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ABSTRACT

Multimodal learning benefits from the complementary signals across different
data sources, but real-world scenarios often encounter missing modalities, par-
ticularly during training. Existing approaches focus on addressing this issue at
test time and typically rely on fully co-occurring multimodal data, which can be
difficult and costly to collect. We propose a two-stage framework designed to ad-
dress training-time modality incompleteness without requiring co-occurring sam-
ples. The first stage, Data Fusing with Label-guided Mapping (DFLM), constructs
a pseudo-multimodal dataset by aligning user data across modalities using super-
vised contrastive learning guided by shared labels. The second stage, Cooperative
Cross-attention Multimodal Transformer (CCAMT), learns from the constructed
dataset using a cross-attention mechanism that supports both modality-specific
learning and cross-modal interaction with drastically different modalities. An
extensive evaluation on three popular datasets (Multimodal Twitter, Multimodal
Reddit, and StudentLife) demonstrates that CCAMT significantly outperforms
the best-published baselines across all metrics. CCAMT achieves an impres-
sive 96.5% accuracy, significantly outperforming single-modal baselines by up to
10.5% in accuracy. The physical activity data increases the model’s accuracy by
2.8%. It also significantly outperforms the state-of-the-art time2vec multimodal
transformer by 3% in accuracy, 2.9% in F1 score, 0.9% in precision, and 2.8% in
recall. It outperforms other strong multimodal baselines by up to a 7.7% increase
in accuracy and a 6.8% improvement in F1 score. Our robustness analysis with
imbalanced data evaluation shows that CCAMT can achieve 74.2% accuracy with
only 10% of data, significantly outperforming Time2Vec Transformer (at 47.3%)
and SetTransformer (at 50.2%). The Edge deployment evaluation also shows that
CCAMT’s encoder configuration is up to 83.04% faster than other configurations
on an Nvidia Jetson device.

1 INTRODUCTION

Multimodal learning has achieved notable success across a wide range of tasks by leveraging com-
plementary information from diverse sources. Applications such as multimodal sentiment analy-
sis (Rahman et al., 2020), depression detection (Gui et al., 2019b), and visual question answer-
ing (Antol et al., 2015) demonstrate that combining modalities like text, audio, and images can
substantially boost performance by capturing different aspects of the target phenomenon.

Despite this promise, real-world deployments often face partial modality availability. For example,
in mental health monitoring or user behavior modeling, observable inputs such as social media posts
or profile images may not be sufficient to capture internal states like mood or stress level. These
hidden factors often require additional sensing modalities, such as physiological or behavioral data,
for reliable inference. However, acquiring meaningful modalities datasets with all co-occurring
modalities is often costly, intrusive, and difficult to scale. These limitations highlight a practical
yet underexplored question: How can we enable effective multimodal learning without co-occurring
modality data?
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To solve this problem, we need to address the following two challenges. First, how to create a
multimodal dataset from single-modal datasets containing drastically different modalities without
requiring co-occurring samples? Researchers have proposed solutions to tackle this modality un-
availability problem, but they primarily focus on test-time settings. Modality hallucination (Hoffman
et al., 2016) trains an auxiliary network to mimic depth features from RGB input. Modality distil-
lation (Garcia et al., 2018) transfers information from depth to RGB via feature- and label-based
supervision. MissModal (Lin & Hu, 2023) aligns modal-complete and modal-incomplete inputs us-
ing contrastive and distribution losses. These approaches are insufficient when some modalities are
unavailable during training time, as is often the case in real-world settings.

The second challenge is how to effectively learn from a multimodal dataset with drastically different
modalities? Existing multimodal learning techniques focus on areas where there is a clearly defined,
well-studied shared semantic space, such as visual question answering with image and text (Antol
et al., 2015) and multimodal sentiment analysis with video, audio, and text (Tsai et al., 2019).
However, many real-world applications involve diverse combinations of modalities, including time-
series data (e.g., physiological or behavioral signals), non-time-series data (e.g., aggregated statistics
or categorical inputs), which are less studied in the multimodal learning literature.

To address these challenges, we propose a two-stage framework that consists of: 1) Data Fusing
with Label-guided Mapping (DFLM), which constructs a pseudo-multimodal dataset by augment-
ing missing modalities using existing user data based on shared labels, and 2) Cooperative Cross-
Attention Multimodal Transformer (CCAMT), which learns from the resulting dataset by a cooper-
ative cross-attention mechanism that enables both modality-specific learning and cross-modal inter-
action with drastically different modalities. To the best of our knowledge, this is the first framework
to address training-time modality incompleteness through a data fusion approach and the first to
learn from a dataset with drastically different modalities. As a case study, we consider the early
depression detection task using online activity data (including image and text) and physical activity
data (including 12 modalities, such as step counts and phone usage).

To construct the pseudo-multimodal dataset, DFLM fuses physical activity data and online activ-
ity data based on semantic alignment in the embedding space. DFLM maps online and physical
modality embeddings into a shared latent space using lightweight projection networks trained via
contrastive learning to align semantically similar users. It first converts raw data into modality-
specific embeddings with transformer-based encoders. For online activity data, it uses pre-trained
models such as CLIP (Radford et al., 2021) and EmoBerta (Kim & Vossen, 2021) to extract image
and text embeddings. For physical activity data, it leverages our proposed modality-tailored feature
extraction technique that transforms diverse but distinct data characteristic-preserving and uniform
representation, which is then encoded by a unified transformer. DFLM generates pseudo-multimodal
user pairs through similarity-based matching in the shared latent space. Each pair forms a pseudo
sample containing both online and physical modality embeddings. Aggregating these samples pro-
duces a pseudo-multimodal dataset with complementary, semantically aligned signals. This dataset
enables downstream multimodal learning even in the absence of co-occurring data.

To learn from this pseudo-multimodal dataset, we propose the Cooperative Cross-Attention Mul-
timodal Transformer (CCAMT). It effectively fuses complementary information across drastically
different but semantically aligned modalities. At its core is our cooperative cross-attention encoder,
which enables each modality to attend to others for cross-modal interaction while also attending to
different parts of itself to improve its representation. Following cross-attention encoding, a final
transformer encoder aggregates the fused representations and outputs the prediction. This architec-
ture enables CCAMT to effectively leverage pseudo-multimodal signals for accurate downstream
classification.

We comprehensively evaluate our approach on three popular datasets: Multimodal Twitter, Multi-
modal Reddit, and StudentLife, and find that CCAMT consistently outperforms the best-published
related works across all evaluated metrics. We apply the proposed data fusion technique to aug-
ment the missing physical activity data type to the online activity datasets and then learn from them.
On Multimodal Twitter, CCAMT achieves 96.5% accuracy, 96.3% F1 score, 96.2% precision, and
96.4% recall, outperforming the state-of-the-art baseline by 2.78% in accuracy, 2.79% in F1 score,
1.06% in precision, and 2.23% in recall. On Multimodal Reddit, it reaches 93.5% accuracy, surpass-
ing the state-of-the-art Time2vec Transformer by 2.9%. Our robustness analysis further confirms
CCAMT’s robustness under extreme data imbalance. It consistently outperforms the baselines,
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achieving 74.2% with only 10% data, significantly outperforming Time2vec transformer (49.8%)
and SetTransformer (50.2%). For edge deployment, we evaluate six encoder configurations and
confirms the feasibility of providing timely and accurate predictions on Nvidia Jetson devices. Our
chosen encoder combination, Clip + EmoBERTa, achieves the lowest inference latency of 10.75
seconds, up to 83.04% faster than other configurations.

In this paper, we explore a practical alternative to co-occurring multimodal data by creating pseudo-
multimodal datasets and designing a model to learn from them effectively. Our main contributions
are as follows: 1) a contrastive data-fusing method that creates pseudo-multimodal datasets by align-
ing disjoint user data across modalities based on embedding level similarity and label consistency; 2)
a cooperative cross-attention transformer that enables effective learning from the generated pseudo-
multimodal datasets; and 3) comprehensive evaluations across diverse datasets and deployment set-
tings, demonstrating the effectiveness and robustness of our framework.

2 BACKGROUND AND RELATED WORKS

Multimodal depression detection. Multimodal approaches leverage diverse data sources to im-
prove depression detection. An et al. (An et al., 2020) combined text and speech features, and
Gui et al. (Gui et al., 2019b) added image features to further improve performance. Dominguez et
al. (Domı́nguez-Jiménez et al., 2020) integrated physiological data such as heart rate and electroder-
mal activity. Sun et al. (Sun et al., 2020) fused visual data with facial expressions and physiological
data, resulting in a better understanding of mental states. Despite these advances, most existing
work focuses on temporally aligned modalities and overlooks the potential of combining physical
and online activity data. In practice, these two data types offer complementary perspectives on user
behavior but are rarely studied together. To address this, our proposed framework constructs pseudo-
multimodal datasets considering data with drastically different modalities and employs a cooperative
cross-attention multimodal transformer to learn from this dataset.

Cross-modal consistency in depression. Mental states such as depression manifest in both phys-
ical and online behaviors, including reduced mobility, irregular sleep, and less engaging commu-
nication. Prior studies demonstrate this cross-modal consistency. Sobin et al. (Sobin & Sackeim,
2025) reported reduced physical activity in depressed individuals, and Chancellor et al. (Chancellor
& De Choudhury, 2020) observed decreased online activities. These patterns suggest that individu-
als with similar mental states often exhibit coherent behavioral signals across modalities. Due to the
lack of datasets that contain co-occurring physical and online activity data, our data-fusing technique
bridges this gap by reusing real user single-modal data to construct pseudo-multimodal datasets.

Modality Incompleteness. Prior work has explored missing modalities at both test time and training
time. At test time, models typically hallucinate or distill missing information. Hoffman et al. (Hoff-
man et al., 2016) introduced modality hallucination to mimic depth features from RGB. Garcia et
al. (Garcia et al., 2018) proposed modality distillation (Garcia et al., 2018), where a hallucination
network transfers depth knowledge to an RGB model. MissModal (Lin & Hu, 2023) improves
robustness by aligning complete and incomplete modality representations through contrastive and
distribution-based objectives. Our approach shares the same underlying principle as prior works, but
it addresses a different problem of training time modality incompleteness.

Training-time incompleteness presents a different challenge. Fortin et al. (Fortin & Chaib-Draa,
2019) proposed a multi-task framework with unimodal and multimodal classifiers that can still be
trained when some modalities are absent. Ma et al. (Ma et al., 2021) introduced a Bayesian meta-
learning approach that enables single-modality embeddings to approximate full-modality ones, even
under severe missingness. These approaches still rely on at least some paired multimodal data,
whereas our method operates without any co-occurrence and instead constructs a pseudo-multimodal
dataset by fusing heterogeneous single-modal sources.

Supervised contrastive learning. Traditional supervised contrastive learning forms positive pairs
by grouping samples that share the same class label, encouraging models to pull their embeddings
together in the latent space (Khosla et al., 2020). This approach assumes all the data comes from the
same modality. In comparison, we apply supervised contrastive learning across different modalities,
using shared mental health labels to align user embeddings from online and physical activity data.
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Comparison to multimodal diffusion. CMMD (Yang et al., 2024) and our method both leverage
contrastive learning but address fundamentally different multimodal problems. CMMD operates on
paired video–audio data, but even with temporal alignment, the two encoders can produce seman-
tically misaligned features because the modalities capture different cues. CMMD addresses this by
using a contrastive diffusion loss that pulls the paired latent representations into a shared semantic
space. In contrast, our framework addresses a completely different challenge: multimodal learning
when modalities do not co-occur and come from disjoint user groups. Our method uses a contrastive
objective to to align semantically similar user data across heterogeneous single-modal datasets and
construct a pseudo multimodal dataset.

3 METHODOLOGY

Our proposed a two-stage framework consists of: 1) Data Fusing with Label-guided Mapping
(DFLM), which constructs a pseudo-multimodal dataset by combining existing datasets with drasti-
cally different modalities, and 2) Cooperative Cross-Attention Multimodal Transformer (CCAMT),
which learns from the resulting dataset. We will discuss the details in the following sections.

3.1 DATA FUSING WITH LABEL GUIDED MAPPING

Data Fusing with Label Guided Mapping (DFLM) leverages supervised contrastive learning to align
semantically similar user data across heterogeneous single-modal datasets and construct a pseudo-
multimodal dataset. It first extracts modality-specific embeddings and trains lightweight projection
networks to map them into a shared latent space. It then applies a similarity-based matching strategy
to align users across modalities. As a case study, we use online and physical activity data, which
differ in both content and structure, to explain these steps.

Modality-specific embedding extraction. We consider three modalities, denoted as α, β, and γ,
each providing an input feature sequence: Xα ∈ RTα×dα , Xβ ∈ RTβ×dβ , and Xγ ∈ RTγ×dγ ,
where Tm is the sequence length and dm is the feature dimension for modality m ∈ {α, β, γ}.
To extract modality-specific embeddings, we use pre-trained transformer encoders fα, fβ , and fγ ,
resulting in: Eα = fαX

α ∈ RT×d′
, Eβ = fβX

β ∈ RT×d′
, Eγ = fγX

γ ∈ RT×d′
, where

d′ denotes the output embedding dimension of the encoders. These extracted embeddings serve
two purposes. First, our framework directly uses them in downstream multimodal learning: ŷ =
F (Eα, Eβ , Eγ), where F is a multimodal transformer and ŷ is the model output (e.g., prediction
label). Second, our framework projects these embeddings into a shared latent space to facilitate our
proposed data-fusing.

The physical activity data γ includes diverse modalities (e.g., GPS, accelerometer, and sleep pat-
terns), each capturing distinct aspects of user behavior. To simplify integration, we treat these as
a single modality through a two-stage process: we first extract modality-specific statistical and be-
havioral features, then concatenate them into a unified sequence. This sequence is encoded using a
transformer to produce the embedding Eγ . This design preserves the unique characteristics of each
modality and enables a transformer encoder to generate embeddings for downstream learning.

Training pairs construction. To train the projection networks with contrastive learning, DFLM
constructs training pairs using pre-extracted embeddings from online and physical user data. For
each online user u, we randomly assign a physical user v sampled from the pool of users with the
same depressive label. For the online modality, we use a projection network gonline on the concate-
nated embeddings: zonline = gonlineE

online ∈ RT×d′′
. For the physical modality, we apply a separate

network: zphysical = gphysicalE
physical ∈ RT×d′′

. Both projection networks are lightweight MLPs with
identical architectures. Our preprocessing step ensures that the online modality’s encoder outputs a
fixed sequence length. The physical modality does not naturally match this length, so we apply a
1D interpolation step to resize its sequence to match it.

Optimizing contrastive objective. We train the projection networks gonline and gphysical using the
standard InfoNCE loss, which encourages paired online and physical embeddings to be close in the
shared space while pushing apart unpaired samples. Each projector consists of two linear layers
with a ReLU activation in between: z = MLP(x) = W2 ReLU(W1x + b1) + b2, where x is the
input embedding and z is the projected output. Given a batch of B online embeddings {zonline

i }Bi=1

4
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Figure 1: Overall architecture of Cooperative Cross-Attention Multimodal Transformer.

and physical embeddings {zphysical
i }Bi=1, we define the contrastive loss as follows:

LInfoNCE =
1

B

B∑
i=1

− log
exp(sim(zonline

i , zphysical
i )/τ)∑B

j=1 exp(sim(zonline
i , zphysical

j )/τ)
, (1)

where sim(·, ·) denotes the cosine similarity between two embeddings, and τ is a temperature hy-
perparameter controlling the smoothness of the similarity scores. zonline

i and zphysical
i form a positive

pair (i.e., online and physical share the same depressive label) and all zphysical
j for j ̸= i serve as

negative examples drawn from the batch.

Similarity-based matching. DFLM then matches online and physical users based on their pro-
jected embedding similarities to create the pseudo-multimodal dataset. It first projects all online and
physical user embeddings into the shared latent space using the trained projection networks gonline
and gphysical. To ensure semantic consistency, DFLM divides the projected physical embeddings into
groups based on their original depressive labels. For each online user, we consider only physical
users with the same label as potential matches. Using these curated label groups, DFLM computes
cosine similarities between the online embedding zonline

i and all the candidate physical embeddings
{zphysical

j } in the same group. It assigns the best-matching physical user by selecting the one with

the highest similarity: j∗ = argmaxj
zonline
i ·zphysical

j

∥zonline
i ∥∥zphysical

j ∥
, where j∗ is the index of the selected physical

user. This matching procedure results in a pseudo-multimodal dataset, where each example com-
bines online data with an augmented physical modality. Although the original modalities do not
co-occur, the resulting dataset is label-aligned and semantically meaningful. In the next section, we
introduce a transformer-based model specifically designed to learn from such a dataset.

3.2 COOPERATIVE CROSS ATTENTION MULTIMODAL TRANSFORMER

Model overview. Our proposed Cooperative Cross Attention Multimodal Transformer (CCAMT)
integrates text, image, and physical modalities for downstream prediction. At its core is a coop-
erative cross-attention encoder that enables cross-modal information exchange and representation
learning, followed by a final transformer encoder and a classification head.

Attention layer details. We implement the cooperative cross-attention encoder using two types of
layers: cross-attention, which enables information exchange across modalities, and self-attention,
which captures intra-modality dependencies. As a foundation, we build on the attention mech-
anism (Vaswani et al., 2017), a core element of transformer architectures that allows the model
to selectively attend to relevant parts of the input, capturing long-range and contextual depen-
dencies. The following description explains the attention mechanism (Vaswani et al., 2017):
Attention(Q,K, V ) = softmax

(
QKT

√
dk

)
V , where Q (query), K (key), and V (value) are projec-

tions of the input embeddings, which are dense vectors. dk is the key vector dimension; its square
root normalizes the dot product of Q and K to stabilize gradients softmax output.
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This attention mechanism serves as the foundation for the proposed cooperative cross-attention en-
coder. We build it using a stack of N identical layers, each containing cross-attention, self-attention,
and feed-forward sub-layers. Cross-attention enables information exchange between modalities by
focusing on modality pairs. Self-attention allows the model to attend to different parts of the same
modality. The feed-forward applies non-linear transformations with two fully connected layers and
an activation function in between. Each sub-layer employs a residual connection and layer normal-
ization at the output, as indicated by the ‘+’ sign in Figure 1.

To illustrate the cooperative cross-attention mechanism, we introduce the following notations. Let
mx,k−1

i and my,k−1
j represent the embeddings from modality x and y at layer (k − 1). Attention

scores are then computed between them to model inter-modal influence. For cross-attention between
modality x and y, queries Q are the projections of modality x′s embeddings, and keys K and values
V are the projections of modality y′s embedding. WQ, WK , and WV are learned weights:

Qxy = WQ{mx,k−1
i }, Kxy = WK{my,k−1

j }, Vxy = WV {my,k−1
j }. (2)

This allows the model to align and integrate information from modality x to modality y. Similarly,
for cross-attention from modality y to x, the model uses embeddings of modality y as queries and
embeddings of modality x as keys and values:

Qyx = WQ{my,k−1
j }, Kyx = WK{mx,k−1

i }, Vyx = WV {mx,k−1
i }, (3)

After obtaining each set of Q, K, and V , the model computes the attention scores as follows for each

modality pair: Attention Scoresxy = softmax
(

QxyK
T
xy√

dk

)
. The model then applies these attention

scores to the corresponding value (V ) matrix to obtain the final output of the attention mechanism
for each modality pair: Outputxy = Attention Scoresxy · Vxy.

Output transformer and final prediction. The encoder aggregates all pairwise attention out-
puts into a unified representation Haggregated ∈ RT×d, which is then passed into an out-
put transformer encoder. We apply mean pooling to the transformer’s output, followed
by a fully connected layer and sigmoid activation to produce the final prediction: ŷ =
σ
(
Wc · MeanPool(Transformer(Haggregated))

)
, where σ(·) denotes the sigmoid activation for binary

classification and Wc denotes the the final fully-connected layer’s weights.

4 EVALUATION

Scope and dataset suitability. Most existing multimodal sentiment datasets (e.g., MOSI (Zadeh
et al., 2016), MOSEI (Zadeh et al., 2018), CMU-MOSEAS (Zadeh et al., 2020)) provide co-
occurring modalities such as aligned video, audio, and text. This setup differs from the non-co-
occurring, cross-user scenario we study, where modalities come from separate sources and share
only label-level supervision. As a result, these datasets do not naturally support evaluating our
cooperative alignment setting.

Datasets. An ideal depression dataset for benchmarking CCAMT should capture both physical
and online activity. However, public datasets contain only one activity type, limiting models from
capturing full-spectrum user behavior. To address this, we use our proposed data-fusing technique
to augment public online and physical activity datasets. We evaluate performance using standard
metrics: accuracy, precision, recall, and F1 score.

Online activity datasets. We evaluate on two widely used multimodal depression datasets. Multi-
modal Twitter (Gui et al., 2019b) extends the textual depression dataset by Shen et al. (Shen et al.,
2017), consisting of 691K tweets with images and text from 1,402 depressed and 1,402 control users.
We follow Gui et al. (Gui et al., 2019b) and use an 80:20 train–test split. Multimodal Reddit (Bucur
et al., 2023) contains 1,419 users from the depressed and 2,344 control users. We follow the original
train/val/test split of 2,633, 379, and 751 users for fair comparison.

Physical activity dataset. StudentLife. This dataset (Wang et al., 2014) consists of physical activity
data collected from 30 undergraduate and 18 graduate students at Dartmouth over a 10-week term.
It includes continuous smartphone sensing data. such as sleep patterns and physical activity. It also
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contains 32,000 daily self-reports on mood, stress, and loneliness, along with pre-post surveys such
as PHQ-9 (Kroenke et al., 2001) and the UCLA loneliness scale (Russell, 1996).

Baseline models. We categorize our baselines into three groups based on their characteristics:
transformer-based models, conventional models, and hybrid models.

Transformer-based models use deep-learning architectures with self-attention mechanisms. Our
proposed CCAMT model belongs to this category, along with baselines like EmoBerta Trans-
formers (Kim & Vossen, 2021), Vanilla Transformers (Bucur et al., 2023), and Time2Vec Trans-
former (Bucur et al., 2023). EmoBERTa Transformer (Kim & Vossen, 2021) incorporates linguistic
and emotional cues; Vanilla Transformers (Bucur et al., 2023) is a multimodal transformer that
uses the learned positional embedding method, and Time2Vec Transformer (T2V) (Bucur et al.,
2023) uses time-enriched positional embedding (Kazemi et al., 2019). MulT (Tsai et al., 2019) is
a multimodal transformer that aligns and fuses information across modalities through cross-modal
attention.

To include MulT as a three-modality baseline, we implemented it within our two-stage pipeline. The
original MulT targets synchronized audio–video–text streams and cannot be directly integrated into
our framework because: 1) our modalities come from heterogeneous encoders and therefore lack the
consistent low-level temporal structure assumed in MulT, and 2) our pipeline operates on sequences
are resampled into a unified temporal window with a fixed masking format that MulT does not
natively support. To address this, we preserved its core components, including temporal convolution
alignment and directional cross-modal attention. We then convert each modality’s embeddings into
MulT’s expected input structure and applied our unified fixed-window masks to make its alignment
layers operate correctly within our pipeline.

Conventional models use traditional deep-learning architectures such as long short-term mem-
ory (LSTM) and convolutional neural networks (CNN) for depression detection. Time-aware
LSTM (Baytas et al., 2017) (T-LSTM) integrates time information in the memory unit of LSTM,
while LSTM + RL (Gui et al., 2019a) and CNN + RL (Gui et al., 2019a) apply reinforcement learn-
ing to identify posts that reflect users’ depression behavior.

Hybrid models combine two commonly used model architectures. This category includes Multi-
modal Topic-enriched Auxiliary Learning (MTAL) (An et al., 2020), which uses the multimodal
topic information for depression detection, and GRU + VGG-Net + COMMA (Gui et al., 2019b),
which integrates GRU, VGG-Net, and reinforcement learning to select depression-indicative posts
from text and images.

Table 1: Performance comparison between multi-
modal and single-modal models.

Dataset Method Modality F1 RecallPrecisionAccuracy

Twitter

T-LSTM T 85.6 91.6 81.4 86
EmoBERTa Transformer T 87.4 91.7 85.3 87.1
LSTM + RL T 87.1 87 87.2 87
CNN + RL T 87.1 87.1 87.1 87.1
Time2VecTransformer T+I 93.5 94.1 95.1 93.5
CCAMT w/o physical T+I 93.3 94.1 92.7 93.3
MulT T+I+P 95.6 95.6 95.5 95.6
CCAMT (Ours) T+I+P 96.4 96 96.9 96.5

Reddit

T-LSTM (Alt) T 85.1 83.3 85.7 87.9
EmoBERTa Transformer T 84.9 86.8 83.1 88.3
Time2VecTransformer T+I 87.6 87.7 87.6 90.6
MulT T+I+P 92.2 94.6 89.8 92.0
CCAMT (Ours) T+I+P 93.6 93 94.2 93.5

Image and text encoders. We evaluate var-
ious pre-trained encoders for CCAMT. For
images, we use CLIP (Radford et al., 2021)
for its strong vision-language alignment, and
DINO (Caron et al., 2021) for its perfor-
mance on downstream tasks. For text, we
consider three transformers: RoBERTa (Liu
et al., 2019), which excels in downstream
tasks; EmoBerta (Kim & Vossen, 2021),
which captures both linguistic and emotional
nuances; and Multilingual MiniLM (Wang
et al., 2020), a distilled version of XLM-
RoBERTa (Conneau et al., 2019). See Ap-
pendix A.1 for implementation details.

4.1 COMPARING TO SINGLE-MODAL
AND LATE-FUSION METHODS

First, to confirm the effectiveness of our multimodal approach, we compare the proposed CCAMT
against single-modal models and late-fusion baselines.

Comparison multimodal and single-modal results. Table 1 demonstrates that CCAMT surpasses
single-modal baselines, such as T-LSTM (Baytas et al., 2017) and CNN (Gui et al., 2019a), which
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are trained only on textual online data. CCAMT significantly improves accuracy by up to 10.5%
and F1 score by up to 10.8%. This confirms our model’s ability to comprehend complex modal
interdependencies among different modalities, which single-modal models fail to capture. We also
evaluate the impact of physical activity data on the model’s performance. Table 1 demonstrates that
when the physical activity data is removed (“CCAMT w/o physical data”), the F1 score drops from
96.4 to 93.3, comparable to the baseline Time2VecTransformer’s F1 score of 93.5. This confirms
the effectiveness of incorporating physical activity data on the model’s performance. CCAMT also
outperforms MulT with 0.8 and 1.4 F1 improvements, respectively, demonstrating stronger cross-
modal performance.

Table 2: Performance comparison between late-
fusion methods.

Method Modality F1 Recall Precision Accuracy

Single-modal Transformer T 78.4 92.1 68.3 74.6
Single-modal Transformer I 68.0 95.0 53.0 55.2
Single-modal Transformer P 72.5 92.5 59.7 65.0
Single-modal Transformer LF T+I+P 74.6 64.1 89.2 74.2
CCAMT (Ours) T+I+P 96.4 96.0 96.9 96.5

Comparison to late-fusion methods. To fur-
ther evaluate the effectiveness of CCAMT in
multimodal learning, we compare it against a
late-fusion baseline that aggregates the out-
puts of three independently trained single-
modal transformers (see Table 2). We adopt
the single-modal transformer design from
prior work (Bucur et al., 2023), training one
model per modality and applying late fusion
at the output level (Single-modal Transformer LF). CCAMT outperforms this late-fusion baseline
significantly, improving accuracy by 22.3%.

4.2 COMPARISON TO SOTA MULTIMODAL METHODS

Next, to evaluate the effectiveness of the proposed Cooperative Cross-Attention Multimodal Trans-
former (CCAMT) in learning from complex, multimodal data, we compare it against the best-
published results in depression detection using the Multimodal Twitter dataset. Table 3 compares
the results, and CCAMT exhibits superior performance across all evaluated metrics when compared
against a wide range of baselines.

Comparison to transformer-based models. Table 3: Overall performance comparison on the
Multimodal Twitter and Multimodal Reddit.

Dataset Method F1 Recall Precision Accuracy

Multimodal
Twitter

MTAL 84.2 84.2 84.2 84.2
GRU + VGG + COMMA 90.0 90.1 90.0 90.0
MTAN 90.8 93.1 88.5 -
Vanilla Transformer 89.6 92.5 88.8 88.8
SetTransformer 93.5 95.4 93.1 92.9
Time2VecTransformer 93.5 94.1 95.1 93.5
CCAMT (Ours) 96.4 96.0 96.9 96.5

Multimodal
Reddit

Uban et al. - - - 66.3
VanillaTransformer 84.5 85.8 83.7 88.2
SetTransformer 90.9 93.8 88.4 92.9
Time2VecTransformer 87.6 87.7 87.6 90.6
CCAMT (Ours) 93.6 93.0 94.2 93.5

For the multimodal Twitter dataset, CCAMT
achieves an accuracy of 96.5%, significantly
outperforming the state-of-the-art time2vec
multimodal transformer by 3% in accuracy,
2.9% in F1 score, 0.9% in precision, and
2.8% in recall. When compared to other
multimodal transformers, such as the Vanilla
Transformer and SetTransformer, CCAMT
shows up to a 7.7% increase in accuracy, a
6.8% improvement in F1 score, a 7.2% im-
provement in precision, and a 4.4% boost
in recall. Furthermore, when compared to
the single-modal EmoBERTa Transformer,
CCAMT surpasses it by a large margin: 9.4% higher accuracy, 9.0% higher F1 score, 10.7% better
precision, and a 5.2% improvement in recall. These results confirm the efficacy of our model in
learning from multimodal data.

For the multimodal Reddit dataset, CCAMT also outperforms baselines across all metrics. It
achieves 93.6% F1 score, 94.2% recall, 92.9% precision, and 93.5% accuracy. It outperforms the
Time2vec Transformer by 3% and the SetTransformer by 0.7%. Compared to the single-modal
EmoBERTa Transformer, CCAMT demonstrates a significant 8.7% accuracy improvement. Addi-
tionally, it outperforms traditional T-LSTM by 8.5% in accuracy. These results confirm the efficacy
of our model in learning from multimodal data.

Comparison to hybrid multimodal models. CCAMT achieves markedly better performance com-
pared to hybrid models such as MTAL (An et al., 2020) and the combination of GRU, VGG-Net,
and COMMA (GRU + VGG + COMMA) (Gui et al., 2019b). Specifically, CCAMT achieves an
improvement in F1 scores by as much as 12.2%.
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(b) Validation F1 score.
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(c) Validation precision.
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(d) Validation recall.
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Figure 2: The progression of the model’s performance and test accuracy comparison. Solid lines
represent the averaged results across five folds, with fluctuations visualized through the Min/Max
Band, showing the minimum and maximum values for each fold. (d) Test accuracy of CCAMT with
baselines on varying percentages of depressed users and (e) Label shuffling results.

Overall, transformer-based models, especially CCAMT, demonstrate the highest accuracy, sig-
nificantly outperforming hybrid multimodal and conventional models. Our results demonstrate
CCAMT’s strength in effectively leveraging the combination of physical and online activity data,
and its superior performance in multi-modal depression detection.

Comparing model convergence speed. Figure 2a illustrates the progression of the model’s vali-
dation accuracy over a 200-epoch training period. CCAMT consistently outperforms the state-of-
the-art time2vec multimodal transformer (T2V) throughout this process. Notably, CCAMT learns
faster than T2V, showing a steep increase in accuracy within the first 50 epochs. Our model achieves
90.4% accuracy by epoch 44, while T2V reaches its 90% accuracy at a later epoch. CCAMT is 2.8%
more accurate than T2V, achieving a final accuracy of 96.4%.

Figure 2b shows the F1 score progression during training. CCAMT consistently outperforms T2V
throughout the training process. Specifically, its F1 score mirrors its accuracy curve. The score
begins to plateau around epoch 50 and improves by 0.063 by the final epoch. Figure 2c shows
that CCAMT maintains a consistent lead in precision across all epochs, with the largest margin of
15.8% at epoch 42. The curve stabilizes after epoch 50, gaining an additional 6.4% by the end. For
recall (Figure 2d), the largest gap between CCAMT and T2V is 14.6% at epoch 59. We conduct
all evaluations using five-fold cross-validation. CCAMT demonstrates superior generalization and
stability, evidenced by its higher average accuracy and narrower variability band across folds.

Robustness analysis with imbalanced data. In real-world scenarios, the number of depressed users
is typically much less than the number of non-depressed users. To evaluate our model’s robustness to
such balance, we follow the approach used in the prior work Gui et al. (2019b). We evaluate model
robustness under varying levels of data imbalance using the Multimodal Twitter dataset, which con-
tains 1402 depressed and 1402 non-depressed users. We create imbalanced versions by randomly
sampling varying percentages of depressed user data while keeping the non-depressed user data for
training.

Figure 2e shows the test accuracy of CCAMT, time2vec, vanilla, and set models trained on decreas-
ing percentage of depressed users, from 100% to 10%, while keeping the number of non-depressed
users the same. Across all settings, CCAMT consistently outperforms the others, demonstrating
strong robustness to data imbalance. At 90% data, it reaches 95.4% accuracy, compared to 91.4%
for time2vec, 84.4% for vanilla, and 85.2% for set. As the available depressed data decreases to
50%, CCAMT still maintains a 93.0% accuracy, outperforming time2vec at 86%, vanilla at 81.4%,
and set at 81.2%. At the lowest 10% level, CCAMT retains 74.2% accuracy, while time2vec, vanilla,
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and set degrade significantly to 49.8%, 47.3%, and 50.2%, respectively. These results demonstrate
the superior robustness of CCAMT compared to baselines, especially under severe data imbalance.

Figure 2f shows label-shuffling experiment to evaluate CCAMT’s sensitivity to noise. As label noise
increases, performance consistently degrades across all metrics, confirming that the model does not
simply memorize labels and instead learns cross-modal relationships. Specifically, accuracy drops
from 96.5% to 77% with 25% label shuffled, 76.1% at 50% shuffled, 71% at 75% shuffled, and
50.8% with 100% label shuffled. F1 also follows a similar trend, dropping from 96.4% to 80.5%
with 25% label shuffled, and 66.8% with 100% label shuffled. We further provide a comprehensive
ablation study in the Appendix A.2. Specifically, we conduct sensitivity analysis of alignment qual-
ity, examining how different mapping strategies influence the semantic alignment and comparing
their resulting performance.

4.3 EDGE DEPLOYMENT

We deploy the models on the Jetson Nano, an IoT platform equipped with an Nvidia Maxwell GPU,
4GB memory, and 64 GB storage, to enable privacy-preserving on-device depression detection.

Inference latency comparison. Figure 3 compares six image and text encoder config-
urations to identify the lowest inference latency for CCAMT. Our chosen encoder con-
figuration, Clip + EmoBERTa, achieves the lowest inference latency at 10.76 seconds.
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Figure 3: Inference comparison on Jetson.

It achieves the lowest inference latency at 10.76
seconds, significantly faster than all other encoder
configurations and up to 83.0% faster than the
slowest configuration (Clip + Minilm). Text em-
bedding generation dominates the total latency at
84.39% (9.07 seconds), followed by image em-
bedding latency at 11.93% (1.28 seconds). The
physical data encoder steps have minimal la-
tency, with the projection and the embedding step
taking only 7 ms and 80 ms. The inference
time of CCAMT is only 0.22s, making CCAMT
ideal for edge deployment. These results con-
firm that CCAMT can provide a timely predic-
tion under resource constraints. Please refer to
Appendix A.2 for additional edge deployment ex-
periments. We evaluated various encoder configuration and showed that our selected configuration
is the best for balancing latency and accuracy. We also measured different encoder size to confirm
that CCAMT’s encoder configuration is compact enough for edge deployment while maintaining
high performance.

5 CONCLUSIONS

This paper presents a two-stage framework to address training-time modality incompleteness and
enable learning from datasets that combine drastically different modalities. The framework consists
of Data Fusing with Label-guided Mapping (DFLM) and the Cooperative Cross-attention Multi-
modal Transformer (CCAMT). DFLM introduces a novel use of supervised contrastive learning to
align semantically similar user data across different modalities in a shared latent space, enabling the
creation of pseudo-multimodal datasets without requiring co-occurring data. CCAMT is a unique
architecture designed to effectively model both intra- and inter-modality dependencies, leveraging
cross-attention to capture complementary information across modalities. The proposed framework
allows researchers to explore the multimodal learning benefits without collecting the co-occurring
multimodal data. Our extensive evaluation results show that CCAMT consistently achieves more ac-
curate and faster predictions than the best-published results across multiple datasets. Its deployment
on real edge devices further confirms its effectiveness in resource-constrained edge environments.
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A APPENDIX

A.1 IMPLEMENTATION DETAILS

We trained all models using the Adam optimizer with a base learning rate of 1e-5. The learning rate
varies using a cyclical learning rate scheme, linearly varying from 1e-5 to 1e-4 every 10 epochs. We
implemented our proposed method on PyTorch 1.10 and evaluated it using Nvidia RTX 2080 GPUs.
For edge deployment evaluation, we used a widely used IoT platform, Nvidia Jetson Nano.

A.2 ABLATION STUDIES

Comparing mapping strategy. Table 4 compares the CCAMT’s performance under three map-
ping strategies: random, similarity-based, and contrastive-based. Our proposed contrastive mapping
strategy consistently outperforms the other mapping strategies across all evaluated metrics. De-
spite its simplicity, the random mapping strategy yields surprisingly competitive performance (0.7%
lower accuracy than contrastive mapping method), suggesting that even weak cross-modal signals
can be informative.

Figure 4a to 4c show t-SNE visualizations of user embeddings under these mapping strategies.
In the random mapping (Figure 4a), each online user is paired with a randomly selected physi-
cal user sharing the same label. The resulting distribution is largely unstructured, reflecting weak
semantic alignment across modalities. The similarity-based mapping (Figure 4b) improves upon
this by pairing each online user with the most similar physical user based on cosine similarity in
embedding space. This produces better-structured semantic alignment than random mapping. The
contrastive-based mapping (Figure 4c) further enhances semantic alignment by explicitly learning
to bring semantically similar user pairs closer in the latent space. The resulting embeddings exhibit
improved structure.
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Figure 4: t-SNE visualizations of feature embeddings under (a) random, (b) similarity-based, and
(c) contrastive-based mappings. Circles/triangles represent online/physical users; colors denote de-
pression labels. Gray lines link the same-label synthetic modality pairs.

Table 4: Performance comparison of different mapping strategies.

F1 Recall Precision AUC Accuracy

Random 95.7 95.4 96.1 99.1 95.7
Similarity 96.0 95.8 96.3 99.1 96.0
Contrastive 96.4 96.0 96.9 99.2 96.4

The impact of attention. We evaluate the effectiveness of the cooperative cross-attention mecha-
nism by comparing bi-directional and single-directional attention. Figure 5 illustrates the two set-
tings within CCAMT’s encoder across three modalities: image (I), text (T), and physical activity
(P). In a single-directional setting, attention passes from T to P. In a bi-directional setting, it passes
in both directions between T and P. We exclude attention passing between P and I, as textual data
dominates the input in our multimodal datasets, making P to I passing not helpful.

Table 5 shows that bi-directional attention consistently outperforms single-directional attention
across all metrics. It improves F1 score by 1.1%, recall by 1.3%, precision by 0.9%, AUC by 0.2%,
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and accuracy by 0.8%. These results indicate that bi-directional attention enhances the model’s over-
all performance, particularly in balancing precision and recall. Notably, even with single-directional
attention, our method still surpasses the state-of-the-art Time2Vec transformer by 1.8%.
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Figure 5: Cross connection.

Table 5: Single-directional vs bi-directional attention.

F1 Recall Precision AUC Accuracy

Single-directional 95.3 94.7 96.0 99.0 95.6
Bi-directional 96.4 96.0 96.9 99.2 96.4
Improvement (%) 1.1 1.3 0.9 0.2 0.8

The impact of window size. Figure 6 shows the effect of varying window size, which defines
the number of posts processed simultaneously, on model performance for Multimodal Twitter and
Multimodal Reddit datasets. On Multimodal Twitter, increasing the window size from 32 to 512
improves most metrics. Recall shows the largest increase of 8.0% due to the model’s ability to learn
from more data. AUC, however, remains relatively stable with only a 2.7% change. The smaller
change in AUC likely reflects its focus on class separation, making it less sensitive to window
size variation than recall and accuracy. On Multimodal Reddit, the results show a similar pattern.
Specifically, recall increases the most, by 17.8%. AUC changes the least, with a 10.4% difference.
Overall, a larger window size increases accuracy but demands more computing resources.
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(a) Multimodal Twitter.
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(b) Multimodal Reddit.

Figure 6: Comparison model performance with varying window size on (a) Multimodal Twitter and
(b) Multimodal Reddit datasets.

Encoder configuration for online activity data. We evaluate different encoder configurations to
identify the most effective setup for CCAMT’s multimodal input. We fix the physical encoder
and vary image-text encoder combinations. Table 6 lists the results, along with the percentage
differences relative to the Clip + Emoberta baseline. Clip + EmoBERTa is the chosen encoder
configuration, achieving up to 18% higher accuracy than other configurations, within 1% of the
best-performing alternatives. Clip + Roberta and Dino + Roberta slightly outperform the baseline.
Clip + MiniLM underperforms significantly, with a 15.3% drop in F1 score and a 16.3% in accuracy.
Overall, the chosen Clip + EmoBERTa configuration improves accuracy by up to 18%, with only
minor differences from the best-performing alternative.
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Table 6: Performance comparison of image-text encoder configurations with a fixed physical en-
coder. Percentages indicate improvements over the Clip + Emoberta baseline.

Depressed (%) F1 Recall Precision AUC Accuracy

Clip + Emoberta 96.4
(0.0%)

96.0
(0.0%)

96.9
(0.0%)

99.2
(0.0%)

96.5
(0.0%)

Clip + MiniLM 81.2
(-15.3%)

85.6
(-10.4%)

77.3
(-19.6%)

87.0
(-12.2%)

80.2
(-16.3%)

Clip + Roberta 97.3
(+0.9%)

96.9
(+0.9%)

97.7
(+0.8%)

99.4
(+0.1%)

97.3
(+0.9%)

Dino + Emoberta 96.0
(-0.5%)

97.1
(+1.1%)

94.9
(-2.0%)

99.3
(-0.1%)

95.9
(-0.5%)

Dino + MiniLM 80.0
(-16.5%)

85.9
(-10.1%)

74.9
(-22.0%)

85.5
(-13.7%)

78.5
(-18.0%)

Dino + Roberta 97.4
(+1.0%)

97.6
(+1.6%)

97.2
(+0.3%)

99.4
(+0.2%)

97.4
(0.9%)

A.3 ADDITIONAL EDGE DEPLOYMENT EXPERIMENTS

Inference latency and accuracy trade-off. Clip + Emoberta achieves 96.3% F1 and 96.3% accu-
racy, outperforming most methods. Although its accuracy is within 1% of Clip + RoBERTa and Dino
+ RoBERTa, it reduces latency by up to 49.94%, making it the optimal configuration for balancing
latency and accuracy.

Size comparison. Table 7 lists the model sizes of different encoder configurations. Our encoder
configuration has a model size comparable to other configurations. Clip + EmoBERTa totals 806.41
MB, comparable to Clip + RoBERTa and only 26.67 MB larger than the smallest configuration,
Clip + MiniLM (779.74 MB). Additionally, it is 2.25 MB smaller than both Dino + EmoBERTa and
Dino + RoBERTa (808.66 MB), making it compact enough for edge deployment with high accuracy.
These results confirm that CCAMT’s encoder configuration is compact enough for edge deployment
while maintaining high performance.

Table 7: Total size of various encoder configurations.

Encoder
configurations

clip +
emoberta

clip +
minilm

clip +
roberta

dino +
emoberta

dino +
minilm

dino +
roberta

Size (MB) 806.41 779.74 806.41 808.66 781.99 808.66

Difference (MB) 0 -26.67 0 2.25 -24.42 2.25
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