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Abstract

Accurate prediction of dynamical systems in unstructured meshes has recently
shown successes in scientific simulations. Many dynamical systems have a nonneg-
ligible level of stochasticity introduced by various factors (e.g. chaoticity), so there
is a need for a unified framework that captures both deterministic and stochastic
components in the rollouts of these systems. Inspired by regeneration learning,
we propose a new model that combines generative and sequential networks to
model dynamical systems. Specifically, we use an autoencoder to learn compact
representations of full-space physical variables in a low-dimensional space. We
then integrate a transformer with a conditional normalizing flow model to model
the temporal sequence of latent representations. We evaluate the new model in both
deterministic and stochastic systems. The model outperforms several competitive
baseline models and makes more accurate predictions of deterministic systems.
Its own prediction error is also reflected in its uncertainty estimations. When
predicting stochastic systems, the proposed model generates high-quality rollout
samples. The mean and variance of these samples well match the statistics of
samples computed from expensive numerical simulations.

1 Introduction

Accurate prediction of long-term dynamics of physical systems is of great interest in many science
and engineering fields. The classical simulation of a system heavily relies on a spatial/temporal
discretization of the space and the numerical solution to a finite-dimensional algebraic system derived
from the governing equation [1]. However, due to the multi-scale, stochastic nature of the complex
physics and the complexity of the geometry, the simulation of large-scale real-time applications is
extremely expensive in computation [2]. In recent years, deep learning models have been applied
to predict rollouts of large and complex physical systems thanks to their flexibility and scalability
[3]. Moreover, they can handle uncertainties and non-linearity in physical problems [4–8] more
effectively than traditional methods.

Previous work has studied two types of complex dynamical systems: deterministic ones and stochastic
ones. A deterministic system is often considered under a perfectly controlled experiment with exactly
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known PDE terms and initial conditions (IC) or boundary conditions (BC) [9, 10, 3, 11–13]. This type
of system can be modeled by autoregressive predicting models. A stochastic system such as quantum
mechanics [14] and statistical physics [15] has a stochastic rollouts. When there are stochastic forcing
terms or IC/BC terms in the governing equations, researchers have developed various models for
predicting the stochastic state variables, such as turbulence velocity and stock prices [16–20]. Given
that there is not a clear boundary between the two types of systems, it is highly desirable that a unified
model can model either a deterministic or a stochastic system automatically. However, such models
so far are limited to classical numerical models such as OpenFOAM [21]. There is an urgent need to
develop a unified deep-learning model that can model both types of systems.

In this work, we propose a unified framework based on deep generative models to predict deterministic
and stochastic systems. The new model is based on graph-structured state representations [11], which
can handle irregular spatial areas commonly seen in dynamical systems. It uses an autoencoder to
encode a state representation to a low-dimensional latent vector. Accurate encoding and decoding
is critical for recovering the state of the dynamical system. This work makes several innovations to
enhance the autoencoder’s ability to preserve the information in system states. We provide a new
approach to encoding the graph-structured representation with a vector with a fixed length. We also
get some inspiration from regeneration learning [22] and train our autoencoder with self-supervised
learning.

To describe stochasticity in the system, we use a sequential probabilistic model for the latent
representations. We integrate a transformer and a normalizing flow to construct a step-wise predictive
neural network in the latent space. When there is stochasticity, the model will learn the conditional
distribution of the next latent state; when there is no stochasticity, it can place probabilities to correct
deterministic predictions and still can minimize the predictive error. By including the ability to
simulate both deterministic and stochastic systems in a uniform framework, it reduces the effort of
developing separate models for different problems.

We evaluate our proposed framework in an extensive empirical study. The results indicate the
proposed model outperforms the SOTA baselines on deterministic datasets regarding accuracy.
More importantly, for the first time, we introduce several alternative evaluation metrics other than
normalized RMSE for stocahstic fluid dynamics, which help improve comparisons between different
methods in this domain. The proposed framework can produce high-quality samples for stochastic
systems in the mesh space.

2 Background

2.1 Problem definition

Let’s consider a general partial differential equation (PDE) defined on the d-dimensional space and
one-dimensional time domain,

∂u

∂t
= j(u,µ, ι) in Ω× [0, Tend] (1)

where Ω ⊂ Rd is the spatial domain, Tend is the endpoint of time, ι : ∂Ω × [0, T ] is the random
parameter over time for stochastic systems (e.g., boundary conditions), and u : Ω × [0, T ] is the
primary solution variable (e.g., velocity and pressure of fluid flow). Here µ : D is the global
physical system parameter and is time-invariant (e.g., Re number) for a given rollout. j : Ω ×
[0, T ] × D → Ω × [0, T ] is an aggregation of the spatial terms of conservation laws (e.g., source
and flux). To numerically solve the conservation law in Equation 1, let Ch be a mesh of Ω, that is,
Ch = {Ci ∈ Ω : i = 1, . . . , N} is a collection of non-overlapping cells that cover Ω. We further use
ui,t to denote the evaluation of u at the cell center of Ci at time step t.

Using the mesh described above, we apply a finite volume discretization to yield the parametrized,
nonlinear dynamical system. Here, the dynamical system can be computationally intensive because a
fine-level mesh will lead to discretization with a large degree of freedom. For stability issues, the
numerical time step also needs to be very small. Therefore, numerical simulations with traditional
methods require extremely expensive computation and storage.

In this paper, we are interested in two different scenarios: deterministic dynamics with invariant
parameter ι over time (e.g., fixed boundary condition ), and stochastic dynamics with random
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parameter ι over time (e.g., perturbations in boundary conditions of turbulent flow). Both cases will
also include the global physical parameters µ. The scope of our paper is to build a unified data-driven
surrogate model for generating/predicting parametric PDE solutions.

2.2 Normalizing flow models

A normalizing flow model constructs a flexible probabilistic distribution by applying a learnable
bijective mapping to a simple random variable (e.g. Gaussian distributed). Suppose the mapping is
z = f(x) with x ∈ Rd being the simple input variable, then we have the probability p(z) of z as
follows:

p(z) = p(x)

∣∣∣∣det
(
∂(f(x))

∂(x)

) ∣∣∣∣−1

. (2)

Here ∂(f(x))
∂(x) is the Jacobian of f at x. The function f is usually a neural network with a layered

structure, with each layer being a bijective mapping. Then the determinant of ∂(f(x))∂(x) is the product
of determinants of these layers’ Jacobian matrices. With a special design of layer structures, their
determinants can be efficiently computed. For example, a RealNVP model [23] is constructed by
stacking several coupling layers, each of which has a lower triangular Jacobian matrix. With h ∈ Rd
as the input, a coupling layer fℓ runs the following calculation:

fℓ(h) = concat(h[1 : d′],h[(d′ + 1) : d]⊙ exp(s(h[1 : d′])) + t(h[1 : d′])) (3)

Here concat concatenates its arguments as one vector, and d′ is usually about one-half of d. In this
calculation, the first half of the vector is directly copied to the output. The second half goes through
an entry-wise linear transformation: the operation ⊙ is the Hadamard product, the neural network s
provides scaling coefficients, and the neural network t provides biases. With K such coupling layers,
we have a transformation that defines a flexible distribution p(z).

p(z) = p(x) ·
K∏
ℓ=1

|det(∂fℓ(hℓ−1)/∂hℓ−1)|−1 (4)

Here h0 = x, and hℓ = fℓ(hℓ−1). At the same time, p(z) also has an efficient sampling procedure
given by f .

3 Methodology

Our new predicting model has three components: an encoder that compresses a graph representation
of the state into a fixed-length vector, a sequential model that predicts next-step representations in the
latent space, and a decoder that decodes spatial states from graph representations. The encoder is
an improved version of the GMR-GMUS encoder [11]. The sequential model is a conditional flow
model. The encoder and decoder are trained via self-supervised learning as in regeneration learning.

3.1 Graph representation learning

Following GMR-GMUS, we use a graph G = (V, E) to encode a snapshot of a deterministic or
stochastic dynamical system at time step t. Here each node i ∈ V corresponds to the mesh cell Ci,
and each edge (i, j) ∈ E represents a neighboring relationship between two cells. At each step t, the
solution ui,t at cell i becomes the feature vector of the node i ∈ V at time t. Because the mesh is
pre-defined and fixed, the graph representation (G, (ui,t, i ∈ V )) preserves the full information of
the mesh Ch at time t. Here we use Yt = (ui,t : i ∈ V ) to denote a snapshot at time t.

The key task for the encoder is to encode the graph into a low-dimensional vector zt. For this task,
we use an improved version of the encoder of GMR-GMUS. The GMR-GMUS encoder runs a graph
neural network over the graph representation to learn node representations. Then it takes node vectors
of a selection of “pivotal” nodes and concatenates them to get zt. In our new encoder, we select a
set of locations in the spatial space instead of graph nodes to aggregate spatial information: each
selected location aggregates vectors of nearby nodes to get its representation. It decouples the graph
representation and the aggregation operation so that a select location can encode nodes within an
arbitrary distance. To improve the training stability, we also improve the graph neural network’s
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Figure 1: The diagram of the proposed model, which first compresses the whole graph into the latent
representation zt by PbGMR using selected positions. During the generation process, a transformer
encodes physical parameters and previous latent representations into a condition vector ct+1, from
which a normalizing flow model describes the conditional probability of zt+1. Finally, the decoder
PbGMUS decodes zt+1 through to obtain the next-step prediction Yt+1.

architecture by adding residual connections between its message-passing layers. We call this new
encoder Position-based Graph Mesh Reducer (PbGMR). These two modifications clearly improve the
encoder’s ability to preserve the state information, which will be empirically shown in the experiment
section.

The architecture of PbGMR is specified as follows. For notational convenience, we omit the time
from the subscript. For each graph node i ∈ V , we first extract node and edge features as follows.

v0
i = mlpv(ui), e0ij = mlpe(pos(i)− pos(j)). (5)

Here pos(i) is the spatial location of the cell center of Ci. After that, we apply L message-passing
layers.

eℓij = eℓ−1
ij + layernorm(mlpeℓ

(
eℓ−1
ij ,vℓ−1

i ,vℓ−1
j

)
) (6)

vℓi = vℓ−1
i + layernorm

mlpvℓ

vℓ−1
i ,

∑
j∈Ni

eℓ−1
ij

 , ℓ = 1, . . . , L. (7)

Here Ni denotes all neighbors of node i, mlpeℓ and mlpvℓ are two separate multi-layer perceptrons,
and layernorm is the layer-normalization operation. When a perceptron accepts multiple arguments,
its arguments are first concatenated into a single vector. Each layer here is similar to a GraphNet block
[24] but with slight differences. The prominent ones are residual connections and layer normalization
in the update of node and edge representations: they help to stabilize the training procedure [25–27].

After we have learned node representations, we need to aggregate them into a single vector to
represent the entire state. We randomly select a small set S of centers in the spatial area. For each
center c ∈ S, we select k nearest mesh cells knn(c) based on spatial distance and then compute the
position representation hc by interpolation [28]:

hc =
∑

j∈knn(c)

wcjv
L
j∑

j∈knn(c) wcj
, wcj =

1

d(c, j)2
, , c ∈ S (8)

Here d(c, j) is the spatial distance between cell Cj and the center c. Given that the calculation is
scaled by the sum of wcj-s, the unit of the spatial distance does not change the calculation here.
The number k of neighbors is a hyper-parameter, and we fix it to 10. Finally, we concatenate all
representations of centers into a single vector z = concat(hc : c ∈ S) as the latent for the entire
graph. Note that the centers in S are fixed for a problem.

As a comparison, the encoder in GMR-GMUS uses graph nodes as centers and only considers
connected neighbors of a center. Then the number of neighbors in the interpolation operation is
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limited by the graph structure. As a result, each center vector from GMR-GMUS can only represent
information in a short range. Our new encoder overcomes this issue by decoupling the neighbors in
interpolation and the neighbors in the graph representation and then gives the interpolation operation
more freedom to represent a state of the system.

3.2 Decoding and self-supervised training

We devise a decoder PbMUS to recover node features on the graph from latent representation z:
Ŷ = PbGMUS(z). Here we also consider the computation at a single time step and omit time
indices. We first split z and get vectors at interpolation centers: (hc : c ∈ S) = z and then compute
the initial node representation r0i by spatial interpolation from centers:

r0i =
∑

j∈knn′(i)

wichc∑
c∈knn′(i) wic

, wic =
1

d(i, c)2
, , i ∈ V, c ∈ S (9)

Here knn′(i) are k centers that are nearest to the cell center i. Then we apply L message-passing
layers to compute Ŷ = gnn(G, (r0i : i ∈ V )), with gnn representing the L network layers. These
layers have the same architecture as PbGMR but use different learnable parameters.

Self-supervised training. Without considering the sequential property of the data, we first train the
encoder and decoder on single steps with self-supervised training. This training method shares the
same spirit of regeneration learning and improves encoder and decoder’s abilities to capture spatial
patterns in the data. In particular, we use the reconstruction error as the minimization objective to
train the encoder-decoder pair.

min

T∑
t=0

||Yt − PbGMUS(PbGMR(Yt))||22 (10)

3.3 Attention-based temporal conditioned generative model

Now we consider the sequence of latent representations from the encoder and devise a sequential
generative model to model the sequence of latent representations. The low-dimensional latent space
reduces the modeling difficulty, and the vector form of latent representations zt avoids the graph
structure and allows more model choices. We first decompose the sequence as follows.

P (z1:T |µ, z0) = p(z1|µ, z0)
T∏
t=2

p(zt|µ, z0, z1:t−1). (11)

The key is to devise a model for the conditional p(zt|µ, z0, z1:t−1). We take two steps to construct
this conditional: we first represent the condition (µ, z0, z1:t−1) with a single vector ct and then adapt
RealNVP [23], a normalizing flow model, to describe the conditional p(zt|ct).

Calculate the conditional vector with a transformer. Because physical parameters µ control
the entire system, and the initial condition z0 contains information about the initial condition, we
consider them special and use them in the prediction of zt for each t. We structure the problem as
a “translation” problem and use the transformer [29] to run the calculation. In our case, the input
“sentence” is (µ, z0), the first few “tokens” in the target sentence are (z1, . . . ,zt−1), and the “next
token” to be predicted is ct.

ct = transformer((µ, z0), (z1, . . . ,zt−1)) (12)

While the computation is exactly the same as one step in a translation task, the rationale is very
different. First, the translation task directly gets the zt from the transformer, but our model needs
to send ct to a conditional flow model to get the prediction zt. Second, the translation task has
an informative input sequence, but our model uses a less informative input and depends on the
transformer to get a reasonable output sequence.
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Predict zt with a conditional flow model. Once we have a vector ct representation of the condition,
we can construct a conditional flow model from RealMVP. Specifically, we append the condition
vector ct to the input of the scaling function s and the bias function t in equation 3 in each layer.

fℓ(h) = [h[1 : d′],h[d′ + 1 : d]⊙ exp(s(h[1 : d′], ct)) + t(h[1 : d′], ct)] (13)

From these layers, we have the flow model p(zt|ct). By chaining up the transformer and the
conditional flow model, we have our sequential model for conditional probability p(zt|µ, z0, z1:t−1).

During training, we train the sequential model on (z0, . . . ,zT ) that are computed from our PbGMR
encoder. During inference, we can efficiently sample zt from the sequential model. The whole
training and inference processes can be found in Appendix A.2 and Appendix A.3.

4 Related Work

Deep learning for physics. For a deterministic system, one-step learning simply takes the current
state as the input and outputs the next-step prediction [3, 30–32]. To further improve the accuracy of
long-term forecasts, dimension reduction is applied together with sequence nets, aiming to solve long
dynamical systems on a regular domain [33–35]. Such works often adopt CNNs as encoders so that
can not be applied to irregular mesh space. To further work on mesh data directly with dimension
reduction, the GNN encoder/decoder was initially introduced by [11]. Various GNN architectures
were also proposed to facilitate the learning of physics. [13, 15, 36–39]. For physical stochastic
systems, CNN is mainly used for probabilistic prediction [18, 40]. However, it lacks researches
solving stochastic system in the graph space.

Regeneration learning and generative modeling. Regeneration learning is a new learning
paradigm for data generation, which first generates a latent representation for the data. Then the
generation process happens on the latent space. There are many recently popular generative models
for images[41–43], videos[44], speeches[45], and music [46] are built on this paradigm. We notice
that it should be further investigated for graph generation tasks.

5 Experiments

5.1 Deterministic dynamics

We benchmark our proposed model with three datasets from three flows: flows over the cylinder,
high-speed flows over the moving edge, and vascular flows [11]. Note that for test cases, we feed the
model physical parameters µ and the snapshot at the beginning time to generate the whole trajectory.
Detailed description can be found in Appendix A.5.

We compare our new method against five SOTA models for fluid dynamics, including two variants of
MeshGraphNet[3] and three variants of the GMR-GMUS[11]. We use relative mean square error

(RMSE) as the evaluation metric: RMSE =
∑

(ûprediction
i −ûtruth

i )2∑
(ûprediction

i )2
. More details can be found in the

Appendix A.2. For cylinder and vascular flows, we calculate the RMSE with respect to velocity
variables u, v, and the pressure variable p. For high-speed flows over the moving edge, we also
calculated the RMSE for the temperature T .

Table 1: The average relative reconstruction error of
three systems, with the unit of 1× 10−3

Dataset GMR-GMUS PbGMR-GMUS
Cylinder flow 14.3 1.9

Sonic flow 1.11 0.24
Vascular flow 10 2.8

The results on prediction errors. Table 2
shows the comparison of different models.
Our model outperforms the baseline models
in all the scenarios. For the cylinder flow
case, our model has improvements of 22%,
17%, and 47% for u, v, and p. For the sonic
flow case, our model has improvements of
61%, 70% for the u and v variables, and
improvements of 82% and 50% respectively
for the p and T variables. For the vascular
flow case, our model achieves improvements of 52%, 45%, and 95% for u, v, and p. The ablation
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Figure 2: For each case, the first row is one of our predicted samples for velocity. The second row
is the predicted standard deviation for velocity. Our model-predicted sample accurately reflects the
physical systems. Meanwhile, the predicted standard deviation also has a physical spatial-temporal
pattern.

study in the Appendix section (Table 9) indicates that both the new encoder and the conditional
normalizing flow are essential to improve prediction accuracy.

The error in the time axis is shown in Figure 3. The performance of our model is shown with the
solid black line. The model has small initial errors in all three tasks. Then its error accumulates over
time, but the accumulation is much slower than that of competing models, so our model consistently
has the lowest error in the final time step.

To better understand our model, we have also done an extensive ablation study reported in the
appendix. Here we only show a comparison of our model with GMR-GMUS in the encoding-
decoding tasks. The results in Table. 1 show that the new model has clearly better encoding and
decoding capabilities. In one encoding and decoding case, the reconstruction error of our model is
less than one fifth of that of the GMR-GMUS model in the appendix. The ablation study also shows
that both residual connections and encoding centers enhance the encoding-decoding accuracy (please
see Table 8 in the Appendix section).

Contour analysis. As a probabilistic model, we plotted the contour of the predicted sample and the
standard deviation (std) for all three datasets. Figure 2 visualizes the velocity predictions from two
datasets. In each subplot, the top row is one prediction (e.g. one sample from our model), and the
bottom row visualizes the standard deviation of predictions. To clearly compare different predictions,
we use the same color bar within the same dataset. With visual inspection, the sample predictions are
reasonable and stable for all three datasets.

The standard deviations also show reasonable spatial-temporal patterns consistent with our
expectations. For cylinder flow with Re = 307, the standard deviation is larger around the
vortex-shedding region, indicating the model is less certain about the fast-changing dynamics.
Moreover, the standard deviation tends to grow with time, reflecting the error accumulation behavior
for long-time rollouts. Moreover, the standard deviation is smaller when Re is higher, indicating that
the model is more certain about the prediction. The same trends can also be seen in other datasets.
Therefore, our proposed model can accurately predict the dynamics for deterministic systems while
providing a spatial-temporal uncertainty estimate, potentially improving the interpretability of deep
learning systems. More contours can be found in Appendix A.6

5.2 Stochastic dynamics

Dataset. We apply the proposed method to solve a stochastic dynamical system governed by the
unsteady-state incompressible Navier–Stokes equations. We also compare our method to the unsteady
Reynolds-averaged Navier–Stokes equations (URANS), the most applied method in the industry due
to the balance of accuracy and computational efficiency. Let Ω be the channel with a backward-facing
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Table 2: The average relative rollout error of three systems, with the unit of 1× 10−3. We compare
with five different baselines. Two variances of MeshGraphNet with or without noise injection (NI)
and three variants of GMR-GMUS (LSTM, GRU, or Transformer).
Dataset-rollout step Cylinder flow-400 Sonic flow-40 Vascular flow-250

Variable u v p u v p T u v p

MeshGraphNet [3] NI 25 778 136 1.71 3.67 0.4 0.027 57 133 55
without NI 98 2036 673 4.12 6.13 0.24 0.020 3117 1771 601

GMR-GMUS [11]
GRU 114 1491 1340 1.34 4.59 0.59 0.37 8.2 11.2 23.6

LSTM 124 1537 1574 1.57 5.8 0.69 0.45 8.4 11.1 23.3
decoding-only 4.9 89 38 0.95 2.8 0.43 0.39 7.3 10 22

PbGMR-GMUS encoding-decoding 3.8 74 20 0.37 0.85 0.079 0.01 3.49 5.47 1.05

0 100 200 300 400
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100

Time Step

R
M

SE

0 10 20 30 40
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10−3

10−2
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0 100 250
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100

Time Step

Figure 3: Averaged error over all state variables on cylinder flow (left), sonic flow (middle) and
vascular flow (right), for the models MeshGraphNets(MGN)( ), MGN-NI( ), GMR-GMUS-
GRU ( ), GMR-GMUS-LSTM ( ), GMR-GMUS-Transformer ( ), Ours model( ).

step shown in Figure 5. The goal of the problem is to generate the temporal unsteady velocity
field close to the ones simulated by large eddy simulation (LES) with the inflow velocity along
the inlet boundary subject to uncertainty. The inflow at every time step is uncertain and sampled
from a 60-dimensional stochastic space subject to a uniform distribution as {uinlet1 , ..., uinlet60 |uinleti =
10 + u′, u′ ∼ U(0, 1)}.

Analysis of fluid motion. To visually study the generated results, we plot several time steps of the
stream-wise velocity (u) from a collection of model samples in Figure 4. The proposed method clearly
generates diverse turbulent flow samples. Specifically, the multiscale structure of the vortex can be
seen in the contour plots. To quantitatively examine the model performance on turbulent statistics,
we plot and compare the mean and variance of the velocity profiles from the URANS, the proposed
model, and LES results in Figure 5. The mean velocity profile predicted by the URANS model (gray
lines) has significant discrepancies compared to the LES result (cyan lines), particularly in the right
half of the domain where the backward-facing step’s geometry is less important and small-scale
turbulent features are dominant. As for the velocity variance, the URANS model underestimates the
fluctuation in the whole domain. On the contrary, both the LES velocity mean and variance can be
captured well by our generated samples (purple lines).

Comprehensive evaluations. To evaluate the temporal energy transport, we plot the power spectral
density using Welch’s method [47] in Table 3 (left). The high wave numbers reflect the rapid changes
of fluid motion (e.g., instantaneous fluctuations), and the low wave numbers reflect the slow changes,
such as the re-circulation introduced by the backward-facing step. By leveraging the sequence models,

Figure 4: Velocity contour at time step 40, 80, 120, 160 (left to right) from different samples.
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ties from LES ( ), URANS ( ), and our model ( )

the multiscale problem in the time domain can be automatically learned. However, URANS directly
calculate an ensemble average over infinite experiments, and it can not capture stochastic behavior.
Therefore, the energy (E(k)) of high-wave-number (k) signals is underpredicted by URANS while
the proposed model has a consistent energy spectrum pattern with the LES simulations. Moreover, the
turbulent kinetic energy (TKE) is computed to evaluate the quality of generated samples. Physically,
the TKE is characterized by measured root-mean-square velocity fluctuations. By applying the
decoder, the point-wise instantaneous flow can be recovered from the latent vector to the physical
solution reasonably well. The TKE metric can be defined as a scalar:

TKE :=

∫
Ω

∫
[0,Tend]

[(u− ū)2 + (v − v̄)2]dΩdt∫
Ω

∫
[0,Tend]

[(ules − ūles)2 + (vles − v̄les)2]dΩdt
. (14)

It indicates the preservation of the TKE benchmarked by the LES simulations. Our model can
generate a flow field preserving 99% of the energy, whereas URANS can only do less than 20%. As
for the temporal mean field, although URANS aims to solve it directly, it is inevitable to introduce the
bias from the LES result due to the ergodicity assumption of RANS. Instead, we directly formulate
the probabilistic problem to learn the distribution of the spatiotemporal field. We calculate the error
of the temporal mean field and find that although URANS leverages the conservation laws, it still
obtains a much larger error than our generated samples. Finally, we further propose to measure
the quality of predicted rollouts using evaluation metrics of video generation in computer vision.
In particular, we consider two metrics: the continuous ranked probability score (CRPS) [48, 49]
and Frechet Video Distance (FVD) [50]. We use CRPS to assess the respective accuracy of our
probabilistic forecasting and LES models. Since our model considers the distribution of the forecasts
as a whole, it outperforms URANS, which only focuses on the mean of the distribution. Our model is
also better evaluated in the FVD metric. This indicates the learned distribution by our model is close
to the samples from LES.

We have also experimented with two deep learning methods, MeshGraphNet and GMR-GMUS,
which are designed for deterministic systems. Their predictions are both far from LES simulations,
not to mention that they can only make deterministic predictions. More results can be found in
Appendix A.13.

6 Conclusion

We propose a new learning model to predict/generate deterministic and stochastic fluid dynamics over
unstructured mesh in a uniform way. With an integration of a novel graph auto-encoder, a transformer,
and a normalizing flow model, the new model decomposes temporal and spatial correlations in
a dynamical system. It outperforms competitive baseline models for deterministic systems while
providing a reasonable spatial-temporal pattern of forward uncertainty estimations. The samples
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Table 3: Energy cascade spectrum at (2.58, 0.21)(left), and criteria of generation quality(right).
URANS ( ), LES ( ), Ours( ) Quantity of interest URANS Ours

100 101 102
10−14

10−7

100

k

E
(k
)

CRPS (Cu,↓) 3.24 1.28
CRPS (Cv ,↓) 2.0 1.08
FVD (du,↓) 228112 1262
FVD (dv ,↓) 137860 397

mean flow error (eu,↓) 0.31 0.0176
mean flow error (ev ,↓) 0.94 0.176

turbulent energy (TKE,↑) 0.192 0.99

from the model trained on stochastic systems capture the rich physical patterns of expensive LES
simulations. The current model still has one limitation: it can not accurately model stochastic
variables close to boundary areas, which is shown in Appendix A.12. In future work, we will design
new learning architectures to overcome this issue.
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A Appendix

A.1 Proof

The Jacobian of the transformation in Equation (4) can be written as:

∂f i(x)

∂f i−1(x)
=

[
Id′ 0

∂fi(x)d
′+1:d

∂fi−1(x)1:d′
diag

(
exp

[
s
(
f i−1concat((x)1:d

′
, c)

)] ) ]
(15)

fwhere diag
(
exp[s(f i−1concat((x)1:d

′
, c))] is the diagonal matrix whose diagonal elements corre-

spond to the vector exp
[
s
(
f i−1concat((x)1:d

′
, c)

)]
. Since the concatenation operation still keeps

the matrix triangular, the determinant can be computed as:

det(∂f i(x)/∂f i−1(x))| = exp(sum(si(concat(f
i−1(x)1:d

′
, c)))) (16)

A.2 Training

As a regeneration learning method, there are two stages during the training. The first stage is to
train a graph auto-encoder, PbGMR-GMUS, in this case, through self-supervised learning. This
training process happens over all time steps and sequences in the training set. And for a given
sequence [Y0, . . . ,YT ], we compute Ŷt = PbGMUS(G,PbGMR(G,Y)) at each step and minimize
the reconstruction loss:

Lgraph =

T∑
t=1

∥Yt − Ŷt∥22 . (17)

In the second stage, the parameters in PbGMR-GMUS will be fixed. And the attention-based sequence
model, as well as the conditional flow model, will be trained. We maximize the log-likelihood in the
latent space:

Lp = −
1

T − 1

T∑
t=2

log pψ(zt|ct) (18)

We don’t set a time window so that the whole trajectory will be trained. The entire training process
can be found in Algorithm 1. Particularly in the second stage, such a teacher forcing-like strategy
allows a faster training process compared with the previous work [11], which adopts a rollout strategy
during the training.

A.3 Inference

For inference we first encode the first two snapshots into latent space [z0, z1]. The condition vector
ct is computed from the attention-based sequence model. By sampling a noise vector x from an
isotropic Gaussian, and putting it going backward through the flow, we can obtain a new sample from
pϕ(zt|ct) as latent representation at each step. We describe the procedure of training in Algorithm 2.

A.4 Latent analysis

Figure 6 plots the latent zt and conditional vectors ct for the stochastic BFS cases. For visualization
purposes, we plot the first two modes of the PCA result. Moreover, we plot two different realizations
of the stochastic process with clearly distinctive trajectories, as shown in the ct plot (right). Since the
cases are inherently from the same distribution, the sampled latent trajectories zt plot (left) have a lot
of overlaps after the few initial development steps. The plots of different cases visually conform to
the physical intuition and indicate that our model can learn the relation between different cases well.
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Algorithm 1 Training Process

Input: Domain graph G, Node features over time [Y0, . . . ,YT ], PbGMRθ, PbGMUSϕ, Attention
encoder MHAω, Attention decoder Masked-MHAλ, conditional flow model pψ(.|), physical
condition parameter µ
Output: Learned parameters θ, ϕ, ω and ψ
repeat

for Yt ∈ [Y0, . . . ,YT ] do
Ŷt = PbGMUSϕ(PbGMRθ(Yt,G))

end for
Compute∇θ,ϕ ← ∇θ,ϕLgraph(θ, ϕ, [Y0, . . . ,YT ], [Ŷ0, . . . , ŶT ])
Update ϕ, θ using the gradients∇ϕ,∇θ

until convergence of the parameters (θ, ϕ) {Self-supervised learning}
[z0, z1, . . . , zT ] = GMRθ([Y0, . . . ,YT ])
repeat

µ̂, ẑ0 = MHAω(µ, z0)
[c2, . . . , ct] = Masked-MHAλ((z1, . . . ,zt−1), I = (µ̂, ẑ0))
Compute∇ω,λ,ψ ← ∇ω,λ,ψLp(ω, λ, ψ, [c2, . . . , ct], [z2, . . . ,zt])
Update ω, λ, ψ using the gradients∇ω ,∇λ,∇ψ

until convergence of the parameters (ω, λ, ψ)

Algorithm 2 Inference Process

Input: Domain graph G, The firt two snapshot of node features [Y0,Y1], PbGMRθ, PbGMUSϕ,
Attention encoder MHAω, Attention decoder Masked-MHAλ, conditional flow model pψ(.|),
physical condition parameter µ, sample length T
Output: A trajectory sample [Y2, . . . ,YT ]
[z0, z1] = PbGMRθ([Y0,Y1],G)
µ̂, ẑ0 = MHAω(µ, z0)
for t ∈ [2, . . . , T ] do

ct = Masked-MHAλ((z1, . . . ,zt−1), I = (µ̂, ẑ0))[−1]
Sample latent representation from conditional flow zt ∼ pϕ(zt|ct)

end for
Recover physical parameters on the original space [Y2, . . . ,YT ] = PbGMUSϕ([z2, . . . ,zT ])
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Figure 6: 2-D principle subspace of the (a) latent vectors and (b) conditional latent vectors for the
stochastic BFS cases: trajectory 1 ( ), trajectory 2 ( ) start from and , respectively.
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A.5 Dataset

Four fluid simulation datasets, cylinder flow, sonic flow, vascular flow and stochastic backward-facing
step (BFS) are used in the experiments. The labeled data are generated by solving the Navier-Stokes
equation by OpenFOAM [21], a commonly used finite volume method-based open-source solver for
fluid simulation. Cylinder and sonic flow consist of 50 cases in the training dataset and 50 cases in
the test dataset. The vascular flow cases have 10 training and 10 test cases. The stochastic BFS case
has 5 training cases. Unlike the first three deterministic cases, the stochastic BFS case is a stochastic
case. The simulation details can be found in Table 4. Moreover, the details input and output of the
PbGMR-GMUS are listed in Table 5.

The governing equation for the first three cases is the same as the one listed in [11]. For the last
stochastic BFS case, the governing equation is listed in Equation (19). One significant difference in
this case is that it introduces stochasticity by perturbing the inlet u velocity at every time step.

Table 4: Simulation details of datasets
Dataset Meshing # nodes # steps type

Cylinder flow Fixed 1699 400 deterministic
Sonic flow Moving 1900 40 deterministic

Vascular flow Small-varying 7561 (avg.) 250 deterministic
Stochastic backward-facing step Fixed 22500 240 stochastic

Table 5: Input-output information of PbGMR-GMUS: u: X-axis velocity, v: Y-axis velocity, p:
pressure, T : temperature, ρ: density, m: cell volume. T,0, Re, r, uBi denote the initial temperature,
Reynolds number, radius of the thrombus, and boundary velocities, respectively. BFS denotes
backward-facing steps.

Dataset

PbGMR
node
input

PbGMUS
node

output

Nodal
embed

dim # centers
Cylinder flow ui, vi, pi,mi, Re ui, vi, pi 4 256

Sonic flow
ui, vi, pi, Ti, ρi

mi, T,0

ui, vi, pi
Ti, ρi 4 256

Vascular flow ui, vi, pi,mi, r ui, vi, pi 4 400
Stochastic BFS ui, vi,mi, uBi ui, vi 4 256

∂u

∂x
+
∂v

∂y
= 0,

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= −1

ρ

∂p

∂x
+ ν(

∂2u

∂x2
+
∂2u

∂y2
),

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
= −1

ρ

∂p

∂y
+ ν(

∂2v

∂x2
+
∂2v

∂y2
),

(19)

subject to uinleti = 10 + u′, u′ ∼ U(0, 1) at every time step.

A.6 Additional visualization results

Apart from the contour shown in Figure 2, additional contour plots for the cylinder, sonic flow and
vascular flow are shown in this section. Figure 7 shows the sampled velocity and std of the velocity
for vascular flow cases. Figure 8 presents the sampled pressure for cylinder, sonic and vascular flow.
Additionally, Figure 9 shows the sampled temperature variable in sonic flow.
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Figure 7: Velocity contour for the vascular flow case, the first row is one of our predicted samples.
The second row is the predicted standard deviation.
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Figure 8: Pressure contour for benchmark cases
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Figure 9: Temperature contour for sonic flow case.
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A.7 Multi-head attention

Transformer [29] has been proven successful in the NLP field. The design of the multi-head attention
(MHA) layer is based on the attention mechanism with Query-Key-Value (QKV). Given the packed
matrix representations of queries Q, keys K, and values V , the scaled dot-product attention used by
Transformer is given by:

ATTENTION(Q,K,V ) = softmax

(
QKT

√
Dk

)
V , (20)

where Dk represents the dimensions of queries and keys.

The multi-head attention applies H heads of attention, allowing a model to attend to different types
of information.

MHA(Q,K,V ) = CONCAT(head1, . . . ,headH)W

where headi = ATTENTION
(
QWQ

i ,KWK
i ,V W V

i

)
, i = 1, . . . ,H. (21)

A.8 Additional details for experimental setups

We described the details of the experiments of PbGMR-GMUS and attention-based conditional flow
model. We provide the hyperparameters used in the experiments in Table 6.

Cylinder Sonic Vascular Stochastic BFS

PbGMR-GMUS Optimization
Learning rate 1× 10−4 1× 10−5 1× 10−4 1× 10−4

Optimizer Adam [51]
Batch size 1
Number of epochs 1500 20000 700 600

MHA/Flow model Optimization
Learning rate 1× 10−4 1× 10−5 1× 10−5 1× 10−4

Optimizer Adam
Batch size 5 50 10 5
Number of epochs 90000 240000 240000 220000
Weight decay 1× 10−5 N/A

PbGMR-GMUS Architecture
Layers of message-passing 3
Hidden dimension 128
Output dimension 256 256 400 256
Activation function relu

MHA Architecture
Layers of Encoding MHA 2
Layers of Decoding Masked-MHA 1
Hidden dimension 1024 1024 1600 1024
Activation function gelu [52]
Number of heads 4 8 4 4

Flow model Architecture
Conditioning length 1024
Hidden size 1024
Number of coulping layers 2

Table 6: Hyperparameters
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Figure 10: Reconstructor error RMSE with different numbers of centers for cylinder flow, with the
training epoch = 300.

A.9 Performance impact of substituting Transformer with LSTM

In this research, we conduct an ablation study in which we replace the proposed attention-based
sequence model in our framework with a Long Short-Term Memory (LSTM) [53] architecture.
The aim is to evaluate the impact of the underlying sequence modeling on the performance of our
system. The result is listed in Table 7. Following this change, we observe that there is a notable
decrease in the performance metrics, suggesting a less optimal fit for the task at hand compared to
the Transformer-based model. This outcome underscores the usefulness of attention-based sequence
models, like the Transformer, which appears to capture dependencies in the data more effectively than
the LSTM. The attention mechanism inherent to Transformers allows the model to focus on different
parts of the input sequence dynamically, which may explain the observed performance superiority.

Table 7: The average relative rollout error of two systems, with the unit of 1× 10−3.
Dataset-rollout step Sonic flow-40 Vascular flow-250

Variable u v p T u v p
PbGMR-GMUS LSTM 10.3 29.7 1.7 11.1 43.0 46.6 16.6

A.10 Performance impact of number of centers

We conduct an ablation study to investigate the effect of the number of centers on the RMSE of our
framework’s predictions for cylinder flow recovery. The result is in Figure 10. As we progressively
increased the number of centers, the recovery RMSE exhibited a decreasing trend, demonstrating
an enhancement in prediction accuracy. Interestingly, upon reaching 256 centers, the rate of RMSE
decrease started to decelerate significantly. This suggests that the optimal number of centers for
cylinder flow is around 256. Beyond this point, further increments do not contribute as much to the
improvement in encoding-decoding accuracy, while simultaneously increasing the computational
cost. Hence, a count of 256 centers appears to be the sweet spot, offering a good trade-off between
recovery accuracy and computational efficiency.
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Figure 11: The first row shows meshes and the second row shows the distribution for the centers.

A.11 Centers

The centers distribution for Stochastic BFS can be found in Figure 11.

A.12 Analysis for stochastic BFS

Backward-facing step flow refers to a fluid flow configuration characterized by a sudden contraction
followed by an expansion in a channel or pipe. This flow configuration is commonly encountered in
various engineering applications, such as in heat exchangers, combustion chambers, and aerodynamic
systems. In backward-facing step flow, the fluid initially enters the channel or pipe through an
inlet, where it encounters a step or abrupt contraction. As the fluid passes over the step, its velocity
increases, and the flow separates, forming a recirculation zone downstream. This recirculation zone
is often referred to as the "backflow region." The backward-facing step flow has been extensively
studied due to its complex flow characteristics and its relevance in understanding phenomena like
separation, reattachment, and flow control.

The simulations and generated samples exhibit remarkable similarity in the contours of both stream-
wise velocity and wall-normal velocity (Figure 4, 12, 13, 14). This close resemblance demonstrates
the high fidelity of the simulation results and the accuracy of the generated samples. The level of
detail captured in these contours highlights the effectiveness of the proposed generative framework.

Figure 12: Velocity contour (v) at time step 40, 80, 120, 160 (left to right) from different samples.

Figure 13: Velocity contour (u) at time step 40, 80, 120, 160 (left to right) from different LES
simulations.

We also randomly choose nine spatial locations to analyze the learning performance, and the coor-
dinates of these points are plotted in Figure 15. Figure 16 and 17 presented the comparison of u, v
velocity between the LES simulation, URANS simulation and our model. Generally, the pointwise
velocity temporal signals obtained from the generated sample provide a comprehensive representation
of the flow characteristics and look visually similar to those obtained from LES simulations. However,
the traditional URANS modeling approach cannot capture the intricate fluctuations in the flow field.
Note that we also found the generated velocity time signals at points 1 and 2 have a relatively large
discrepancy from the LES simulation, and it is explainable. Point 1 is very close to the inlet boundary;
therefore, the u velocity here is very random because of our stochastic velocity inlet condition. Point
2 locates in a region where the BFS flow is not fully developed yet and in this region the v velocity
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Figure 14: Velocity contour (v) at time step 40, 80, 120, 160 (left to right) from different LES
simulations.
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Figure 15: Spatial location of the 9 random chosen evaluation points. Point 1: (−4.98, 0.016), Point
2: (−1.65, 0.55), Point 3: (1.68,−0.88), Point 4: (0.016,−0.32), Point 5: (3.35, 0.22), Point 6:
(1.68, 0.78), Point 7: (5.01,−0.65), Point 8: (8.35,−0.11), Point 9: (6.68, 0.45)
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Figure 16: Time signal from LES ( ), URANS ( ), flow model ( ) of u evaluated at 9
points (top to bottom, left to right).
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Figure 17: Time signal from LES ( ), URANS ( ), flow model ( ) of v evaluated at 9
points (top to bottom, left to right).

magnitude is very small. These conditions make it hard to capture an accurate distribution of the
velocity at these 2 points. Finally, we also compare the velocity distribution between our generated
samples and the LES simulation results, as shown in Figure 18, 19. Except for points 1 and 2, the
distribution of our generated samples aligns very well with the LES simulations.

22



Figure 18: Comparison of the distribution of u velocity between the LES result and our model at 9
evaluation points

Figure 19: Comparison of the distribution of v velocity between the LES result and our model at 9
evaluation points
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A.13 Ablation study

Comprehensive ablation studies are included in this section to demonstrate the effectiveness of each
parts. The velocity reconstruction error on the Backward-facing step flow dataset with or without
residual connection and centers is shown in Table 8. The result indicates that each component can
improve the graph reconstruction accuracy. We also test the influence of PbGMR-GMUS and the
attention conditional flow model to the final performance of the deterministic task, as shown in
Table 9. The result shows that both the encoder-decoder part and the flow model are necessary for the
success of the whole framework.

Table 8: The reconstruction error of stochastic flow with the same training epoch number for
Backward-facing step flow dataset. The residual connection and centers can decrease the reconstruc-
tion error significantly.

residual connection centers v

✗ ✗ 85
✗ ✓ 19.2
✓ ✓ 15.8

Table 9: Ablation study: the average relative rollout error with/without each proposed component
for vascular flow. CNF: using conditional normalizing flows for sequence prediction. In variant 2,
we remove the CNF block and use a transformer only structure for predictions, similar to [11]. Our
model with residual connection and centers have the best performance.

residual connection+centers CNF u v p

GMR-GMUS ✗ ✗ 7.3 10 22
Variaint1 ✗ ✓ 6.1 8.7 9.2
Variaint2 ✓ ✗ 5 8 3

Ours ✓ ✓ 3.49 5.47 1.05

To efficiently incorporate the temporal information, we conceive a temporal conditional normalizing
flows to account for the long-time temporal dependency. The original RealNVP is only a probabilistic
model, and it is not straighforward to include temporal information. To achieve this, we propose an
encoding-decoding transformer structure to incorporate fixed physical parameters and all previous
steps into condition vector c. In this ablation study, we remove the transformer structures and replace
condition vector c by the current step latent vector zt−1 when predicts next step zt. This variant can
be treated as a probabilistic 1-step prediction method. The result in Table 10 shows that the proposed
structure can significantly improve the accuracy compared with such 1-step method, while still easy
to calculate the probability of a coupling layer if we concatenate condition vector at every coupling
layer, as shown in Appendix A.1.

Table 10: Ablation study: effect of attention-based temporal conditional model for Sonic dataset,
NF: normalizing flows only condition on previous step. The proposed model outperforms 1 step
NF, indicating the design of attention based temporal model is necessary for accurate time series
prediction.

u v p T
1-step NF 4.85 16.36 1.09 5.50

Ours 0.37 0.85 0.079 0.01

Our model can benefit from longer time dependencies, since we take all previous steps in the
experiment setting. Also, we can use the moving window to reduce the cost further. We did one
additional experiment of reducing the number of inputs during the inference time, as shown in
Table 11. When reducing the window size from 400 to 150, the degradation in accuracy is not
significant. So the model is also applicable to cases with thousands or even longer steps with the
sliding window.
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Table 11: Ablation study: effect of window length (WL) for Cylinder dataset, reducing the window
length to 150 doesn’t increase error significantly.

WL u v p

150 4.14 80.48 22.99
400 3.8 74 20

Though we only tested RealNVP in the experiment part, other normalizing flows are also feasible here.
In Table 12, we test another normalizing flow model MAF [54], and find the result is comparable to
RealNVP. It indicates that the proposed framework is flexible.

Table 12: Ablation Study: the average rollout error using different normalizing flow models. MAF:
Masked Autoregressive Flow. The performance is comparable with RealNVP.
Dataset-rollout step Cylinder flow-400 Sonic flow-40 Vascular flow-250

Variable u v p u v p T u v p
Ours RealNVP 3.8 74 20 0.37 0.85 0.079 0.01 3.49 5.47 1.05
Ours MAF 3.8 72 19.13 0.33 0.69 0.055 0.02 3.82 5.84 1.16

As a probabilistic model, the proposed PbGMR-GMUS + conditional flow model is trying to fit
such a stochastic process and get various samples with the same physical statistics. To demonstrate
these, we test MGN and GMR-GMUS on the stochastic dataset. In Table 13, we can see that the
performance of the proposed model is better than other learning-based models on all metrics. In
Figure 20, we visualize the mean and variance of velocity from each model, and find the MGN can
not capture the real distribution at all. The result of GMR-GMUS model, though looks reasonable in
statistics, can only produce the same output given the same input condition, which doesn’t reflect the
stochasticity of the last dataset. In Figure 21, we get two samples from GMR-GMUS, and find the
two samples are exactly the same.

Table 13: Criteria of generation quality for the stochastic flow for URANS and different learning-
based models, the proposed model has the best performance.

CRPS (Cu,↓) CRPS (Cv ,↓) FVD (du,↓) FVD (dv ,↓) MFE (eu,↓) MFE (ev ,↓) TE (TKE,↑)
URANS 3.24 2.0 228112 137860 0.31 0.94 0.192

MeshGraphNet 5.06 2.47 1159950 179206 0.82 1.60 0.87
GMR-GMUS 2.57 2.27 4976 3740 0.167 1.96 0.99

Ours 1.28 1.08 1262 397 0.0176 0.176 0.99

Figure 20: Evaluation lines of mean (left) and variance (right) of streamwise velocity u: x-evaluation
lines ( ). Quantities from LES ( ), URANS ( ), MeshGraphNet ( ), GMR-GMUS ( )
and the proposed model ( )

Figure 21: Velocity magnitude at 3 time steps 0, 50, 100 (left to right) from different samples using
GMR-GMUS + transformer for the stochastic dataset. 1st row for sample 1. 2nd row for sample 2.
The deterministic model can only produce the same output while the proposed model can generate
different realizations.
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