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Abstract

Deep learning has led to remarkable advances in computer vision. Even so, today’s best
models are brittle when presented with variations that differ even slightly from those seen
during training. Minor shifts in the pose, color, or illumination of an object can lead to
catastrophic misclassifications. State-of-the art models struggle to understand how a set
of variations can affect different objects. We propose a framework for instilling a notion
of how objects vary in more realistic settings. Our approach applies the formalism of Lie
groups to capture continuous transformations to improve models’ robustness to distributional
shifts. We apply our framework on top of state-of-the-art self-supervised learning (SSL)
models, finding that explicitly modeling transformations with Lie groups leads to substantial
performance gains of greater than 10% for MAE on both known instances seen in typical
poses now presented in new poses, and on unknown instances in any pose. We also apply
our approach to ImageNet, finding that the Lie operator improves performance by almost
4%. These results demonstrate the promise of learning transformations to improve model
robustnesd!

1 Introduction

State-of-the-art models have proven adept at modeling a number of complex tasks, but they struggle when
presented with inputs different from those seen during training. For example, while classification models
are very good at recognizing buses in the upright position, they fail catastrophically when presented with
an upside-down bus since such images are generally not included in standard training sets (Alcorn et al.,
2019). This can be problematic for deployed systems as models are required to generalize to settings not seen
during training (“out-of-distribution (OOD) generalization”). One potential explanation for this failure of
OOD generalization is that models exploit any and all correlations between inputs and targets. Consequently,
models rely on heuristics that while effective during training, may fail to generalize, leading to a form of
“supervision collapse” (Jo & Bengio, [2017; [Ilyas et al., 2019; |Doersch et al., |2020; |Geirhos et al., 2020a).
However, a number of models trained without supervision (self-supervised) have recently been proposed,
many of which exhibit improved, but still limited OOD robustness (Chen et al., [2020; Hendrycks et al. 2019;
Geirhos et al., [2020b).

The most common approach to this problem is to reduce the distribution shift by augmenting training data.
Augmentations are also key for a number of contrastive self-supervised approaches, such as SimCLR (Chen
et al., [2020). While this approach can be effective, it has a number of disadvantages. First, for image data,
augmentations are most often applied in pixel space, with exceptions e.g. |Verma et al.| (2019)). This makes it
easy to, for example, rotate the entire image, but very difficult to rotate a single object within the image.
Since many of the variations seen in real data cannot be approximated by pixel-level augmentations, this can
be quite limiting in practice. Second, similar to adversarial training (Madry et al., 2017; Kurakin et al., 2016]),
while augmentation can improve performance on known objects, it often fails to generalize to novel objects
(Alcorn et al., 2019). Third, augmenting to enable generalization for one form of variation can often harm the
performance on other forms of variation (Geirhos et al., |2018; [Engstrom et al., |2019), and is not guaranteed
to provide the expected invariance to variations (Bouchacourt et al.l |2021b). Finally, enforcing invariance is
not guaranteed to provide the correct robustness that generalizes to new instances (as discussed in Section .

1Code to reproduce all experiments will be available upon acceptance.
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Figure 1: Summary of approach and gains. We generate a novel dataset containing rendered images of
objects in typical and atypical poses, with some instances only seen in typical, but not atypical poses (left).
Using these data, we augment SSL models such as MAE with a learned Lie operator which approximates the
transformations in the latent space induced by changes in pose (middle). Using this operator, we improve
performance by >10% for MAE for both known instances in new poses and unknown instances in both typical
and atypical poses (right).

For these reasons, we choose to explicitly model the transformations of the data as transformations in the
latent representation rather than trying to be invariant to it. To do so, we use the formalism of Lie groups.
Informally, Lie groups are continuous groups described by a set of real parameters 2003). While many
continuous transformations form matrix Lie groups (e.g., rotations), they lack the typical structure of a vector
space. However, Lie group have a corresponding vector space, their Lie algebra, that can be described using
basis matrices, allowing to describe the infinite number elements of the group by a finite number of basis
matrices. Our goal will be to learn such matrices to directly model the data variations.

To summarize, our approach structures the representation space to enable self-supervised models to generalize
variation across objects. Since many naturally occurring transformations (e.g., pose, color, size, etc.) are
continuous, we develop a theoretically-motivated operator, the Lie operator, that acts in representation space
(see Fig. . Specifically, the Lie operator learns the continuous transformations observed in data as a vector
space, using a set of basis matrices. With this approach, we make the following contributions:

1. We generate a novel dataset containing 3D objects in many different poses, allowing us to explicitly
evaluate the ability of models to generalize to both known objects in unknown poses and to unknown
objects in both known and unknown poses (Section .

2. Using this dataset, we evaluate the generalization capabilities of a number of standard models,
including ResNet-50, ViT, MLP-Mixer, SimCLR, CLIP, VICReg, and MAE finding that all state-of-
the-art models perform relatively poorly in this setting (Section [3.2)).

3. We incorporate our proposed Lie operator in two recent SSL approaches: masked autoencoders (MAE,
(He et all [2021)), and Variance-Invariance-Covariance Regularization (VICReg (Bardes et al., [2021))
to directly model transformations in data (Section , resulting in substantial OOD performance
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gains of greater than 10% for MAE and of up to 8% for VICReg (Section . We also incorporate
our Lie model in SimCLR (Chen et al. 2020 (Appendix [A.5]).

4. We run systemic ablations of each term of our learning objective in the MAE Lie model, showing the
relevance of every component for best performance (Section {4.3)).

5. We challenge our learned Lie operator by running evaluation on Imagenet as well as a rotated version
of ImageNet, improving MAE performance by 3.94% and 2.62%, respectively. We also improve over
standard MAE with MAE Lie when evaluated with finetuning on the iLab (Borji et al.,[2016]) dataset.
These experiments show the applicability of our proposed Lie operator to realistic, challenging
datasets (Section [5)).

2 Methods

Humans recognize even new objects in all sorts of poses by observing continuous changes in the world. To
mimic humans’ ability to generalize variation, we propose a method for learning continuous transformations
from data. We assume we have access to pairs of data, e.g., images, x,x’ where x’ is a transformed version
of x corresponding to the same instance, e.g., a specific object, undergoing variations. This is a reasonable
form of supervision which one can easily acquire from video data for example, where pairs of frames would
correspond to pairs of transformed data, and has been employed in previous works such as [Ick & Lostanlen
(2020)); |[Locatello et al.| (2020); |(Connor et al.| (2021b)); | Bouchacourt et al.| (2021a)).

Despite widespread use of such pairs in data augmentation, models still struggle to generalize across distribution
shifts (Alcorn et al., |2019; |Geirhos et al.l 2018; [Engstrom et al., [2019). To solve this brittleness, we take
inspiration from previous work illustrating the possibility of representing variation via latent operators
(Connor et all 2021b; [Bouchacourt et all 2021aj |Giannone et al. 2019). Acting in latent space avoids costly
modifications of the full input dimensions and allows us to express complex operators using simpler latent
operators. We learn to represent data variation explicitly as group actions on the model’s representation
space Z. We use operators theoretically motivated by group theory, as groups enforce properties such as
composition and inverses, allowing us to structure representations beyond that of an unconstrained network
(such as an multi-layer perceptron, MLP) (see Appendix |A.1)). Fortunately, many common transformations
can be described as groups.

We choose matrix Lie groups to model continuous transformations, as they can be represented as matrices
and described by real parameters. However, they do not possess the basic properties of a vector space e.g.,
adding two rotation matrices does not produce a rotation matrix, without which back-propagation is not
possible. For each matrix Lie group G however, there is a corresponding Lie algebra g which is the tangent
space of G at the identity. A Lie algebra forms vector space where addition is closed and where the space can
be described using basis matrices. Under mild assumptions over GG, any element of G can be obtained by
taking the exponential matrix map: exp(tM) where M is a matrix in g, and ¢ is a real number. Benefiting
from the vector space structure of Lie algebras, we aim to learn a basis of the Lie algebra in order to represent
the group acting on the representation space, using the exp map. We refer the reader to Appendix [A-T] and
Hall| (2003); [Stillwelll (2008]|) for a more detailed presentation of matrix Lie groups and their algebra.

2.1 Learning transformations from one sample to another via Lie groups

We assume that there exists a ground-truth group element, g, which describes the transformation in latent
space between the embedding of x and x’. Our goal is to approximate g using its Lie algebra. More formally,
given a pair of samples (e.g., a pair of video frames), x and x’, and an encoder, f(-), we compute the latent
representations z and z9 as z = f(x) and z9 = f(x’). We therefore assume z8 = f(x’) = g(f(x)). We aim to
learn an operator § maximizing the similarity between z9 = §(f(x)) and z9.

We construct our operator by using the vector space structure of the group’s Lie algebra g: we
learn a basis of g as a set of matrices Ly € R™*™ k € {1,...,d} m is the dimension of the embedding
space Z and d is the dimension of the Lie algebra, i.e. the number of Lie generator matrices. Intuitively, d
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expresses the degrees of freedom required to model the transformations. Specifically, it corresponds to the
dimension of the Lie algebra as a vector spacdﬂ We use this basis as a way to represent the group elements,
and thus to model the variations that data samples undergo. A matrix M in the Lie algebra g thus writes
M= 22:1 t, Ly for some coordinate vector t = (t1,...,tq) € R%. Let us consider a pair z,2z9 with z9 = g(z).

We assume the exponential map is surjectiv thus, there exists 22:1 tyLx € g such that

d
g =exp()_ trLy) = exp(tL) (1)

k=1
where t = (t1,...,tq) are the coordinates in the Lie algebra of the group element g, and L is the 3D matrix

in RIXm>m concatenating {Ly, k € {1,...,d}}.

Our goal is to infer § such that §(z) (the application of the inferred § to the representation z)
equals z9. We denote z9 = §(z). Specifically, our transformation inference procedure consists of Steps 1-4 in
Algorithm [I} For step 1 in Algorithm |1} similar to [Connor et al.| (2021b)); [Bouchacourt et al.| (2021al), we use
a pair of latent codes to infer the latent transformation. Additionally, we consider that we can access a scalar
value, denoted 0, -, measuring “how much” the two samples differ. For example, considering frames from
a given video, this would be the number of frames that separates the two original video frames x and x’,
and hence comes for fref@The coordinate vector corresponding to the pair (z,2z9) is then inferred using a a
multi-layer perceptron

t = h(z,2%, 65 x) (2)

When dx x is small, we assume the corresponding images and embedding differ by a transformation close to
the identity which corresponds to an infinitesimal t. To illustrate this, we use a squared Lo-norm constraint
on t. For smaller dxx (e.g., close-by frames in a video), larger similarity between z,z9 is expected, in which
case we want to encourage a smaller norm of t:

S(Z:Zg:(sx.x’)HEHZ (3)

where s: Z x Z x R — [0, 1] measures the similarity between z and z9. In our experiments, we simply use
s(z,29,0xx) as a function of dx x and compute

1

- 1 +eXP(‘5x,X’|)' W

3(5x7x/)

When |dx x| decreases, s increases which strengthens the constraint in Eq. [3f the inferred vector of coordinates
t is therefore enforced to have small norm.

2.2 Lie learning objective

We encourage z9 to be close to z?, while preventing a collapse mode where every transformation would
be inferred as identity. In practice, recall we obtain z9 as the embedding f(x’) of a corresponding frame.
Specifically, we use an InfoNCE loss to match pairﬂ

exp(sim(z9,2%))
exp(sim(z9,29)) + > ;e exp(sim(Z,29))

Liio(z%,29) = —lo

()

where sim is a similarity function measuring how close two latent embeddings are (e.g., cosine similarity in
our experiments), and Z belongs to set of negatives N for z9. For a given z9 of a given instance, the set N is

2In our preliminary experiments, we have cross-validated between d=1 and d=5 and found it did not seem to alter the results,
hence we use d=1 in our reported results.

3This is the case if G is compact and connected (Halll [2003 Corollary 11.10).

4Assuming that nearby video frames will be restricted to small transformations.

5During the learning of the parameters of h, we detach the gradients of the latent code z with respect to the parameters of
the encoder f.

6 Additionally, we forward the latent code through a neural projection head proj before computing similarity.
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comprised of latent codes of other instances. We also include other instances’ transformed versions and their
corresponding inferred transformed embeddings as negative samples.

Crucially, we also include in the negatives set of z¢ (denoted A) the frame encoding z in order to
prevent the model from collapsing to a point where all the encodings of the same instance (i.e. any
transformed version) would be mapped to the same point, and the inferred § would simply learned as identity.
Indeed, one can view transformed pairs simply as another form of data augmentation, such that enforcing
that z9 matches z (i.e. implicitly enforcing invariance) would bring robustness to the transformation g.
However, we control for this in our experiments using the SimCLR model with our Lie operator (Appendix
see SimCLR Frames baseline). We experiment with a baseline that is simply encouraged to match pairs
of rotated frames in the representation, and SimCLR Lie outperforms this baseline. Thus, this shows that
viewing transformations as data augmentation is not sufficient for robust generalization.

To further encourage z9 and z9 to match, we add an Euclidean-type constraint:
Acucl|z? — ngZ (6)

The addition of the Euclidean loss helps to stabilize training, but using only the Euclidean loss (in place of
our Lie loss) would not be enough to prevent the model from collapsing to mapping all transformed samples
to the same point in latent space. Indeed, in the case of the MAE model, we perform ablations of our Lie
model in Section [£.3] and show that all terms in the training objective are important for best performance
with the MAE Lie model.

2.3 Learning a Lie operator in self-supervised representations

We use our Lie algebra model on top of two existing self-supervised (SSL) models, MAE and VICReg.
In MAE, f is trained to reconstruct a masked input image, while VICReg is trained to match pairs of
samples obtained from the same image via some form of data augmentations (e.g. two crops) and uses
Variance-Invariance-Covariance regularization to prevent collapse. In Appendix [AJ5] we also experiment
applying our Lie operator on the SimCLR (Chen et al. 2020) model, showing gains in the linear setting in
particular. Our loss will balance between two components: the original SSL model loss Lgg, applied to both
samples of the pair separately, and the transformation loss Ly;.. Combining these constraints gives us our
final loss, L:

L - )\SSI(LSSI(Z) + Lssl(zg)) + AlieLLie(Zg: Zg) + )\eucHZg - ZgHQ + <9(($x,x’)‘|£H2 (7)

The parameters Agg and Ape weight the two losses. Note that Lg can be different given the SSL model
backbone we use. In our experiment we deploy our Lie operator on top of the Variance-Invariance-Covariance
Regularization model (VICReg, (Bardes et al.| [2021))), and of the very recent masked autoencoders model
(MAE, (He et al., |2021)).

This loss is minimized with respect to the parameters of the encoder f, the parameters of the net-
work h (multi-layer perceptron with two linear layers connected by a leaky ReLU) that infers the Lie algebra
coordinates, and the Lie algebra basis matrices Ly, k € {1,...,d} which are used to compute §. The total
loss is over all the instances (N of them) and all possible pairs of transformed samples we have for each
instance (if we have P pose changes, this will be P(P — 1)). During training, we estimate this loss for a
minibatch by sampling instances first, and sampling a pair of samples for each instance without replacement.
The full procedure is illustrated in Fig. [T and in Algorithm

3 Evaluating generalization across instances

Our goal is to evaluate how well models generalize variation across instances. We focus on robustness to pose
changes, a common, natural variation of objects. We evaluate the learned representations’ robustness via
standard linear evaluation or supervised finetuning protocols. Specifically, we measure classification top-1
accuracy across both known (seen during training) and unknown instances (not seen during training) in
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Algorithm 1: Implementing our Lie operator in a self-supervised learning model
/

Input: x, x
Encode z = f(x), z7 = f(x') with the encoder f;

Infer t as t = h(z, 29, Ox,x');

Use the exp map to get § = exp(tTL), where § € R™*"™;
Compute z9 = §(z). This is simple matrix-vector multiplication;
Jointly learn f, h, and L by minimizing:

S A WN

E - )\SSI(LSSI(Z) + Lssl(zg)) + )\licLLic(Zgazg) + /\oucHZg*ZgH2 + S((Sxx/)HEH2 (8)

typical and new poses. As only a portion of instances (less or equal to 50% in our experiments) are seen
varying, motivated by works showing the benefit of data reweighting for generalization challenges (Idrissi
et al. 2022), we sample data at training so that the model sees as many images varying as non varying by
upsampling the varying instances where needed.

In order to perform well on known instances in new poses, models must learn to recognize an ob-
ject regardless of its orientation and constitutes our weakest generalization test. In order to perform well
on unknown instances, however, models must be able to generalize both across instances and poses, a
substantially more difficult task.

3.1 Data variation

To conduct our evaluation, we develop a controlled dataset of common objects such as buses, cars, planes,
etc. based on realistic object models from [Trimble Inc ﬂ We render nearly 500,000 images of varying 2D and
3D poses uniformly distributed with a step size of 4 degrees. To simulate natural changes in pose we organize
pose changes temporally into frames (i.e. into images). Each frame captures a 4 degree change in pose either
in-plane rotation or across all three axes. In addition, we conduct experiments evaluating the Lie operator on
the iLab 2M dataset following the preprocessing steps from |Madan et al.| (2021)).

3.2 Generalizing pose changes is challenging for SoTA vision models

We first assess state-of-the-art vision models’ robustness to pose using a collection of supervised and self-
supervised models (CLIP, ResNet-50, ViT-B/16, MLP Mixer, SImCLR, VICReg and MAE). All of these
models rely on some form of data augmentation to provide invariance to nuisance features such as pose. We
use ImageNet (Deng et al., 2009) pretrained embeddings for our models (with the exception of CLIP, which is
pretrained on a large corpus of image-text pairs) (Radford et al.). We only show supervised linear evaluation
for VICReg as it is mainly explored in the linear evaluation setting for the fully supervised task in [Bardes
et al.| (2021)).

While all models perform well on classification for known instances in typical poses, the same models have a
considerable generalization gap to varying poses. In Figure [2] we show results for both linear evaluation and
supervised finetuning classification gaps relative to typical poses of known instances. Strikingly, all models we
evaluated exhibited large generalization gaps of 30-70% suggesting that even modern self-supervised models
struggle to generalize both to new poses and to new instances. As such poor generalization can be problematic
at best and dangerous at worst for deployed models, developing ways to improve generalization performance
beyond simply augmenting the data is critical. In the next section, we introduce a new approach in which
we encourage models not to be invariant to transformation, but rather to explicitly model and account for
transformations.

Tfreely available under a General Model license
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Figure 2: SoTA image classification models fail to generalize across poses and instances. Bar plots
show the gap in top-1 accuracy relative to training instances with poses seen during training. Self-occlusion
is the gap in accuracy between unknown instances in 3D and 2D poses.

3.3 Incorporating a learned Lie operator in self-supervised learning models

To improve robustness, we incorporate a self-supervised learning phase where we structure representations
using our Lie operator. During this phase, half of the instances are seen undergoing pose changes in 2D and
3D. We use the angle difference between frames as an proxy for frame distance (denoted § in Section [2.1)). In
the case of rotation around all axes, we use the mean of three angles. We then evaluate the representations
in the same manner as described above.

We implement our Lie operator in two SSL models: Masked Autoencoder (MAE) and Variance-Invariance-
Covariance Regularization (VICReg). VICReg is a SSL method, which encourages similar representations
among two views (generated via data augmentation) of an image. MAE is an SSL model whose learning
objective is based on the reconstruction of a randomly masked input.

4 Results

4.1 SSL models with Lie operators are more robust across instances and poses

We evaluate the robustness benefits of our Lie operator across several generalization settings. In Figure
we plot the performance of a MAE (A) and VICReg (B) models with and without our Lie operator.
Encouragingly, we find explicitly modeling transformations with Lie groups (referred to as MAE Lie and
VICReg Lie) improves robustness for all generalization settings. For known instances (those seen during
training), incorporating our Lie operator improves Top-1 classification accuracy for new poses by 13.7%
for MAE Lie and 7.7% for VICReg Lie. In the more challenging settings of unknown instances which are
never seen during training, we still observe performance gains for VICReg Lie of 0.2% for new instances in
typical and 1.2% for those in new poses. For MAE Lie, we observe substantial performance gains of 12.4% for
unknown instances in typical poses and 10.3% for those in diverse poses. We note both MAE and VICReg
Lie bring even more substantial gains for settings when data diversity is limited (see Sec. Tables |1 and .

4.2 Lie operator robustness gains are sustained even with limited diverse data

For our experiments so far, models have been exposed to a 50/50 mix of typical and atypical poses during
supervised linear classification and finetuning. However, we want models to generalize across instances and
to atypical poses even when presented with comparatively small amounts of diverse data. We therefore
evaluated our models by performing supervised linear classification and finetuning with either 50%, 25%, or
5% of data featuring atypical poses (Tables [I| and . Notably, we observed that while overall performance
decreased with fewer diverse instances, as we might expect, the relative gains of the Lie models were largely
consistent across settings, and if anything, were larger for settings with less diverse data. These results
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Figure 3: Incorporating our Lie operator to MAE and VICReg improves generalization across
poses and instances. Bars indicate the mean top-1 accuracy and brackets indicating the standard error
across seeds. In A., we show supervised finetuning for MAE Lie versus a standard MAE. In B., we show
supervised linear evaluation for VICReg Lie versus VICReg as the original VICReg model is mainly explored
in the linear evaluation setting for the fully supervised task (Bardes et al., 2021).

demonstrate the robustness of our approach to differing quantities of diverse data.

Table 1: Assessing linear evaluation robustness to pose changes as the proportion of diverse
instances seen during training varies. Table reports linear evaluation top-1 accuracy as mean =+ standard
error (+ absolute difference, x relative multiple) to the baseline model.

known instance in new pose ‘ unknown instance
diverse proportion 5% 25% 50% 5% 25% 50%
top-1 accuracy (%)
VICReg Lie 73.8 £ 02 (+14.4, 1.24x) 75.0 £ 0.0 (+5.8, 1.08x) 80.5 £ 0.1 (+7.7, 1.11x) 54.1 £ 02 (3.7, 1.07x) 59.7 + 01 (+3.1, 1.05x) 62.0 £ 0.2 (+1.2, 1.02x)
VICReg 59.4 & 0.0 69.1 + 0.1 72.9 £+ 01 50.4 £ o1 56.7 £ 0.2 60.8 + 0.2
MAE Lie 13.0 + 0.2 (1.3, 1.11x) 13.3 + 0.4 (4+2.3, 1.21x) 16.5 + 0.3 (+4.1, 1.33x) 11.9 £+ 05 (+1.2, 1.12x) 11.5 + 0.2 (+1.2, 1.11x) 12.9 + 04 (+1.3, 1.11x)
MAE 11.6 + 0.2 11.0 £ 04 12.4 £+ 01 10.6 £ 0.2 10.3 £ 04 11.6 £ 05

Table 2: Assessing finetuning robustness to pose changes as the proportion of diverse instances
seen during training varies. Table reports finetuning Top-1 Accuracy as mean = standard error (+ absolute
difference, x relative multiple) to the baseline model. We do not experiment with VICReg finetuning as the
original paper (Bardes et al.,[2021) focuses on linear evaluation.

known instance in new pose ‘ unknown instance
diverse proportion 5% 25% 50% 5% 25% 50%
top-1 accuracy (%)
MAE Lie 49.2 £ 0.5 (+10.9, 1.28x) 60.4 £ (+12.6, 1.26x) 66.7 & 0.3 (+13.7, 1.26x) 28.4 £ 0.1 (+8.2, 1.40x) 36.6 £ 0.1 (+9.4, 1.35x) 41.0 % 0.8 (+10.3, 1.34x)
MAE 38.3 £ 05 47.8 £+ 04 53.0 £ 05 20.2 £ 01 272 £ 03 30.7 £ 04

4.3 Ablations

In Table [2] compared to our MAE Lie, a model with only the SSL term (and no Euclidean or Lie loss),
that is, the baseline MAE, suffers drops of 10.3%,9.4%, and 8.2% in top-1 accuracy on unknown instances,
respectively for the 5%, 25% and 50% diversity settings.



Under review as submission to TMLR

In addition, we ran systematic ablations for each loss component in our MAE Lie model. We find
a consistent decrease in performance across all three diversity settings. Compared to our MAE Lie model, a
model without the Euclidean loss term (Aeyc = 0) suffers drops of 10.5%, 9.08%, and 3.9% in top-1 accuracy
for unknown instances (when 50%,25%, or 5% of instances vary in pose during training, respectively).
Similarly, compared to our MAE Lie, a model with only the Lie loss (i.e. Aeyc = Ass1 = 0) suffers a drop of
5.9%,5.01%, and 1.99% in top-1 accuracy for unknown instances across the three diversity settings. This
result illustrates how each loss term is critical to the overall performance of our proposed MAE Lie model.

5 MAE Lie transfer on real objects datasets

5.1 ImageNet, Rot ImageNet

Table 3: Results comparing MAE Lie versus MAE Top-1 Accuracy for ImageNet, Rot ImageNet
(random rotations) after finetuning of 20k steps on the ImageNet training set.
Top-1 Accuracy (%) ImageNet Validation Rot ImageNet Validation

MAE 63.61 34.50
MAE Lie 67.55 (+3.94%) 37.12 (4+2.62%)

In order to further demonstrate the benefit of our proposed Lie operator to standard benchmarks, we perform
evaluation on ImageNet (Deng et al., 2009) and some of its variants. Rot ImageNet consists of the same
validation images on which we apply random rotations to assess how well models handle pose changes. To
do so, we finetune both the baseline MAE model and MAE Lie for 20k steps on ImageNet with a linear
classification head. Table [3| reports the performance on the ImageNet and Rot ImageNet validation sets. We
find MAE Lie outperforms the baseline for rotated ImageNet validation images by a considerable +2.62% in
top-1 accuracy and the unaltered ImageNet validation set (by +3.94% in top-1 accuracy) which contain pose
along with other changing factors. Details on the training can be found in Appendix

5.2 iLab dataset

To demonstrate the applicability of our approach to other datasets, we also evaluate our MAE Lie model on
the iLab 2M dataset. The iLab 2M dataset (Borji et all 2016 is a natural image dataset consisting of 2M
images of toy objects, from multiple categories, undergoing variations in object instances, viewpoints, lighting
conditions, and backgrounds. We follow the preprocessing steps in Madan et al.| (2021). We partition the
training samples into a validation set (10%) and show results on the iLab test set. We conduct supervised
finetuning, the standard evaluation protocol for MAE. We observe MAE Lie yields nearly a 3% improvement
on the test set (93.2% =+ 0.45% MAE Lie vs 90.6% £ 0.11% MAE) without re-training our Lie operator on the
iLab dataset.

6 Related Work

Modeling variation Existing domain adaptation works (Zhou et al., |2020; |[Robey et al.l [2021; Nguyen
et al. 2021) learn transformations that map one domain to the other. In contrast to Ick & Lostanlen| (2020);
Hashimoto et al.| (2017)), we learn transformations in the latent space rather than image-space. |[Connor &
Rozell (2020)); |Connor et al.| (2021a)) learn transformations in the latent space but uses a decoder that performs
image reconstruction, which is known to be hard to apply to complex, large scale image data. In the context
of classification, Benton et al.| (2020) use the Lie algebra formalism to learn augmentations, but they require
a priori knowledge of the augmentations. Tai et al.| (2019) provides invariance to continuous transformations,
but they only experiment on small scale data (MNIST (LeCun et all 2010) and SVHN (Netzer et al.| [2011))).
We also depart from their work as we explicitly focus on the challenge of robustness to distributional shifts.
Equivariant models (see |Cohen & Welling| (2016); |(Cohen et al.| (2020) among others) and disentanglement
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(Higgins et al., 2018; |Giannone et al.l |2019)) also aim to structure latent representations, but are mainly
applied to synthetic, small scale data. Disentanglement also often requires costly pixel reconstruction. Spatial
Transformer Networks (Jaderberg et al) learn an instance-dependent affine transform for classification,
resulting in behavior such as zooming in on the foreground object. Our goal differs as we focus on the
generalization capabilities of various models to pose changes. Capsule networks (Sabour et al., [2017; Mazzia,
et al.l [2021]) were designed to better generalize to novel views, however, it is difficult for us to compare our
approach to these as we require a strong pre-trained image model. To our knowledge, no such model using
capsule networks exists, making a fair comparison very difficult.

OOD Generalization failures Alcorn et al.| (2019)); Engstrom et al.| (2019) shed light on the failures of
SoTA models on “unusual" examples that slightly vary from the training data, and [Engstrom et al.| (2019);
Azulay & Weiss| (2019) show that explicitly augmenting the data with such variations does not fix the problem.
Indeed, |Bouchacourt et al.| (2021b]) found that data augmentation does not bring the expected invariance to
transformations, and that invariance rather comes from the data itself. Self-supervised models trained with
InfoNCE theoretically recover the true data factors of variations (Zimmermann et al 2021; von Kiigelgen
et al., 2021)), but our experiments show that they do not generalize to distributional shifts.

7 Discussion

We aim to improve the OOD generalization of SSL models by encouraging them to explicitly model transfor-
mations using Lie groups. Using a novel dataset to evaluate OOD generalization, we found that applying our
Lie operator to MAE and VICReg leads to markedly improved performance for both models, enabling better
generalization both across poses and instances, both on our synthetic data and on ImageNet and its variations
for MAE. Our results highlight that data augmentation alone is not enough to enable effective generalization
and that structuring operators to explicitly account for transformations is a promising approach to improving
robustness. We focus on modeling pose changes, a common natural factor of variation in objects. However,
Lie groups are capable of describing a variety of naturally occurring continuous transformations. Future work
could extend the application of Lie operators to these settings, possibly even to model multiple factors of
variation at once.

8 Reproducibility statement

We made efforts to make all our work reproducible. In the main text, we describe every aspect of our learning
objective and assumptions, with some background in Appendix A. Regarding our experiments, all training
details are in Appendix B or in main text, and datasets descriptions are in main text or Appendix C. We will
release the code to reproduce all experiments and generate the dataset based on realistic object models from
Trimble Inc| (freely available under a General Model license) upon acceptance.
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A Appendix

A.1 Background: matrix Lie groups

Group action definition If G is a group with identity element e, and Z is a set, then a group action ¢ is
a function ¢ : G x Z — Z such that the following conditions hold:

1. ¢(e,2) ==
2. ¢(gl7 ¢(927 Z)) = (;5(92927 Z)V91792 € G

The action ¢ is a left-group action in this case.

Matrix Lie groups Lie groups are continuous groups described by a set of real parameters (Hall, [2003). A
matrix Lie group G is a closed subgroup of the general linear group GL(m,C) (the set of invertible complex
matrices of size m), with matrix multiplication as group operation. Furthermore, if G is connected, then we
can continuously traverse its elements.

Interestingly, many continuous transformations form matrix Lie groups. However, matrix Lie groups
lack the typical structure of a vector space. For example adding two rotation matrices does not produce
a rotation matrix. For each matrix Lie group however, there’s a corresponding Lie algebra g which is
the tangent space of the group G at the identity. A Lie algebra forms vector space where addition is a
closed operation and where the space can be described using basis matrices. Using the matrix exponential
exp : g — G, the Lie algebra is the set of all matrices M such that exp(tM) € G for all real numbers
t. If G is connected, then every element of G can be expressed as a product of exponential of elements
of the Lie algebra. If we further assume that G is connected and compact, the exponential map is sur-
jective i.e. every element of the group can be expressed as a single exponential of an element of the Lie algebra.

We refer the reader to (Hall, [2003; |Stillwell, [2008) for a more detailed presentation of Lie algebra
of matrix Lie groups.

A.2 Experimental details

A.2.1 Training details

Generalization gaps for SoTA vision models To measure the generalization gaps of SoTA vision
models, we use ImageNet pre-trained models (with the exception of CLIP). For SimCLR we use the pretrained
model available on PyTorch Lightning Bolts. For CLIP, we use the pretrained CLIP model available from
Hugging Face Transformers. For ViT, we use the pretrained model available in |Timm/Wightman| (2019). For
MAE we use the weights and model architecture available from the official repol For VICReg, we use the
weights and model architecture available from the the [official repo. For supervised linear evaluation, we train
all models for 100 epochs across 7 logarithmically scaled learning rates between le-1 and 1-6 using both sgd
and Adam with a batch size of 32. We finetune models using the same setup with 7 logarithmically scaled
learning rates between le-2 and le-6. We then evaluate models trained in both setups by measuring the gap
between the Top-1 accuracy of training instances in the typical pose and diverse poses in

Lie models and their baselines For MAE/VICReg Lie and their baselines we also use ImageNet
pre-trained models. For the self-supervised finetuning phase, we train models for 100 epochs followed by
supervised finetuning or linear evaluation of 10,000 or 20,000 steps respectively. During the self-supervised
phase, all models are trained on data where half of the instances are seen undergoing pose changes. During
the supervised training phases, we vary this proportion and show performance results in the main paper.

Computation : We find our Lie models achieved comparable runtimes on 8 GPUs relative to the baselines

for the self-supervised training phase of approximately 2 hours for MAE Lie and 3 hours on VICReg Lie.
The overall compute required for the self-supervised phase experiments consisted of the sweeps described in
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Appendix of approximately 75 runs each requiring 2-3 hours of training on 8 GPU machines. We did
find using Option 2 during supervised training (see Appendix , to increase runtime since this requires
sampling ¢ and computing a full matrix exponential for each sample (e.g., approximately 2.5 hours for linear
eval on VICReg Lie versus 1.5 hours for VICReg).

A.2.2 Architectures

Storing and re-using learned t in the context of Lie models During the Lie models supervised
linear eval or finetuning, we access single images (and not pairs). The supervised classifier uses the
Lie backbone to which the single image is fed. At this point we tried two options. Option 1 is to
simply retrieve the representation vector z from the Lie encoder, as with any other baseline model.
Option 2 is to use the learned Lie operators to generate “neighbors', that are, transformed versions of
that image (represented in embedding space). The intuition behind this option is that we use the Lie
generators to create artificial, transformed images (the neighbors of the initial sample) and average the losses
over these to increase these neighbors images to improve invariance of the classifier with respect to pose changes.

For Option 2 during training, once the image is fed to the Lie encoder, we generate the representa-
tion vector z for that image but also “neighbors" by (i) sampling random t1, ..., tx vectors (ii) computing the
corresponding g1, ..., g as in Step 3 of Algorithm [1| (iii) and computing corresponding neighbors z91, ..., z% as
in Step 4 of[[} We consider these the “neighbors" of z, which represent transformed version of the image, but in
the embedding space. Then, if we’re in training stage, we back-propagate the loss of the classifier on all neigh-
bors. If we're in evaluation / testing stage, we perform the prediction on the image and don’t use the neighbors.

We explored both options in our initial experiments and found that they made little difference.
Hence, we report MAE Lie and VICReg Lie using Option 2 with 1 neighbor.

Architecture for inferring t To infer ¢ from the ground truth § we use a multi-layer perceptron with two
linear layers connected by a leaky ReLU. The inference network takes as inputs § and the two embeddings.
The network outputs a ¢ matching the dimension of the Lie algebra * batch dimension.

A.2.3 Lie hyperparameter sweeps

MAE Lie sweep: For MAE Lie and its MAE baseline we use a similar procedure. For the self-supervised
learning phase, models are trained with a batch size of 64 for 100 epochs. We sweep over three learning
rates be-4,5e-5,5e-6 using the Adam optimizer along with every combination of each A in {1,5}. The baseline
MAE model is trained with Aje and Aeye set to zero. To cross validate, we use validation accuracy with
the same diversity proportion as in training. For the supervised phase, we sweep over learning rates of
5e-3,5e-4,5e-5,5e-6 for finetuning and 5e-3,5e-4,5e-5 for linear evaluation. We show results for the best set of
hyperparameters selected based on combined validation accuracy, which samples both diverse and typical
poses for instance to match those seen during training. We report the average and standard errors of Top-1
accuracy across three seeds. We find the best hyperparameters via cross validation are Ao = 5.0, Aeye = 5.0,
and A2 = 5.0 with learning rate of 5e — 4 for MAE Lie.

VICReg Lie sweep: The procedure for VICReg Lie is similar to MAE Lie, small difference is that we
use every combination of each X in {0,1,5}. The baseline VICReg model is trained with Ao and Agye set to
zero. We find the best hyperparameters via cross validation are Ajje = 1.0, Aeye = 0.0, and A\ = 1.0 with a
learning rate of 5e — 4 for VICReg Lie.

A.2.4 Transfer experiments

For the experiments in Section [5 we finetune both the baseline MAE model and MAE Lie for 20k steps on
ImageNet with a linear classification head. We sweep over the following learning rates 5e — 4, 5e — 5, 5e — 6
with a batch size of 64 when finetuning each model. We select the best model based on the validation loss.
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A.3 Code and data

We will release code to reproduce our experiments upon acceptance. We base our data generation code on
https://github.com/panmari/stanford-shapenet-renderer. We use 52 classes for our analysis after omitting
3 classes which contain overlapping instances. We select 50 instance from each class and partition those
into 10% for validation and 15% for testing. For instance show in diverse poses, we show all possible pose
configurations in 2D and 3D with a step size of 4 degrees. For 3D rotation we set the angles of all three axes
to the same value. The resulting dataset consists of 500,000 unique images. Figure shows a sample of
instance images in various poses across five classes.

We provide a PyTorch pseudo-code below for the Lie operator and Lie losses.

Listing 1: Lie operator and loss pseudo-code

import torch

def lie_operator(z, t):

"""Applies Lie operator to on given representation z
# L is the set of basis Lie algebra generators
action = torch.matrix_exp (t*L)
return action * z

nnn

def lie_loss(z, z_hat):
pred_z_hat = lie_operator(z)
# standard infonce loss to encourage similarity
return infonce(z_hat, pred_z_ hat)

A.4 Additional Results
A.4.1 Pose changes in 3D

We show additional results for MAE Lie and VICReg Lie for 3D pose changes in Table [AT] and [A2]

Table Al: Linear evaluation performance for 3D pose changes as the proportion of diverse
instances seen during training varies. Table reports linear evaluation top-1 accuracy as mean =+ standard
error (+ absolute difference, x relative multiple) to the baseline model.

known instance in new pose unknown instance
diverse proportion  0.05 0.25 0.50 0.05 0.25 0.50
MAE Lie 12.3 + 03 (+3.0, 1.32x)  12.1 + 04 (+3.1, 1.35x)  14.9 + 03 (+4.8, 1.48x) 11.8 + 03 (+3.1, 1.35x) 10.5 + 0.4 (+2.0, 1.24x) 12.1 + 0.2 (+2.6, 1.28x)
MAE 9.4 £ 01 8.9 + 04 10.1 £ 03 8.7+ 01 8.5+ 02 9.4 £ 06
VICReg Lie 65.0 £ 01 (+11.3, 1.21x)  68.5 + 0.0 (+4.3, 1.07x) 72.8 £ 01 (+5.7, 1.09x) 51.3 + 0.1 (4.7, 1.10x) 57.4 £ 01 (+2.2, 1.04x) 59.6 + 0.1 (40.9, 1.02x)
VICReg 53.7 &+ 0.0 64.2 + 01 67.1 & 01 46.6 & 0.1 55.2 & 0.1 58.7 £ 0.2

Table A2: Finetuning performance for 3D pose changes as the proportion of diverse instances
seen during training varies. Table reports linear evaluation top-1 accuracy as mean =+ standard error (+
absolute difference, x relative multiple) to the baseline model.

known instance in new pose unknown instance
diverse proportion  0.05 0.25 0.50 0.05 0.25 0.50
MAE Lie 43.2 + 01 (+8.6, 1.25x) 54.9 + (+12.8, 1.31x) 59.5 + 0.4 (+13.9, 1.31x) 26.3 £ 02 (+7.6, 1.40x) 353 £ (+11.4, 1.48x) 39.3 + 10 (+12.1, 1.44x)
MAE 34.6 & 02 42.0 £ 03 45.6 & 06 18.8 £ 0.2 23.9 £ 03 27.2 £ 04
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T

Figure Al: Sample images of the shapes dataset in various 2D and 3D poses. From the upper left
onward is class guitar, lamp, birdhouse, plant, and plane. The first image for each class is the canonical pose
followed by 4, 8, 16, 32, 64, 128, 256 planar and 3D rotations. The last image for each class is (320, 320, 320)
degree 3D pose. In our training and evaluation, we use full span of 2D and 3D pose change with a step size
of 4 degrees.
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-

Figure A2: Guitar object instance in all 2D pose configurations. The poses vary by a step size of 4
degrees with the pose angle of each image shown above.
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(0%, 0%, 0%) (42, 4% 4°) (8% 8%, 8°) (122, 12% 12°) (16°, 18°, 16°) (20°, 20% 20°) (24° 24°, 24°) (287, 28°, 28°) (32¢ 32°, 32°)
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(144°, 144°,144°) (148°, 148°, 148°) (152°, 152°, 152°) (156° 156°, 156°) (160°, 160°, 160°) (1647, 164°, 164°) , 168°, 168° (1725, 172°,172°) (1767, 176°, 176°)
s
(180°, 180°, 180°) (184°,184°, 184°) (188°, 188, 188°) (192 1929, 192°) (196°, 196°, 196°) (2007, 2009, 200°) (204°, 204°, 204°) (208¢, 208, 208°) (2127, 2127, 212°)
(216°, 216%, 216°) (2207, 220°, 220°) (224°, 224°, 224°) (2287, 228, 228°) (232°, 2329, 232°) (236°, 236°, 236°) (240°, 240°, 240°) (244°, 2447, 244%) (248°, 248, 248°)
. . . . ) -
(252, 2629, 252°) (256°, 256°, 256°) (260°, 2607, 260%) (264°, 264°, 264°) (2687, 268°, 268°) (272°, 272°, 272°) (276°, 276°, 276°) (280°, 2807, 280°) (284°, 284, 284°)

(288°, 288°, 288°) (2927, 202°, 202°) (296¢, 286°, 296°) (300°, 300°, 300°) (3047, 304°, 304°) (308¢, 308, 308°) (312°, 312°, 312°) (316°, 3169, 316°) (320°, 320°, 320°)

(3247, 3245 324%) (328% 328°, 328°) (332¢ 332¢ 332%) (336° 336°, 336°) (340% 340% 340°) (344¢, 3445, 344°) (348¢ 348°, 348°) (352¢ 352% 352%) (356° 356°, 356°)

(L]

Figure A3: Guitar object instance in all 3D pose configurations. The poses vary by a step size of 4
degrees with the pose angle of each image shown above.
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Table A3: SimCLR Lie versus baselines: Linear evaluation robustness to pose changes as the
proportion of diverse instances seen during training varies. Table reports linear evaluation top-1
accuracy as mean = standard error (4 absolute difference, x relative multiple) to the baseline model.

known instance in new pose ‘ unknown instance
diverse proportion 5% 25% 50% 5% 25% 50%
top-1 accuracy (%)
SimCLR Lie 56.0 & 0.2 (5.8, 1.12x) 65.4 £ 0.1 (+3.4, 1.05x) 70.0 & 0.1 (4.0, 1.06x) 45.7 £ 0.1 (+2.6, 1.06x) 56.0 = 0.1 (+1.7, 1.03x) 59.0 £ 0.2 (+0.8, 1.01x)
SimCLR 50.2 £ 0.3 62.0 = 0.1 66.0 + 0.1 43.0 £ 03 54.3 £ 0.0 58.3 £ 02
SimCLR Frames 49.1 £ 02 60.6 % 0.1 65.2 £ 0.0 422 + 02 53.3 & 01 58.0 £ 0.0

A.5 Applying the Lie operator to SimCLR (Chen et al., 2020)

We also experiment applying our Lie operator to the SImCLR architecture (Chen et al.| [2020), where L is
the regular SImCLR Loss. Since the Lie models receive frame pairs as input, we construct an additional
baseline, SiImCLR Frames, with access to the same pairs of frames. In addition to the standard InfoNCE
loss for SimCLR we add an additional InfoNCE loss to encourage similarity in the embeddings of the two
frames. This baseline accounts for any performance gain simply due to the extra organization found by
pairing frames. We report results of SimCLR, SimCLR Frames, and SimCLR Lie in Tables [A4] [AF] and
[A6] Across all evaluation settings, we find our Lie operator extension of SimCLR matches or outperforms
SimCLR Frames and SimCLR baselines, with best gains in the linear evaluation setting.

Table A4: SimCLR Lie versus baselines: Finetuning robustness to pose changes as the proportion
of diverse instances seen during training varies. Table reports finetuning Top-1 Accuracy as mean +
standard error (+ absolute difference, x relative multiple) to the baseline model.

known instance in new pose | unknown instance
diverse proportion 5% 25% 50% 5% 25% 50%
top-1 accuracy (%)
SimCLR Lie 55.1 & 0.4 (0.9, 1.02x) 65.9 £ 0.6 (+1.2, 1.02x) 70.9 £ 0.4 (+0.7, 1.01x) 45.9 £ 0.1 (+0.5, 1.01x) 55.9 £ 0.2 (-0.0, 1.00x) 61.8 =% 0.8 (+0.7, 1.01x)
SimCLR 54.2 £ 08 64.7 £ 02 70.2 £ 0.2 454 + 03 56.0 £ 0.2 61.1 £ 0.4
SimCLR Frames 53.9 £ 02 64.8 + 0.6 70.7 £ 02 452 £ 0.2 55.8 + 0.1 61.8 0.5

SimCLR Training details We developed SimCLR Lie early in our experimental study, and explain here
the procedure for training. In the case of SimCLR Lie for self-supervised learning phase, we cross-validated
using top 1 online validation combined accuracy but we filter models such that the validation Ly loss,
evaluated on the 2D rotated validation set, at the last epoch, is 60% smaller or equal to its first epoch’s value.
We found that online validation combined accuracy was not enough as a metric to shed light on the behavior
of our Lie model on the representational space and do this filtering to ensure that the Lie operator bring
the transformed sample close to its target. Also, note that in linear evaluation and finetuning, we report
SimCLR Lie using Option 1 (regular supervised training of the classifier). For self-supervised learning phase:

o We cross-validate with Aje € {1,5,10}, Asal € {1,5,10}, Aeuc € {1,2}. Best hyper-parameters chosen
with the cross-validation procedure explained is Ajje = 10, Ags] = 10, Aeue = 1.

e We cross-validate with learning rates in 5e — 5, 5e — 6.
For supervised linear evaluation:

e We cross-validate with learning rates in 5e — 3, 5e — 4, 5e — 5.
For supervised finetuning:

e We cross-validate with learning rates in 5e — 3, 5e — 4, 5e — 5, 5e — 6.
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Table A5: SimCLR Lie versus baselines: Linear evaluation performance for 3D pose changes as
the proportion of diverse instances seen during training varies. Table reports linear evaluation top-1
accuracy as mean = standard error (4 absolute difference, x relative multiple) to the baseline model.

known instance in new pose unknown instance
diverse proportion  0.05 0.25 0.50 0.05 0.25 0.50
SimCLR Lie 50.9 £ o1 (+4.5, 1.10x)  61.0 £ 0.1 (+2.4, 1.04x) 64.7 + 01 (42.7, 1.04x) 43.2 £ 01 (+2.4, 1.06x) 53.6 £ 0.1 (+0.9, 1.02x) 56.2 & 0.1 (40.4, 1.01x)
SimCLR 46.4 £+ 02 58.6 & 0.1 61.9 &+ 02 40.8 + 03 52.8 &+ 0.1 55.8 & 0.2
SimCLR Frames 45.6 + 0.2 574 %+ 01 61.0 £ 0.1 40.0 £ 02 51.2 & 01 55.4 & 0.1

Table A6: SimCLR Lie versus baselines: Finetuning performance for 3D pose changes as the
proportion of diverse instances seen during training varies. Table reports linear evaluation top-1
accuracy as mean =+ standard error (+ absolute difference, x relative multiple) to the baseline model.

known instance in new pose unknown instance
diverse proportion  0.05 0.25 0.50 0.05 0.25 0.50
SimCLR Lie 49.6 £ 0.5 (+1.0, 1.02x) 62.3 £ 0.2 (+0.4, 1.01x) 66.9 & 0.3 (+0.1, 1.00x) 42.0 + 0.3 (+0.8, 1.02x) 54.2 £ 0.2 (-0.7, 0.99x) 59.8 £ 0.5 (-0.2, 1.00x)
SimCLR 48.6 &+ 0.5 61.9 £ 0.4 66.8 £ 0.2 41.3 + 06 54.9 £ 01 60.1 £ 0.3
SimCLR Frames 48.7 £ 04 62.2 £ 05 67.3 £ 01 41.5 £ 02 55.1 £ 05 59.7 £ 05

A.6 Training curves

Figure and reports the Lie loss during self-supervised finetuning phase (for diverse sets, as it is by
definition 0 for the canonical sets, where the two samples of the pair are in the same canonical pose) and top
1 accuracy during classifier finetuning respectively, for the reported MAE Lie model.

Lie loss values during self-supervised finetuning

N
oss valu

Epoch

20 40 60 80
= Training diverse pose Lie loss = Validation diverse pose Lie loss

Figure A4: Lie loss during self-supervised finetuning phase for the MAE Lie model.

You may include other additional sections here.
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Figure A5: Top 1 accuracy during classifier finetuning for the MAE Lie model.
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