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Abstract

De novo drug design requires simultaneously generating novel molecules outside
of training data and predicting their target properties, making it a hard task for gen-
erative models. To address this, we propose JOINT TRANSFORMER that combines
a Transformer decoder, Transformer encoder, and a predictor in a joint generative
model with shared weights. We formulate a probabilistic black-box optimization
algorithm that employs JOINT TRANSFORMER to generate novel molecules with
improved target properties and outperforms other SMILES-based optimization
methods in de novo drug design.

1 Introduction

De novo drug design is an approach to generate novel structures with desired properties from scratch.
It opens the door to new classes of drugs, promising to overcome limitations of existing treatments
(Schneider & Clark, 2019). While numerous breakthroughs in generative modeling and natural
language processing (Vaswani et al., 2017; Radford et al., 2018) advanced the field of drug discovery,
de novo design remains a notoriously challenging task (Wu et al., 2021; Grisoni, 2023).

De novo design requires to simultaneously (i) generate novel compounds, (ii) accurately predict their
target properties and (iii) optimize the generation of compounds towards the desired properties (Brown
et al., 2019). However, as the desired properties are rarely observed in the training data, there is an
inherent trade-off between generation, prediction, and optimization. The more optimized towards
properties from outside the training distribution the generation is, the less reliable the generation of
compounds and prediction of their properties become.

Previous work on generative models for de novo drug design focused on each of the required
components separately. Decoder-only Transformers (Radford et al., 2018) successfully generate
novel and chemically plausible molecules (Bagal et al., 2022), but they have no information about
the target properties. These can be fine-tuned or coupled with RL approaches, however, without
yielding satisfactory results in practical regimes (Neil et al., 2018). Encoder-only Transformers excel
at molecular property prediction tasks (Ross et al., 2022; Zhou et al., 2023), but they lack molecule
generation capabilities. Optimization of molecules is often treated as a black-box optimization (BBO)
problem (Terayama et al., 2021) and solved over a continuous latent space of a Latent Variable Model
like a Variational Autoencoder (Kingma & Welling, 2013; Rezende et al., 2014), using an external
optimization routine, e.g., Bayesian Optimization (Gómez-Bombarelli et al., 2018; Tripp et al., 2020).
However, posing the problem as BBO and employing an external optimization routine tend to guide a
generative model far from the true data distribution of chemically plausible molecules, in regions
where the generation and prediction becomes unreliable. The lack of a coherent framework that
would address all the above challenges at the same time motivates the need for a joint approach.
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In this paper, we propose JOINT TRANSFORMER, a joint generative model that simultaneously
generates novel examples and accurately predicts their target properties. We achieve this by combining
a Transformer decoder (driving the generative performance) with a Transformer encoder and a
predictor (both encouraging predictive performance). We propose to train the joint generative
model with a penalized log-likelihood objective, which allows simultaneous training of the decoder,
encoder, and predictor, enabling joint training and sharing all the weights. Equipped with JOINT
TRANSFORMER, we pose de novo drug design as a probabilistic version of the BBO problem, where
we aim to optimize a given objective function, like in BBO, but only in the regions of the input space,
where the generative model assigns high likelihood to samples and the generative and predictive
capabilities of the model remain reliable. Finally, we propose a sampling algorithm that utilizes the
strong generative and predictive performance of the model to generate optimized molecules. In the
experiments on GuacaMol benchmark (Brown et al., 2019), we show that JOINT TRANSFORMER
outperforms standard SMILES-based approaches for de novo drug design.

2 Methodology

Problem Statement We define the problem of de novo drug design as an extension of the black-box
optimization (BBO) (Alarie et al., 2021; Audet & Hare, 2017; Terayama et al., 2021), in which
we aim to find examples x∗ ∈ X that maximize a given objective function f : X → R, x∗ =
argmaxx∈X f(x). Additionally, we define define an example x ∈ X as semantically meaningful,
if x could have been generated by the true data generating distribution p(x). This leads to the
probabilistic BBO (PBBO) defined as the problem of sampling examples x∗ ∈ X maximizing the
objective function f that could have been generated by the true underlying data distribution, i.e., they
are semantically meaningful:

x∗ ∼ p(x | ymax), where ymax = max
x∼p(x)

f(x). (1)

Our approach To address the problem of learning and sampling from the conditional distribution
p(x | y) in Eq. 1, we propose a joint generative model of examples and corresponding targets. The
advantage of such an approach is twofold. First, joint modeling encourages sharing the weights used
for generation and prediction, making robust prediction of target values on newly generated examples
feasible. Second, the robust predictions give a good indication of whether the newly generated
examples have high values of the target. Indeed, the joint generative model allows sampling examples
x that fulfill Eq. 1 and satisfy the desired condition y ≥ yc, for every yc ∈ R.

The proposed joint generative model, JOINT TRANSFORMER, pθ,ϕ(x, y) combines three models:
a Transformer decoder pθ(x), a Transformer encoder

∏D
d=1 pθ(xd | m⊙x−d), and a predictor

pθ,ϕ(y | x). The weights θ are shared between the encoder, decoder, and predictor parts. Additionally,
the predictor (used either for regression or classification) is stacked on the top of the encoder and is
parametrized with weights ϕ. The difference between the decoder and the encoder lies only in the
choice of masking used within attention layers, namely, the decoder uses causal masking while the
encoder applies bidirectional masking.

The rationale behind our model is the following. First, we share weights θ to entangle the generation
and prediction tasks and make robust predictions of target values on newly generated examples
feasible. At the same time, sharing weights has the practical advantage of a more computationally
efficient model. Second, alongside the Transformer decoder, we incorporate the Transformer encoder
to let the predictor learn better representations and process the input in a non-sequential manne, as a
lack of bidirectional context may be harmful to predictive performance (Devlin et al., 2018).

In order to learn a single model that combines a Transformer encoder, a Transformer decoder, and a
predictor, we propose to minimize a penalized negative log-likelihood of the joint model given by:

ℓ(θ, ϕ) = −E(x,y)∼p(x,y)

{
ln pθ(x) + ln pθ,ϕ(y | x) +

Em∼q(m)

[
D∑

d=1

ln pθ(xd |m⊙ x−d)

]}
,

(2)

where q(m) is an arbitrary masking distribution, and the penalty (the last component of the sum) is
the pseudolikelihood. Using the penalized negative log-likelihood objective in Eq. 2 encourages the
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model to simultaneously operate in two separate modes: input generation and property prediction.
First, updating the decoder and learning to process the input in an autoregressive manner drives the
generative performance of the model. Second, updating the encoder and learning to process the input
in a bidirectional manner drives learning a meaningful representation and the predictive performance,
since the predictor shares weights θ with the encoder. The training is discussed in Appendix B.

Probabilistic Black Box Optimization with JOINT TRANSFORMERS We define PBBO as the
problem of sampling from the conditional distribution x ∼ p(x | yc), where target yc ∈ R is equal or
close to the optimal value of the objective function f . However, in Proposition 1 in Appendix C.2
we show that sampling x ∼ p(x | yc) is equivalent to the conditional generation from a joint model
like JOINT TRANSFORMER. Moreover, in Proposition 2 in Appendix C.2 we show that conditional
sampling is practically feasible, as long as target yc is within the support of JOINT TRANSFORMER.
In practice, to fix a feasible threshold yc, one can set a sampling budget of B ∈ N examples and then
rank examples according to p(y | x) choosing the best examples available. Algorithm 1 shows how
to facilitate PBBO using JOINT TRANSFORMER.

Algorithm 1 Probabilistic Black-Box Optimization with JOINT TRANSFORMER

Input: JOINT TRANSFORMER pθ,ϕ(x, y) with parameters θ, ϕ.
Threshold yc ∈ Y . Evaluation budget I ∈ N. Sampling budget B ∈ N.

Output: Dnew = {(xi, yi)}min(I,B)
i=1

1: b← 0, i← 1
2: while b < B and i ≤ I do
3: Unconditionally sample (xi, yi) ∼ pθ,ϕ(x, y)
4: if yi ≥ yc then
5: Dnew ← Dnew ∪ {(xi, yi)}
6: i← i+ 1
7: end if
8: b← b+ 1
9: end while

The proposed optimization procedure addresses the needs of de novo drug design in several ways.
First, it is probabilistic and therefore tailored to avoid non-realistic molecules as sampled examples.
Second, it gives a guarantee of sampling improved examples. Third, it deals with the issue of a
low fraction of labeled training data (low fraction of known target values for the molecules) by
incorporating unsupervised training phases.

3 Experiments

Setting To validate the applicability of our approach, we show that JOINT TRANSFORMER com-
bined with the probabilistic Black Box Optimization algorithm (Alg. 1) outperforms alternative
methods for generating optimized molecules, as illustrated by application to a de novo drug design
task. We choose the architecture of GPT (Radford et al., 2018) for JOINT TRANSFORMER in all
tasks. The same architecture was previously utilized in MolGPT by Bagal et al. (2022). However,
the training of our model is different from Bagal et al. (2022), and follows Alg. 3. Implementation
details for JOINT TRANSFORMER are outlined in Appendix E. We use a JOINT TRANSFORMER
pre-trained, in an unsupervised manner, using molecules derived from the ChEMBL 24 dataset
(Mendez et al., 2019), following Brown et al. (2019) for processing and splitting the data. We
additionally fine-tune JOINT TRANSFORMER using penalized log-likelihood on randomly selected
subsets of the training data (N = 1000) with multi-property objective functions (MPO), derived
from the GuacaMol benchmark (Brown et al., 2019), as continuous targets in the range [0, 1], namely,
Perindopril MPO, Sitagliptin MPO, and Zaleplon MPO, which are also the three hardest to optimize
(Gao et al., 2022).

Methods We compare the BBO with JOINT TRANSFORMER (Alg. 1) to other SMILES-based
molecule optimization methods. In particular, we choose the three best-performing methods across
all tasks in a benchmark comparing 25 various optimization methods (Gao et al., 2022): SMILES
GA (Yoshikawa et al., 2018), REINVENT (Olivecrona et al., 2017) and an LSTM combined with
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a hill-climbing algorithm (LSTM + HC) (Brown et al., 2019). Additionally, we report the Dataset
Best value, which is the best value of the objective function present in the dataset, as the upper bound
for all screening methods, and MolPal (Graff et al., 2021), which is a deep-learning-based screening
method. We include in the comparison the Variational Autoencoder (VAE) (Kingma & Welling, 2013;
Rezende et al., 2014) combined with Bayesian optimization (VAE + BO) and a Junction Tree VAE
(Jin et al., 2018) combined with Bayesian optimization (JT-VAE + BO). Finally, we compare our
method to a standard, unconditional decoder-only Transformer model, fine-tuned on examples with
corresponding objective values above a fixed threshold yc ∈ R (MolGPT + fine-tune).

Results JOINT TRANSFORMER is the only method in this experiment that generates molecules
better than in the dataset across all tasks, successfully performing de novo design (Table 1). The fine-
tuned MolGPT is next in line in terms of performance. JOINT TRANSFORMER generates optimized
molecules for an evaluation budget as low as 137, 452, and 17 evaluations, for the three optimization
tasks respectively - outperforming other non-Transformer-based methods by a large margin. An
additional investigation of the distribution of the objective function values for molecules sampled
from the Transformer-based models as compared to the data distribution (Figure 1), shows that
JOINT TRANSFORMER significantly alters the distribution of the sampled molecules towards optimal
objective values, as opposed to MolGPT that only slightly skews the initial data distribution.

Table 1: The highest value of the objective function across all generated molecules (Top1) within 103

evaluations. Mean and standard deviation across three independent data splits.

METHOD PERINDOPRIL MPO SITAGLIPTIN MPO ZALEPLON MPO

DATASET BEST 0.53± 0.00 0.40± 0.02 0.50± 0.01
MOLPAL 0.49± 0.01 0.05± 0.01 0.16± 0.09
SMILES GA 0.44± 0.01 0.21± 0.10 0.28± 0.08
REINVENT SMILES 0.45± 0.01 0.02± 0.01 0.27± 0.03
LSTM + HC 0.47± 0.01 0.02± 0.02 0.14± 0.03
VAE + BO 0.45± 0.01 0.03± 0.01 0.04± 0.04
JT-VAE + BO 0.43± 0.01 0.05± 0.03 0.13± 0.11
MOLGPT + FINE-TUNE 0.54± 0.03 0.40± 0.03 0.51± 0.00
JOINT TRANSFORMER (OURS) 0.55± 0.01 0.43± 0.01 0.55± 0.02

Figure 1: Distribution of the objective function values sampled from different models: JOINT
TRANSFORMER (green), MolGPT + fine-tune (orange), MolGPT (blue). Best viewed in color.

4 Conclusion

In this paper, we formulated the problem of de novo drug design as an instance of probabilistic BBO
(Section 2). We proposed a general-purpose sampling algorithm that performs probabilistic BBO
with any joint generative model (Section 2), with theoretical guarantees on the expected runtime as
the function of the training data (Section C.2). Finally, we proposed a joint generative model, called
JOINT TRANSFORMER, that combines a Transformer decoder, a Transformer encoder, and a predictor
in a single model with shared parameters, which is jointly trained with a penalized log-likelihood
objective (Eq 2). We empirically showed that JOINT TRANSFORMER successfully outperforms
state-of-the-art approaches to de novo drug design.
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B Training

Training a joint generative model was previously shown to result in a good generator together with a
poor predictor (Lasserre et al., 2006; Nalisnick et al., 2019). Moreover, storing the gradients for all
the summands of the objective (Eq. 2) is a significant overhead in memory requirements as compared
to decoder and encoder-only Transformers. To overcome both issues, we propose a practical training
procedure for JOINT TRANSFORMER (Alg. 3) that randomly switches between the input generation
and the property prediction (and encoder training) tasks with a hyperparameter ptask ∈ [0, 1].

The JOINT TRANSFORMER can be trained in an unsupervised, semi-supervised or supervised setting.
Depending whether a target y ∈ Y is sampled from the dataset D or is not available (Step 2, Alg. 3),
one can include the prediction loss ln pθ,ϕ(y | x) in the penalized log-likelihood objective ℓ (Step 6,
Alg. 3), resulting in a supervised setting, or set the prediction loss to zero, resulting in an unsupervised
setting. For the training data where only a small proportion of samples have accompanying target
values, we split the training procedure of the JOINT TRANSFORMER into first training the model in
an unsupervised manner (Alg. 2), then fine-tuning it with supervised data (Alg. 3).

Algorithm 2 Unsupervised training of JOINT TRANSFORMER

Input: A dataset D = {xn}Nn=1. JOINT TRANSFORMER pθ,ϕ(x, y) with parameters θ, ϕ containing
a decoder pθ(x), encoder

∏D
d=1 pθ(xd |m⊙ x−d).

Task probability ptask ∈ [0, 1] and a masking distribution q(m).
1: while a stopping criterion is not met do
2: Uniformly sample x from the dataset D
3: Sample an indicator u ∼ BERNOULLI(ptask)
4: if u = 0 then
5: Sample mask m ∼ q(m)

6: Calculate loss ℓ(θ, ϕ) = −
∑D

d=1 ln pθ(xd |m⊙ x−d)
7: else
8: Set mask to the causal mask
9: Calculate loss ℓ(θ, ϕ) = − ln pθ(x)

10: end if
11: Update parameters θ, ϕ using an optimizer w.r.t. loss ℓ
12: end while
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Algorithm 3 Training of JOINT TRANSFORMER

Input: A dataset D = {(xn, yn)}Nn=1. JOINT TRANSFORMER pθ,ϕ(x, y) with parameters θ, ϕ

containing a decoder pθ(x), encoder
∏D

d=1 pθ(xd |m⊙ x−d) and a predictor pθ,ϕ(y | x).
Task probability ptask ∈ [0, 1] and a masking distribution q(m).

1: while a stopping criterion is not met do
2: Uniformly sample (x, y) from the dataset D
3: Sample an indicator u ∼ BERNOULLI(ptask)
4: if u = 0 then
5: Sample mask m ∼ q(m)

6: Calculate loss ℓ(θ, ϕ) = −
∑D

d=1 ln pθ(xd |m⊙ x−d)− ln pθ,ϕ(y | x)
7: else
8: Set mask to the causal mask
9: Calculate loss ℓ(θ, ϕ) = − ln pθ(x)

10: end if
11: Update parameters θ, ϕ using an optimizer w.r.t. loss ℓ
12: end while

C Sampling

C.1 Unconditional Generation

In the unconditional generation task, we sample from JOINT TRANSFORMER in a two-step manner
that results in an unconditional sample (x, y) ∼ pθ,ϕ(x, y). First, since the decoder part pθ(x) does
not depend on parameters ϕ and it properly defines an ARM, we sample x ∼ pθ(x). Next, we sample
a target y from the predictive distribution y ∼ pθ,ϕ(y | x). The key feature that allows for successful
sampling from the joint model is the ability of the JOINT TRANSFORMER to simultaneously operate
in two separate modes, namely generate novel examples and predict their target values, which is
directly encouraged by training with the penalized log-likelihood objective in Eq. 2.

C.2 Conditional Generation

In the conditional generation task, given a condition Y ⊆ Y , we sample from JOINT TRANSFORMER
pθ,ϕ(x, y) to obtain a conditional sample (x, y) ∼ pθ,ϕ(x, y), such that y ∈ Y . JOINT TRANS-
FORMER generates conditional samples by first sampling (x, y) ∼ pθ,ϕ(x, y) in the above described
unconditional way and then accepting the sample if y ∈ Y . In practical applications, due to a finite
runtime, we sample a batch of B tuples (x, y) ∼ pθ,ϕ(x, y) and choose (x, y) with y ‘closest’ to
Y . Proposition 1 shows that, despite its conceptual simplicity, the described conditional generation
procedure is equivalent to directly sampling from the conditional distribution p(x | y). Moreover,
Proposition 2 shows conditions under which conditional generation enjoys a finite expected runtime.
Proposition 1. Let p(x, y) be a joint probability distribution over X ×Y . Let yc ∈ Y be such that
p(yc) > 0. Then

p(x | yc) ∝ 1{y=yc}(y)p(y | x)p(x).

Proof. Assume that p(x, y) is a joint probability distribution over X ×Y . Choose ymax ∈ Y to be
such that p(y ≥ yc) > 0. Then a simple application of Bayes rule yields

p(x | {y ≥ yc}) =
p(x, {y ≥ yc})
p({y ≥ yc})

=
1{y≥yc}(y)p(y | x)p(x)

p({y ≥ yc})
. (3)

Since p({y ≥ yc}) > 0 and it does not depend on x, we have that

p(x | {y ≥ yc}) ∝ 1{y≥yc}(y)p(y | x)p(x).

Proposition 2. Let p(y) be a probability distribution over Y with a corresponding cumulative
distribution function F . Let target yc ∈ Y be such that p(yc) > 0 and let p be the probability of
sampling a target y ∼ p(y) such that y > yc. The expected number of trials N until obtaining a
sample y ∼ p(y) such that y > yc is equal to 1/p.
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Proof. Let p(y) be a probability distribution over Y with a corresponding cumulative distribution
function F . Let yc ∈ Y be such that p(yc) > 0. Define r.v. N as the number of trials until obtaining
a sample y > yc, where y is distributed as p(y). For each n ∈ N, the distribution of N is given by

P (N = n) = (1− p)n−1p,

where p = 1− F (y ≤ yc). Hence, the number of trials N follows a geometric distribution with an
expected value equal to E[N ] = 1/p.

Despite its simplicity, the conditional generation of JOINT TRANSFORMER has the advantage of the
predictor pθ,ϕ(y | x), as it is defined in the input space X , indicating whether the newly generated
example enjoys the desired target value. This is in contrast to methods based on LSO and diffusion
models, see (Gómez-Bombarelli et al., 2018; Hoogeboom et al., 2022).

D Additional Experiments

D.1 Molecule Generation

Task In the molecule generation task, the goal is to generate valid and novel molecules that follow
the chemical distribution of the training data. Following Brown et al. (2019), we evaluate all molecule
generation methods on five metrics: validity, a fraction of the generated molecules that are correspond
to a valid SMILES string; uniqueness, a fraction of the generated molecules that are unique; novelty,
a fraction of the generated molecules that are not present in the training data; KL Divergence, a
measure of similarity of the generated molecules to the training set with respect to selected chemical
properties (Brown et al., 2019), as well as Fréchet ChemNet Distance (FCD; (Preuer et al., 2018)), a
general measure of similarity of the generated molecules to the training set.

Baselines As baselines, we select well-established molecule generation models based on SMILES
representation (Weininger, 1988): LSTM (Ertl et al., 2018), VAE (Kingma & Welling, 2013; Rezende
et al., 2014) and AAE (Kadurin et al., 2016). Additionally, we consider graph-based models: Junction
Tree VAE (Jin et al., 2018), MoLeR (Maziarz et al., 2021) and MAGNet (Hetzel et al., 2023). Finally,
we include MolGPT (Bagal et al., 2022), which is a Transformer-based model and the backbone for
the JOINT TRANSFORMER, sharing the same architecture, but trained differently.

Results In the molecule generation task, JOINT TRANSFORMER successfully generates valid,
unique and novel molecules (Tab. 2). Moreover, JOINT TRANSFORMER generates molecules with
properties that closely follow the training set distribution, making the newly generated molecules
realistic and physio-chemically plausible, as measured by KL Divergence and FCD. Compared to
the backbone MolGPT model, JOINT TRANSFORMER achieves identical performance, showing that
the modified training procedure does not hurt the generative functionality of the model. From the
generative modeling perspective, this result is counterintuitive, as we can include the reconstruction
task to the training procedure of the JOINT TRANSFORMER, without sacrificing its generative
performance.

Overall, none of the molecule generation methods achieves best performance across all metrics.
Graph-based methods outperform others on validity, as they generate always valid molecules by
design. However, the improvement of 3% as compared to Transformer-based models (JOINT TRANS-
FORMER and MolGPT) is negligible. Additionally, it comes at the expense of generating molecules
with decreased (from 12% to 19%) values of the KL Divergence and FCD metrics. On the other
hand, LSTM achieves top performance on KL Divergence and FCD metrics, slightly (1% and 3%,
respectively) outperforming Transformer-based methods, but falls behind in the validity of the gen-
erated molecules. All methods successfully generate unique and novel molecules. Overall, JOINT
TRANSFORMER strikes a good balance between graph-based and SMILES-based LSTM, making it a
viable choice for a go-to molecule generation model.

D.2 Unconditional Generation

Moreover, the jointly trained predictor qθ,ϕ(y | x) of the JOINT TRANSFORMER generalizes well
to data generated with the model pθ(x). In particular, the prediction error, as measured by mean
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Table 2: Molecule Generation Task. JOINT TRANSFORMER (JT) matches state-of-the-art performance
of different molecule generation methods. Training the JOINT TRANSFORMER model on generation
and reconstruction tasks simultaneously does not hurt the generation performance of the model.

MODEL SIZE VALIDITY (↑) UNIQUENESS (↑) NOVELTY (↑) FCD (↑) KL DIV (↑)
LSTM - 0.96 1.0 0.91 0.91 0.99
VAE - 0.87 1.0 0.97 0.86 0.98
AAE - 0.82 1.0 1.0 0.53 0.89
JT-VAE - 1.0 N/A N/A 0.76 0.94
MAGNET 6.9M N/A N/A N/A 0.73 0.92
MOLER - 1.0 0.99 0.97 0.78 0.98
MOLGPT 6M 0.98 1.0 1.0 0.91 0.99
MOLGPT (OURS) 6M 0.97 1.0 0.97 0.89 0.98

JT (OURS) 6M 0.97 1.0 0.98 0.89 0.99
JT (OURS) 50M 0.98 1.0 0.95 0.90 0.99

absolute error, of the JOINT TRANSFORMER fine-tuned on three properties from the Guacamol task
(Brown et al., 2019) do not change between the test set and newly generated data (Table 3). This
shows good generalization performance of JOINT TRANSFORMER.

Table 3: Mean absolute prediction error (MAE) for the predictor on three property prediction tasks
on test and generated data. Mean and standard deviation across independent runs.

METHOD DATA PERINDOPRIL MPO SITAGLIPTIN MPO ZALEPLON MPO

JOINT TRANSFORMER
TEST 0.014± 0.004 0.009± 0.001 0.012± 0.001

GENERATED 0.015± 0.004 0.009± 0.002 0.012± 0.001

E Implementation Details

E.1 Data and Tokenization

We use SMILES (Weininger, 1988) based representations of molecules across all experiments. In all
experiments we pre-train the JOINT TRANSFORMER in an unsupervised manner using the ChEMBL
database, a manually curated database of molecules with drug-like properties (Mendez et al., 2019).
As opposed to other datasets like ZINC (Irwin et al., 2020), ChEMBL contains only molecules
which have been synthesized. To ensure reproducibility and comparability with molecule generation
baselines we use version 24 of the database that contains 1.8M compounds altogether and apply
standard data processing used in the Guacamol benchmark (Brown et al., 2019). As for tokenization
of the data, we use a tokenizer based on (Schwaller et al., 2020). We additionally use an augmentation
method of SMILES representations based on (Tetko et al., 2019) and similar to (Bagal et al., 2022)
across all experiments and methods. This ensures the transferability of results obtained by Bagal et al.
(2022) to our experiments.

E.2 Architecture

Our implementation of the JOINT TRANSFORMER follows the implementation provided by (Karpathy,
2023), which is a re-implementation of a GPT-2 (Radford et al., 2019) used by MolGPT (Bagal
et al., 2022). The only difference is that during each forward pass, we switch between a causal and a
bidirectional masking, depending on the task we are optimizing for. We additionally stack an MLP
network on the top of the first output token for prediction. The complete list of hyperparameters is
presented in Table 4. Our implementation results in a model with 6.5M parameters.
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Figure 2: JOINT TRANSFORMER architecture.

Table 4: Model hyperparameters for the JOINT TRANSFORMER used across all experiments.

HYPERPARAMETER VALUE

ACTIVATION FN GELU
EMBED DIM 256
NUM LAYERS 6
NUM HEADS 8
FEEDFORWARD DIMENSION 1024
FEEDFORWARD BIAS FALSE
LAYER NORM EPSILON 1e−5
PREDICTOR HEAD MLP
PREDICTOR NUM LAYERS 1
PREDICTOR HIDDEN DIM 100

E.3 Training

We provide the complete list of hyperparameters used for training JOINT TRANSFORMER in Table 5.
JOINT TRANSFORMER was trained on a single NVIDIA GeForce RTX 2080 TI GPU for 4.2M
iterations that took approximately seven days.

E.4 Fine-tuning

As JOINT TRANSFORMER is a joint model, fine-tuning is achieved by standard training (Alg. 3) on
the supervised part of the dataset. Unless stated otherwise, we use the same set of hyperparameters
for fine-tuning across all tasks, summarized in Table 6. Fine-tuning on a single NVIDIA GeForce
RTX 2080 TI GPU for 50K iterations takes approximately an hour. Hyperparameters not listed in
Table 6 are shared with the pre-training task.
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Table 5: Training hyperparameters of the JOINT TRANSFORMER used across all experiments.

HYPERPARAMETER VALUE

BATCH SIZE 64
TOTAL NUMBER OF TRAINING ITERATIONS 4.2 M
OPTIMIZER ADAMW
WEIGHT DECAY 1e−1
BETA 1 0.9
BETA 2 0.95
MAXIMUM LEARNING RATE 6e−4
MINIMUM LEARNING RATE 6e−5
DECAY LEARNING RATE TRUE
WARMUP ITERATIONS 2000
NUMBER OF LEARNING RATE DECAY ITERATIONS 4.2 M
VALUE TO CLIP GRADIENTS AT 1.0
DROPOUT 0.1
TASK PROBABILITY ptask 0.95

Table 6: Fine-tuning hyperparameters for the JOINT TRANSFORMER used across all experiments.

HYPERPARAMETER VALUE

DECAY LR FALSE
LEARNING RATE 3e−5
NUM OF ITERATION 50K
TASK PROBABILITY ptask 0.1
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