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Abstract

The gut microbiome plays a crucial role in hu-
man health, but machine learning applications in
this field face significant challenges, including
limited data availability, high dimensionality, and
batch effects across different cohorts. While foun-
dation models have transformed other biological
domains, metagenomic data remains relatively
under-explored despite its complexity and clinical
importance. We developed self-supervised repre-
sentation learning methods for gut microbiome
metagenomic data by implementing multiple ap-
proaches on 85,364 samples, including masked
autoencoders and novel cross-domain adaptation
of single-cell RNA sequencing models. System-
atic benchmarking against the standard practice in
microbiome machine learning demonstrated sig-
nificant advantages of our learned representations
in limited-data scenarios, improving prediction
for age (r = 0.14 vs. 0.06), BMI (r = 0.16 vs.
0.11), visceral fat mass (r = 0.25 vs. 0.18), and
drug usage (PR-AUC = 0.81 vs. 0.73). Cross-
cohort generalization was enhanced by up to 81%,
addressing transferability challenges across dif-
ferent populations and technical protocols. Our
approach provides a valuable framework for over-
coming data limitations in microbiome research,
with particular potential for the many clinical and
intervention studies that operate with small co-
horts.

1. Introduction

The human gut microbiome exerts widespread influence on
health through interconnected effects on metabolism, immu-
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nity, and neurological functions. This dynamic community
of microorganisms operates through complex ecological
networks and host interactions which remain only partially
understood. Analysis of metagenomic data from gut micro-
biome samples offers valuable insights into these complex
microbial communities.

Machine learning applications using microbiome data face
several significant challenges:

1. Limited labeled data availability — while large mi-
crobiome datasets accumulate, they typically include
very limited host information, limiting supervised
learning applications. Metagenomic sequencing re-
mains costly, and studies, especially those focused on
a disease or the effect of an intervention, often include
relatively small cohorts;

2. High dimensionality — the data contains information
about thousands of microbial species, and the combi-
nation of high dimensionality with small sample sizes
leads to models that struggle with generalizability and
robustness; and

3. Pronounced batch effects — make it difficult to com-
bine multiple cohorts or compare different populations.
These technical variations can mask true biological
signals, limiting our ability to leverage diverse datasets
to increase effective sample size.

Self-supervised and transfer learning approaches have
shown remarkable success in other biological domains, in-
cluding protein structure prediction, genomic analysis, and
single-cell transcriptomics. These methods leverage large
amounts of unlabeled data to learn meaningful representa-
tions that transfer well to downstream tasks with limited la-
beled data. The core principle — learning from the structure
of the data itself without requiring labels — is particularly
relevant for biological applications where labeled data is
scarce but unlabeled data is abundant. While recent work
has begun exploring microbiome representation learning
(Pope et al., 2025; Zhang et al., 2025), mainly using 16S
sequencing data which offers lower resolution than metage-
nomics, this emerging field still offers significant opportu-
nities for methodological advancement. Critically, many
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representation learning works in biology fail to demonstrate
clear advantages over standard approaches used in the field,
leaving their practical utility unclear (Boiarsky et al., 2024).

To address these challenges, we developed representation
learning models for gut metagenomics that leverage large-
scale unlabeled datasets totalling in 85,364 samples. Our
study makes three key methodological contributions: (1)
benchmarking that demonstrates clear advantages over the
standard practice in microbiome machine learning — predic-
tion from raw bacterial relative abundances; (2) novel cross-
domain transfer of successful single-cell RNA sequencing
models to microbiome analysis; and (3) a pretrained model
that can be used to extract representations from new metage-
nomic samples.

We explored multiple architectural approaches, including
masked autoencoders and cross-domain adaptation of es-
tablished single-cell RNA sequencing models (Lopez et al.,
2018; Cui et al., 2024). This cross-domain adaptation ex-
ploits shared structural properties: high dimensionality, zero-
inflated sparsity where different features (genes/species)
exhibit highly variable abundance distributions, and pro-
nounced batch effects across studies. Notably, these models
integrate the measured biological features (genes/species)
together with technical metadata, addressing differences
between batches.

Our learned representations demonstrate clear advantages
over standard microbiome analysis approaches in two crit-
ical scenarios: enhanced performance in limited-data set-
tings that reflect real-world study constraints, and improved
generalizability across different populations and technical
frameworks. These advances directly address critical barri-
ers to machine learning applications in microbiome research
and establish a framework for adapting successful biological
representation learning methods across related domains.

2. Methods
2.1. Data

We leveraged a comprehensive dataset encompassing 85,364
metagenomic samples from three previously published stud-
ies spanning three countries (Rothschild et al., 2022; Gacesa
et al., 2022; Zahavi et al., 2023; Shilo et al., 2021). These
datasets span different geographies, ancestries, collection
periods and laboratories, providing a robust foundation for
learning generalizable microbiome representations.

All datasets included metagenomic sequencing data along-
side basic host information (age, sex, Body Mass Index
(BMI)), with the third cohort also providing diverse clinical
and phenotypic measurements, including body composition
profile from medical imaging, drug usage patterns, and dis-
ease diagnoses. For evaluating our models, we used age, sex,

BMI, Visceral Adipose Tissue (VAT) mass, proton pump
inhibitor (PPI) medication usage, and hyperlipidaemia and
fatty liver disease diagnoses information.

For each sample, we mapped sequencing reads to a reference
database of bacterial genomes, retaining the 902 most preva-
lent species after filtering. We calculated relative species
abundances, creating a standard species abundance vector
(902 dimensions) for each sample. This vector serves as
both our baseline representation (“raw”’) and the input to
our representation learning models.

2.2. Self-Supervised Learning Models

We implemented multiple self-supervised learning ap-
proaches to create meaningful representations for micro-
biome data:

Masked Autoencoders (MAE): We trained multi-layer per-
ceptron (MLP) models using a self-supervised learning ap-
proach where we masked the abundances of some bacterial
species (10%, 30%, or 70% of species per sample) and
trained the model to reconstruct these masked values. The
encoder’s output from the middle layer serves as our learned
representation. This approach is designed to learn under-
lying microbial community patterns by forcing the model
to predict missing species based on observed ones, with
the expectation of capturing ecological relationships and
functional redundancies within microbial communities.

Transformer-based MAE: We implemented a transformer
architecture that tokenized species abundances into quantile
bins and employed the same masking-reconstruction task.
The self-attention mechanism was used to allow capturing
complex ecological interactions between bacterial species.
Sample representations were obtained by mean- and max-
pooling the output embeddings.

Adapted scRNA-seq Models: Recognizing the shared char-
acteristics between metagenomic and single-cell RNA se-
quencing data — high dimensionality, sparsity, and batch
variation — we adapted two prominent scRNA-seq models:

e scVI (Lopez et al., 2018): A variational autoencoder
that models gene expression through a probabilistic
generative process.

¢ scGPT (Cui et al., 2024): A transformer-based model
designed for single-cell multi-omics.

We treated bacterial species abundances analogously to gene
expression levels and provided these models with batch and
cohort information, demonstrating a multi-modal approach
that jointly models biological measurements with techni-
cal metadata to handle technical variation and biological
heterogeneity.
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All models were trained from scratch on the combined
dataset of 85,364 samples without using hoost phenotypic la-
bels. For downstream tasks, we extracted fixed embeddings
from the pretrained models.

2.3. Evaluation Framework

We designed comprehensive evaluations to rigorously test
whether our learned representations provide advantages over
the current standard practice in microbiome machine learn-
ing: using raw bacterial relative abundances as features
for predictive models. This benchmarking against domain-
standard methods is critical, as many representation learning
approaches in biology fail to demonstrate clear improve-
ments over established practices.

Our evaluation framework encompasses three scenarios rel-
evant to real-world microbiome research and clinical appli-
cations:

Standard Performance Assessment: Benchmarking with
complete training datasets to establish baseline capabili-
ties for integrating microbiome data with clinical measure-
ments. Using tree-based models (LightGBM (Ke et al.,
2017)) trained on a richly-labeled cohort (n=11,084), we
compared prediction performance between raw bacterial
abundances and learned representations for multiple host
phenotypes.

L. . . . L Phenotype Raw Best Embedding p-value
Limited-Data Scenarios: Simulating limited-data scenar- (mean (SD))  (mean (SD), model)
if)s by restricting training t.o only IOQ samples from the Age 0.06 (0.11) 0.14 (0.11), seV1 <105
richly-labeled cohort, reflecting the typical scale of interven- Sex 0.62(0.07)  0.64 (0.06), MAE-70% 0.07
tion studies and specialized clinical cohorts. BMI 0.11(0.11)  0.16 (0.11), MAE-30% 0.003

NP . VAT mass 0.18 (0.11)  0.25(0.11), MAE-30% 0.003

Cross-Cohort Genergllzatlon. Testing model robustness PPI usage 0.73(0.08)  0.81 (0.04). MAE-70% < 10~ !
by separating the data into four cohorts (by study and coun- Hyperlipidemia ~ 0.53 (0.05) 0.53 (0.05), scVI 05
try), training supervised models on one cohort and evalu- Fatty liver 0.57 (0.05)  0.59 (0.07), MAE-30% 0.1

ating on others, assessing the ability to generalize across
different technical protocols and demographic groups — a
critical requirement for clinical deployment.

3. Results

We present key findings below, with complete results pro-
vided in Appendix A. All p-values are FDR-adjusted for
multiple comparisons.

3.1. Full-Data Prediction Performance

We first evaluated our representations using the full dataset
of approximately 11,084 deeply-phenotyped samples. When
using all available training data, models trained on learned
representations showed modest improvements over those us-
ing raw abundances for certain phenotypes. Age prediction
using the 30% and 70% masked autoencoder embeddings
achieved mean Pearson correlations of 0.37 and 0.36 re-
spectively, compared to 0.34 for raw features (p = 0.0002,

0.001). Models trained on the 30% masked autoencoder
embeddings also showed marginal improvements for Vis-
ceral Adipose Tissue (VAT) mass prediction (r = 0.38 vs. r =
0.37, p = 0.04). For other phenotypes, the differences were
not statistically significant. Detailed results are provided in
Appendix A.

3.2. Limited-Data Prediction Performance: Enabling
Clinical Applications

The advantages of our self-supervised learning approach
became dramatically more pronounced in limited-data sce-
narios that mirror real-world microbiome research. When
restricting training to only 100 samples — typical of many
microbiome studies, with clinical and intervention studies
often being particularly constrained by small sample sizes
— performance improvements were significant across most
predictions:

Table 1. Prediction performance with limited training data (n=100).
Results show mean and standard deviation across 100 repetitions.
Pearson correlation was used to evaluate the prediction of con-
tinuous phenotypes, and PR-AUC for the prediction of binary
phenotypes. P-values are from Mann-Whitney U tests compar-
ing embedding models to raw abundances and are FDR-adjusted.
Complete results in Appendix A.

These results directly address critical limitations in micro-
biome research, where many studies operate with small co-
horts. The ability to achieve robust predictions with limited
labeled data could enable more effective machine learning
applications in the many microbiome studies where large
labeled datasets remain impractical to obtain.

3.3. Cross-Cohort Generalization: Robustness for
Clinical Translation

Our learned representations demonstrated improved robust-
ness when generalizing across different populations and
technical protocols — a critical requirement for clinical de-
ployment of microbiome-based models. To evaluate cross-
cohort generalization, we separated our dataset into four
subsets (by study and country), trained models predicting
age, sex, and BMI on each subset, and evaluated on the
other three.
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Figure 1 shows representative results for MAE-30% em-
beddings across all train-test cohort combinations. For age
and BMI prediction, scVI and the masked autoencoder rep-
resentations outperformed raw abundance models in 10 to
12 of the 12 cohort pairs (p = 0.03 to 0.001), with perfor-
mance gains up to 81% (age predictor trained on mask-AE
30%, trained on the 32_NE cohort and applied to the 10_IL
cohort). Sex classification showed more modest improve-
ments, achieving up to 14% increase in PR-AUC (p = 0.09
to 0.007).

This enhanced generalizability addresses one of the most
significant barriers to clinical translation of microbiome re-
search: the need for models that perform reliably across
diverse populations, healthcare systems, and technical pro-
tocols. These results demonstrate the advantage of learned
microbiome representations as features for models that gen-
eralize better across cohorts.

age gender bmi
(Pearson) (PR AUC) (Pearson)
32_.NE 10_IL q=0.001 1§ q=0.007 18 q=0.007 140
32_NE1000_US 142 144 142
32_NE 1000_IL 1§81 195 1g0
10l 32_NE 1g8 194 186
10_IL1000_US 192 186 143
10_IL 1000_IL 193 190 194
<1000 US 32_NE 1g8 146 0g9
%1000 US 10.IL 149 195 140
£1000_US 2000_1L 143 192 141
1000_IL  32_NE 1gl 195 18°
10001l 10_IL 148 1g0 192
1000_1L1000_US 195 191 140

05 10 15 05 10 15 05 10 15

Source Target

E(30%)

Ratio to raw model performance

Figure 1. Cross-cohort generalization performance comparing
MAE-30% representations to raw bacterial abundances. Each
point represents a train-test cohort pair, showing the ratio of
representation-based model performance to raw abundance model
performance. Values > 1.0 indicate superior performance of
learned representations.

4. Discussion and Conclusion

Our results demonstrate that self-supervised learning can
significantly improve microbiome-based predictive mod-
eling in two critical scenarios: limited-data settings and
cross-cohort generalization. These improvements address
fundamental challenges in microbiome machine learning
with clear implications for clinical translation.

The dramatic performance gains in limited-data scenarios
(100 training samples) are particularly relevant for micro-
biome research, where most studies operate with small co-
horts due to cost constraints and specialized focus. This
data efficiency is especially valuable for clinical studies and
intervention research, where sample sizes are often con-
strained by patient availability, ethical considerations, or
study-specific requirements. The consistent superiority in
cross-cohort prediction addresses batch effects that typically
impair model transferability, offering a pathway toward

microbiome-based models that work reliably across diverse
populations and technical protocols.

Our successful cross-domain adaptation of single-cell RNA
sequencing model architectures to microbiome analysis
demonstrates the value of methodological transfer in bi-
ological data analysis. This approach builds upon recent
successes of representation learning in other biological do-
mains, where models like scVI have become standard tools
for integrating diverse datasets with similar challenges: high
dimensionality, technical variation, and limited sample sizes.
This leverages mature computational methods from one bi-
ological domain to advance another, potentially serving as
a template for applying representation learning principles
across related biological data types.

Importantly, our systematic benchmarking against the
standard practice in microbiome machine learning —
prediction from raw bacterial abundances — provides
rigorous evidence for the practical utility of represen-
tation learning in this domain. We will make our
best-performing model and code publicly available at
https://github.com/LironZa/MBEmbed to facilitate broader
adoption.

While our training dataset is large by microbiome standards
(85,364 samples), it remains modest compared to founda-
tion model datasets in other domains. Future work could
benefit from even larger and more diverse datasets. Our rep-
resentations also sacrifice some interpretability compared to
raw abundance approaches, though the performance gains
may justify this trade-off in many applications.

In conclusion, we have demonstrated that self-supervised
learning addresses key challenges in microbiome machine
learning, opening new possibilities for leveraging larger
unlabeled datasets to improve predictions in specialized
studies where large labeled cohorts remain challenging to
obtain.

Impact Statement

This work advances machine learning methods for mi-
crobiome analysis with potential applications in precision
medicine. We acknowledge the importance of ensuring equi-
table access and avoiding bias in future clinical applications.
Our cross-cohort validation demonstrates robustness across
different populations, though future work should include
more diverse cohorts to ensure broad generalizability and
fair clinical deployment.
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A. Additional Results

A.1. Full-Data Prediction Performance

mask-
mask- mask- mask- transformer
raw scVI scGPT AE(10%) AE(30%) AE(70%) (30%)-
mean &
max
age, mean (std) 0.34 (0.02) | 0.36(0.01) | 0.32(0.02) | 0.34 {0.01) | 0.37 (0.01) | 0.36 {0.01) | 0.33(0.02)
age, q-value g=0.04 n.s. n.s. q=0.0002 g=0.001 n.s.
gender, mean (std) 0.67 (0.02) | 0.66(0.02) | 0.66(0.01) | 0.67 {0.01) | 0.67 {0.01) | 0.66 {0.01) | 0.66(0.01)
gender, g-value n.s. n.s. n.s. n.s. n.s. n.s.
bmi, mean (std) 0.30 (0.02) | 0.30({0.02) | 0.29 {0.02) | 0.30 {0.02) | 0.31(0.02) | 0.30{0.02) | 0.28(0.02)
bmi, g-value n.s. n.s. n.s. g=0.8 n.s. n.s.
total_scan_vat_mass, mean (std) | 0.37 (0.02) | 0.37{0.02) | 0.37(0.02) | 0.37 (0.02) | 0.38 (0.02) | 0.38 (0.02) | 0.35(0.02)
total_scan_vat mass, g-value n.s. n.s. g=0.8 g=0.04 q=0.07 n.s.
is_PPI, mean (std) 0.21 (0.04) | 0.18({0.05) | 0.08 (0.02) | 0.21 {0.04) | 0.21 {0.04) | 0.21 {0.04) | 0.09{0.02)
is_PPI, g-value n.s. n.s. n.s. n.s. n.s. n.s.
is_Hyperlipidemia, mean (std) | 0.24(0.02) | 0.23{0.01) | 0.24{0.02) | 0.24 {0.01) | 0.25 {0.01) | 0.24 (0.02} | 0.24{0.01)
is_Hyperlipidemia, g-value n.s. n.s. n.s. g=0.3 g=0.5 n.s.
is_FattyLiver Disease, mean (std)| 0.09 (0.02) | 0.08(0.02) | 0.09 (0.02) | 0.09 (0.02) | 0.09 (0.02) | 0.08 {0.01) | 0.08(0.01)
is_Fatty Liver Disease, g-value n.s. g=04 n.s. n.s. n.s. n.s.

Figure 2. Complete prediction performance results using full training data. All models and phenotypes are shown with mean performance
and standard deviations across cross-validation folds and repetitions. P-values are FDR-adjusted.

A.2. Limited-Data Prediction Performance

mask-
mask- mask- mask- transformer
raw scVI scGPT AE(10%) AE(30%) AE(70%) (30%)-
mean &
max
age, mean (std) 0.34 (0.02) | 0.36(0.01) | 0.32(0.02) | 0.34 {0.01) | 0.37 (0.01) | 0.36 {0.01) | 0.33(0.02)
age, gq-value g=0.04 n.s. n.s. q=0.0002 g=0.001 n.s.
gender, mean (std) 0.67 (0.02) | 0.66(0.02) | 0.66(0.01) | 0.67 {0.01) | 0.67 {0.01) | 0.66 {0.01) | 0.66(0.01)
gender, g-value n.s. n.s. n.s. n.s. n.s. n.s.
bmi, mean (std) 0.30 (0.02) | 0.30({0.02) | 0.29 {0.02) | 0.30 {0.02) | 0.31 (0.02) | 0.30{0.02) | 0.28(0.02)
bmi, g-value n.s. n.s. n.s. g=0.8 n.s. n.s.
total_scan_vat_mass, mean (std) | 0.37 (0.02) | 0.37{0.02) | 0.37(0.02) | 0.37 (0.02) | 0.38 (0.02) | 0.38 (0.02) | 0.35(0.02)
total_scan_vat mass, g-value n.s. n.s. g=0.8 g=0.04 q=0.07 n.s.
is_PPI, mean (std) 0.21 (0.04) | 0.18({0.05) | 0.08 (0.02) | 0.21{0.04) | 0.21 (0.04) | 0.21 {0.04) | 0.09{0.02)
is PPI, g-value n.s. n.s. n.s. n.s. n.s. n.s.
is Hyperlipidemia, mean (std) | 0.24(0.02) | 0.23(0.01) | 0.24{0.02) | 0.24 {0.01) | 0.25 {0.01) | 0.24 (0.02) | 0.24{0.01)
is_Hyperlipidemia, g-value n.s. n.s. n.s. g=0.3 g=0.5 n.s.
is_Fatty Liver Disease, mean (std)| 0.09 (0.02) | 0.08(0.02) | 0.09 {0.02) | 0.09 (0.02) | 0.09 {0.02) | 0.08 (0.01) | 0.08{0.01)
is_Fatty Liver Disease, g-value n.s. g=04 n.s. n.s. n.s. n.s.

Figure 3. Complete prediction performance results with limited training data (n=100). Results show all representation learning models
compared to raw bacterial abundances across all phenotypes. P-values are FDR-adjusted.
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A.3. Test Performance of All Models in Cross-Cohort Prediction

age, Pearson gender, PR_AUC bmi, Pearson

1000_IL4 0.34 0.32 0.29 0.34 0.54 | 0.60 | 0.68 | 0.53 41031 032 0.29 0.23

£
2 1000_US{0.26 (041 0.22 034 {0.25 . 0.22 0.19
2 8
g c
= 10JL{031 031 0.34 036 {029 030 029 025
=

10.20 0.29 0.22 0.38

T T T T

32_NE40.16 0.18 0.16

1000_IL9 0.33 0.29 0.31

1000_US { 0.29 | 0.42 | 0.28

10L{0.32 030 037

10.30 0.39 0.29 0.28

. 0.25 0.23

1029 0.35 0.31 0.28

scVI
Train cohort

410.25 0.31 0.26 0.37

T T T T

32_NE40.24 0.28 0.25

1000_1L90.31 0.30 0.30 0.35 10.30 0.37 0.28 0.23

. 0.22 0.21

41029 031 0.29 0.25

1000_US4 0.27 0.34 0.26 0.32 10.27

101L{ 029 027 031 0.33

32_NE40.20 0.23 0.22 .

1000_1L§ 0.33 0.33 0.31 0.39 0.59 [ 0.65 | 0.55 41030 0.35 0.28 0.24

1000_US+ 0.28 0.36 0.25 0.35 410.27 m 0.23 0.18
10_1L7 0.30 0.30 0.34 0.41 10.30 0.34 0.29 0.27

32_NE40.21 0.21 OAZZH 0.56 | 0.63 | 0.60 1025 0.33 0.24 0.37

scGPT
Train cohort

410.20 0.26 0.18 0.37

T T T T

mask-AE(10%)
Train cohort

— 1000_IL70.36 0.33 0.34 0.54 | 0.61 | 0.68 | 0.56 4031 0.36 0.29 0.25
S

g _8 1000_US{ 0.30 0.39 0.26 40.28 . 0.24 0.19
w 3

< c

X 5 10_IL40.32 0.32 0.36 0.59 40.30 0.34 0.30 0.27
w O

c

£

32_NE40.27 0.32 0.29 0.57 [ 0.64 | 0.62 10.24 0.32 0.24 0.37

1000_1L70.36 0.35 0. 0.54 | 0.61 | 0.67 | 0.56 0.31 0.36 0.29 0.23

. 0.25 0.20

0.30 0.35 0.29 0.25

1000_Us { 0.31 |0.39

10.1L{0.33 032

mask-AE(70%)
Train cohort

32_NE40.25 0.28

NS o NS & NS go
IOV I YRS
RN ~

Test cohort Test cohort Test cohort
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Figure 4. Test performance of supervised predictors trained on one cohort and tested on another.
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A.4. Cross-Cohort Generalization Compared to the Baseline Model

Source Target age gender bmi
(Pearson) (PR_AUC) (Pearson)
32 NE 101L { q=0.03 1g 1 q=0.09 BN { g=0.001 1g°
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Figure 5. Cross-cohort generalization performance comparing representation learning models to raw bacterial abundances. Each point
represents a train-test cohort pair, showing the relative performance improvement of learned representations over raw features.
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B. Detailed Methods
B.1. Data

We based our work on data from three previously published studies: a cohort of 66,151 individuals from the US and from
Israel (“1000_US” and “1000_IL”, accordingly) (Rothschild et al., 2022), a cohort of 8,129 individuals from the Netherlands
(“32_NE”) (Gacesa et al., 2022), and a cohort of 11,084 individuals from Israel (“10_IL”) (Zahavi et al., 2023; Shilo et al.,
2021). All datasets included gut microbiome metagenomic data alongside basic host information: age, sex, and BMI. From
the last cohort, we also obtained data on body composition, drug usage, and medical diagnoses. We only included the
earliest sample of each participant.

B.2. Preprocessing the Microbiome Data

We processed the metagenomic samples and aligned them to bacterial reference genomes as described in (Leviatan et al.,
2022) to infer species composition. We filtered the species by prevalence, including species seen in at least 500 samples in
the deeply-phenotyped (“10_IL") cohort (out of 11,084 samples) — resulting in 902 species. For these 902 species, we
calculated their relative abundances in each sample (summing to 1). Our pipeline’s detection threshold is set to 0.0001,
and we truncated any smaller abundance value to this minimum. For most analyses, we also log-transformed the relative
abundances.

B.3. Masked Autoencoder

To create sample representations using masked autoencoders, we implemented multi-layer perceptron (MLP) architectures
trained on a self-supervised reconstruction task. We preprocessed bacterial relative abundance data by applying log10
transformation and shifting values by 2 to convert the range from [-4, 0] to [-2, 2], facilitating more stable neural network
training.

We employed a masking scheme where we randomly obscured 10%, 30%, or 70% of input features for each sample during
training, replacing masked positions with a fixed value of -2. The masking pattern was randomly generated for each sample
in every training batch. We computed the mean squared error loss only on the obscured positions.

We optimized hyperparameters through a systematic hyperparameter sweep, testing combinations of masking fractions,
encoding dimensions, number of layers, learning rates, batch sizes, dropout rates, activation functions, masking values,
and loss computation strategies (loss on all features vs. masked features only). For each masking fraction, we selected the
best-performing hyperparameter combination, resulting in models with different optimal configurations. The 10% and 70%
masking models employed Mish activation with 10% dropout, while the 30% masking model used GELU activation with
25% dropout. All final models used a learning rate of 0.0005 with Adam optimization, training for 300-350 epochs. Our
autoencoder architecture consisted of an encoder-decoder structure with single-layer components and batch normalization.
The encoder transformed the 902-dimensional input (representing bacterial species abundances) to a 1024-dimensional
latent representation, while the decoder reconstructed the original input dimensions.

We split the dataset into 90% training and 10% validation sets, monitoring reconstruction performance using mean squared
error loss and explained variance. The learned representations were extracted from the encoder’s output layer after training
completion.

B.4. Masked Transformer

We also implemented a transformer-based masked autoencoder using self-attention mechanisms to capture potential
interactions between bacterial species. For input representation, we tokenized bacterial abundance values using species-
specific quantile binning. For each bacterial species independently, we divided the abundance range into 10 bins: one bin for
the minimal value (-4), and 9 bins based on quantiles of non-minimal abundances. Each species-abundance combination
was assigned a unique token, creating a vocabulary of 9,021 tokens (902 species x 10 bins + 1 mask token).

The transformer architecture consisted of 2 encoder layers with 256-dimensional embeddings, 16 attention heads, and
feedforward layers with 512 hidden units. We employed 10% dropout and trained the model as a regression task, predicting
continuous abundance values rather than discrete tokens. Each bacterial species had its own linear decoder head that
converted the transformer’s output embeddings to abundance predictions.
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We applied the same masking strategy as the MLP models, randomly masking 30% of input features and replacing them
with a special mask token. The mean squared error loss was computed only on the masked and reconstructed inputs. We
used Adam optimization with a learning rate of 0.001, a batch size of 256, and trained for 260 epochs with a 90%-10%
train-validation split. The learned representations were extracted by concatenating mean-pooling and max-pooling of the
transformer’s output across the species dimension, resulting in 512-dimensional sample representations (256 dimensions
each from mean and max pooling).

B.5. scVI

To create sample representations with scVI (Lopez et al., 2018), we used scVI-tools version 1.2.2.post2 with Python 3.11.5.
To align with the expected input format of the sScRNA-seq models, which are typically applied to count data, we converted
bacterial relative abundances to pseudo-counts by multiplying each sample’s relative abundances by its total mapped read
count, then converted the resulting values to integers. We replaced abundance values of 0.0001 with zero to reflect the
detection limit of our data.

We constructed batch identifiers combining country, study type, DNA extraction Kit, library preparation method, and
collection year to account for technical variation across our diverse datasets. We configured scVI with a 2-layer encoder-
decoder architecture using 512 hidden units and 256 latent dimensions. To model the count distribution, we used the
zero-inflated negative binomial (ZINB) distribution with gene-batch-specific dispersion parameters — to model the sparsity
and the variability of distributions between species and batches that is common in microbiome data. We enabled covariate
encoding and used embedding-based batch representation with 5-dimensional batch embeddings.

We trained the model from scratch for up to 50 epochs using a batch size of 128 and a validation set comprising 5% of
samples. We implemented early stopping with a patience of 3 epochs and used a learning rate of 0.001 with KL divergence
warmup over 6 epochs. Learning rate reduction on plateau was enabled with a patience of 2 epochs. After training, we
extracted the latent representations from the trained model to serve as sample embeddings for downstream analysis.

B.6. scGPT

To create sample representations with scGPT (Cui et al., 2024), we used scGPT 0.2.1 with Python 3.11.3 and Torch 2.3.1. We
trained on each sample’s vector of species abundance, tokenizing each species abundance so that a sequence of abundance
values became a sequence of tokens. We used a masking ratio of 0.4 and 25 bins to tokenize the relative abundance values.
As we did not have cell type, we disabled the elastic cell similarity objective by setting its relative weight to zero. We used
the sequencing run batch label (“RunName”) as the batch identifier for batch integration.

We trained the model from scratch using a learning rate of le-3, a batch size of 64, and set the number of transformer
encoder layers to three, using 32 heads and a hidden token dimension of 256. Automatic mixed precision was used. We
fixed the random seed for the training experiment to 42. We used the masking value of -1. We set abundance values of
0.0001 to zero in keeping with the detection limit, and ignored ‘cell type’ as it was not relevant for our use case. We created
a vocabulary based on species names as opposed to gene names. We used the data in loglp form. We trained for 10 epochs,
using all other default settings. We extracted the CLS token (cell embeddings in the original paper) after training as the
sample representation for downstream analysis.

B.7. Phenotype Predictions

We conducted an analysis to evaluate the advantage of the various models for generating features for supervised models. For
this analysis, we used the data from the 10_IL cohort, which includes information about host health. We trained tree-based
models to predict host age, sex, Body Mass Index (BMI), Visceral Adipose Tissue (VAT) mass, Proton Pump Inhibitors
(PPI) intake, hyperlipidemia diagnosis, and fatty liver disease diagnosis, from either the raw microbiome abundances, or the
sample embeddings extracted from the pretrained models. It is important to note that the embeddings were extracted from the
self-supervised models, which were trained without the sample labels. We used the LightGBM package (Ke et al., 2017) with
2000 estimators, a learning rate of 0.001, max_depth of 3, min_child_samples of 30, 70% samples sampling, 60% features
sampling, and an initial random seed of 42. We used a five-fold, stratified (for binary phenotypes), cross-validation scheme,
and used 15% of the train samples as a validation set to enforce early stopping (after 80 rounds without improvement). We
evaluated model performances on the test set using Pearson’s correlation for continuous phenotypes and the area under
the precision recall curve (PR-AUC) for binary phenotypes. We conducted four repetitions of these experiments, totaling
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in 20 sets of train, validation, and test samples (over five folds and four repetitions) — from which we derived the mean
and the standard deviation. To compare the test prediction performances of each model, we compared this 20-long vector
with that of the predictor trained on species relative abundances using the Mann-Whitney U test (Virtanen et al., 2020)
(alternative="greater’). We adjusted for multiple testing across all model-phenotype comparisons using Benjamini-Hochberg
False Discovery Rate (FDR) procedure (Benjamini & Yekutieli, 2001).

B.8. Downsampling Analysis

To evaluate prediction performances of models trained on 100 labeled samples, we conducted an experiment similar to
the one described in the previous paragraph, with a few changes. For each model, we sampled 100 samples for the train
set and 100 samples for the test set. For the binary phenotypes, we sampled 50 samples from each of the label groups. In
this experiment, we did not apply early stopping, but reduced the number of estimators to 1000. We also did not use cross
validation. For each pretrained model we compared and each target phenotype, we repeated this experiment 100 times,
and used the Mann-Whitney U test to compare the performances to those gained by the model trained on species relative
abundances. We adjusted for multiple testing across all model-phenotype comparisons using Benjamini-Hochberg False
Discovery Rate (FDR) procedure (Benjamini & Yekutieli, 2001).

B.9. Cross-cohort Predictions Analysis

To test how well models trained on different representations predict phenotypes in cohorts different from those used to train
them, we each time trained a prediction model on one cohort, and tested its prediction performance in other cohorts. To
train the models, we used 85% of the cohort samples, and used the remaining 15% both for the within-cohort evaluation,
and for performing early stopping (after not improving for 50 rounds). Then, to evaluate the trained model on a different
target cohort, we tested it on 100% of the target cohort samples. For this reason, in this analysis we only performed a
single evaluation per cohort pair, and did not have a distribution of performance values over folds and repetitions like in the
previous analyses. For the supervised models we used LightGBM, with 2000 estimators and the same parameters used in
the previous analyses. We adjusted for multiple testing across all model-phenotype comparisons using Benjamini-Hochberg
False Discovery Rate (FDR) procedure (Benjamini & Yekutieli, 2001).
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