
HiLD 2024: 2nd Workshop on High-dimensional Learning Dynamics

Loss landscape geometry reveals stagewise development of transformers

George Wang= GEORGE@TIMAEUS.CO
Timaeus

Matthew Farrugia-Roberts= MATTHEW@FAR.IN.NET
Independent & Timaeus

Jesse Hoogland JESSE@TIMAEUS.CO
Timaeus

Liam Carroll LEMMYKC@GMAIL.COM
Independent

Susan Wei SUSAN.WEI@UNIMELB.EDU.AU
School of Mathematics and Statistics, the University of Melbourne

Daniel Murfet D.MURFET@UNIMELB.EDU.AU

School of Mathematics and Statistics, the University of Melbourne

Abstract
The development of the internal structure of neural networks throughout training occurs in tandem
with changes in the local geometry of the population loss. By quantifying the degeneracy of this
geometry using the recently proposed Local Learning Coefficient, we show that the training process
for a transformer language model can be decomposed into discrete developmental stages. We
connect these stages to interpretable shifts in input–output behavior and developments in internal
structure. These findings offer new insights into transformer development and underscore the crucial
role of loss landscape geometry in understanding the dynamics of deep learning.

1. Introduction

A striking phenomenon in modern deep learning is the event of sudden shifts in a model’s internal
computational structure and associated changes in input–output behavior [22, 28, 41]. Understanding
this phenomenon is a priority for the science of deep learning. We propose that the local geometry
of the population loss holds the key to understanding this phenomenon. This is motivated by
the perspective of singular learning theory [39], wherein the local geometry of the model likelihood
governs stagewise development in the Bayesian posterior distribution with increasing samples [6, 39].
In this paper we study the connection between loss landscape geometry and stagewise development.
We propose and investigate the following geometry-based methodology for stage identification.

• Transformer training. We train a transformer language model with around 3 million parame-
ters on a subset of the Pile [15, 43].

• Geometry tracing. We track the evolution of degeneracy in the local geometry of the loss
landscape by estimating the Local Learning Coefficient [LLC; 18] at frequent checkpoints.

• Stage division. Motivated by the singular learning process in Bayesian statistics [6, 39], we
identify critical points of the LLC curve and use them to divide training into stages.

© G. Wang, M. Farrugia-Roberts, J. Hoogland, L. Carroll, S. Wei & D. Murfet. =Equal contribution.

LOSS LANDSCAPE GEOMETRY REVEALS STAGEWISE DEVELOPMENT OF TRANSFORMERS

This methodology reveals our transformer’s development can be divided into five clear stages
(Figure 1). We show that this division is meaningful in that the stages coincide with key changes in
the model’s internal structure and input–output behavior, revealing that the transformer implements
a progression of language modeling heuristics over training. In particular, we associate the first
four stages with learning to predict according to bigram statistics (Stage LM1), learning to predict
frequent n-grams and use the positional embedding (Stage LM2), and forming “previous-token
heads” and “induction heads” as studied by Olsson et al. [28] (Stages LM3 and LM4).

102 103 104
3

4

5

Te
st

los
s

(w
t)

102 103 104

Training step t

75

100

125

150

Lo
ca

l le
arn

ing
 co

eff
.

(w
t)

LM1 LM2 LM3 LM4 LM5Stages:

Key Stage End t ∆ℓ̂ ∆λ̂

LM1 900 −2.33 +26.4

LM2 6.5k −1.22 +22.5

LM3 8.5k −0.18 −1.57

LM4 17k −0.40 +8.62

LM5 50k −0.34 +1.77

Figure 1: We train a two-layer attention-only transformer language model, tracking test loss (top
left) and estimated Local Learning Coefficient (LLC; bottom left; see Section 4). Critical points in
the LLC curve divide training into distinct developmental stages (right). Orange hue indicates LLC
increase, blue indicates decrease. Additional seeds in Appendix G.

2. Related work

The study of stagewise development in artificial neural networks has a long history [3, 30, 32, 34]
with renewed relevance due to emergent structure and behavior in large models. This section briefly
reviews recent related work. We discuss additional related work in Appendix A.

Elhage et al. [9], Olsson et al. [28] studied fully-trained language models, showing “zero-layer”
transformers (embedding, then zero attention layers, then unembedding) learn bigram statistics; one-
layer transformers learn skip-trigrams; and two-layer transformers form an in-context learning circuit
with previous-token heads (layer 1) and induction heads (layer 2). We show a similar progression
occurring in a single two-layer transformer, throughout training rather than across architectures.

Chen et al. [5] showed that the emergence of syntactic attention structure within language models
coincides with a sudden change in the loss and the intrinsic dimension [another geometric complexity
measure; 11]. Contemporaneously, Edelman et al. [7] study transformers trained on Markov chain
sequence modeling, showing stagewise development of bigrams, previous-token heads and induction
heads revealed by the loss curve. In contrast, we propose a principled method for stage identification
using critical points in the LLC curve, capable of revealing stages not visible from the loss alone.

Barak et al. [4] and Nanda et al. [25] give examples of progress measures, metrics that reflect
hidden model changes not visible in the loss and may precede phase transitions. Unlike a progress
measure, the LLC can detect hidden model changes without requiring prior knowledge of what is
changing. Our structural metrics resemble mechanistic progress measures [25], demonstrating that
mechanistic analysis can complement geometric analysis by helping to discover stage content.

2

LOSS LANDSCAPE GEOMETRY REVEALS STAGEWISE DEVELOPMENT OF TRANSFORMERS

3. Transformer training

Following Elhage et al. [9] and Olsson et al. [28], we train an autoregressive attention-only trans-
former with two layers. We use token sequences taken from a subset of the Pile [15, 43]. Full
architecture, tokenization, and training details are in Appendix B.

Let fw denote the transformer language model with parameter w. Our data comprises n length-K
contexts, {Si

K}ni=1, where each context is a sequence of tokens Si
K = (ti1, . . . , t

i
K). Let Si

≤k denote
the prefix (ti1, . . . , t

i
k) of Si

K . For k ≤ K − 1 the per-token empirical loss is

ℓn,k(w) = − 1

n

n∑
i=1

log fw(t
i
k+1|Si

≤k). (1)

The associated empirical loss is

ℓn(w) =
1

K − 1

K−1∑
k=1

ℓn,k(w), (2)

with the test loss ℓ̂ defined analogously on a held-out set of examples. The corresponding population
loss ℓ(w) is the expectation over some true distribution of contexts.

4. Geometry tracing

We track the evolution of degeneracy in the local geometry of the loss landscape throughout training
by estimating the Local Learning Coefficient [LLC; 18, 39] at model checkpoints.

The LLC at a neural network parameter w∗, denoted λ(w∗), is a positive scalar measuring the
degeneracy of the geometry of the population loss ℓ near w∗. The geometry is more degenerate
(lower LLC) if there are more ways in which w can be varied near w∗ such that ℓ(w) remains equal
to ℓ(w∗). Watanabe [39] studied the global learning coefficient and proved that this quantity of the
population loss ℓ can be estimated using the empirical loss ℓn. Lau et al. [18, see also 14] introduced
the local learning coefficient along with a scalable LLC estimator based on stochastic-gradient
Langevin dynamics [SGLD; 42]. For some examples of the theoretical LLC, see Appendix C.

We generalize Lau et al. [18]’s LLC estimator from likelihood-based to loss-based. Let w∗ be a
local minimum of the population loss ℓ. The generalized LLC estimate λ̂(w∗) is

λ̂(w∗) = nβ
[
Eβ
w|w∗,γ [ℓn(w)]− ℓn(w

∗)
]
, (3)

where Eβ
w|w∗,γ denotes the expectation with respect to the Gibbs posterior

p(w;w∗, β, γ) ∝ exp
{
−nβℓn(w)−

γ

2
||w − w∗||22

}
,

β is an inverse temperature controlling the contribution of the loss, and γ is the localization strength
controlling proximity to w∗. Intuitively, the more degenerate the geometry, the more ways there are
to vary w near w∗ without changing the loss, the easier it is for a sampler exploring the posterior to
find points of low loss, the lower λ̂(w∗). For details on LLC estimation, see Appendix D.

3

LOSS LANDSCAPE GEOMETRY REVEALS STAGEWISE DEVELOPMENT OF TRANSFORMERS

5. Stage division

We use critical points (that is, plateaus, where the first derivative vanishes) in the LLC curve to define
stage boundaries that divide training into developmental stages (see Appendix E for details).

This approach is motivated by Watanabe’s free energy formula [40, Theorem 11] generalized to
a local setting by Chen et al. [6]. This gives an asymptotic expansion in the number of samples n of
the expected Bayesian free energy of some neighborhood W ∗ surrounding a local minimum w∗ of ℓ,

EDn [Fn(W
∗)] = nℓ(w∗) + λ(w∗) log n+O(log log n). (4)

The coefficients of the linear and logarithmic terms are the population loss (a negative log likelihood)
and the LLC, respectively. This creates a tradeoff between accuracy (ℓ) and degeneracy (λ), and
suggests that at certain critical dataset sizes the Bayesian posterior will suddenly “jump” from
concentrating around one local minima to another. This sequence of discrete jumps is referred to as
the singular learning process [39, §7.6].

In small models such jumps behave like phase transitions in statistical physics [2, 6] and are
reflected as sudden changes in the estimated LLC. In larger models the change in estimated LLC is
more gradual, and we speak instead of stages separated by stage boundaries at which the posterior is
stably concentrated around a given local minima (see also Appendix A).

The connection between the singular learning process in Bayesian statistics and stagewise
development in deep learning is not understood in general, but has been studied in small autoencoders
by Chen et al. [6]. This perspective suggests that changes in local population loss geometry, as
measured by the LLC, reflect qualitative changes in the network parameter.

6. Stage validation

The LLC estimates (Figure 1; see also Appendix E) reveal five developmental stages over the training
of our language transformer. In order to validate that this stage division is meaningful, we search for
concomitant changes in the model’s input–output behavior and its weights or activations.

We found that stages LM1–LM4 coincide with interesting developments, as documented below
and in Figures 2 and 3. We do not claim this list is exhaustive; there may be additional developments
we did not detect. For example, we do not rule out the use of skip-trigrams as studied by Olsson et al.
[28]. We did not discover significant changes in Stage LM5.

Stage LM1 (0–900 steps). The model learns bigram statistics, which give the optimal next-token
prediction given the current token. Figure 2 (top) shows that the average cross entropy between model
logits and empirical bigram frequencies (see Appendix F.1) is minimized at the LM1–LM2 boundary,
with a value only 0.3 nats above the irreducible entropy of the empirical bigram distribution.

Stage LM2 (900–6.5k steps). The model memorizes common n-grams for n > 2. We define
an n-gram score as the ratio of final-position token loss on (1) a baseline set of samples from a
validation set truncated to n tokens and (2) a fixed set of common n-grams (see Appendix F.2).
Figure 2 (bottom) shows a large improvement in n-gram score for n = 3, 4 during LM2.

During this stage the positional embedding becomes structurally important. Figure 2 (middle)
shows that during LM2 the test loss for the model with the positional embedding zero-ablated
diverges from the test loss of the unablated model (see Appendix F.3). Note that memorizing n-grams
for n > 2 requires the positional embedding. Previous-token attention among second-layer attention

4

LOSS LANDSCAPE GEOMETRY REVEALS STAGEWISE DEVELOPMENT OF TRANSFORMERS

101 102 103 104
4

5

6

7

8
Bi

gra
m

sco
re

Model score
Bigram entropy

101 102 103 104

4

6

8

Te
st

los
s

(w
t)

Pos ablated loss
Test loss

101 102 103 104

Training step t

1

2

3

4

n-
gra

m
sco

re

2-grams
3-grams
4-grams
Baseline perf

Figure 2: The transformer first learns bigram
statistics (LM1, top). At the start of LM2, the
positional embedding suddenly becomes useful
(middle), enabling behavioral changes such as the
learning of common n-grams (bottom).

102 103 104
0.0

0.1

0.2

0.3

Pr
ev

 to
ke

n s
co

re

Prev token head 1:2
Prev token head 1:5

102 103 104
0.000

0.025

0.050

0.075

Pr
efi

x s
co

re

Induction head 2:7
Induction head 2:8

102 103 104

Training step t

0.2

0.1

IC
L

sco
re

Figure 3: Induction circuit formation begins with
previous-token heads (LM3, top, blue lines), fol-
lowed by induction heads (LM4, middle, blue
lines), leading to a drop in ICL score (LM4, bot-
tom). The hth attention head in layer l is indexed
as l : h. Green lines trace scores for other heads.

heads, shown increasing in the background of Figure 3 (top), may also play a role in implementing
n-gram memorization.

In this stage, the heads that eventually become previous-token and induction heads in future
stages begin to compose (that is, read from and write to a shared residual stream subspace; see
Figure 10 and Appendix F.4). This suggests that the foundations for the induction circuit are laid in
advance of any measurable change in model outputs or attention patterns.

Stage LM3 (6.5k–8.5k steps). Layer-1 previous-token heads begin to form, representing the first
half of the in-context learning circuit [9, 28]. Figure 3 (top) shows two heads that increasingly
attend to the immediately preceding token (see Appendix F.5). During this stage the LLC decreases,
suggesting an increase in degeneracy or decrease in model complexity, perhaps related to the
interaction between heads. It would be interesting to study this further via mechanistic interpretability.

Stage LM4 (8.5k–17k steps). The model learns to perform in-context learning as captured in
the ICL score of Olsson et al. [28] (Figure 3, bottom; Appendix F.6). Structurally, the second
half of the induction circuits, layer-2 induction heads, begin to develop. Figure 3 (middle) shows
that the prefix-matching score [28] increases for the two heads that become induction heads (see
Appendix F.7).

Visualizing behavioral changes. Figure 4 visualizes changes in the model’s input–output behavior
by comparing model predictions before and after developmental stages and highlighting tokens with
the greatest differences.

5

LOSS LANDSCAPE GEOMETRY REVEALS STAGEWISE DEVELOPMENT OF TRANSFORMERS

Figure 4: Samples are shown with tokens highlighted to indicate changes in logits during a given
range. Red is improved performance (higher logit output for the true next token) and blue is worse.
Sample (a): improvement in bigrams (LM1) such as “te/ll, ab/out, des/ire, mot/ion, eng/aged,
strugg/le, etc.” Sample (b): improvement in common n-grams (LM2) such as “L/in/ux, P/y/th/on,
h/on/or/able, S/up/reme, dat/ab/ase, f/ram/ew/ork.” Sample (c): development of in-context learning
via induction circuits (LM3, LM4), visible in the improved predictions in the word “D/urs/ley” after
the first time it appears in the context, as initially observed by [28].

7. Discussion

We have argued that the local geometry of the loss landscape holds the key to understanding stagewise
development in modern deep learning. This is motivated by the singular learning process, a model of
learning from Bayesian statistics in which there is a clear connection between stagewise development
and the local geometry of the population loss as measured by the LLC [6, 39].

Our experiments show that critical points of the estimated LLC divide language model training
into five stages that coincide with qualitatively distinct patterns of behavioral and structural develop-
ment of the model, beginning with the memorization of bigram statistics and common n-grams, and
culminating in the emergence of an in-context learning circuit as studied by Olsson et al. [28]. We
note that these stages are much less pronounced in the loss curve, which has no critical points.

We are excited about future work aiming to connect the singular learning theory perspective on
stagewise learning with the existing literature [e.g., 34]. It is natural to interpret a stage in which
the LLC decreases as involving a simplification or compression of an existing solution, and our
observation of such a stage suggests that this is another interesting direction for future research.

In larger models, we expect that the estimated LLC may only detect sufficiently “macroscopic”
changes. However, we are optimistic that more refined geometric measures can be developed using
the same principles, such as by restricting the LLC to subsets of parameters and to parts of the data
distribution. We expect that with future work such tools will be able to provide a more fine-grained
picture of structural development, even in large models.

6

LOSS LANDSCAPE GEOMETRY REVEALS STAGEWISE DEVELOPMENT OF TRANSFORMERS

Acknowledgements

We thank Edmund Lau for advice on local learning coefficient estimation. We thank Evan Hubinger
and Simon Pepin Lehalleur for helpful conversations. We thank Andres Campero, Zach Furman, and
Simon Pepin Lehalleur for helpful feedback on earlier versions of this manuscript.

We thank Google’s TPU Research Cloud program for supporting some of our experiments with
Cloud TPUs. GW’s and JH’s work was supported partially by the AI Futures Fellowship. MFR’s
work was supported partially by private individual sponsors and partially by Timaeus. LC’s work
was supported by Lightspeed Grants.

References

[1] Joseph Antognini and Jascha Sohl-Dickstein. PCA of high dimensional random walks with
comparison to neural network training. In Advances in Neural Information Processing Systems,
volume 31, pages 10307–10316, 2018.

[2] Vijay Balasubramanian. Statistical inference, Occam’s razor, and statistical mechanics on the
space of probability distributions. Neural Computation, 9(2):349–368, February 1997. ISSN
0899-7667. doi: 10.1162/neco.1997.9.2.349.

[3] Pierre Baldi and Kurt Hornik. Neural Networks and Principal Component Analysis: Learning
from examples without local minima. Neural Networks, 2(1):53–58, 1989.

[4] Boaz Barak, Benjamin Edelman, Surbhi Goel, Sham Kakade, Eran Malach, and Cyril Zhang.
Hidden progress in deep learning: SGD learns parities near the computational limit. In Advances
in Neural Information Processing Systems, volume 35, pages 21750–21764, 2022.

[5] Angelica Chen, Ravid Shwartz-Ziv, Kyunghyun Cho, Matthew L. Leavitt, and Naomi Saphra.
Sudden drops in the loss: Syntax acquisition, phase transitions, and simplicity bias in MLMs.
In The Twelfth International Conference on Learning Representations, 2024.

[6] Zhongtian Chen, Edmund Lau, Jake Mendel, Susan Wei, and Daniel Murfet. Dynamical versus
Bayesian phase transitions in a toy model of superposition. Preprint arXiv:2310.06301 [cs.LG],
2023.

[7] Benjamin L. Edelman, Ezra Edelman, Surbhi Goel, Eran Malach, and Nikolaos Tsilivis. The
Evolution of Statistical Induction Heads: In-Context Learning Markov Chains. Preprint
arXiv:2402.11004 [cs.LG], 2024.

[8] Ronen Eldan and Yuanzhi Li. TinyStories: How small can language models be and still speak
coherent English? Preprint arXiv:2305.07759 [cs.CL], 2023.

[9] Nelson Elhage, Neel Nanda, Catherine Olsson, Tom Henighan, Nicholas Joseph, Ben Mann,
Amanda Askell, Yuntao Bai, Anna Chen, Tom Conerly, Nova DasSarma, Dawn Drain, Deep
Ganguli, Zac Hatfield-Dodds, Danny Hernandez, Andy Jones, Jackson Kernion, Liane Lovitt,
Kamal Ndousse, Dario Amodei, Tom Brown, Jack Clark, Jared Kaplan, Sam McCandlish, and
Chris Olah. A mathematical framework for transformer circuits. Transformer Circuits Thread,
2021.

7

LOSS LANDSCAPE GEOMETRY REVEALS STAGEWISE DEVELOPMENT OF TRANSFORMERS

[10] Dumitru Erhan, Yoshua Bengio, Aaron Courville, Pierre-Antoine Manzagol, Pascal Vincent,
and Samy Bengio. Why does unsupervised pre-training help deep learning? Journal of Machine
Learning Research, 11(19):625–660, 2010.

[11] Elena Facco, Maria d’Errico, Alex Rodriguez, and Alessandro Laio. Estimating the intrinsic
dimension of datasets by a minimal neighborhood information. Scientific Reports, 7(1), 2017.

[12] Sara Franceschelli. Morphogenesis, structural stability and epigenetic landscape. In Morpho-
genesis: Origins of Patterns and Shapes, pages 283–293. Springer, 2010.

[13] Simon L Freedman, Bingxian Xu, Sidhartha Goyal, and Madhav Mani. A dynamical systems
treatment of transcriptomic trajectories in hematopoiesis. Development, 150(11):dev201280,
2023.

[14] Zach Furman and Edmund Lau. Estimating the local learning coefficient at scale. Preprint
arXiv:2402.03698 [cs.LG], 2024.

[15] Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles Foster, Jason
Phang, Horace He, Anish Thite, Noa Nabeshima, Shawn Presser, and Connor Leahy. The Pile:
an 800GB dataset of diverse text for language modeling. Preprint arXiv:2101.00027 [cs.CL],
2020.

[16] R. Gilmore. Catastrophe Theory for Scientists and Engineers. Wiley, 1981.

[17] Ian J Goodfellow, Oriol Vinyals, and Andrew M Saxe. Qualitatively characterizing neural
network optimization problems. Preprint arXiv:1412.6544 [cs.NE], 2015. Published at ICLR
2015.

[18] Edmund Lau, Daniel Murfet, and Susan Wei. Quantifying degeneracy in singular models via
the learning coefficient. Preprint arXiv:2308.12108 [stat.ML], 2023.

[19] Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom Goldstein. Visualizing the loss
landscape of neural nets. In Advances in Neural Information Processing Systems, volume 31,
pages 6389–6399, 2018.

[20] Zachary C. Lipton. Stuck in a what? Adventures in weight space. Preprint arXiv:1602.07320
[cs.LG], 2016.

[21] Ben D MacArthur. The geometry of cell fate. Cell Systems, 13(1):1–3, 2022.

[22] Thomas McGrath, Andrei Kapishnikov, Nenad Tomašev, Adam Pearce, Martin Wattenberg,
Demis Hassabis, Been Kim, Ulrich Paquet, and Vladimir Kramnik. Acquisition of chess
knowledge in AlphaZero. Proceedings of the National Academy of Sciences, 119(47), 2022.

[23] Thomas McGrath, Matthew Rahtz, Janos Kramar, Vladimir Mikulik, and Shane Legg. The
hydra effect: Emergent self-repair in language model computations. Preprint arXiv:2307.15771
[cs.LG], 2023.

[24] Neel Nanda and Joseph Bloom. TransformerLens, 2022. URL https://github.com/
neelnanda-io/TransformerLens.

8

https://github.com/neelnanda-io/TransformerLens
https://github.com/neelnanda-io/TransformerLens

LOSS LANDSCAPE GEOMETRY REVEALS STAGEWISE DEVELOPMENT OF TRANSFORMERS

[25] Neel Nanda, Lawrence Chan, Tom Lieberum, Jess Smith, and Jacob Steinhardt. Progress mea-
sures for grokking via mechanistic interpretability. In The Eleventh International Conference
on Learning Representations, 2023.

[26] Pascal Jr. Tikeng Notsawo, Hattie Zhou, Mohammad Pezeshki, Irina Rish, and Guillaume
Dumas. Predicting grokking long before it happens: A look into the loss landscape of models
which grok. In ICLR 2024 Workshop on Mathematical and Empirical Understanding of
Foundation Models, 2024.

[27] Chris Olah, Nick Cammarata, Ludwig Schubert, Gabriel Goh, Michael Petrov, and Shan Carter.
Zoom in: An introduction to circuits. Distill, 5(3):e00024.001, March 2020.

[28] Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas Joseph, Nova DasSarma, Tom
Henighan, Ben Mann, Amanda Askell, Yuntao Bai, Anna Chen, Tom Conerly, Dawn Drain,
Deep Ganguli, Zac Hatfield-Dodds, Danny Hernandez, Scott Johnston, Andy Jones, Jackson
Kernion, Liane Lovitt, Kamal Ndousse, Dario Amodei, Tom Brown, Jack Clark, Jared Kaplan,
Sam McCandlish, and Chris Olah. In-context learning and induction heads. Transformer
Circuits Thread, 2022.

[29] Ofir Press, Noah A. Smith, and Mike Lewis. Shortformer: Better language modeling using
shorter inputs. In Proceedings of the 59th Annual Meeting of the Association for Computational
Linguistics and the 11th International Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 5493–5505. Association for Computational Linguistics, 2021.

[30] Maartje EJ Raijmakers, Sylvester Van Koten, and Peter CM Molenaar. On the validity of
simulating stagewise development by means of PDP networks: Application of catastrophe
analysis and an experimental test of rule-like network performance. Cognitive Science, 20(1):
101–136, 1996.

[31] David A Rand, Archishman Raju, Meritxell Sáez, Francis Corson, and Eric D Siggia. Geometry
of gene regulatory dynamics. Proceedings of the National Academy of Sciences, 118(38):
e2109729118, 2021.

[32] Timothy T Rogers and James L McClelland. Semantic Cognition: A Parallel Distributed
Processing Approach. MIT Press, 2004.

[33] Meritxell Sáez, Robert Blassberg, Elena Camacho-Aguilar, Eric D Siggia, David A Rand, and
James Briscoe. Statistically derived geometrical landscapes capture principles of decision-
making dynamics during cell fate transitions. Cell Systems, 13(1):12–28, 2022.

[34] Andrew M Saxe, James L McClelland, and Surya Ganguli. A mathematical theory of semantic
development in deep neural networks. Proceedings of the National Academy of Sciences, 116
(23):11537–11546, 2019.

[35] Maxwell Shinn. Phantom oscillations in principal component analysis. Proceedings of the
National Academy of Sciences, 120(48):e2311420120, 2023.

[36] René Thom. Structural Stability and Morphogensis: An Outline of a General Theory of Models.
Advanced Book Classics Series, 1988. Translated by D. H. Fowler from the 1972 original.

9

LOSS LANDSCAPE GEOMETRY REVEALS STAGEWISE DEVELOPMENT OF TRANSFORMERS

[37] C H Waddington. The Strategy of the Genes: A Discussion of Some Aspects of Theoretical
Biology. Allen & Unwin, London, 1957.

[38] Kevin Wang, Alexandre Variengien, Arthur Conmy, Buck Shlegeris, and Jacob Steinhardt.
Interpretability in the wild: a circuit for indirect object identification in GPT-2 small. In The
Eleventh International Conference on Learning Representations, 2023.

[39] Sumio Watanabe. Algebraic Geometry and Statistical Learning Theory. Cambridge University
Press, 2009.

[40] Sumio Watanabe. Mathematical Theory of Bayesian Statistics. CRC Press, 2018.

[41] Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani
Yogatama, Maarten Bosma, Denny Zhou, Donald Metzler, Ed H. Chi, Tatsunori Hashimoto,
Oriol Vinyals, Percy Liang, Jeff Dean, and William Fedus. Emergent abilities of large language
models. Transactions on Machine Learning Research, 2022.

[42] Max Welling and Yee Whye Teh. Bayesian learning via stochastic gradient Langevin dynamics.
In Proceedings of the 28th International Conference on Machine Learning (ICML-11), pages
681–688, 2011.

[43] Sang Michael Xie, Shibani Santurkar, Tengyu Ma, and Percy S Liang. Data selection for
language models via importance resampling. In Advances in Neural Information Processing
Systems, volume 36, pages 34201–34227, 2023.

10

LOSS LANDSCAPE GEOMETRY REVEALS STAGEWISE DEVELOPMENT OF TRANSFORMERS

Appendices
We include additional discussion, details, and experiments as follows.

• Appendix A discusses additional related work.

• Appendix B documents additional details about our transformer architecture, data, and training.

• Appendix C provides additional background information on the LLC including examples.

• Appendix D documents additional details about our LLC estimation procedure.

• Appendix E documents the procedure we use for identifying critical points in the estimated
LLC curve (used as stage boundaries).

• Appendix F documents additional details about the behavioral and structural metrics we track
to investigate the content of the identified stages.

• Appendix G documents additional runs of our main experiment, showing that we find roughly
the same five stage boundaries across five independent seeds.

11

LOSS LANDSCAPE GEOMETRY REVEALS STAGEWISE DEVELOPMENT OF TRANSFORMERS

Appendix A. Additional related work

Loss landscape geometry. Many authors have used one or two-dimensional slices of the loss
landscape to visualize its geometry [10, 17, 19, 20, 26]. These approaches are limited by the fact that
a random slice is with high probability a quadratic form associated to nonzero eigenvalues of the
Hessian and is thus biased against geometric features that we know are important, such as degeneracy.
Indeed, recent works have emphasized the difficulty of meaningfully probing the loss landscape of
neural networks [1], even qualitatively. In contrast, the estimated LLC is a principled tool for probing
degenerate geometry in a quantitative way.

Universality. Olah et al. [27] hypothesize that similar internal structures may form across a wide
range of different neural network architectures, training runs, and datasets. Examples include
Gabor filters, induction heads, and “backup heads” [23, 27, 38]. We find that our stage discovery
methodology reveals five stages across all seeds, with close (but not perfect) agreement on the location
of the stage boundaries; see Appendix G. Though we do not expect all aspects of development to
be universal—for example, we expect the strength of the bigram stage to depend on the size of the
tokenizer—we conjecture that the developmental trajectory will remain macroscopically simple even
for much larger models.

Nonlinear dynamics and developmental biology. Neural network training is a stochastic dynami-
cal system, in which the governing potential (the population loss) encodes the structure of the data
distribution along with the constraints of the network architecture. It is well-understood in nonlinear
dynamics that the local geometry of a potential can give rise to stagewise development of structure
in the system [36, 37]. This connection between geometry and stagewise development has been
observed in biological systems at significant scale and in the presence of stochasticity [13].

We have emphasized changes in geometry over a stage whereas in developmental biology the
focus, in the mathematical framework of bifurcation theory, is more on the singular geometry at
stage boundaries [21, 31, 33]. The relationship between these two points of view is beyond the scope
of this paper. For more on the relation between the points of view of Waddington and Thom, see
Franceschelli [12].

“Phase transitions” versus “developmental stages.” Stage boundaries could alternatively be
described as “phases”, and developmental stages as “phase transitions.” However, these terms retains
a false connotation of transitions that are sudden in time. While phase transitions are sometimes
characterized as “sudden,” from a mathematical point of view [6, 16] the important characteristic of
a phase transition is that the configuration of a system (or a distribution over such configurations)
shifts rapidly from a neighborhood of one critical point of a relevant potential (e.g. a free energy) to
another critical point, as a function of some control variable c near some critical value c ≈ c0.

To take one example: in developmental biology there are carefully modeled phase transitions
which take place over days in real time. The relevant control variable in these cases is an inferred
developmental time τ = τ(t) [13].

To avoid confusion, we therefore prefer to borrow terminology from biology, referring to
“developmental stages” and “stage boundaries” instead of “phase transitions” and “phases.”

12

LOSS LANDSCAPE GEOMETRY REVEALS STAGEWISE DEVELOPMENT OF TRANSFORMERS

Appendix B. Transformer training details

B.1. Model

The language model architecture we consider is an decode-only transformer with L = 2 “attention-
only” layers (without MLPs). We use a context length of 1024, a residual stream dimension of
dmodel = 256, and H = 8 attention heads per layer. We include layer normalization. We also
used a learnable Shortformer positional embedding [29]. The resulting models have a total of
d = 3, 355, 016 parameters. We used an implementation provided by TransformerLens [24].

Component Parameters

Token Embedding Weights 1, 280, 000
Positional Embedding Weights 262, 144
Layer 1 Layer Norm Weights 256
Layer 1 Layer Norm Bias 256
Layer 1 Attention Query Weights 65, 536
Layer 1 Attention Key Weights 65, 536
Layer 1 Attention Value Weights 65, 536
Layer 1 Attention Output Weights 65, 536
Layer 1 Attention Query Bias 256
Layer 1 Attention Key Bias 256
Layer 1 Attention Value Bias 256
Layer 1 Attention Output Bias 256
Layer 2 Layer Norm Weights 256
Layer 2 Layer Norm Bias 256
Layer 2 Attention Query Weights 65, 536
Layer 2 Attention Key Weights 65, 536
Layer 2 Attention Value Weights 65, 536
Layer 2 Attention Output Weights 65, 536
Layer 2 Attention Query Bias 256
Layer 2 Attention Key Bias 256
Layer 2 Attention Value Bias 256
Layer 2 Attention Output Bias 256
Final Layer Norm Weights 256
Final Layer Norm Bias 256
Unembedding Weights 1, 280, 000
Unembedding Bias 5, 000

Figure 5: Attention-only transformer with Shortformer position-infused attention and pre-layer
norm. The model model has a total of 3,355,016 parameters.

13

LOSS LANDSCAPE GEOMETRY REVEALS STAGEWISE DEVELOPMENT OF TRANSFORMERS

B.2. Training

The models are trained on a single epoch over 50, 000 steps on ∼5 billion tokens using a resampled
subset of the Pile [15, 43] using a batch size of 100. A snapshot was saved every 10 steps for a total
of 5000 checkpoints, though a majority of analysis used checkpoints every 100 steps. The training
time was around 6 GPU hours per model on an A100. Additional seeds (Appendix G) were trained
on v4 TPUs at around 1.5 TPU hours per model.

Training was conducted on the first 10 million lines of the DSIR-filtered Pile [15, 43] but did
not exhaust all 10 million lines. The model was subject to weight decay regularization, without the
application of dropout. We did not employ a learning rate scheduler throughout the training process.

B.3. Tokenization

For tokenization, we used a truncated variant of the GPT-2 tokenizer that cut the original vocabulary
of 50,000 tokens down to 5,000 [8] to reduce the size of the model. We think this may contribute
to the prominence of the the plateau at the end of LM1: the frequency of bigram statistics depends
on your choice of tokens, and a larger tokenizer leads to bigrams that are individually much less
frequent.

Table 1: Summary of hyperparameters and their values for transformer training

Hyperparameter Category Description/Notes Value

n Data # of training samples 5, 000, 000
T Data # of training steps 50, 000
Ntest Data # of test samples 512
Tokenizer Type Data Type of Tokenizer Truncated GPT-2 Tokenizer
D Data Vocabulary size 5,000
K Data Context size 1,024
L Model # of layers in the model 2
H Model # of heads per layer 8
dmlp Model MLP hidden layer size N/A
dembed Model Embedding size 256
dhead Model Head size 32
seed Model Model initialization 1
m Training Batch Size 100
Optimizer Type Optimizer Type of optimizer AdamW
η Optimizer Learning rate 0.001
λwd Optimizer Weight Decay 0.05
β1,2 Optimizer Betas (0.9, 0.999)

14

LOSS LANDSCAPE GEOMETRY REVEALS STAGEWISE DEVELOPMENT OF TRANSFORMERS

Appendix C. Examples of the LLC

The LLC has some similarity to an effective parameter count. If the population loss ℓ looks like a
quadratic form near w∗ then λ(w∗) = d

2 is half the number of parameters, which we can think of as
d contributions of 1

2 from every independent quadratic direction. If there are only d− 1 independent
quadratic directions, and one coordinate wi such that small variations in wi near w∗

i do not change
the model relative to the truth (it is “unused”) then λ(w∗) = d−1

2 . However, while every unused
coordinate reduces the LLC by 1

2 , changing a coordinate from quadratic w2
i to quartic w4

i (increasing
its degeneracy while still “using” it) reduces the contribution to the LLC from 1

2 to 1
4 .

As a source of intuition, we provide several examples of exact LLCs:

• ℓ(w1, w2, w3) = aw2
1 + bw2

2 + cw2
3 with a, b, c > 0. This function is nondegenerate, and

λ(0, 0, 0) = 1
2 + 1

2 + 1
2 = 3

2 . This is independent of a, b, c. That is, the LLC λ does not
measure curvature. For this reason, it is better to avoid an intuition that centers on “basin
broadness” since this tends to suggest that lowering a, b, c should affect the LLC.

• ℓ(w1, w2, w3) = w2
1 + w2

2 + 0 in R3 is degenerate, but its level sets are still submanifolds and
λ(0, 0, 0) = 1

2 +
1
2 . In this case the variable z is unused, and so does not contribute to the LLC.

• ℓ(w1, w2, w3) = w2
1 + w4

2 + w4
3 is degenerate and its level sets are, for our purposes, not

submanifolds. The singular function germ (ℓ, 0) is an object of algebraic geometry, and the
appropriate mathematical object is not a manifold or a variety but a scheme. The quartic terms
contribute 1

4 to the LLC, so that λ(0, 0, 0) = 1
2 + 1

4 + 1
4 = 1. The higher the power of a

variable, the greater the degeneracy and the lower the LLC.

For additional examples (still far from exhaustive), see Figure 6. While nondegenerate functions
can be locally written as quadratic forms by the Morse Lemma (and are thus qualitatively similar
to the approximation obtained from their Hessians), there is no simple equivalent for degenerate
functions, such as the population log likelihood of singular models (or population losses of neural
networks). We refer the reader to Watanabe [39] and Lau et al. [18] for more discussion.

Figure 6: Toy two-dimensional loss landscapes show that the lower the LLC, the more the local
geometry deviates from quadratic. Left: A quadratic potential ℓ1(w1, w2) = w2

1 + w2
2, for which

the LLC is λ1(0, 0) = d/2 = 1, maximal for two dimensions. Middle-left: A quartic potential
ℓ2(w1, w2) = w4

1 + w4
2, for which the LLC is λ2(0, 0) = 1/2. Middle-right: An even simpler

potential ℓ3(w1, w2) = w2
1w

4
2, for which λ3(0, 0) = 1/4. Hessian-derived metrics cannot distinguish

between this geometry and the preceding quartic geometry. Right: A qualitatively distinct potential
ℓ4(w1, w2) = (w1 − 1)2(w2

1 + w2
2)

4 [18] with the same LLC at the origin, λ4(0, 0) = 1/4.

15

LOSS LANDSCAPE GEOMETRY REVEALS STAGEWISE DEVELOPMENT OF TRANSFORMERS

Appendix D. LLC estimation details

D.1. Estimating LLCs with SGLD

We follow Lau et al. [18] in using SGLD to estimate the expectation value of the loss in the estimator
of the LLC. For a given choice of weights w∗ we sample C independent chains with TSGLD steps
per chain. Each chain c is a sequence of weights {w(c)

τ }TSGLD
τ=1 . From these samples, we estimate the

expectation Eβ
w|w∗,γ [O(w)] of an observable O by

1

CTSGLD

C∑
c=1

TSGLD∑
τ=1

O(w(c)
τ), (5)

with an optional burn-in period. Dropping the chain index c, each sample in a chain is generated
according to:

wτ+1 = wτ +∆wτ , (6)

w1 = w∗, (7)

where the step ∆wτ comes from an SGLD update

∆wτ =
ϵ

2

(
βn∇ℓ(τ)m (wτ) +

γ
2 (wτ − w∗)

)
+N (0, ϵ) . (8)

In each step τ we sample a mini-batch of size m and the associated empirical loss, denoted ℓ
(τ)
m , is

used to compute the gradient in the SGLD update. We note that LLC estimator defined in (3) uses
the expectation Eβ[ℓn(w)] which in the current notation means we should take O(w) to be ℓn(w).
For computational efficiency we follow Lau et al. [18] in recycling the mini-batch losses ℓm(w

(c)
τ)

computed during the SGLD process. That is, we take O = ℓ
(τ)
m rather than O = ℓn.

More detailed results for our main experiments are provided in Appendix E.

D.2. LLC estimates away from local minima

Our methodology for detecting stages is to apply LLC estimation to compute λ̂(w∗) at neural network
parameters w∗ = wt across training. In the typical case these parameters will not be local minima of
the population loss, violating the theoretical conditions under which λ̂ is a valid estimator of the true
local learning coefficient [18].

This makes it a priori quite surprising that the SGLD-based estimation procedure works at all,
as away from local minima, one might expect the chains to explore directions in which the loss
decreases. Beyond that, critical points in the λ̂(wt) curve do correspond to meaningful changes in
the mode of development in our experiments.

This raises an interesting theoretical question: is there a notion of stably evolving equilibrium
in the setting of neural network training, echoing some of the ideas of Waddington [37], such that
the LLC estimation procedure is effectively giving us the local learning coefficient of a different
potential to the population loss, a potential for which the current parameter actually is at a critical
point? We leave addressing this question to future work. However at the moment we must admit that
our methodology goes beyond what is justified by the theoretical foundations.

16

LOSS LANDSCAPE GEOMETRY REVEALS STAGEWISE DEVELOPMENT OF TRANSFORMERS

D.3. LLC estimation for the transformer language model

For LLC estimation, we use SGLD to sample 20 independent chains with 200 steps per chain and
1 sample per step, at a temperature β = 1/ log(m), where m = 100 is the size of the batch (the
maximum size that would fit in memory). We used ϵ = 0.001, γ = 100. Estimating the local learning
coefficient across all checkpoints took around 200 GPU hours on a single A100. For additional runs
(Appendix G) we ran fewer chains, bringing the time down to about 2 TPU hours per training run.

We sampled a separate set of 1 million lines (lines 10m-11m) from the DSIR filtered Pile, denoted
as Dsgld. The first 100,000 lines from this SGLD set (lines 10m-10.1m) were used as a validation set.
The sampling of batches for SGLD mirrored the approach taken during the primary training phase.
Each SGLD estimation pass was seeded analogously, so, at different checkpoints, the SGLD chains
encounter the same selection of batches and injected Gaussian noise.

Table 2: Hyperparameters for Estimating the Local Learning Coefficient for Language Models.

Hyperparameter Category Description/Notes 1-Layer 2-Layer

C Sampler # of chains 20
TSGLD Sampler # of SGLD steps / chain 200

ϵ SGLD Step size 0.003 0.001
γ̃ = ϵγ/2 SGLD Localization strength 300 200

β̃ = ϵβ/2n SGLD Inverse temperature 0.0000217147
m SGLD (Default: β∗ = 1

logn) 100
The size of each SGLD batch

µ Data Dataset size for gradient minibatches 13m

17

LOSS LANDSCAPE GEOMETRY REVEALS STAGEWISE DEVELOPMENT OF TRANSFORMERS

Appendix E. Stage division details

To identify stage boundaries, we look for plateaus in the LLC: checkpoints at which the slope of λ̂(wt)
over t vanishes. To mitigate noise in the LLC estimates, we first fit a Gaussian process with some
smoothing to the LLC-over-time curve. Then we numerically calculate the slope of this Gaussian
process with respect to log t. The logarithm corrects for the fact that the learning coefficient, like the
loss, changes less as training progresses. We identify stage boundaries by looking for checkpoints at
which this estimated slope equals zero. The results of this procedure are depicted in Figure 7.

At a local minima or maxima of the estimated LLC curve identifying a plateau from this estimated
slope is straightforward, since the derivative crosses the x-axis. However at a saddle point, the slope
may not exactly reach zero, so we have to specify a “tolerance” for the absolute value of the derivative,
below which we treat the boundary as an effective plateau.

In this case, we additionally require that the plateau be at a local minimum of the absolute first
derivative. Otherwise, we may identify several adjacent points as all constituting a stage boundary.

To summarize, identifying stage boundaries is sensitive to the following choices: the intervals
between checkpoints, the amount of smoothing, whether to differentiate with respect to t or log t,
and the choice of tolerance. However, once a given choice of these hyperparameters is fixed, stages
can be automatically identified, without further human judgment.

Figure 7 displays the test loss and LLC curves from Figure 1 in addition to the weight norm over
time and associated slopes. Stage boundaries coincide with where the slope of the local learning
coefficient crosses zero, that is, where there is a plateau in the LLC.

102 103 104
3 × 100

4 × 100

5 × 100

6 × 100

(w
t)

102 103 104

140

160

180

(w
t)

102 103 104

102

2 × 102

3 × 102
|w

t|

102 103 104

Training step t

0.75

0.50

0.25

0.00

0.25

(w
t)/

lo
gt

102 103 104

Training step t

10

0

10

20

(w
t)/

lo
gt

102 103 104

Training step t

0.00

0.02

0.04

|w
t|/

t

LM1 LM2 LM3 LM4 LM5 Fit

Figure 7: A more detailed version of Figure 1. Top: Loss, LLC, and weight norm, along with an
overlaid Gaussian process fit to these curves (red dotted lines). Bottom: Associated slopes, both
numerically estimated finite differences (transparent blue) and of the Gaussian process (red dotted
lined). Note that stage LM5 may be subdivided into further stages. However, the noise in LLC
estimates late in training is high, so we do not draw any conclusions from this.

18

LOSS LANDSCAPE GEOMETRY REVEALS STAGEWISE DEVELOPMENT OF TRANSFORMERS

Appendix F. Stage validation details

F.1. Bigram score

We empirically estimate the conditional bigram distribution by counting instances of bigrams over
the training data. From this, we obtain the conditional distribution q̃(t′|t), the likelihood that a token
t′ follows t. The bigram score BS

k at index k of an input context S is the cross entropy between the
model’s predictions p(tk+1|tk) at that position and the empirical bigram distribution,

BS
k = −

dvocab∑
i=1

q̃(t
(i)
k+1|tk) log p(t

(i)
k+1|tk), (9)

where the t
(i)
k+1 range over the possible second tokens from the tokenizer vocabulary. From this we

obtain the average bigram score

B̄ =
1

n

n∑
i=1

BSi
ki
, (10)

where we take fixed random sequences of ki and Si for 1 ≤ i ≤ n = 5, 000, which is displayed over
training in Figure 2. This is compared against the best-achievable bigram score, which is the bigram
distribution entropy itself, averaged over the validation set.

F.2. n-gram scores

In stage LM2 we consider n-grams, which are sequences of n consecutive tokens, meaning 2-grams
and bigrams are the same. Specifically, we consider common n-grams, which is defined heuristically
by comparing our 5,000 vocab size tokenizer with the full GPT-2 tokenizer. We use the GPT-2
tokenizer as our heuristic because its vocabulary is constructed iteratively by merging the most
frequent pairs of tokens.

We first tokenize the tokens in the full GPT-2 vocabulary to get a list of 50,257 n-grams for
various n. The first 5,000 such n-grams are all 1-grams, after which 2-grams begin appearing, then
3-grams, 4-grams, and so on (where 2-grams and 3-grams may still continue to appear later in the
vocabulary). We then define the set of common n-grams as the first 1,000 n-grams that appear in this
list for a fixed n, n ≥ 2.

If we track the performance on n-grams and see it improve, we may ask whether this is simply
a function of the model learning to use more context in general, rather than specifically improving
on the set of n-grams being tracked. We measure performance against this baseline by defining an
n-gram score. For a fixed n, we obtain the average loss ℓngram of the model on predicting the final
tokens of our set of 1,000 n-grams and also obtain the average loss ℓntest of the model on a validation
set at position n of each validation sequence. The n-gram score is then defined to be ℓntest/ℓ

n
gram.

F.3. Positional embedding

In Figure 8, we measure the effect of the positional embedding on model performance by comparing
the model’s performance at particular context positions on a validation set over the course of training
against performance on the same validation set but with the positional embedding zero-ablated. The
full context length is 1024, and we measure test loss at positions 1, 2, 3, 5, 10, 20, 30, 50, 100, 200,
300, 500, and 1000. In the transition from stage LM1 to LM2, the model begins using the learnable

19

LOSS LANDSCAPE GEOMETRY REVEALS STAGEWISE DEVELOPMENT OF TRANSFORMERS

101 102 103 104

Training step t

3

4

5

6

7

8

Te
st

los
s

101 102 103 104

Training step t

3

4

5

6

7

8

Te
st

los
s w

ith
 po

sit
ion

al
ab

lat
ion

Figure 8: The model learns to start using the positional encoding in LM2, when the performance
starts to worsen when ablating the positional encoding. In both plots, earlier token positions are
colored more purple, while later token positions are more yellow, and the overall mean loss is colored
in red. Both sets of per-token losses are shown in both graphs for ease of comparison. Left: original
test loss is emphasized. Right: test loss with the positional embedding ablated is emphasized.

positional embedding to improve performance. The difference between test loss with and without the
positional ablation is negligible at all measured positions until the LM1–LM2 boundary.

Structurally, we might predict that the positional embeddings should organize themselves in a
particular way: in order to understand relative positions, adjacent positions should be embedded
close to each other, and far-away positions should be embedded far apart.

In Figure 9, we examine the development of the positional embedding itself over time from two
angles. The first is to take the embeddings of each position in the context and to run PCA on those
embeddings. The result is that as training progresses, the positional embedding PCAs gradually
resolve into Lissajous curves, suggesting that the positional embeddings might look like a random
walk [1, 35]. However, if we look to the explained variance, we see that it grows very large for
PC1, reaching 94.2% at training step 6400. This is much higher than we would expect for Brownian
motion, where we expect to see about 61% explained variance in PC1 [1].

The second perspective we use is to look at how the magnitudes of positional embeddings over
the context length develop. In this case, we observe that the magnitudes seem to have a fairly regular
structure. In conjunction with the PCAs and explained variance, we might infer that the positional
embeddings look approximately like a (possibly curved) line in dmodel = 256 dimensional space. A
positional embedding organized in this way would make it easier for an attention head to attend to
multiple recent tokens, which is necessary if a single head is to learn n-grams.

F.4. Composition scores

Let W h
Q,W

h
K ,W h

V be the query, key, and value weights of attention head h respectively. There are
three types of composition between attention heads in transformer models in Elhage et al. [9]:

• Q-Composition: the query matrix W h
Q of an attention head reads in a subspace affected by a

previous head

• K-Composition: the key matrix W h
K of an attention head reads in a subspace affected by a

previous head

• V-Composition: the value matrix W h
V of an attention head reads in a subspace affected by a

previous head

20

LOSS LANDSCAPE GEOMETRY REVEALS STAGEWISE DEVELOPMENT OF TRANSFORMERS

0.2 0.0 0.2
PC 2

0.2

0.0

0.2

PC
 1

Training step 0

0.0 0.5
PC 2

0.2

0.0

0.2

0.4

PC
 1

Training step 400

0.0 0.5
PC 2

1

0

1

PC
 1

Training step 800

0 1
PC 2

4

2

0

2

4

PC
 1

Training step 1600

0 2
PC 2

5.0

2.5

0.0

2.5

5.0

PC
 1

Training step 3200

0 1
PC 2

5.0

2.5

0.0

2.5

5.0

PC
 1

Training step 6400

0.2 0.0 0.2
PC 3

0.2

0.1

0.0

0.1

0.2

PC
 2

0.2 0.0 0.2
PC 3

0.2

0.0

0.2

0.4

0.6

PC
 2

0.0 0.5
PC 3

0.25

0.00

0.25

0.50

0.75

PC
 2

0 1
PC 3

0.0

0.5

1.0

PC
 2

0 2
PC 3

0

1

2

3

PC
 2

1 0 1
PC 3

0

1

PC
 2

0.2 0.0 0.2
PC 1

0.2

0.1

0.0

0.1

0.2

PC
 3

0.25 0.00 0.25
PC 1

0.2

0.0

0.2

PC
 3

1 0 1
PC 1

0.25

0.00

0.25

0.50

0.75

PC
 3

2.5 0.0 2.5
PC 1

0.5

0.0

0.5

1.0

PC
 3

5 0 5
PC 1

0

1

2

PC
 3

5 0 5
PC 1

1

0

1

PC
 3

1 2 3
PC

0.000

0.002

0.004

0.006

0.008

Ex
pla

ine
d v

ari
an

ce

1 2 3
PC

0.00

0.01

0.02

Ex
pla

ine
d v

ari
an

ce

1 2 3
PC

0.0

0.2

0.4

Ex
pla

ine
d v

ari
an

ce

1 2 3
PC

0.0

0.2

0.4

0.6

0.8

Ex
pla

ine
d v

ari
an

ce

1 2 3
PC

0.0

0.2

0.4

0.6

0.8

Ex
pla

ine
d v

ari
an

ce

1 2 3
PC

0.0

0.2

0.4

0.6

0.8

Ex
pla

ine
d v

ari
an

ce

0 500 1000
Position

0.70

0.75

0.80

0.85

0.90

M
ag

nit
ud

e

0 500 1000
Position

0.8

1.0

1.2

M
ag

nit
ud

e

0 500 1000
Position

0.75

1.00

1.25

1.50

M
ag

nit
ud

e

0 500 1000
Position

1

2

3

4

M
ag

nit
ud

e

0 500 1000
Position

2

4

6

M
ag

nit
ud

e

0 500 1000
Position

2

4

6

M
ag

nit
ud

e

Figure 9: Columns progress through training time at training steps 0, 400, 800, 1600, 3200, and
6400. The first three rows are plots of the first three principle components of PCA on the positional
embedding weights, while the fourth row shows the explained variance for each of the principal
components. The fifth row plots the magnitude of the embedding of each position in the context
length of 1024.

21

LOSS LANDSCAPE GEOMETRY REVEALS STAGEWISE DEVELOPMENT OF TRANSFORMERS

0.00

0.05

0.10

0.15

0.20

K-
co

mp
os

itio
n

1:1 < > 2:1 1:1 < > 2:7 1:1 < > 2:8

0.00

0.05

0.10

0.15

0.20

K-
co

mp
os

itio
n

1:2 < > 2:1 1:2 < > 2:7 1:2 < > 2:8

102 103 104

Training step, t

0.00

0.05

0.10

0.15

0.20

K-
co

mp
os

itio
n

1:5 < > 2:1

102 103 104

Training step, t

1:5 < > 2:7

102 103 104

Training step, t

1:5 < > 2:8

Figure 10: The K-composition scores [9] between first- and second-layer attention heads. The hth
attention head in layer l is indexed by l : h. The attention heads that eventually become previous
token heads are h = 2, 5 in layer 1 (subplot rows 2 and 3), and the attention heads that eventually
become induction heads are h = 7, 8 in layer 2 (subplot columns 2 and 3). The attention heads 1 : 1
and 2 : 1 are included for comparison. The induction heads 2 : 7 and 2 : 8 begin K-composing with
first-layer heads near the start of stage LM2. They continue to compose with the previous token
heads in stages LM3 and LM4 (highlighted in green) while their K-composition scores drop with
other attention heads in layer 1 in later stages.

If W h
O is the output matrix of an attention head, then W h

QK = W h T
Q W h

K and W h
OV = W h

OW
h
V .

The composition scores are
||MW h1

OV ||F /(||M ||F ||W h1
OV ||F) (11)

Where M = W h2 T
QK , M = W h2

QK , and M = W h2
OV for Q-, K-, and V-Composition respectively. See

Figure 10 for K-composition scores over time between attention heads in the induction circuits.

F.5. Previous-token matching score

The previous-token matching score is a structural measure of induction head attention. It is the
attention score given to [A] by an attention head at [B] in the sequence . . . [A][B] (i.e., how much
the head attends to the immediately preceding token).

We compute this score using a synthetic data generating process, generating 10k fixed random
sequences with length between 16 and 64. The first token is a special “beginning of string” token,
and the remaining tokens are uniformly randomly sampled from other tokens in the vocabulary.

For each sample in this synthetic data set, we measure the attention score that an attention head
gives to the previous token when at the last token in the sequence. These scores are averaged across

22

LOSS LANDSCAPE GEOMETRY REVEALS STAGEWISE DEVELOPMENT OF TRANSFORMERS

the dataset to produce the previous-token matching score for that attention head at a given checkpoint.
The progression of previous-token matching scores over time can be seen in Figure 3.

F.6. In-context learning score

The in-context learning score is a behavioral measure of the relative performance of a model later
in a sequence versus earlier in the sequence. We follow a similar construction as Olsson et al. [28],
where we take the loss at the 500th token minus the loss at the 50th token, so that a more negative
score indicates better performance later in the sequence.

ICLk1:k2(w) = ℓ̂n, k1(w)− ℓ̂n, k2(w). (12)

This is then averaged over a 100k-row validation dataset. The performance of the language model
over the course of training can be seen at the bottom right of Figure 3.

F.7. Prefix matching score

The prefix matching score from Olsson et al. [28] is defined similarly to the previous-token matching
score. Given a sequence [A][B] . . . [A], the prefix matching score of a particular attention head is
how much the attention head attends back to the first instance of [A] when at the second instance of
[A].

We compute this score using a synthetic data-generating process. We first generate 10k fixed
random sequences of length 128. The first token is always a special “beginning of string” token and
the [A] and [B] tokens are selected and placed randomly. One [A] token is placed in the first half of
the sequence, the other is placed in the second half, and the [B] token is placed directly after the first
[A] token. The remaining tokens are randomly sampled from the tokenizer vocabulary, excluding the
[A], [B], and beginning of string tokens.

For each sample in this synthetic dataset, we measure the attention score that each attention head
assigns to the earlier instance of [A] from the latter instance of [A]. These scores are averaged across
the dataset to produce the prefix matching score for that attention head at a given checkpoint. The
progression of prefix matching scores over time can be seen in Figure 3.

23

LOSS LANDSCAPE GEOMETRY REVEALS STAGEWISE DEVELOPMENT OF TRANSFORMERS

Appendix G. Repeating the stage division experiments for additional models

Figure 11 shows loss and LLC curves for five seeds (differing in model initialization and batch
schedule). In each seed, LLC estimation reveals stage LM1–LM4. In three of the five seeds, stage
LM5 is subdivided into two additional stages.

102 103 104
3

4

5

Te
st

los
s

(w
t)

102 103 104

Training step t

75

100

125

150

Lo
ca

l le
arn

ing
 co

eff
.

(w
t)

Figure 11: Figure 1 for multiple seeds. The LLC reveals a consistent set of stages across five seeds.
Late-training behavior shows more variance across seeds.

24

	Introduction
	Related work
	Transformer training
	Geometry tracing
	Stage division
	Stage validation
	Discussion
	Acknowledgements
	References
	Appendices
	Additional related work
	Transformer training details
	Model
	Training
	Tokenization

	Examples of the LLC
	LLC estimation details
	Estimating LLCs with SGLD
	LLC estimates away from local minima
	LLC estimation for the transformer language model

	Stage division details
	Stage validation details
	Bigram score
	n-gram score
	Positional embedding
	Composition scores
	Previous-token matching score
	In-context learning score
	Prefix matching score

	Repeating the stage division experiments for additional models

