2(µ∗, µ̂∗(t)) ⩾ 1− exp{−c log(t)
N∗(t)

}} (28)

Since H2(µ∗, µ̂∗(t)) = 1
4KL(µ̂∗(t), µ∗) if t → ∞. There exist T1 > 0 and δ1 > 0 such that for160

t > T1161

H2(µ∗, µ̂∗(t)) ⩽
1

4
KL(µ̂∗(t), µ∗) + δ1 (29)

It is known that δ1 = O(N∗(t)−
3
2 ). Thus (28) becomes162

P{µ∗ > u∗(t)} (30)

⩽P{µ∗ > µ̂∗(t),KL(µ̂∗(t), µ∗) ⩾ 4(1− exp{−c log(t)
N∗(t)

} − δ1)} (31)

We have the Taylor expansion163

exp{−c log(t)
N∗(t)

} = 1− c
log(t)

N∗(t)
+

1

2!
(−c log(t)

N∗(t)
)2 +

1

3!
(−c log(t)

N∗(t)
)3 + ... (32)

= 1− c
log(t)

N∗(t)
− log(t)

N∗(t)
R(c, t) (33)

whereR(c, t) =
∑∞

k=2
1
k!c

k(− log(t)
N∗(t) )

k−1 is a negative function for c < 1. Notice limt→∞R(c, t) →164

0 since limt→∞
log(t)
N∗(t) = 0. There exist T2 > 0 and δ > 0 such that −δ < R(c, t) < 0. Therefore for165

t > max(T1, T2), (31) will be166

P{µ∗ > u∗(t)} (34)

⩽P{µ∗ > µ̂∗(t),KL(µ̂∗(t), µ∗) ⩾ 4c
log(t)

N∗(t)
+

4 log(t)

N∗(t)
R(c, t)− 4δ1} (35)

⩽P{µ∗ > µ̂∗(t),KL(µ̂∗(t), µ∗) ⩾ 4c
log(t)

N∗(t)
− 4 log(t)

N∗(t)
δ − 4δ1} (36)

⩽ exp{−4c log(t) + 4δ log(t) + 4N∗(t)δ1} (37)
We now have167

P{µ∗ > u∗(t)} ⩽
e4N

∗(t)δ1

t4(c−δ)
⩽
eO(N∗(t)−

1
2 )

t4(c−δ)
⩽

m1

t4(c−δ)
(38)

for some finite m1 > 0.168

For t ⩽ max(T1, T2), there must exist some m2 > 0 such that169

P{µ∗ > u∗(t)} ⩽
m2

t4(c−δ)
(39)

Therefore for M = max(m1,m2), the following result holds170

P{µ∗ > u∗(t)} ⩽
M

t4(c−δ)
(40)

and c > 1
4 + δ implies the summation171

∞∑
t=1

P{µ∗ > u∗(t)} ⩽
∞∑
t=1

M

t4(c−δ)
= O(1) (41)

□172

Lemma 3 For any ϵ > 0, then173

E[
T∑

t=1

I{At = i, µ∗ ⩽ u∗(t)}]

⩽C1(ϵ) log(T ) +
(C2(ϵ)H

2(µ∗, µi))
−1

T 2C1(ϵ)C2(ϵ)H2(µ∗,µi)
+

e−2H2(µ∗,µi)

1− e−2H2(µ∗,µi)

where C1(ϵ) = − c

log(1−H2(µ∗,µi)

1+ϵ )
> 0 and C2(ϵ) =

(
√
1+ϵ−1)2

1+ϵ > 0.174
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Proof: Arm i is sub-optimal with expected reward µi and µ̂i(t) is the M.L.E. for µi at t,. Then we175

have176

E[
T∑

t=1

I{At = i, µ∗ ⩽ u∗(t)}] (42)

=E[
T∑

t=1

I{At = i, µ∗ ⩽ u∗(t), µ∗ ⩽ µ̂i(t)}]+ (43)

E[
T∑

t=1

I{At = i, µ∗ ⩽ u∗(t), µ∗ > µ̂i(t)}] (44)

⩽ C1(ϵ) log(T ) +
(C2(ϵ)H

2(µ∗, µi))
−1

T 2C1(ϵ)C2(ϵ)H2(µ∗,µi)
+

e−2H2(µ∗,µi)

1− e−2H2(µ∗,µi)
(45)

(45) is according to Lemma B.4 and Lemma B.5.177

□178

Lemma 4

E[
T∑

t=1

I{At = i, µ∗ ⩽ u∗(t), µ∗ ⩽ µ̂i(t)}] ⩽
e−2H2(µ∗,µi)(1− e−2TH2(µ∗,µi))

1− e−2H2(µ∗,µi)

Proof:

E[
T∑

t=1

I{At = i, µ∗ ⩽ u∗(t), µ∗ ⩽ µ̂i(t)}] (46)

⩽E[
T∑

t=1

I{At = i, µ∗ ⩽ µ̂i(t), H
2(µ∗, µi) ⩽ H2(µ̂i(t), µi)}] (47)

⩽E[
T∑

t=1

I{At = i, µ∗ ⩽ µ̂i(t), H
2(µ∗, µi) ⩽

1

2
KL(µ̂i(t), µi)}] (48)

=E[
T∑

t=1

t∑
s=1

I{At = i,Ni(t) = s, µ∗ ⩽ µ̂i(s), H
2(µ∗, µi) ⩽

1

2
KL(µ̂i(s), µi)}] (49)

=E[
T∑

s=1

T∑
t=s

I{At = i,Ni(t) = s}I{µ∗ ⩽ µ̂i(s), H
2(µ∗, µi) ⩽

1

2
KL(µ̂i(s), µi)}] (50)

=E[
T∑

s=1

I{µ∗ ⩽ µ̂i(s), H
2(µ∗, µi) ⩽

1

2
KL(µ̂i(s), µi)}

T∑
t=s

I{At = i,Ni(t) = s}] (51)

Notice in (51)
∑T

t=s I{At = i,Ni(t) = s}] ⩽ 1 and thus179

E[
T∑

t=1

I{At = i, µ∗ ⩽ u∗(t), µ∗ ⩽ µ̂i(t)}] (52)

⩽E[
T∑

s=1

I{µ∗ ⩽ µ̂i(s), H
2(µ∗, µi) ⩽

1

2
KL(µ̂i(s), µi)}] (53)

=

T∑
s=1

P{µ∗ ⩽ µ̂i(s), H
2(µ∗, µi) ⩽

1

2
KL(µ̂i(s), µi)} (54)

⩽
T∑

s=1

e−2sH2(µ∗,µi) (55)

=
e−2H2(µ∗,µi)(1− e−2TH2(µ∗,µi))

1− e−2H2(µ∗,µi)
(56)
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It is easy to show180

lim
T→∞

E[
T∑

t=1

I{At = i, µ∗ ⩽ u∗(t), µ∗ ⩽ µ̂i(t)}] =
e−2H2(µ∗,µi)

1− e−2H2(µ∗,µi)
(57)

which is a problem-dependent constant. □181

Lemma 5 For any ϵ > 0, then182

E[
T∑

t=1

I{At = i, µ∗ ⩽ u∗(t), µ∗ > µ̂i(t)}]

⩽C1(ϵ) log(T ) +
(C2(ϵ)H

2(µ∗, µi))
−1

T 2C1(ϵ)C2(ϵ)H2(µ∗,µi)

where C1(ϵ) = − c

log(1−H2(µ∗,µi)

1+ϵ )
> 0 and C2(ϵ) =

(
√
1+ϵ−1)2

1+ϵ > 0.183

184

Proof: Similar to the proof for Lemma B.4 we can have185

E[
T∑

t=1

I{At = i, µ∗ ⩽ u∗(t), µ∗ > µ̂i(t)}] (58)

⩽E[
T∑

t=1

t∑
s=1

I{At = i,Ni(t) = s,H2(µ∗, µ̂i(s)) < 1− e−c
log(t)

s }] (59)

⩽E[
T∑

s=1

T∑
t=s

I{At = i,Ni(t) = s}I{H2(µ∗, µ̂i(s)) < 1− e−c
log(T )

s }] (60)

⩽E[
T∑

s=1

I{H2(µ∗, µ̂i(s)) < 1− e−c
log(T )

s }] (61)

=

T∑
s=1

P{H2(µ∗, µ̂i(s)) < 1− e−c
log(T )

s } (62)

⩽KT +

T∑
s=KT+1

P{H2(µ∗, µ̂i(s)) < 1− e
−c

log(T )
KT } (63)

where KT = C1(ϵ) log(T ) and C1(ϵ) = − c

log(1−H2(µ∗,µi)

1+ϵ )
> 0. Then substitute this into (63). Then186

E[
T∑

t=1

I{At = i, µ∗ ⩽ u∗(t), µ∗ > µ̂i(t)}] (64)

⩽C1(ϵ) log(T ) +

T∑
s=KT+1

P{H2(µ∗, µ̂i(s)) <
H2(µ∗, µi)

1 + ϵ
} (65)

There exist µ′ ∈ (µi, µ
∗) such that (1 + ϵ)H2(µ∗, µ′) = H2(µ∗, µi). Then H2(µ∗, µ̂i(s)) <187

H2(µ∗,µi)
1+ϵ implies µi < µ′ < µ̂i(s) and H2(µi, µ̂i(s)) > H2(µi, µ

′). The second term in (65)188
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becomes189

∞∑
s=KT+1

P{H2(µ∗, µ̂i(s)) <
H2(µ∗, µi)

1 + ϵ
} (66)

⩽
∞∑

s=KT+1

P{µ̂i(s) > µi, H
2(µi, µ̂i(s)) > H2(µi, µ

′)} (67)

⩽
∞∑

s=KT+1

P{µ̂i(s) > µi,
1

2
KL(µ̂i(s), µi) > H2(µi, µ

′)} (68)

⩽
∞∑

s=KT+1

e−2sH2(µi,µ
′) (69)

=
e−2(KT+1)H2(µi,µ

′)

1− e−2H2(µi,µ′)
(70)

The numerator of (70) e−2(KT+1)H2(µi,µ
′) ⩽ T−2C1(ϵ)H

2(µi,µ′). For the denominator of (70), we190

have 1− e−2H2(µi,µ
′) > H2(µi, µ

′) since 1− e−x = 1− (1− x+ x2

2 − ...) > x− x2

2 > x− x
2 if191

0 < x < 1. Therefore192

∞∑
s=KT+1

P{H2(µ∗, µ̂i(s)) <
H2(µ∗, µi)

1 + ϵ
} ⩽

H2(µi, µ
′)−1

T 2C1(ϵ)H2(µi,µ′)
(71)

Since the squared Hellinger distance is a metric, we have193

H(µ∗, µi) =
√
1 + ϵH((µ∗, µ′)) (72)

⩾
√
1 + ϵ(H(µ∗, µi)−H(µ′, µi)) (73)

This implies194

H2(µ′, µi) ⩾
(
√
1 + ϵ− 1)2

1 + ϵ
H2(µ∗, µi) = C2(ϵ)H

2(µ∗, µi) (74)

Finally, we conclude that195

E[
T∑

t=1

I{At = i, µ∗ ⩽ u∗(t), µ∗ > µ̂i(t)}] ⩽
(C2(ϵ)H

2(µ∗, µi))
−1

T 2C1(ϵ)C2(ϵ)H2(µ∗,µi)
(75)

where C1(ϵ) > 0 and C2(ϵ) > 0. □196

B Appendix197

B.1 Solution of different UCBs198

We will compare the solutions of three UCB algorithms and introduce the advantages and disadvan-199

tages of those algorithms. We will also prove that Hellinger-UCB has a close form with binomial200

distribution assumption of rewards.201

B.1.1 UCB1 algorithm202

The UCB1 algorithm[3], regardless of the reward distribution, always uses the following UCB203

formula:204

Ut(i) = µ̂i,t−1 +

√
2 log(t)

Ni(t)
(76)

where µ̂i,t−1 is the success ratio of content i at time t−1, Ni(t) the number of impressions of content205

i at time t. UCB1 algorithm can always compute its confidence bound with a counting process.206
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B.1.2 KL-UCB algorithm207

The KL-UCB algorithm solves the following optimization problem numerically to find the best arm208

Ut(i) = sup{µ(θ) : KL(Pθ̂t−1
|Pθ) ⩽

log(t) + c log log(t)

Ni(t)
} (77)

where Pθ̂t−1
and Pθ̂t

are the reward distribution at t − 1 and t. With the assumption of reward209

distribution in ??, the solution of KL-UCB becomes the following root-finding problem210

Ut(i) = sup{pt : pt−1 log
pt−1

pt
+ (1− pt−1) log

1− pt−1

1− pt
= C} (78)

where211

C =
log(t) + c log log(t)

Ni(t)
(79)

It is easy to get that 78 does not have a closed-form solution and requires a numerical solver to iterate212

the solution. Therefore KL-USB requires much more computation resources than UCB1 though213

KL-UCB has better performance than UCB1. In real-world applications, KL-UCB is less favorable214

than UCB1 since it requires much more careful engineering controls.215

B.1.3 Hellinger-UCB algorithm216

The Hellinger-UCB chooses the best arm by solving the following optimization problem217

Ut(i) = sup{ψ̇(θ) : H2(Pθ̂i,t−1
, Pθ) ⩽ 1− e

−c
log(t)
Ni(t) } (80)

unlike KL-UCB, the Hellinger-UCB algorithm has a closed-form solution with the binomial reward.218

Recall that the squared Hellinger distance between two Binomial distributions B(n, p) and B(n, q)219

is given by220

H2(p, q) = 1−
√
(1− p)(1− q)−√

pq (81)

Let f(q) = 1 −
√
(1− p)(1− q) −√

pq, its derivative is f ′(q) =
√

1−p
1−q −

√
p
q . It is easy to see221

that222

f ′(q) :


< 0, q < p,

= 0, q = p,

> 0, q > p.

(82)

The solution to the above equation 80 must be on the squared Hellinger ball. Let R be the radius of223

the squared Hellinger Ball, i.e.224

R = 1−
√
(1− p)(1− q)−√

pq. (83)

Divide both sides by
√
q and let m1 =

√
1−p
p and m2 = 1−R√

p225

√
q +m1

√
1− q = m2. (84)

Take the square of both sides and simplify the equation226

2m1

√
q(1− q) = m2

2 −m2
1 + (m2

1 − 1)q (85)

Repeat above procedure one more time and simplify the result227

(m2
1 + 1)2q2 + 2(m2

1m
2
2 −m4

1 −m2
1 −m2

2)q + (m2
2 −m2

1)
2 = 0. (86)

Let a = (m2
1 + 1)2, b = 2(m2

1m
2
2 −m4

1 −m2
1 −m2

2) and c = (m2
2 −m2

1)
2, the root of 86 is228

q =
−b±

√
b2 − 4ac

2a
. (87)

The larger root is desired. Therefore, Hellinger-UCB has a close form solution with binomial reward229

distribution assumption.230
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