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Abstract

Simulators driven by deep learning are gaining popularity as a tool for efficiently
emulating accurate but expensive numerical simulators. Successful applications
of such neural simulators can be found in the domains of physics, chemistry,
and structural biology, amongst others. Likewise, a neural simulator for cellular
dynamics can augment lab experiments and traditional computational methods to
enhance our understanding of a cell’s interaction with its physical environment. In
this work, we propose an autoregressive probabilistic model that can reproduce
spatiotemporal dynamics of single cell migration, traditionally simulated with the
Cellular Potts model. We observe that standard single-step training methods do
not only lead to inconsistent rollout stability, but also fail to accurately capture the
stochastic aspects of the dynamics, and we propose training strategies to mitigate
these issues. Our evaluation on two proof-of-concept experimental scenarios
shows that neural methods have the potential to faithfully simulate stochastic
cellular dynamics at least an order of magnitude faster than a state-of-the-art
implementation of the Cellular Potts model.

1 Introduction

Studying the variety of mechanisms through which cells migrate and interact with their physical
environment is of crucial importance for our understanding of cell biology. For example, cell
migration plays a key role in the interaction between the immune system and implant surfaces [7, 30],
the development of embryos [24], and the progression of cancer [27, 17]. As experimental capacity
in the lab is inherently limited, computational methods have emerged as a tool to investigate the
stochastic and dynamic movement and shape of cells. However, these methods can be computationally
demanding. This is especially restrictive in scenarios requiring many simulations, for example due to
substantial stochasticity or in the case of inverse design, where parameters are optimized iteratively
based on the simulator’s output. Moreover, parameterizing such models to realistically simulate cells
can be a difficult task, requiring careful design and expert knowledge.

On the other hand, deep learning has been gaining traction as a tool for learning fast approximate
simulators. For example, for continuous-time and continuous-space systems defined with partial
differential equations (PDEs), neural solvers learn to emulate a system’s dynamics from a dataset of
simulations generated by a more computationally demanding solver [18, 28, 4, 12, 34]. In this setting,
a large computational cost is paid up front to generate the training set, but once trained, approximate
solutions can be generated at a fraction of the original cost. Moreover, learned simulators hold the
promise of emulating systems for which the laws governing the dynamics are not known, by instead
training on experimental observations.
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Based on the above considerations, we propose to use neural simulators to simulate cellular dynamics.
More specifically, we consider the scenario where both the movement and shape of the cell show
stochastic aspects and are highly dynamic, which is typically modeled in the Cellular Potts modeling
framework, proposed in [10]. Given their various successful applications in modeling spatiotemporal
data, we hypothesize that neural simulators are capable of faithfully emulating the ground truth
dynamics, while accelerating the simulation process. Our contributions are summarized as follows:

• We propose a neural simulation model to simulate stochastic single-cell dynamics similar to
those generated by the Cellular Potts model;

• We develop and evaluate autoregressive training strategies, with the aim to improve the
model’s rollout performance and its ability to capture stochastic dynamics;

• We observe that our method has the capacity to faithfully emulate the cellular dynamics of
the Cellular Potts model, while generating simulations an order of magnitude faster.

2 Background and Related Work

2.1 Cellular Potts Model

The Cellular Potts (CP) model is a computational modeling framework for simulating cellular
dynamics and the dynamic and fluctuating morphology of cells on a lattice [10, 23, 1]. The CP model
has gained prominence due to its flexibility in modeling cell shape and movement, the interaction
between multiple cells, stochastic aspects of cell behavior, and multiscale mechanisms [25, 20, 11].

In the CP framework, the system is modeled as a Euclidean lattice L and Hamiltonian H . The
function x : L → S maps each lattice site li ∈ L to its state x(li) ∈ S, where S is the set of all
cells and materials that can be present in the system. Note that in the CP literature x is commonly
referred to as σ; we deviate from this to stick to machine learning convention. To evolve the system,
a Markov-Chain Monte Carlo sampling algorithm is used. At every iteration, a lattice site li is chosen
at random. Then, a proposal is made to modify x such that state x(li) is changed to x(lj), where lj is
a site adjacent to li. Finally, the difference in energy ∆H is calculated between the proposed and
current system state. If ∆H ≤ 0, the proposed state is accepted as the new system state; if ∆H > 0,
it is accepted with probability e

−∆H
T , with T being the temperature parameter of the model.

The Hamiltonian H itself differs per application, but typically consists of at least contact energy and
volume preservation terms, as originally proposed in [10]:

H =
∑

li,lj∈N (L)

J (x(li), x(lj))
(
1− δx(li),x(lj)

)
︸ ︷︷ ︸

contact energy

+
∑
c∈C

λV (V (c)− V ∗(c))
2

︸ ︷︷ ︸
volume preservation

+Hother, (1)

where N (L) is the set of all pairs of neighboring lattice sites in L, J (x(li), x(lj)) is the contact
energy between cells and/or materials x(li) and x(lj), and δx,y is the Kronecker delta. Furthermore, C
is the set of all cells in the system, V (c) is the number of lattice sites occupied by cell c (from here on
referred to as the volume of cell c), V ∗(c) is the target volume of cell c, and λV is a Lagrange multiplier.
Hother can consist of many extensions and modifications of the original Hamiltonian, for example
taking into account cellular dynamics induced by forces, gradients in chemical concentrations, cell
surface area constraints, and many more biological concepts. The specific Hamiltonians used for
simulating our data can be found in Appendix A.

2.2 Neural Simulators

Neural networks have been employed for simulation in many domains [19, 5], often by either
combining ML models with existing numerical solvers [32, 15] or by using ML models to simulate
dynamics in their entirety [4, 18, 28]. The latter, which we refer to as neural simulators, encompass
the type of model proposed in this work, as we seek to emulate the CP simulations as a whole. Of
particular interest are autoregressive methods operating on a spatial grid, as these fit both the temporal
and spatial component of the CP simulations. This setup generally comes with challenges of ensuring
prediction quality and stability over longer rollout trajectories. Common approaches to address this
include injecting noise and incorporating model rollouts in the training procedure [28, 4].
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In the context of cellular dynamics, neural networks have been used in various settings to aid in
simulation. TrajectoryNet [31] utilizes optimal transport in combination with continuous normalizing
flows to interpolate time-evolving gene expression data based on population measurements at fixed
timepoints. In a similar spirit, CellBox [35, 13] simulates molecular biological processes with neural
ODEs [6]. LEUP [2] models cells as atomic particles moving in two-dimensional space to investigate
collective cell migration. However, these methods do not address simulation of spatiotemporal
dynamics of cells on a grid. Another branch of related research focuses on grid-based generative
modeling of cell morphology and subcellular organization [8, 9, 22]. Very recently, Wiesner et al. [33]
proposed a method to model time evolving cell shapes. Although these methods can impressively
perform (conditional) cell image generation, they do not address migration dynamics.

3 Method

3.1 Machine Learning Formulation

We consider the problem of learning an autoregressive probabilistic mapping to simulate spatiotem-
poral cellular dynamics. More formally, at each time t the system is described by its state xt, a
categorically-valued function on a fixed grid (see also Section 2.1). Correspondingly, a system evolu-
tion is specified by a sequence of states x0:T . We postulate a ground-truth probability distribution
p∗(x0:T ) over system evolutions x0:T from which we can sample using the CP simulator. Hence, our
aim is to learn the parameters θ of the model pθ such that

Ex0:T∼p∗ log pθ(x
0:T ) (2)

is maximized. By the Markov property of the data generating process of the CP model configurations
that we consider, and with p∗(x0) a specified distribution of initial conditions, this is equivalent to
maximizing Equation 3 with respect to θ:

Et∼U{0,T−1}Ext∼p∗ log pθ(x
t+1|xt). (3)

Consequently, we aim to model p∗(x0:T ) by learning pθ(x
t+1|xt) and applying it autoregressively.

3.2 Model Design

The design choices for modeling pθ(x
t+1|xt) are driven by the goals to produce a model that is

capable of producing realistic trajectories with good sample efficiency. To achieve high sample
efficiency, we introduce latent variable z, following the Conditional Variational Autoencoder (CVAE)
framework [26]. In our case, z is conditioned on previous state xt according to conditional prior
pθ(z|xt) and the subsequent state xt+1 follows the distribution pθ(x

t+1|xt, z).

As our model is an autoregressive model, it consists of a forward model that evolves the state of
the system to the next state. However, rather than directly producing the pixel-wise parameters of a
distribution to sample the next state from, the representation produced by the forward model is used
to first condition the prior distribution of the latent variable. Then, to produce a sample of the next
state, we sample the latent variable from this prior and combine it with the forward representation,
which is subsequently decoded. This procedure is depicted in Figure 1 (left).

To enable the model to produce realistic trajectories, we align the model’s structure with that of
the data. Consequently, we maintain the geometry of the system in the forward representations,

+

 

Forward Model Conditional Variational Autoencoder

+

 

Forward Model Conditional Variational Autoencoder

 

Figure 1: Illustrations of the model’s generative procedure (left) and inference procedure (right). Note
that the geometry of the system is maintained throughout the model, as indicated by the double line.
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which in practice means using a fully convolutional architecture in the forward model as well as the
decoder. Specifically, the forward model is implemented using the U-net architecture [21], but it
could in principle be substituted for any other fully convolutional architecture. Additionally, we do
not compress all information in a latent space without geometrical structure, but allow the decoder to
access the intermediate, geometrically meaningful representation produced by the forward model.

The use of a U-net is further motivated by the desire to model dynamics on various spatial scales.
Note that, as mentioned before, latent variable z does not share the system geometry. To sidestep this
issue, z is broadcasted to the entire domain before being concatenated to the internal representation,
as done in a probabilistic U-net [16]. Further architectural details are provided in Appendix B.

3.3 Training and Rollout Stability

As per the VAE framework [14], an approximate posterior distribution qϕ(z|xt, xt+1) is learned, also
referred to as the inference network. Note that this distribution is inferred from both the current and
next timestep. During training, we optimize the Evidence Lower Bound (ELBO) on the log-likelihood:

log pθ(x
t+1|xt) ≥ −KL(qϕ(z|xt, xt+1)||pθ(z|xt)) + Eqϕ(z|xt,xt+1)[log pθ(x

t+1|xt, z)]. (4)

The inference procedure is depicted in Figure 1 (right). During trajectory generation we sample
latent variable z from the prior distribution pθ(z|xt). By then sampling x̃t+1 ∼ pθ(x

t+1|xt, z) and
repeating the entire process, we can simulate longer trajectories.

One of the major challenges of autoregressive neural simulators is the instability of long rollouts.
As the model is applied iteratively, errors accumulate, causing pθ(x

t+r|xt) to stray from the data
distribution for sufficiently large rollout length r ∈ N+. To mitigate this issue, various methods have
been proposed, typically involving some form of noise injection or rollout training. We consider two
training methods.

The Multi-step training procedure applies the model for r iterations and calculates the loss
for each iteration. At each step t, a reconstruction x̂t+1 is created by sampling from
pθ(x̂

t+1|xt, z)qϕ(z|xt, xt+1). x̂t+1 then serves as the next input for the model, which is used
to create a reconstruction x̂t+2, and so on. Note that, since x̂t+1 is discrete, the gradients are only
backpropagated a single step. The Pushforward training method, adapted from [4], is similar in
nature. We sample r ∼ U [1, rmax], rollout the model r times as described for multi-step training,
but now only calculate and backpropagate the loss at the final iteration. In this way, the model
learns to correct its own rollout errors and to map back to the data distribution. From a probabilistic
perspective, the rollout errors can be seen as adding noise to the data, where the noise is sampled
from the model’s error distribution itself.

Orthogonal to the training procedure, we also consider two ways to sample from pθ to improve
stability. Both have in common that z is sampled from the posterior (when training) or the prior (when
generating new simulations), but differ in how x̃t+1 is sampled from pθ(x

t+1|z, xt). With maximum
likelihood sampling, a single z is sampled, and x̃t+1 is discretized such that pθ(xt+1|z, xt) is
maximized for that z. However, this method does not exploit any domain knowledge about the system.
With volume preservation sampling, knowledge about the (approximately) preserved volume of the
cell is injected in the method. Here, x̃t+1 is also discretized to maximize pθ(x

t+1|z, xt), but under
the additional constraint that the volume of the cell equals its target volume.

4 Experiments

Our evaluation consists of two experiments. In the first, randomly scattered walls are placed on a grid,
and a force pointing to the bottom center of the lattice is applied to the cell. Despite the comparatively
simple setting, local stochasticity in the system already leads to interesting behavior such as cell
shape fluctuations, and even emerging bifurcations of trajectories.

The second experiment consists of a system where more global stochasticity with bifurcating trajecto-
ries is simulated. A downwards force is applied to the cell, such that it makes contact with pillars
placed at fixed positions along its path. Then, either a leftward or rightward force is applied to the
cell with equal probability, such that it passes each pillar on the left or right. The system always has
approximately identical initial conditions, but a strongly multi-modal distribution over trajectories.
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Training strategy Sampling method LL URLL

One-step Maximum likelihood ≥ -3211.9 ≥ -40669.8
Volume preservation ≥ -4049.3 ≥ -100243.9

Pushforward Maximum likelihood ≥ -6973.3 ≥ -36920.8
Volume preservation ≥ -3874.3 ≥ -12975.8

Multi-step Maximum likelihood ≥ -2751.0 ≥ -4619.9
Volume preservation ≥ -3031.5 ≥ -4689.1

Table 1: Evaluation of training and sampling strategy combinations (best values marked in bold).

All Cellular Potts simulations are generated with CompuCell3D [29], the state-of-the-art software
package for CP model simulations. We implement python extensions in order to generate the desired
dynamics. In all experiments, one time unit corresponds to 500 Monte Carlo steps in CompuCell3D.
For each experiment, we use 1350 training, 150 validation and 150 testing trajectories.

We compare maximum likelihood and volume preservation sampling and investigate various training
strategies, see Section 3.3 for details on both. All models are trained for 300 epochs. We optimize the
ELBO with the reparameterization trick [14] and use a linear KL-annealing schedule [3]. We set the
maximum rollout length rmax to a third of the total trajectory length for pushforward and multi-step
training.

4.1 Simple Dynamics

Quantitatively, we evaluate models with two metrics: the estimated ELBO on the log-likelihood
(LL), and the unrolled reconstruction log-likelihood (URLL). LL is calculated as the sum of the
lower bounds on the one-step conditional log-likelihoods (see also Equations 3 and 4). URLL
is a heuristic metric for assessing rollout stability. Starting from initial state x0, we estimate
pθ(x

1|x0), and at each subsequent step, the log-likelihood of xt is estimated from pθ(x
t|x̂t−1),

where x̂t−1 ∼ pθ(x̂
t−1|x̂t−2, z)qϕ(z|x̂t−2, xt−1) is a sampled reconstruction of the model at the

preceding timestep. A high URLL should correspond to a model that can reconstruct entire trajectories
well, rather than only individual steps.

The results of simulators with varying training and sampling strategies are given in Table 1. As
expected, training strategies such as pushforward and multi-step training improve the URLL score
for both sampling methods, compared to single-step training. Interestingly, pushforward training
is not always beneficial for single-step log-likelihoods, whereas multi-step training does show an
improvement. Another interesting result is that volume preservation sampling does not necessarily
improve upon maximum likelihood sampling. We expected that the former would net an advantage
as domain knowledge is integrated in the sampling procedure, but the results are not conclusive. In
fact, multi-step training with maximum likelihood sampling performs best for both metrics, albeit
with a small margin.

Qualitatively, the simulators can capture the stochastic behavior of the system, both locally in the form
of a fluctuating cell membrane, and globally, generating diverse but realistic trajectories from identical
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Figure 2: Ground truth and sampled trajectories, using volume preservation sampling and one-step
(left) and multi-step (right) training. The cell is depicted in red, walls are depicted in green.
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Figure 3: Trajectories generated by the CP model and
the volume-preserving model with multi-step training.

Training method Left Center Right
One-step 0.27 0.72 0.01

Pushforward 0.03 0.54 0.43
Multi-step 0.25 0.52 0.23

Cellular Potts 0.23 0.5 0.27
Expected 0.25 0.5 0.25

Table 2: Empirical distribution of the x-
coordinate of the cell’s center of mass at
the end of the simulation. Trajectories are
sampled from the volume-preserving model
trained with various training strategies, and
from the Cellular Potts model.

initial conditions. However, this behavior is not captured well when using single-step training. This
is exemplified in Figure 2, which shows reconstructed and sampled trajectories for models using
volume preservation, trained with one-step and multi-step training. Despite the probabilistic approach,
one-step training results in samples that are almost identical. In contrast, the same architecture trained
with multi-step training is capable of generating a variety of realistic trajectories.

We also measured the time required for one model rollout of 60 steps (corresponding to 30000 Monte
Carlo steps for the CP model simulation) on commodity hardware (details in Appendix C). Over
100 repetitions, the average model rollout time was 2.16 seconds (σ = 0.08s) on our CPU, and 0.56
seconds (σ = 0.01s) on our GPU. Generating a simulation with CompuCell3D took 14.16 seconds
on average (σ = 0.76) on the same CPU, and GPU acceleration is not supported by CompuCell3D
for simulations not involving chemical diffusion. Consequently, even for these simple dynamics, the
neural simulator already provides an 85% speedup compared to the CP model on identical hardware.
Moreover, we envision speedups to become even larger when the dynamics are more involved, for
example, dynamics involving diffusion of chemicals or multi-cellular systems.

4.2 Bifurcating dynamics

Figure 3 shows trajectories for bifurcating dynamics with identical initial conditions. Observe that the
model generates trajectories in which the cell follows varying realistic paths. To quantitatively assess
the training strategies, we examine the position of the cell at the end of the simulation. If the neural
simulator works well, these aggregate statistics should match those of the trajectories generated by
the CP model. Here, we present volume-preserving models as we found them to work better in this
scenario; results for models using maximum likelihood sampling are provided in Appendix D. The
end positions’ distributions are found in Table 2. The expected distribution closely matches that of
the CP model and our method trained with multi-step training. However, when trained with one-step
or pushforward training, the distribution of the neural simulator differs substantially from the true
distribution. This demonstrates that a probabilistic model in itself is not sufficient to capture global,
long-term stochastic aspects of the evolution of the system, and training methods that go beyond
single-step predictions are necessary.

5 Conclusion

In this work, we proposed a probabilistic neural simulation model for spatiotemporal cellular dynam-
ics. We adapted training strategies from autoregressive models and found that these improve rollout
quality and enable the model to accurately capture the stochastic dynamics of the system. To evaluate
our method, we generated data using the CP model and show that the learned simulator is capable
of faithfully emulating the dynamics. Furthermore, sampling from the learned simulator is around
an order of magnitude faster than the CP simulations that generated the training data. We conclude
that neural simulators are a promising method for simulating spatiotemporal cellular dynamics, with
many interesting avenues for relevant research, for example simulating systems with multiple cells,
or integrating neural cellular dynamics simulators and neural PDE solvers for multiscale modeling.
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A Hamiltonians for Simple and Bifurcating Dynamics

The Hamiltonian for both simple and bifurcating dynamics (Sections 4.1 and 4.2) is as follows:

H =
∑

li,lj∈N (L)

J (x(li), x(lj))
(
1− δx(li),x(lj)

)
︸ ︷︷ ︸

contact energy

+ λv (V (c)− V ∗(c))
2︸ ︷︷ ︸

volume constraint

+ λa (A(c)−A∗(c))
2︸ ︷︷ ︸

surface area constraint

+ λF
T ·COM(c)︸ ︷︷ ︸

external potential

,

where COM(c) is the center-of-mass vector of the cell c.

The values for each of the parameters for both simple and bifurcating dynamics are given in Table 3:

T J(cell,medium) J(cell,wall) λV V ∗(c) λA A∗(c) λF

Simple 15 8 10 5 500 1 70 [F simple
x ,−35]T

Bifurcating 15 8 16 5 500 1 70 [F bifurcate
x ,−35]T

Table 3: CP parameters for both experiments

Here, F simple
x = 50−COM(c)x

50 · 35 is continuously updated throughout the CP simulation. For the
bifurcating dynamics, if the cell is not in contact with a micropillar or if the cell reached the bottom
of the grid, F bifurcate

x = 0. If the cell comes into contact with a micropillar and F bifurcate
x equals 0, it

is set to a value with magnitude equal to the contact area with a micropillar, of which the sign is
negative or positive with equal probability. Finally, if the cell is still in contact with a micropillar
and F bifurcate

x is nonzero, the horizontal force is rescaled such that its magnitude equals the contact
area of the micropillar. We explicitly note that these parameters were not necessarily chosen to be
biologically plausible, but to generate stylized CP simulations that exhibit behavior which will be
relevant for modeling more complex, realistic scenarios as well.

B Model Architecture Details

The details of all model components are given below. All convolutional layers are 2D convolutions
with kernel size 3x3, unless otherwise mentioned.

• Forward Model: The forward model starts with a linear convolutional layer to lift the input
to a higher dimensional representation. This representation is processed by a U-net. The
U-net has 4 contrastive blocks, one block that operates on the lowest level of the U-net,
and 4 expansive blocks. Each contrastive block consists of two convolutional layers with
ReLU activation, followed by 2x2 maxpooling. The block that operates on the lowest level
has the same architecture, but does not do maxpooling. Each expansive block consists of a
2x2 upconvolution and the concatenation of the result with the output of the corresponding
contrastive block. Then, two convolutional layers with ReLU activation are applied. Each
contrastive block doubles the channel dimension, while each expansive block halves the
channel dimension. Finally, the output of the U-net is cropped from the center such that the
dimensionality of the output is the same as the input, to which it is summed (i.e., a residual
connection).

• Conditional Variational Autoencoder: The CVAE consists of a prior network, generative
network, and inference network. For the CVAE, the kernel size of the convolutional layers
is 5x5 instead of 3x3.

– Prior network pθ(z|xt): first, the image channel corresponding to the one-hot encoding
of the walls is concatenated with the forward model’s outputs. Then, two convolutional
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layers with ReLU activation are applied, followed by 2x2 maxpooling. Subsequently,
two repetitions of a convolutional layer with ReLU activation followed by maxpooling
are applied. Finally, the output is flattened and mapped to a lower-dimensional space
using a linear layer with ReLU activation. Two separate linear layers map this output
to the parameters of the normal distribution over the latent space µ and log σ.

– Generative network pθ(x
t+1|z, xt): z is concatenated channel-wise to the forward

model’s output, along with the wall channel of xt. Two convolutional layers with ReLU
activation are applied, followed by one convolutional layer with sigmoid activation, to
obtain the pixel-wise Bernoulli probabilities of the cell’s location. As the cell cannot
be located on top of a wall, we explicitly set the decoder output probabilities for these
pixels to 0.

– Inference network qϕ(z|xt+1, xt): the architecture of the inference network is iden-
tical to the prior network, with the exception that it takes an extra input channel,
corresponding to the cell channel of the one-hot encoding of xt+1.

C Hardware

Model training was done on a single Nvidia RTX 3060 GPU, and took at most three hours per model,
depending on the dataset and training strategy. For a fair comparison of the simulation times of the
Cellular Potts model and our method, we resorted to local hardware, as CompuCell3D did anyhow
not support GPU acceleration for simulations without chemical diffusion. The CPU used was an Intel
i7-9750H CPU clocked at 2.6GHz. For the GPU time measurements, we used an Nvidia Quadro
P2000.

D Maximum Likelihood Sampling for Bifurcating Dynamics

To quantitatively evaluate maximum likelihood sampling we again investigate the cell’s position at the
end of a simulation. Table 4 contains the distributions of these end positions. While the model trained
using the multi-step method approaches the ground-truth distribution, there are clear deviations. The
volume-preserving model discussed in Section 4.2 much closer aligns with the Cellular Potts model
and the expected distribution.

Training method Left Center Right
One-step 0.04 0.35 0.61

Pushforward 0.41 0.57 0.02
Multi-step 0.34 0.53 0.13

Cellular Potts 0.23 0.5 0.27
Expected 0.25 0.5 0.25

Table 4: Empirical distribution of the x-coordinate of the cell’s center of mass at the end of the
simulation. Trajectories are generated with the model that uses maximum likelihood sampling and
various training strategies, and the Cellular Potts model.
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