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Summary
Recent work has shown that, under certain assumptions, zero-shot reinforcement learn-

ing (RL) methods can generalise to any unseen task in an environment after reward-free pre-
training. Access to Markov states is one such assumption, yet, in many practical applications,
the Markov state is only partially observed via unreliable or incomplete observations. Here, we
explore how the performance of standard zero-shot RL methods degrades when subjected to
partially observability, and show that, as in single-task RL, memory-based architectures are an
effective remedy. We evaluate our memory-based zero-shot RL methods in domains where we
simulate unreliable states by adding noise or dropping them randomly, and in domains where
we simulate incomplete observations by changing the dynamics between training and testing
rewards without communicating the change to the agent. In these settings, our proposals show
improved performance over memory-free baselines, which we pay for with slower, less stable
training dynamics.

Contribution(s)
1. We explore the empirical failure modes state-of-the-art zero-shot RL methods (specifically

forward-backward representations, or FB) given partially observed (noisy) states.
Context: None

2. We present a new architecture called FB with memory (FB-M) which has a memory-based
forward model F , backward model B and policy π. Though we develop our method within
the FB framework, our proposals are fully compatible with other zero-shot RL methods.
Context: Prior zero-shot RL methods, including FB (Touati & Ollivier, 2021) and USF-
based HILP (Borsa et al., 2018; Park et al., 2024b), are memory-free.

3. We show that, in aggregate, FB-M outperforms memory-free FB and HILP, as well as a
naïve observation-stacking baseline, in domains where the states are noisy or randomly
dropped, or where there is a change in dynamics function between training and testing.
Context: None

4. We report better performance when the memory model is a GRU than when it is a trans-
former or S4d model.
Context: This aligns with Morad et al. (2023)’s finding that GRUs were the most perfor-
mant memory model on POPGym, a partially observed single-task RL benchmark.
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Abstract

Recent work has shown that, under certain assumptions, zero-shot reinforcement learn-1
ing (RL) methods can generalise to any unseen task in an environment after reward-free2
pre-training. Access to Markov states is one such assumption, yet, in many real-world3
applications, the Markov state is only partially observable. Here, we explore how the4
performance of standard zero-shot RL methods degrades when subjected to partially5
observability, and show that, as in single-task RL, memory-based architectures are an6
effective remedy. We evaluate our memory-based zero-shot RL methods in domains7
where the states, rewards and a change in dynamics are partially observed, and show8
improved performance over memory-free baselines. Our anonymised code is available9
via: https://anonymous.4open.science/r/rlc2025/.10

1 Introduction11

Large-scale unsupervised pre-training has proven an effective recipe for producing vision (Rombach12
et al., 2022) and language (Brown et al., 2020) models that generalise to unseen tasks. The zero-shot13
reinforcement learning (RL) problem setting (Touati et al., 2023) requires us to produce sequential14
decision-making agents with similar generality. It asks, informally: can we pre-train agents from15
datasets of reward-free trajectories such that they can immediately generalise to any unseen reward16
function at test time? A family of methods called behaviour foundation models (BFMs) (Touati &17
Ollivier, 2021; Jeen et al., 2024; Pirotta et al., 2024) theoretically solve the zero-shot RL problem18
under certain assumptions (Touati & Ollivier, 2021), and empirically return near-optimal policies19
for many unseen goal-reaching and locomotion tasks (Touati et al., 2023).20

These results have assumed access to Markov states that provide all the information the agent re-21
quires to solve a task. Though this is a common assumption in RL, for many interesting problems,22
the Markov state is only partially observed via unreliable or incomplete observations (Kaelbling23
et al., 1998). Observations can be unreliable because of sensor noise or issues with telemetry (Meng24
et al., 2021). Observations can be incomplete because of egocentricity (Tirumala et al., 2024), oc-25
clusions (Heess et al., 2015) or because they do not communicate a change to the environment’s task26
or dynamics context (Hallak et al., 2015).27

How do BFMs fare when subjected to partial observability? That is the primary question this paper28
seeks to answer, and one we address in three parts. First, we expose the mechanisms that cause29
the performance standard BFMs to degrade under partial observability (Section 4.1). Second, we30
repurpose methods that handle partial observability in single-task RL for use in the zero-shot RL31
setting, that is, we add memory models to the BFM framework (Section 4.2, Figure 1). Third,32
we conduct experiments that test how well BFMs augmented with memory models manage partially33
observed states (Section 5.2) and partially observed changes in dynamics (Section 5.3). We conclude34
by discussing limitations and next steps.35
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Figure 1: BFMs with memory. In the case of FB, the forward model F and backward model B condition
on the output of memory models that compress trajectories of observations and actions. According to standard
FB theory, their dot product predicts Mπz (τ0, τ+), the successor measure from initial trajectory τ0 to future
trajectory τ+, from which a Q function can be derived. Figure 8 illustrates memory-free FB for comparison.

2 Related Work36

2.1 Zero-shot RL37

Offline RL An important part of the zero-shot RL problem is that agents must pre-train on static38
datasets (Section 3). This is the realm of offline RL (Lange et al., 2012; Levine et al., 2020), where39
regularisation techniques (Kumar et al., 2020; Kidambi et al., 2020; Fujimoto & Gu, 2021) are40
used to minimise the distribution shift between the offline data and online experience (Kumar et al.,41
2019b). In this work, we only train on high-coverage datasets to isolate the problem of partial42
observability, so do not require such regularisation, but past work has repurposed these for zero-shot43
RL (Jeen et al., 2024). Standard offline RL methods are trained with respect to one downstream44
task, so cannot generalise to new tasks at test time, as specified by the zero-shot RL problem.45

Goal-conditioned RL For goal-reaching tasks, zero-shot goal generalisation can be achieved with46
via goal-conditioned RL (GCRL) (Schaul et al., 2015; Andrychowicz et al., 2017). Here, policies47
are trained to reach any goal state from any other state. Past work has focused on constructing useful48
goal-space encodings, with contrastive (Eysenbach et al., 2022), state-matching (Ma et al., 2022),49
and hierarchical representations (Park et al., 2024a) proving effective. However, GCRL methods50
do not reliably generalise to dense reward functions that cannot be codified by a goal state,1 and so51
cannot be said to solve the general zero-shot RL problem.52

Behaviour foundation models To date, BFMs have shown the best zero-shot RL performance be-53
cause they provide a mechanism for zero-shot generalising to both goal-reaching and dense reward54
functions.2 They build upon successor representations (Dayan, 1993), universal value function ap-55
proximators (Schaul et al., 2015), successor features (Barreto et al., 2017) and successor measures56
(Blier et al., 2021). State-of-the-art methods instantiate these ideas as either universal successor57
features (USFs) (Borsa et al., 2018; Park et al., 2024b) or forward-backward (FB) representations58
(Touati & Ollivier, 2021; Touati et al., 2023; Jeen et al., 2024). No works have yet explored the59
zero-shot RL performance of these methods under partial observability.60

2.2 Partial Observability61

States Most past works assume it is the state that is partially observed. This is usually the result62
of noisy (Meng et al., 2021), occluded (Heess et al., 2015), aliased (Whitehead & Ballard, 1990),63
egocentric (Tirumala et al., 2024) or otherwise unreliable observations. Standard solutions methods64
use histories of observations and actions to compute beliefs over the true state via (approximate)65
Bayesian inference (Cassandra et al., 1994; Kaelbling et al., 1998) or via memory-based architec-66
tures (Schmidhuber, 1990; Bakker, 2001; Hausknecht & Stone, 2015; Ha & Schmidhuber, 2018).67

1Examples include any locomotion task e.g. Walker-run in the DeepMind Control Suite.
2A formal justification of this statement is left for Section 3.
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Dynamics Sometimes, parameters that modulate the underlying dynamics change and are not com-68
municated to the agent via the state. Given sets of training and testing dynamics parameters, gener-69
alisation is a measure of the agent’s average-case performance on the test set (Packer et al., 2018;70
Cobbe et al., 2019). If the agent trains and tests on the same set of dynamics, robustness is a mea-71
sure of the agent’s worst-case performance on this set (Nilim & El Ghaoui, 2005; Morimoto & Doya,72
2005; Mankowitz et al., 2019). Generalisation can be improved via regularisation (Farebrother et al.,73
2018), data augmentation (Tobin et al., 2017; Raileanu et al., 2020; Ball et al., 2021), or dynamics74
context modelling (Seo et al., 2020; Lee et al., 2020). Robustness can be improved with adversarial75
dynamics selection (Rajeswaran et al., 2016; Jiang et al., 2021; Rigter et al., 2023).76

Rewards In some cases, the utility of an action for a task may only be partially reflected in the77
standard one-step reward (Minsky, 1961; Sutton, 1984). Such a situation arises when the reward78
signal is delayed (Arjona-Medina et al., 2019) or is dependent on the entire trajectory (i.e. episodic)79
(Liu et al., 2019). These have traditionally been handled with sophisticated techniques that learn80
surrogate reward functions (Raposo et al., 2021; Arjona-Medina et al., 2019), tune discount factors81
(Fedus et al., 2019), or utilise eligibility traces (Xu et al., 2020), among other methods.82

Each of the above methods were developed to form of partial observability, but memory-based83
architectures are, in principle, general enough to solve all of them (Kaelbling et al., 1998). Indeed,84
Ni et al. (2021) find that a standard, but well-implemented, recurrent policy and critic can outperform85
methods specialised for each setting. Our proposed method (Section 4.2) is heavily informed by this86
finding, and is designed to be agnostic to the specific way in which partial observability arises.87

3 Preliminaries88

POMDPs A partially observable Markov decision process (POMDP) P is defined by89
(S,A,O, R, P,O, µ0, γ), where S is the set of Markov states, A is the set of actions, O is the90
set of observations, and µ0 is the initial state distribution (Åström, 1965; Kaelbling et al., 1998). Let91
st ∈ S denote the Markov state at time t. When action at ∈ A is executed, the state updates via92
the transition function st+1 ∼ P (·|st, at), and the agent receives a scalar reward rt+1 ∼ R(st+1)93
and observation ot+1 ∼ O(·|st+1, at). The observation provides only partial information about94
the underlying Markov state. The agent samples actions from its policy at ∼ π(·|τLt ), where τLt =95
(at−L, ot−L+1, . . . , at−1, ot) is a trajectory of the precedingL observations and actions. We use T L96
to denote the set of all possible trajectories of length L. The policy is optimal in P if it maximises97
the expected discounted future reward i.e. π∗ = argmaxπ E[

∑
t≥0 γ

tR(st+1)|s0, a0, π], where98
E[·|s0, a0, π] denotes an expectation over state-action sequences (st, at)t≥0 starting at (s0, a0) with99
st ∼ P (·|st−1, at−1) and at ∼ π(·|τLt ), and γ ∈ [0, 1] is a discount factor.100

Partially observable zero-shot RL In the standard zero-shot RL problem setting, states are fully101
observed. For pre-training, the agent has access to a static offline dataset of reward-free transitions102
D = {(si, ai, si+1)}|D|

i=1, generated by an unknown behaviour policy. At test time, a task Rtest is103
revealed via a small dataset of reward-labelled states Dlabelled = {(si, Rtest(si))}ki=1 where typically104
k ≤ 10, 000. The agent must return a policy for this task with no further planning or learning.105

In this work, we consider the extended problem setting of partially observable zero-shot RL. Here,106
the agent has access to an offline pre-training dataset of reward-free length-L trajectories, D =107
{τLi }

|D|
i=1, each of which is a sequence of partial observations and actions. As before, a task Rtest is108

revealed at test time, for which the agent must return a policy. The task is specified by a small dataset109
of reward-labelled observation-action trajectories, where the reward is assumed to be a function of110
the final Markov state in the trajectory, Dlabelled = {(τLi , Rtest(s

L
i ))}ki=1.111

Behaviour foundation models We build upon the forward-backward (FB) BFM which predicts112
successor measures (Blier et al., 2021). The successor measure Mπ(s0, a0, ·) over S is the cumu-113
lative discounted time spent in each future state st+1 after starting in state s0, taking action a0, and114
following policy π thereafter. Let ρ be an arbitrary state distribution and Rd be an embedding space.115
FB representations are composed of a forward model F : S × A × Rd → Rd, a backward model116
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B : S → Rd, and set of polices π(s, z)z∈Rd . They are trained such that117

Mπz (s0, a0, X) ≈
∫
X

F (s0, a0, z)
⊤B(s)ρ(ds) ∀ s0 ∈ S, a0 ∈ A, X ⊂ S, z ∈ Rd, (1)

π(s, z) ≈ argmax
a

F (s, a, z)⊤z ∀ (s, a) ∈ S ×A, z ∈ Rd, (2)

where F (s, a, z)⊤z is the Q function (critic) formed by the dot product of forward embeddings with118
a task embedding z. During training, candidate task embeddings are sampled from Z , a prior over119
the embedding space. During evaluation, the test task embeddings are inferred from Dlabelled via:120

ztest ≈ E(s,Rtest(s))∼Dlabelled [Rtest(s)B(s)], (3)

and passed as an argument to the policy.121

4 Zero-Shot RL Under Partial Observability122

In this section, we adapt BFMs for the partially observable zero-shot RL problem. In Section 4.1, we123
explore the ways in which standard BFMs fail in this setting. Then, in Section 4.2, we propose new124
methods that address these failures. We develop our methods in the context of FB, but our proposals125
are fully compatible with USF-based BFMs. We leave their derivation to Appendix D for brevity.126

4.1 Failure Mode of Existing Methods127

FB solves the zero-shot RL problem in two stages. First, a generalist policy is pre-trained to max-128
imise FB’s Q functions for all tasks sampled from the prior Z (Equation 1). Second, the test task is129
inferred from reward-labelled states (Equation 3) and passed to the policy. The first stage relies on130
an accurate approximation of F (s, a, z) i.e. the long-run dynamics of the environment subject to a131
policy attempting to solve task z. The second stage relies on an accurate approximation of B(s) i.e.132
the task associated with reaching state s. If the states in F are replaced by observations that only133
partially characterise the underlying state, then the BFM will struggle to predict the long-run dynam-134
ics, Q functions derived from F will be inaccurate, and the policy will not learn optimal sequences135
of actions. We call this failure mode state misidentification (Figure 2, middle). Likewise, if the136
states in B are replaced by partial observations, and the reward function depends on the underlying137
state (Section 3), then the BFM cannot reliably find the task z associated with the set of states that138
maximise the reward function. We call this failure mode task misidentification (Figure 2, left). The139
failure modes occur together when both models receive partial observations (Figure 2, right).140

4.2 Addressing Partial Observability with Memory Models141

In principle, all forms of partial observability can be resolved with memory models that compress142
trajectories into a hidden state that approximates the underlying Markov state (see Section 2 of Ni143
et al. (2021)). A memory model is a function f that outputs a new hidden state ht given a past144
hidden state ht−L−1 and trajectory τLt :145

ht = f(τLt , ht−L−1). (4)

Note that by setting L = 0, we recover the standard one-step formulation of a recurrent neural146
network (RNN) (Elman, 1990; Hochreiter & Schmidhuber, 1997; Cho, 2014). RNNs are common147
choice in past works (Wierstra & Schmidhuber, 2007; Zhang et al., 2016; Schmidhuber, 2019), but148
more recent works explore structured state space sequence models (S4) (Deng et al., 2023; Lu et al.,149
2024) and transformers (Parisotto et al., 2020; Grigsby et al., 2023; 2024). In model-based partially150
observable RL, dynamics misidentification is resolved with memory-based dynamics models, and151
task misidentification is resolved with a memory-based reward models (Hafner et al., 2019a;b; 2020;152
2023). In model-free partially observable RL, the agent does not disentangle the dynamics from the153
task, so task and dynamics misidentification are resolved together by memory-based critics and154
policies (Ni et al., 2021; Meng et al., 2021).155
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Figure 2: The failure modes of BFMs under partial observability. FB’s average (IQM) all-task return
on Walker when observations are passed to its respective components. Observations are created by adding
Gaussian noise to the underlying states. (Left) Observations are passed as input to B causing FB to misidentify
the task. (Middle) Observations are passed as input to F and π causing FB to misidentify the dynamics. (Right)
Observations are passed as input to F , π and B causing FB to misidentify both the task and dynamics.

4.3 Behaviour Foundation Models with Memory156

We now adapt methods from single-task partially observable RL for BFMs. Standard FB operates157
on states (Equation 1) that are inaccessible under partial observability, so we amend its formulation158
to operate on trajectories from which the underlying Markov state can be inferred with a memory159
model. The successor measure Mπ(τL0 , ·) over T L is the cumulative discounted time spent in each160
future trajectory τLt+1 starting from trajectory τL0 , and following policy π thereafter.3 The architec-161
tures of the forward model F , backward model B, and policy π are unchanged, but now condition162
on the hidden states of memory models, rather than on states and actions. They are trained such that163

Mπz (τL0 , X) ≈
∫
X

F (fF (τ
L
0 ), z)

⊤B(fB(τ
L))ρ(dτL) ∀ τL0 ∈ T L, X ⊂ T L, z ∈ Rd,

π(fπ(τ
L), z) ≈ argmax

a
F (fF (τ

L), z)⊤z ∀ τL ∈ T L, z ∈ Rd.

where fF , fB , fπ are separate memory models for F ,B, and π respectively, and the previous hidden164
state ht−L−1 is dropped as an argument for brevity (c.f. Equation 4). At test time, task embeddings165
are found via Equation 3, but with reward-labelled trajectories rather than reward-labelled states:166

ztest ≈ E(τL,R(s))∼Dlabelled [Rtest(s)B(fB(τ
L)]. (5)

We refer to the resulting model as FB with memory (FB-M). The full architecture is summarised167
in Figure 1, and implementation details are provided in Appendix E. Also note that our general168
proposal is BFM-agnostic; we derive the USF-based BFM formulation in Appendix D.169

5 Experiments170

5.1 Setup171

We evaluate our proposals in two partially observed settings: 1) partially observed states (i.e. stan-172
dard POMDPs), and partially observed changes in dynamics (i.e. generalisation (Packer et al.,173
2018)). The standard benchmarks for each of these settings only require the agent to solve one174
task, and so do not allow us to evaluate zero-shot RL capabilities out-of-the-box. As a result, we175
choose to amend the standard zero-shot RL benchmark, ExORL (Yarats et al., 2022), such that it176
tests zero-shot RL with partially observed states and dynamics changes.177

3Note that the forward model and backward model can in principle have different context lengths. This is helpful if, for
example, we know that the reward, as inferred via the backward model, depends on a shorter history length than would be
required to infer the full Markov state via the forward model.
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Partially observed states We amend two of Meng et al. (2021)’s partially observed state environ-178
ments for the zero-shot RL setting: 1) noisy states, where isotropic zero-mean Gaussian noise with179
variance σnoise is added to the Markov state, and 2) flickering states, where states are dropped180
(zeroed) with probability pflick.. We set σnoise = 0.2 and pflick. = 0.2 following a hyperparameter181
study (Appendix B). We evaluate on all tasks in the Walker, Cheetah and Quadruped environments.182

Partially observed changes in dynamics We amend Packer et al. (2018)’s dynamics generalisation183
tests for the zero-shot RL setting. Environment dynamics are modulated by scaling the mass and184
damping coefficients in the MuJoCu backend (Todorov et al., 2012). The agents are trained on185
datasets collected from environment instances with coefficients scaled to {0.5×, 1.5×} their usual186
values, then evaluated on environment instances with coefficients scaled by {1.0×, 2.0×}. Scaling187
by 1.0× tests the agent’s ability to generalise via interpolation within the range seen during training,188
and scaling by 2.0× tests the agent’s ability to generalise via extrapolation (Packer et al., 2018).189

Baselines We use two state-of-the-art zero-shot RL methods as baselines: FB (Touati & Ollivier,190
2021) and HILP (Park et al., 2024b). We additionally implement a naïve baseline called FB-stack191
whose input is a stack of the 4 most recent observations and actions, following Mnih et al. (2015)’s192
canonical protocol. Finally, we use FB trained on the underlying MDP as an oracle policy to give us193
an upper-bound on expected performance.194

Datasets We train all methods on datasets collected with an RND behaviour policy (Borsa et al.,195
2018) as these are the datasets that elicit best performance on ExORL. The RND datasets used in196
the partially observed states experiments are taken directly from ExORL. For the partially observed197
change in dynamics and partially observed rewards experiments, we collect these datasets ourselves198
by running RND in each of the environments for 5 million learning steps. Our implementation and199
training protocol exactly match ExORL’s.200

Memory model We use a GRU as our memory model (Cho, 2014). GRUs are the most performant201
memory model on POPGym (Morad et al., 2023) which tests partially observed single-task RL202
methods. We find these results hold for partially observed zero-shot RL too, as discussed in Section203
6.1. We set the forward model’s context length LF = 32 and the backward model’s context length204
LB = 8. See Appendix A for a hyperparameter study and further discussion.205

5.2 Partially Observed States206

Figure 3 compares the zero-shot performance of all algorithms our noisy and flickering vari-207
ants of the standard ExORL environments. Note that these results are aggregated across all tasks208
in each environment, and 5 random seeds. The performance of memory-free FB is always far be-209
low that of an oracle policy trained on the underlying MDP (dotted line), reaching less than 25%210
of the oracle value in 5 out of 6 cases, and HILP performs similarly. Augmenting FB by stacking211
recent observations mitigates the partial observability problem to some extent in each case, but our212
approach using memory models (FB-M) always outperforms this baseline. The benefit of FB-M is213
most pronounced for the Quadruped environment (where it achieves close to oracle performance),214
and generally larger for the flickering mode of partial observability than for the noisy mode.215

5.3 Partially Observed Changes in Dynamics216

Next, we consider the problem of partially observed dynamics changes in both the interpolation and217
extrapolation regimes. The trends of results in this context, shown in Figure 4, are somewhat more218
complex. Firstly, we find that the algorithms achieve lower performance than oracle policies given219
direct access to the underlying MDP, and struggle more with adapting to dynamics in the extrapola-220
tion regime (with the exception of FB-M on Cheetah), matching expectations. A second consistent221
trend is that HILP is far less performant than FB. More importantly, our FB-M proposal boosts or222
maintains the performance of memory-free FB in all cases, bringing a greater advantage in the more223
challenging dynamics extrapolation regime. While the same can be said for the observation stacking224
baseline in the Walker environment, this crucially does not hold for Cheetah and Quadruped, where225
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Figure 3: Aggregate zero-shot task performance on ExORL with partially observed states. IQM of task
scores across all tasks on noisy and flickering variants of Walker, Cheetah and Quadruped, normalised
against the performance of FB in the fully observed environment. 5 random seeds.

it actually degrades the performance relative to memory-free FB. Overall, these results suggest that226
FB-M brings a far more consistent benefit under changed dynamics than frame stacking, at the very227
least matching the memory-free performance, and often substantially improving it.228

Figure 4: Aggregate zero-shot task performance on ExORL with changed dynamics at test time. IQM of
task scores across all tasks when trained on dynamics where mass and damping coefficients are scaled to 0.5×,
1.5× their usual values and evaled on 1.0×, 2.0× their usual values. To solve the test dynamics with 1.0×
scaling the agent must interpolate within the training set; to solve the test dynamics with 2.0× scaling the agent
must extrapolate from the training set.

6 Discussion and Limitations229

6.1 Memory Model Choice230

Our method uses GRUs as memory models, but much recent work has shown that transformers231
(Vaswani et al., 2017) and structured state-space models (Gu et al., 2021) outperform GRUs in232
natural language processing (Brown et al., 2020), computer vision (Dosovitskiy et al., 2020), and233
model-based RL (Deng et al., 2023). In this section, we explore whether these findings hold for234
the zero-shot RL setting. We compare FB-M with GRU memory models to FB-M with transformer235
and diagonalised S4 (S4d) memory models (Gu et al., 2022). We follow (Morad et al., 2023) in236
restricting each model to a fixed hidden state size, rather than a fixed parameter count, to ensure a237
fair comparision. Concretely, we allow each model a hidden state size of 322 = 1024 dimensions.238
Full implementation details are provided in Appendix E. We evaluate each method in the three239
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variants of Walker flickering used in Section 4.1 i.e. where only the inputs to F and πz are240
observations, only inputs to B are observations, and where inputs to all models are observations.241

Our results are reported in Figure 5. We find that the performance of FB-M is reduced in all cases242
when a transformer or S4 memory model is used instead of a GRU. This corroborates Morad et al.243
(2023)’s findings that the GRU is the most performant memory model for single-task partially ob-244
served RL. Perhaps most crucially, we find that training collapses when both F and B are non-GRU245
memory models, despite non-GRU memory models performing reasonably when added to only F or246
B, suggesting that the combined representation M(τL, τL+) ≈ F (fF (τ

L))⊤B(fB(τ
L
+)) is degener-247

ate. Better understanding this failure mode is important future work.248

Figure 5: Aggregate zero-shot task performance of FB-M with different memory models. IQM of task
scores across all tasks on Walker flickering. (Left) Observations are passed only to a memory-based
backward model; the forward model and policy are memory-free. (Middle) Observations are passed only to the
forward model and policy; the backward model is memory-free. (Right) Observations are passed to all models.

6.2 Datasets249

As outlined in Section 5.1, we train all methods on datasets pre-collected with RND (Borsa et al.,250
2018) which is a highly exploratory algorithm designed for maximising data heterogeneity. How-251
ever, deploying such an algorithm in any real setting may be costly, time-consuming or dangerous.252
As a result, our proposals are more likely to be trained on real-world datasets that are smaller and253
more homogeneous. It is not clear how our specific proposals will interact with such datasets. If,254
for example, the dataset only represents parts of the state space from which the dynamics cannot be255
well-inferred, like a robot with limited freedom of movement, then we would expect our proposals256
to struggle. Indeed, with poor coverage of the state-action space, we would expect to see the OOD257
pathologies seen in the single-task offline RL setting (Kumar et al., 2019a; Levine et al., 2020). That258
said, the proposals of (Jeen et al., 2024) for conducting zero-shot RL from less diverse datasets could259
be integrated into our proposals easily, and may help.260

7 Conclusion261

In this paper, we explored how the performance of BFMs degrades when subjected to certain types of262
partial observability. We introduce memory-based BFMs that condition F , B and πz on trajectories263
of observation-action pairs, and show they go some way to remedying state and task misidentifi-264
cation. We evaluated our proposals on a suite of partially observed zero-shot RL problems, where265
the observations passed to the agent are noisy, dropped randomly or do not communicate a change266
in the underlying dynamics, and showed improved performance over memory-free baselines. We267
found the GRU to be the most performant memory model, and showed that transformers and s4268
memory models cannot be trained stably at our scale. We believe our proposals represent a further269
step towards the real-world deployment of zero-shot RL methods.270
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A Model Hyperparameters271

A.1 Context Lengths272

The context lengthL of both the F/πz andB is an important hyperparameter. When adding memory273
to actors or critics, it is standard practice to parallelise training across batched trajectories of fixed L274
(zero-padded for all t < L), yet condition the policy on the entire episode history during evaluation275
with recurrent hidden states. If L is chosen to be less than the maximum episode length, as is often276
required with limited compute, a shift between the training and evaluation distributions is inevitable.277
Though this does not tend to harm performance significantly (Hausknecht & Stone, 2015), the aim278
is generally to maximise L subject to available compute. The Markov states of different POMDPs279
will require different L, but longer L increasing training time and risks decreased training stability.280
In Figure 6 we sweep across L ∈ {2, 4, 8, 16, 32} for both F/πz and B. In general, we see small281
increases in performance for increased context length, and choose L = 32 for our main experiments.282

Figure 6: Hyperparameter sweep over context length L. We evaluate the performance of FB-M with GRU
memory model on Walker noisy ((a) and (c) and Walker flickering ((b) and (d)). When we sweep over
the forward model’s context length, we pass states to the backward model and keep it memory-free; when we
sweep over the backward model’s context length we pass states to the forward model and policy and keep them
memory-free.

283

B POMDP Hyperparameters284

The noisy and flickering amendments to standard ExORL environments (Section 5) have285
associated hyperparameters σ and pf . Hyperparameter σ is the variance of the 0-mean Gaussian286
from which noise is sampled before being added to the state, and pf is the probability that state s287
is dropped (zeroed) at time t. In Figure 7 we sweep across three valued of each in {0.05, 0.1, 0.2}.288
From these findings we set σ = 0.2 and pf = 0.2 in the main experiments289
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Figure 7: POMDP hyperparameter sweep. We evaluate the performance of standard FB on Walker when the
states are noised according to σ ∈ {0.05, 0.1, 0.2} and dropped according to pf ∈ {0.05, 0.1, 0.2}.
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C Experimental Details533

C.1 ExORL534

We consider 3 environments (three locomotion and one goal-directed) from the ExORL benchmark535
(Yarats et al., 2022) which is built atop the DeepMind Control Suite (Tassa et al., 2018). Environ-536
ments are visualised here: https://www.youtube.com/watch?v=rAai4QzcYbs. The537
domains are summarised in Table 1.538

Walker A two-legged robot required to perform locomotion starting from bent-kneed position.539
The observation and action spaces are 24 and 6-dimensional respectively, consisting of joint torques540
and positions. ExORL provides 4 tasks stand, walk, run and flip. The reward function541
for stand motivates straightened legs and an upright torso; walk and run are supersets of stand542
including reward for small and large degrees of forward velocity; and flip motivates angular543
velocity of the torso after standing. Rewards are dense.544

Quadruped A four-legged robot required to perform locomotion inside a 3D maze. The obser-545
vation and action spaces are 84 and 12-dimensional respectively, consisting of joint torques and546
positions. We evaluate on 4 tasks stand, run, walk and jump. The reward function for547
stand motivates a minimum torso height and straightened legs; walk and run are supersets of548
stand including reward for small and large degrees of forward velocity; and jump adds a term549
motivating vertical displacement to stand. Rewards are dense.550

Cheetah A running two-legged robot. The observation and action spaces are 17 and 6-dimensional551
respectively, consisting of positions of robot joints. We evaluate on 4 tasks: walk, walk552
backward, run and run backward. Rewards are linearly proportional either a forward or553
backward velocity–2 m/s for walk and 10 m/s for run.554

C.2 Evaluation Protocol555

We evaluate the cumulative reward achieved by all methods across 5 seeds. We report task scores as556
per the best practice recommendations of (Agarwal et al., 2021). Concretely, we run each algorithm557
for 500k learning steps (1m for ExORL), evaluating task scores at checkpoints of 20,000 steps. At558
each checkpoint, we perform 10 rollouts, record the score of each, and find the interquartile mean559
(IQM). We average across seeds at each checkpoint. We extract task scores from the learning step for560
which the all-task IQM is maximised across seeds. Results are reported with their associated stan-561
dard deviation. Aggregation across tasks, domains and datasets is always performed by evaluating562
the IQM.563

C.3 Computational Resources564

We train our models on NVIDIA A100 GPUs. One run of FB, FB-stack and HILP on one domain565
(for all tasks) takes approximately 6 hours on one GPU. One run of the FB-M on one domain (for566

Table 1: ExORL domain summary. Dimensionality refers to the relative size of state and action spaces.
Type is the task categorisation, either locomotion (satisfy a prescribed behaviour until the episode ends) or
goal-reaching (achieve a specific task to terminate the episode). Reward is the frequency with which non-zero
rewards are provided, where dense refers to non-zero rewards at every timestep and sparse refers to non-zero
rewards only at positions close to the goal. Green and red colours reflect the relative difficulty of these settings.

Environment Dimensionality Type Reward

Walker Low Locomotion Dense
Quadruped High Locomotion Dense
Cheetah Low Locomotion Dense
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all tasks) on one GPU in approximately 20 hours. As a result, our core experiments on the ExORL567
benchmark used approximately 65 GPU days of compute.568

D Universal Successor Features with Memory569

USFs require access to a feature map φ : S 7→ Rd that maps states into an embedding space in570
which the reward is assumed to be linear i.e. R(s) = φ(s)⊤z with weights z ∈ Rd representing a571
task (Barreto et al., 2017; Borsa et al., 2018). The USFs ψ : S × A × Rd → Rd are defined as the572
discounted sum of future features subject to a task-conditioned policy πz , and are trained such that573

ψ(s0, a0, z) = E

∑
t≥0

γtφ(st+1)|s0, a0, πz

 ∀ s0 ∈ S, a0 ∈ A, z ∈ Rd (6)

π(s, z) ≈ argmax
a

ψ(s, a, z)⊤z, ∀ s ∈ S, a ∈ A, z ∈ Rd. (7)

During training candidate task weights are sampled from Z; during evaluation, the test task weights574
are found by regressing labelled states onto the features:575

ztest ≈ argmin
z

Es∼Dtest [(Rtest(s)− φ(s)⊤z)2], (8)

before being passed to the policy. The features can be learned with Hilbert representations (Park576
et al., 2024b), laplacian eigenfunctions, or contrastive methods (Touati et al., 2023).577

We define memory-based USFs as the discounted sum of future features extracted from the memory578
model’s hidden state, subject to a memory-based policy πz(fπ(τL):579

ψ(τL0 , z) = E

∑
t≥0

γtφ(fψ(τ
L
t+1)) | τL0 , πz

 ∀ τL0 ∈ T , z ∈ Rd (9)

π(fπ(τ
L), z) ≈ argmax

a
ψ(fψ(τ

L), z)⊤z ∀ τL ∈ T , z ∈ Rd, (10)

where fψ and fπ are seperate memory models for ψ and π, and the previous hidden state ht−L−1 is580
dropped as an argument for brevity (c.f. Equation 4). At test time, task embeddings are found via581
Equation 8, but this time with reward-labelled trajectories rather than reward-labelled states:582

ztest ≈ argmin
z

E(τL,R(s))∼Dlabelled [(Rtest(s)− φ(fψ(τ
L)⊤z)2], (11)

before being passed to the policy.583

E Implementation Details584

E.1 FB-M585

Memory Models fF (τL), fB(τL) and fπ(τL) FB-M has separate memory models for the forward586
model fF , backward model fB and policy fπ following the findings of (Ni et al., 2021), but their587
implementations are identical. Trajectories of observation-action pairs are preprocessed by one-588
layer feedforward MLPs that embed their inputs into a 512-dimensional space. The memory model589
is a GRU whose hidden state is initialised as zeros and updated sequentially by processing each590
embedding in the trajectory. For the experiments in Section 6.1 we additionally use transformer591
Vaswani et al. (2017) and s4 memory models Gu et al. (2021). Our transformer uses FlashAttention592
(Dao et al., 2022) for faster inference, and we use diagonalised s4 (s4d) (Gu et al., 2022) rather than593
standard s4 because of its improved empirical performance on sequence modelling tasks.594

Forward Model F (fF (τL), z) The forward model takes the final hidden state from fF and con-595
catenates it with a preprocessed embedding of the most recent observation-task pair (o, z), following596
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the standard FB convention Touati & Ollivier (2021). This vector is passed through a final feedfor-597
ward MLP F which outputs a d-dimensional embedding vector.598

Backward Model B(fB(τ
L)) The backward model takes the final hidden state from fB passed it599

through a two-layer feedforward MLP that outputs a d-dimensional embedding vector.600

Actor π(fπ(τL), z) The actor takes the final hidden state from fπ and concatenates it with a601
preprocessed embedding of the most recent observation-task pair (o, z), following the standard FB602
convention Touati & Ollivier (2021) This vector is passed through a final feedforward MLP which603
outputs an a-dimensional vector, where a is the action-space dimensionality. A Tanh activation is604
used on the last layer to normalise their scale. As per (Fujimoto et al., 2019)’s recommendations,605
the policy is smoothed by adding Gaussian noise σ to the actions during training.606

E.2 FB and HILP607

FB and HILP follow the implementations by (Park et al., 2024b) which follow (Touati et al., 2023),608
other than the batch size which we reduce from 1024 to 512 to reduce the computational expense of609
each run without limiting performance as per (Jeen et al., 2024). Hyperparameters are reported in610
Table 2. An illustration of a standard FP architecture is provided in Figure 8, for comparison with611
the FP with memory architecture in Figure 1.612

Forward Model F (ot, at, z) / USF ψ(ot, at, z) Observation-action pairs (o, a) and observation-613
task pairs (o, z) are preprocessed and concatenated before being passed through a final feedforward614
MLP F / ψ which outputs a d-dimensional embedding vector.615

Backward Model B(ot) / Feature Embedder φ(ot) Observations are preprocessed then passed616
to the backward model B / feature embedder φ which is a two-layer feedforward MLP that outputs617
a d-dimensional embedding vector.618

Actor π(ot, z) Observations (ot) and observation-task pairs (ot, z) are preprocessed by one-619
layer and concatenated before being passed through a final feedforward MLP which outputs a a-620
dimensional vector, where a is the action-space dimensionality. A Tanh activation is used on the621
last layer to normalise their scale. As per (Fujimoto et al., 2019)’s recommendations, the policy is622
smoothed by adding Gaussian noise σ to the actions during training.623

Misc. Layer normalisation (Ba et al., 2016) and Tanh activations are used in the first layer of all624
MLPs to standardise the inputs.625

E.2.1 z Sampling626

BFMs require a method for sampling the task vector z at each learning step. (Touati et al., 2023)627
employ a mix of two methods, which we replicate:628

1. Uniform sampling of z on the hypersphere surface of radius
√
d around the origin of Rd,629

2. Biased sampling of z by passing states s ∼ D through the backward model z = B(s). This also630
yields vectors on the hypersphere surface due to the L2 normalisation described above, but the631
distribution is non-uniform.632

We sample z 50:50 from these methods at each learning step.633

E.3 Code References634

This work was enabled by: Python (Sanner et al., 1999), NumPy (Harris et al., 2020), PyTorch635
(Paszke et al., 2017), Pandas (McKinney et al., 2011) and Matplotlib (Hunter, 2007).636
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Table 2: Hyperparameters for all BFMs.

Hyperparameter Value

Latent dimension d 50
F / ψ dimensions (1024, 1024)
B dimensions (512, 512)
Preprocessor dimensions (512, 512)
Transformer heads 4
Transformer / S4d model dimension 32
GRU dimensions (512, 512)
Context length L 32 (Sections 5.2 and 5.3), 64 (Section ??)
Frame stacking (FB & HILP) 4
Std. deviation for policy smoothing σ 0.2
Truncation level for policy smoothing 0.3
Learning steps 1,000,000 (ExORL), 500,000 (POPGym)
Batch size 512
Optimiser Adam (Kingma & Ba, 2014)
Learning rate 0.0001
Discount γ 0.98
Activations (unless otherwise stated) ReLU
Target network Polyak smoothing coefficient 0.01
z-inference labels 10,000
z mixing ratio 0.5
HILP representation discount factor 0.98
HILP representation expectile 0.5
HILP representation target smoothing coefficient 0.005
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Figure 8: FB without memory. FPs are optimised in a standard actor critic setup (Konda & Tsitsiklis, 1999).
The policy π selects an action at conditioned on a the current observation ot, and the task vector z. The Q
function formed by the USF ψ evaluates the action at given the current observation ot and task z.

F Extended Results637

We report a full breakdown of our results summarised in Sections 5.2 and 5.3. Table 3 reports results638
on our partially observed states experiments and Table 4 reports results on our changed dynamics639
experiments.640
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Table 3: Full results on partially observed states (5 seeds). For each dataset-domain pair, we report the score
at the step for which the all-task IQM is maximised when averaging across 5 seeds ± the standard deviation.

FB HILP FB-stack FB-M (ours) MDP

Cheetah

flickering

All tasks 121± 19 121± 19 121± 29 173± 51 434± 44

Run 31± 13 31± 13 28± 18 75± 37 164± 34

Run backward 8± 5 8± 5 35± 12 55± 15 174± 39

Walk 184± 66 184± 66 206± 114 306± 175 663± 58

Walk backward 61± 21 61± 21 198± 75 278± 70 743± 78

noisy

All tasks 102± 59 102± 59 129± 29 150± 59 434± 44

Run 28± 30 28± 30 38± 13 34± 17 164± 34

Run backward 24± 23 24± 23 45± 15 57± 28 174± 39

Walk 228± 98 228± 98 207± 50 199± 88 663± 58

Walk backward 133± 99 133± 99 238± 78 283± 142 743± 78

Quadruped

flickering

All tasks 140± 75 140± 75 383± 133 673± 19 723± 10

Jump 163± 142 163± 142 419± 124 771± 29 756± 8

Run 95± 70 95± 70 315± 127 478± 14 507± 12

Stand 98± 115 98± 115 511± 209 950± 14 965± 8

Walk 181± 81 181± 81 323± 106 487± 51 743± 12

noisy

All tasks 117± 68 117± 68 580± 124 711± 21 723± 10

Jump 175± 92 175± 92 574± 126 712± 20 756± 8

Run 63± 151 63± 151 447± 93 512± 31 507± 12

Stand 65± 130 65± 130 841± 198 899± 31 965± 8

Walk 35± 65 35± 65 428± 107 721± 43 743± 12

Walker

flickering

All tasks 82± 10 82± 10 577± 41 511± 85 628± 10

Flip 57± 21 57± 21 500± 67 400± 79 602± 12

Run 34± 6 34± 6 278± 24 237± 34 379± 7

Stand 204± 35 204± 35 792± 136 761± 77 864± 17

Walk 52± 9 52± 9 771± 58 646± 204 747± 18

noisy

All tasks 309± 78 309± 78 475± 76 434± 23 628± 10

Flip 165± 72 165± 72 378± 77 361± 45 602± 12

Run 143± 56 143± 56 184± 49 183± 17 379± 7

Stand 509± 137 509± 137 675± 81 731± 85 864± 17

Walk 387± 96 387± 96 642± 125 486± 42 747± 18
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Table 4: Full results on ExORL changed dynamics experiments (5 seeds). For each dataset-domain pair,
we report the score at the step for which the all-task IQM is maximised when averaging across 5 seeds ± the
standard deviation.

FB HILP FB-stack FB-M (ours) MDP

1x

Cheetah

All tasks 476± 77 67± 37 156± 55 453± 120 434± 44

Run 167± 59 17± 11 59± 18 150± 68 164± 34

Run backward 166± 21 6± 21 36± 38 192± 66 174± 39

Walk 816± 280 84± 43 312± 52 483± 242 663± 58

Walk backward 777± 71 160± 83 186± 226 956± 167 743± 78

Quadruped

All tasks 551± 82 186± 55 394± 76 566± 24 723± 10

Jump 566± 128 291± 188 412± 69 787± 22 756± 8

Run 360± 120 51± 27 251± 54 496± 17 507± 12

Stand 842± 79 171± 186 521± 82 964± 9 965± 8

Walk 434± 12 81± 68 358± 111 803± 84 743± 12

Walker

All tasks 640± 4 391± 107 603± 8 635± 19 640± 10

Flip 452± 20 340± 89 459± 15 452± 44 602± 12

Run 387± 22 161± 47 236± 23 298± 16 379± 7

Stand 876± 22 752± 290 856± 4 890± 30 864± 17

Walk 845± 35 316± 139 853± 28 886± 40 747± 18

2x

Cheetah

All tasks 369± 140 62± 33 128± 83 586± 144 602± 10

Run 146± 92 16± 12 18± 23 223± 73 333± 15

Run backward 225± 83 1± 0 70± 75 320± 128 196± 10

Walk 366± 400 86± 90 59± 45 814± 121 844± 21

Walk backward 743± 230 144± 50 312± 275 976± 292 805± 18

Quadruped

All tasks 333± 61 120± 47 263± 47 704± 31 731± 11

Jump 309± 46 131± 81 272± 43 714± 79 749± 8

Run 212± 42 42± 41 170± 33 474± 7 467± 20

Stand 510± 121 156± 191 334± 39 957± 22 931± 10

Walk 268± 60 62± 52 274± 78 723± 136 537± 15

Walker

All tasks 278± 44 146± 74 463± 15 478± 19 500± 12

Flip 100± 15 107± 29 320± 10 336± 86 351± 14

Run 200± 27 81± 31 283± 19 297± 42 453± 120

Stand 346± 141 290± 190 624± 34 691± 64 340± 11

Walk 465± 58 98± 74 632± 57 574± 77 601± 18
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