
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

CIRCUIT INSIGHTS: TOWARDS INTERPRETABILITY
BEYOND ACTIVATIONS

Anonymous authors
Paper under double-blind review

ABSTRACT

The fields of explainable AI and mechanistic interpretability aim to uncover the
internal structure of neural networks, with circuit discovery as a central tool for
understanding model computations. Existing approaches, however, rely on man-
ual inspection and remain limited to toy tasks. Automated interpretability offers
scalability by analyzing isolated features and their activations, but it often misses
interactions between features and depends strongly on external LLMs and dataset
quality. Transcoders have recently made it possible to separate feature attributions
into input-dependent and input-invariant components, providing a foundation for
more systematic circuit analysis. Building on this, we propose WeightLens and
CircuitLens, two complementary methods that go beyond activation-based analy-
sis. WeightLens interprets features directly from their learned weights, removing
the need for explainer models or datasets while matching or exceeding the perfor-
mance of existing methods on context-independent features. CircuitLens captures
how feature activations arise from interactions between components, revealing
circuit-level dynamics that activation-only approaches cannot identify. Together,
these methods increase interpretability robustness and enhance scalable mecha-
nistic analysis of circuits while maintaining efficiency and quality.

1 INTRODUCTION

Large language models (LLMs) have seen rapid adoption in recent years, including in sensitive
domains such as medical analysis (Singhal et al., 2023). Despite their remarkable capabilities, we
still understand very little about their internal mechanisms, which is crucial for safe and reliable
deployment (Olah et al., 2018; Sharkey et al., 2025; Lapuschkin et al., 2019). Several methods
have emerged in the fields of mechanistic interpretability and explainable AI to understand how
models encode and utilize mechanisms that influence outputs (Olah et al., 2020; Achtibat et al.,
2024; Dreyer et al., 2025). Much of the existing work focuses on circuit discovery, identifying
subgraphs responsible for specific tasks (Conmy et al., 2023). However, these studies are mostly
limited to toy tasks, and understanding the roles of individual neurons and attention heads still
requires extensive manual analysis (Elhage et al., 2022; Wang et al., 2022; Bricken et al., 2023).

Automated interpretability methods have been proposed to address these limitations. Initial work,
such as Bills et al. (2023), leveraged larger LLMs to analyze activation patterns of MLP neurons
and generate natural language descriptions. Although promising, these approaches face the funda-
mental challenge of polysemanticity of MLP neurons, making them inherently difficult to interpret.
This bottleneck prompted the development of sparse autoencoders (SAEs), which decompose acti-
vations into more monosemantic features (Bricken et al., 2023), advancing scalable interpretability
pipelines (Templeton et al., 2024; Paulo et al., 2025a). More recently, Transcoders were introduced
by (Dunefsky et al., 2024; Ge et al., 2024) as another alternative approach for extracting sparse fea-
tures. Unlike SAEs, which reconstruct activations, Transcoders sparsely approximate entire MLP
layers while maintaining a clear separation between input-dependent and weight-dependent contri-
butions. This architecture enables efficient circuit discovery and provides direct attributions to other
features, attention heads and vocabulary.

Despite these advances in sparse feature space construction, automated interpretability remains
heavily dependent on explainer LLMs, which shifts the black box problem to another black box
LLM, introducing notable safety risks which may produce unfaithful or unreliable explanations

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

(Lermen et al., 2025). Its effectiveness is influenced by the prompt, fine-tuning strategy, and the
dataset used for generating explanations. Furthermore, sparse features can still be challenging to in-
terpret (Puri et al., 2025), as they may activate on highly specific patterns that are not easily captured
by analyzing activations alone, or may be polysemantic.

In this work, we focus on automated interpretability grounded in model weights and circuit structure,
making the following contributions:

• We introduce WeightLens, a framework for interpreting models using only their weights and
the weights of their Transcoders, reducing dependence on both the underlying dataset and
explainer LLMs. Descriptions obtained via WeightLens match or exceed activation-based
descriptions for context-independent features.

• We introduce CircuitLens, a framework for circuit-based analysis of feature activations, ex-
tending interpretability to context-dependent features by (i) isolating input patterns trigger-
ing feature activations and (ii) identifying which model outputs are influenced by specific
features.

Our approach uncovers complex patterns invisible to activation-only methods, addresses the large
dataset requirements and explainer LLM dependence of autointerpretability pipelines Choi et al.
(2024); Puri et al. (2025). Additionally, it handles polysemanticity through circuit-based clustering
and combining their interpretations into unified feature descriptions. Code for both the frameworks
will be available on Github with the camera ready version.

2 RELATED WORK

Recently, a series of works has focused on building automated interpretability pipelines for language
models Choi et al. (2024); Paulo et al. (2025a); Puri et al. (2025); Gur-Arieh et al. (2025). Most
approaches follow the framework introduced by Bills et al. (2023), which consists of running a large
dataset through a model, collecting maximally activating samples for each neuron or SAE feature,
applying various sampling strategies, and then passing the samples to a larger LLM to generate
natural language descriptions.

Several studies have refined this pipeline by focusing on prompt construction and description eval-
uation. For instance, Choi et al. (2024), and Puri et al. (2025) examined how factors such as the
number of samples and the presentation of token activations affect description quality. Choi et al.
(2024) further fine-tuned an explainer model specifically to produce descriptions conditioned on a
feature’s activations. Beyond input-based evidence, Gur-Arieh et al. (2025) incorporated output-side
information, analyzing not only what inputs trigger a feature but also how that feature influences the
model’s logits.

These pipelines have been applied to different representational units. Early work focused on MLP
neurons (Bills et al., 2023; Choi et al., 2024), while later studies extended them to SAE features,
which are generally more interpretable and often monosemantic (Templeton et al., 2024; Gur-Arieh
et al., 2025; Paulo et al., 2025a; Puri et al., 2025).

As an alternative to SAEs, Dunefsky et al. (2024) and Ge et al. (2024) introduced transcoders, a
sparse approximation of MLP layers that decomposes attributions into input-dependent and input-
invariant components. Variants such as skip-transcoders (Paulo et al., 2025b) and cross-layer
transcoders (CLTs) (Ameisen et al., 2025) have also been explored, demonstrating through quali-
tative and quantitative analysis that transcoders match or exceed interpretability of SAEs. Through
case studies, Dunefsky et al. (2024) showed that transcoder circuits can be used for interpreting a
feature’s function, although based mainly on manual analysis.

The interpretability of transcoder weights has been studied by Ameisen et al. (2025), who showed
that while some connections appear meaningful, interference is a major challenge. They pro-
posed target-weighted expected residual attribution (TWERA), which averages attributions across
a dataset. However, they found that TWERA weights often diverge substantially from the raw
transcoder weights, making the method sensitive to the distribution of the evaluation dataset.

Finally, Puri et al. (2025) highlighted a persistent challenge: even though sparse features, specifically
in SAEs, are generally more monosemantic than MLP neurons, they can be highly fine-grained
and activate only on certain patterns. This specificity makes them difficult to interpret; either the

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

explainer LLM fails to identify the correct trigger, or the resulting description is too vague to be
useful.

3 METHODOLOGY

As introduced by Dunefsky et al. (2024), given a transcoder structure, the contribution of transcoder
feature i′ in transcoder layer l′ to feature i in layer l > l′ on token t can be expressed as:

activation(l
′,i′)[t]︸ ︷︷ ︸

input-dependent

(f
(l′,i′)
dec · f (l,i)

enc)︸ ︷︷ ︸
input-invariant

(1)

where f
(l,i)
enc ∈ Rdmodel denotes the i-th column of the encoder matrix W

(l)
enc ∈ Rdmodel×dfeatures , and

f
(l′,i′)
dec ∈ Rdmodel denotes the i′-th row of the decoder matrix W

(l′)
dec ∈ Rdfeatures×dmodel , where dfeatures is

the dimension of the transcoder, dmodel is the dimension of the model, and dfeatures ≫ dmodel.

This formulation cleanly separates an input-dependent scalar activation from a fixed, input-invariant
connectivity term between features across layers.

3.1 INPUT-INVARIANT ANALYSIS

Figure 1: Process of layer-
wise input-invariant analysis
via WeightLens.

The input-invariant connections from Equation (1) provide a use-
ful foundation for interpretation of transcoder features, as demon-
strated in the case studies of (Dunefsky et al., 2024). To build on
this idea, we make the following assumptions:

Assumption 1: Input-invariant connections indicate meaningful
structural relationships only if their magnitude significantly exceeds
that of other connections, making them statistical outliers.

Since many features are context-dependent, relying solely on
weight-based analysis can produce misleading results. To address
this, we introduce a validation step to determine whether a feature is
truly token-dependent, i.e., whether it consistently activates on spe-
cific tokens regardless of context. Formally, we state the following
assumption:

Assumption 2: If a token is strongly supported by input-invariant
connections (weights) and semantically aligned with the concept
encoded by the feature, then the feature should activate on this token
regardless of context.

We generate a feature description – a set of tokens associated with
the feature – by processing the model layer-by-layer, starting from
layer 0 as presented on Figure 1. For this we are performing the
following steps:

1. Extract candidate tokens from vocabulary and previous layers features: Project the
feature encoder vector fenc into the input vocabulary embedding space via the embedding
matrix WE as WE · fenc, and identify candidate tokens as statistical outliers based on their
z-scores (Barnett & Lewis, 1994), retaining only highly distinctive tokens. For each earlier
layer l′ < l, compute W

(l′)
dec · f (l)

enc, identifying top contributing (outlier) features using the
same criterion, and inherit their token descriptions.

2. Validate tokens: Retain only tokens that activate the feature in a forward pass.
3. Analyze output effects: Project the feature decoder vector fdec into vocabulary logits via

fdec ·WU , and identify outlier tokens (strongly promoted) via z-score.

Token-based features often respond to multiple forms of the same word. To process the obtained set
of tokens and produce a coherent feature description, we apply lemmatization (Bird et al., 2009) to
both the promoted tokens and the generated descriptions. This step consolidates different inflected
forms into a single canonical form and can be considered a lightweight alternative to LLM-based
postprocessing for cleaning and standardizing the descriptions.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

(a) Attributions between transcoder
features.

(b) Attributions from transcoder
features to attention heads.

(c) Attributions from model logits to
transcoder features.

Figure 2: Types of attributions in transcoders.

3.2 CIRCUIT-BASED ANALYSIS

To account for interference between layers, Ameisen et al. (2025) propose incorporating a Jacobian
term into the attribution formulation, which improves the reliability of feature attributions. With this
adjustment, Equation (1) can be redefined as

activation(l
′,i′)[t]

(
f
(l′,i′)
dec · J (l→l′)[t] · f (l,i)

enc

)
, (2)

where the Jacobian is given by

J (l→l′)[t] :=
∂ r

(l)
mid[t]

∂ r
(l′)
post[t]

∣∣∣∣∣ stop-grad on MLP outputs,
attention patterns, norm denominators

, (3)

and r
(l)
mid[t] and r

(l′)
post[t] denote the residual streams before and after the transcoder at layers l and l′,

respectively (see Figure 2a).

Similarly, we can measure, how much previous tokens influenced the activation of our analyzed
feature (l, i) on token t through attribution to attention heads, as presented in Figure 2b (Dunefsky
et al., 2024). For an attention head h at layer l′ with l′ ≤ l, the contribution of token s through (l′, h)
to feature (l, i) at token t can be expressed as

score(l
′,h)(r(l

′)
pre [t], r

(l′)
pre [s])︸ ︷︷ ︸

attention score from s to t

((
(W

(l′,h)
OV)⊤f (l,i)

enc

)
· r(l

′)
pre [s]

)︸ ︷︷ ︸
projection of feature onto head output

, (4)

where r
(l′)
pre [s] denotes the residual stream at token s before the attention block in layer l′, W (l′,h)

OV is
the output-value matrix of head h, and f

(l,i)
enc is the encoder vector of feature (l, i).

The contribution of our target feature (l, i) to the output logit y[t] at token t is demonstrated on
Figure 2c, and can be expressed as

activation(l,i)[t]
(
f
(l,i)
dec · Jy→(l,i)[t] · WU [:, y[t]]

)
, (5)

where f
(l,i)
dec is the decoder vector of feature (l, i), Jy→(l,i)[t] is the Jacobian from the final residual

stream to the post-residual of feature (l, i) at token t (calculated as before with nonlinearities and
attention patterns considered as a constant on a given input), and WU [:, y[t]] is the unembedding
vector for token y[t] .

Interpretability Beyond Activations A central challenge in interpreting feature activations is that
raw activation values do not always reveal what triggered an activation of a given feature. Sim-
ply highlighting token activations and prompting language models often yields vague or generic
explanations such as “variety of words on variety of topics.”1

1https://www.neuronpedia.org/gemma-2-2b/4-gemmascope-transcoder-16k/13598

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

To address this, we focus on identifying patterns in the data that both lead to a feature’s activation
and determine how the feature influences the output.

• Input-centric focus: Using the attribution formulation in Equation (4), we extract attention
head–token pairs that provide strong contribution for a feature’s activation. Outlier pairs
are selected based on their z-score (Barnett & Lewis, 1994) relative to the distribution of
contributions, ensuring that only the strongest connections are retained. We then mask
the original input sequence, keeping only tokens that either directly activated the feature
or contributed significantly through attention. This procedure isolates interpretable token
patterns underlying the activation of a feature, as illustrated in Figure 2b, where the feature
activates on references to already mentioned entities.

• Output-centric analysis: Using Equation (5), we evaluate whether the analyzed feature
contributed to the prediction of the generated tokens after being activated. This highlights
which output tokens were influenced by the feature and thus provides an estimate of its
downstream impact, as shown in Figure 2c.

Circuit-Based Clustering A single feature often responds to multiple concepts, which may be en-
tangled and hard to interpret. Semantic clustering in embedding space is insufficient, as it ignores
the causal, circuit-level mechanisms.

We propose circuit-based clustering: for each input, we collect contributing elements, such as
transcoder features and token/attention head pairs via Equation (2) and Equation (4) respectively,
including significant transcoder features (l′, i′) and attention head contributions (l, h,∆), where ∆
is the relative token position. Sparse activations ensure that each input has only a few contributors.

To reduce noise, we apply a frequency filter, retaining a feature or head only if it appears in at
least a fraction ρ of inputs: |{j:f∈Sj}|

N ≥ ρ, where Sj is the contribution set for input j. This
step removes features and heads that contribute only for isolated inputs and are unlikely to reflect
consistent circuit-level behavior relevant to the feature activation, as well as reduces the size of the
set, making subsequent clustering more robust and computationally efficient.

We then compute pairwise Jaccard similarities J(A,B) = |SA ∩SB|/|SA ∪SB| , forming an n×n
distance matrix. Clusters are extracted via DBSCAN (Ester et al., 1996) on this similarity matrix,
which is robust to noise and does not require a predefined number of clusters.

Sampling Strategy Most prior works (Bills et al., 2023; Choi et al., 2024; Puri et al., 2025; Gur-
Arieh et al., 2025) focus on analyzing the most highly activating examples of a feature. This ap-
proach is especially sensible for MLP neurons, whose activations are often noisy and unstructured.
In contrast, both SAEs and transcoders are explicitly designed to yield monosemantic features. For
this reason, we aim to analyze the entire distribution of a feature’s activations, in order to capture
the broader concept(s) that drive its behavior.

Because activation distributions are typically highly skewed toward zero, we adopt inverse-
frequency quantile sampling (Li et al., 2019; Han et al., 2022) to ensure sufficient coverage of
rare but strongly activating cases. Specifically, activations are partitioned into B = 20 quantile
bins. If nb denotes the number of activations in bin b, then each activation i in b is assigned weight
wi = 1/nα

b with α = 0.9, and corresponding normalized probability pi = wi/
∑

j wj .

Finally, we sample N = 100 activations without replacement, producing a diverse set of contexts
that up-samples tail cases while still maintaining broad overall coverage.

Automated Interpretability Sampled inputs are first analyzed from input- and/or output-centric
perspectives, then grouped into clusters according to the detected circuits. Each cluster is inter-
preted independently using an explainer LLM (GPT-4o-mini; see Appendix C.2). Rather than pro-
viding full inputs with highlighted activations or token–activation pairs, we supply only the detected
pattern, marking the single most activating token. Finally, for each feature, the explainer LLM
synthesizes a unified description from the individual cluster-level interpretations.

3.3 EVALUATION

All evaluations were performed on input-centric metrics Clarity, Responsiveness, Purity and the
output-centric metric Faithfulness from the FADE framework (Puri et al., 2025), where Clarity mea-

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Layer 0 Layer 7 Layer 12 Layer 21

C R P F C R P F C R P F C R P F

WeightLens 0.56 0.24 0.03 0.00 0.62 0.22 0.02 0.01 0.47 0.13 0.02 0.01 0.71 0.86 0.65 0.02
WeightLens+Out 0.51 0.26 0.03 0.00 0.55 0.24 0.02 0.01 0.39 0.15 0.02 0.01 0.63 0.87 0.63 0.04
WeigthLens+Out+LLM 0.52 0.27 0.04 0.01 0.58 0.20 0.03 0.02 0.41 0.13 0.03 0.00 0.68 0.84 0.63 0.03

Neuronpedia 0.53 0.22 0.07 0.03 0.51 0.17 0.10 0.03 0.28 0.10 0.08 0.00 0.50 0.80 0.73 0.02
MaxAct* 0.50 0.21 0.08 0.04 0.54 0.15 0.08 0.05 0.33 0.11 0.7 0.00 0.53 0.80 0.74 0.03

Table 1: Evaluation of Gemma-2-2b transcoder descriptions (C = Clarity, R = Responsiveness, P
= Purity, F = Faithfulness; metrics in range 0–1, higher is better). Best results marked in bold.
Methods: WeightLens variants; Circuit-Based; Neuronpedia and MaxAct* (activation-based).

sures if the concept is expressed clearly enough to generate synthetic data, that would activate a
feature. Responsiveness measures that a feature activating on the given concept is significantly-
higher than the baseline activation distribution of the feature. Purity measures if the feature only
strongly activates on the described concept and also on unrelated concepts. Finally, Faithfulness
measures the extent to which steering the feature influences the model output in the direction of the
described concept.

4 WEIGHT-BASED INTERPRETABILITY RESULTS

We analyze the interpretability of transcoders for GPT-2 Small (Dunefsky et al., 2024), Gemma-2-
2b (Lieberum et al., 2024), and Llama-3.2-1B (Paulo et al., 2025b) via WeightLens, and we focus
on Gemma-2-2b transcoders for qualitative analysis. We evaluate and compare:

• WeightLens (Weights-based descriptions): descriptions composed solely of the tokens
that activate the feature, postprocessed via lemmatization;

• WeightLens+Out (Weight-based with logits-based analysis): weight-based descriptions
augmented with tokens derived from the feature’s unembedding vectors;

• WeightLens+Output+LLM (Weight-based with logits and LLM refinement): descrip-
tions further refined using a secondary LLM (gpt-4o-mini-2024-07-18) to generate a con-
cise, descriptive single-line summary based on both activating and promoted tokens (see
Appendix C.1).

They are further compared to activation-based methods, specifically descriptions from Neuronpedia
(Lin, 2023) and MaxAct* method (Puri et al., 2025).

Figure 3: Percentage of
validated feature descrip-
tions per layer obtained via
WeightLens.

WeightLens matches or exceeds activation-based methods
Across ∼250 features per layer, our weight-based method performs
on par with or better than activation maximization methods. It
achieves higher scores on Clarity and Responsiveness (Table 1),
while activation-based methods tend to overgeneralize, leading to
lower scores. However, activation maximization attains higher Pu-
rity, highlighting that many features might be context-dependent
which is not discovered through WeightLens.

Layer-wise trends in token-based feature interpretability Fig-
ure 3 shows that token-based interpretability varies strongly with
depth.

Early layers exhibit clear token-level structure, making them well-suited for weight-based analysis,
with many features activating reliably on specific tokens. In Gemma-2-2B, however, layers 0 and 7
perform poorly in terms of descriptions quality (Table 1), reflecting their high activation count (ℓ0 =
76, 70)2, which also explains the weak activation-based baselines.

Number of token-based features, as well as the quality of their descriptions, drops sharply in the
middle layers of Llama and Gemma, as presented on Figure 3, consistent with prior interpretability
analysis (Choi et al., 2024), but not in GPT-2, similarly to Bills et al. (2023). A likely explanation is
the use of RoPE in Llama and Gemma, which introduces additional non-linearities. Within Gemma-

2https://huggingface.co/google/gemma-scope-2b-pt-transcoders

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

2-2B, layer 12 is the least interpretable based on weights: despite high sparsity (ℓ0 = 6), it contains
few validated token-based features. Majority of the features in this layer are extremely context-
dependent and encode very specific patterns.

Higher layers partially recover in terms of presence of token-based features, though still below
early-layer levels. For instance, Gemma-2-2B layer 21 (ℓ0 = 13) shows strong interpretability, with
token-based features often acting as key–value pairs that map input tokens to predictable collocations
(e.g., “apologize for”, “will be”).

Figure 4: Comparison of Neuron-
pedia feature descriptions for token-
based features (i.e., those for which de-
scriptions were successfully generated
via WeightLens) and context-based fea-
tures, whose activations are strongly in-
fluenced by context.

Faithfulness is consistently low across layers and meth-
ods, likely due to the transcoder architecture: un-
like SAEs, which decompose the full residual stream,
transcoders write into it like MLPs, so modifying a sin-
gle feature rarely produces large effects because similar
concepts are distributed across layers and features.

Most interpretable features are token-based Only a
subset of features receive validated input-invariant de-
scriptions: 32.7% for Gemma, 58.8% for GPT-2, and
25.4% for Llama (Figure 3). However, when the weight-
based descriptions fail, activation-based ones also per-
form poorly (see Figure 4). This is especially visible on
layer 21, which overall demonstrated the best results in
terms of interpretability.

LLM postprocessing is not essential Although an LLM
can produce more general results and filter out noise in
the output logits, it’s utilization is not mandatory in this analysis, since the results are comparable,
as seen in Table 1. This is a promising step to reducing reliance on the explainer models.

5 CIRCUIT-BASED INTERPRETABILITY RESULTS

For the input-dependent analysis, we evaluate the following approaches, implemented within the
CircuitLens framework:

• CircuitLens-Input (Circuit-based descriptions): descriptions derived from the activa-
tion patterns of the feature, obtained via attribution to attention heads;

• CircuitLens-Full (Circuit-based full descriptions): descriptions based on activation pat-
terns obtained through attributions to attention heads, augmented with tokens, which gen-
eration was influenced by the feature.

• WeightLens (WL) + CircuitLens-Full (Circuit-based full descriptions integrated with
WeigthLens results): circuit-based descriptions are enriched with weight-based tokens
obtained via WeightLens, which are incorporated when merging cluster-level descriptions
into a full feature description.

For generating circuit-based descriptions, we use sampling, described in the Subsection 3.2, on a
relatively small dataset of 24M tokens (see Appendix B). In addition, to eliminate the factor of the
dataset influence, we compare the circuit-based analysis performed on the same data, as was used in
MaxAct* baseline, i.e. on a large dataset with sampling from the top, as presented in Appendix B.
These results will be marked by (top), i.e. CB-Input (top).

As baselines, we consider Neuronpedia (Lin, 2023) and MaxAct* (Puri et al., 2025) feature de-
sciprions. We do not analyze output-based patterns separately, as they are more computationally
expensive to obtain and, in most cases, provide little additional information without the activation
patterns that originally triggered the feature.

Activations alone are not sufficient Figure 5 shows three circuit-based clusters of activating input
samples for feature 619 in layer 12 (L12F619). Within each cluster, some commonality in activating
concepts exists, but no clear general pattern emerges from activations alone. Isolating the tokens
that contribute most through attention heads reveals that each activating entity is either explicitly
mentioned or marked as definite or demonstrative references such as “the,” “this,” or “that,” as well
as “former” or “latter,” where contributing tokens align semantically.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

(a) Smoothed histogram of the fraction of features
per layer influencing a given percentage of outputs,
with both axes square-root transformed to highlight
skewed distributions.

(b) Fraction of features in each layer that contribute to
generated outputs, plotted by output position relative
to the activating token.

Figure 7: Influence of features on the new 15 generated tokens from the position of the maximally
activating token on a given feature.

Figure 5: Clusters of activating inputs for L12F619 and their
patterns, obtained through attribution to attention heads.

Extending to the output, feature
L21F91 shows that functional roles
are not fully captured by input acti-
vations: while it activates on tokens
like “on” or certain verbs, its main
effect is generating output phrases
such as “the basis of” or “based on”
(Figure 6). These contributions, de-
tectable via attributions from output
logits, illustrate how features influ-
ence output patterns beyond input ac-
tivations.

Figure 6: Input patterns for feature L21F91, obtained via
attributions to attention heads, and output patterns, via
attributions from logits to the feature. Tokens isolated
through attribution are shown in bold, and activating to-
kens are highlighted in green.

Downstream effect of a feature
Output-based analysis is computation-
ally expensive, as each generated to-
ken requires both a forward and back-
ward pass. We generate 15 new to-
kens per sample to assess how many
are needed for reliable results. As
expected, early layers (e.g., layers 0
and 7) rarely contribute directly to the
output (Figure 7a), and when they do,
the effect is usually limited to the to-
ken immediately following the activat-
ing one (Figure 7b). Extending the
analysis to additional tokens adds only
about 1.4% of samples for layer 0, a
negligible gain given the computational
cost. In deeper layers, most influence
remains on the first generated token,
though multi-token output patterns also appear, and might be crucial for interpreting a feature’s
function, particularly in later layers (e.g., Figure 6).

Circuit-based polysemanticity Layer 0 has almost no underlying circuit structure: activations are
largely token-based (Figure 3), with few or no clusters beyond outliers. This aligns with its low
sparsity, broad topic coverage, and context-independent behavior, yielding on average only 1.05
clusters per feature (see Figure 8). By contrast, Layer 7 exhibits clear polysemanticity, averaging
4.5 clusters per feature and showing the fewest single-cluster cases, indicating widespread circuit
formation. Layer 12 presents a mixed picture. While it averages 2.8 clusters per feature, many are
either single-cluster or highly clustered. Qualitative inspection suggests that circuit-based clustering

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Layer 0 Layer 7 Layer 12 Layer 21

C R P F C R P F C R P F C R P F

CircuitLens-Input 0.51 0.20 0.11 0.01 0.39 0.14 0.14 0.03 0.19 0.10 0.10 0.01 0.42 0.59 0.51 0.03
CircuitLens-Full 0.52 0.22 0.11 0.02 0.44 0.14 0.13 0.03 0.24 0.09 0.09 0.01 0.52 0.64 0.54 0.03
CircuitLens-Input (top) 0.66 0.24 0.05 0.02 0.62 0.17 0.08 0.03 0.27 0.09 0.08 0.00 0.54 0.72 0.63 0.03
CircuitLens-Full (top) 0.66 0.24 0.04 0.02 0.61 0.18 0.07 0.04 0.26 0.10 0.07 0.01 0.56 0.73 0.62 0.03
WL + CircuitLens-Full 0.55 0.22 0.10 0.02 0.51 0.14 0.11 0.02 0.25 0.10 0.08 0.01 0.55 0.68 0.56 0.03

Neuronpedia 0.51 0.23 0.09 0.03 0.44 0.17 0.11 0.03 0.15 0.10 0.11 0.00 0.36 0.71 0.64 0.02
MaxAct* 0.50 0.21 0.09 0.04 0.48 0.15 0.09 0.03 0.17 0.10 0.10 0.00 0.39 0.71 0.64 0.02

Table 2: Evaluation of Gemma-2-2b transcoder descriptions (C = Clarity, R = Responsiveness, P
= Purity, F = Faithfulness; metrics in range 0–1, higher is better). Best results marked in bold.
Methods: Circuit-Based variants. Baselines: Neuronpedia and MaxAct*.

can capture both main circuits and sub-circuits, and more careful hyperparameter tuning could yield
more generalizable results (Figure 5). It also has the largest share of outlier-only features, reflecting
the difficulty of disentangling circuit-driven from semantic-driven activations. Layer 21 is similar
(avg. 2.95 clusters/feature) but shows fewer extreme cases. As this layer is closely tied to output
generation, we hypothesize that features flexibly participate in multiple circuits to support specific
outputs (Figure 6).

Figure 8: Histogram of number discov-
ered clusters per layer with log scale (y-
axis).

Resolving the Clarity Problem As shown by Puri et al.
(2025), sparse feature descriptions are often not clear
enough, as they fail to specify what precisely triggers a
feature’s activation. In Table 2, we compare circuit-based
analysis with activation-based baselines, including exper-
iments performed on a smaller dataset sampled from the
full distribution, as described in Section 3.2 (CircuitLens-
Input and -Full), and on a MaxAct*-like dataset (Cir-
cuitLens (top)), which is drawn from a much larger cor-
pus but restricted to top activations (see Appendix B)

Our results show that circuit-based methods still depend
on the dataset, with descriptions from the larger dataset
achieving the strongest performance across layers, partic-
ularly in clarity and responsiveness. However, descrip-
tions derived from the smaller dataset remain competitive and in some cases outperform activation-
based baselines, generated on the larger dataset. Combining weight-based and circuit-based analy-
sis further reduces sensitivity to dataset size and distribution, making interpretability more robust.
Moreover, analysis of the metrics distributions reveals that circuit-based methods yield far fewer fea-
tures with extremely low clarity compared to purely activation-based approaches (see Appendix D).
Finally, both qualitative and quantitative evidence indicate that sampling from the full distribution,
though memory-intensive, provides a more faithful picture of general feature behavior.

CONCLUSION

In this work, we address a fundamental missing piece in automated interpretability pipelines by
developing methods that leverage models’ underlying structural information. We show that raw
activations alone often fail to reveal the patterns driving feature activation, while transcoders, well-
suited for circuit discovery, enable efficient incorporation of structural information. Our proposed
frameworks demonstrate that structural information allow more scalable and robust interpretability.
The weight-based analysis offers an efficient alternative for context-independent features – covering
up to 58.8% of cases – without requiring large datasets or external LLMs. Circuit-based clustering
isolates groups of activating texts into more interpretable clusters, while input- and output-based
analysis further clarifies each feature’s functional role. Together, these methods reduce dependence
on large datasets, improve robustness, and make automated interpretability more scalable and practi-
cal for real-world applications. By bridging activation-based approaches with weight-based analysis
and circuit discovery, our work opens new avenues for understanding model behavior at scale.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Reduan Achtibat, Sayed Mohammad Vakilzadeh Hatefi, Maximilian Dreyer, Aakriti Jain, Thomas
Wiegand, Sebastian Lapuschkin, and Wojciech Samek. Attnlrp: attention-aware layer-wise rel-
evance propagation for transformers. In Proceedings of the 41st International Conference on
Machine Learning, pp. 135–168, 2024.

Emmanuel Ameisen, Jack Lindsey, Adam Pearce, Wes Gurnee, Nicholas L. Turner, Brian Chen,
Craig Citro, David Abrahams, Shan Carter, Basil Hosmer, Jonathan Marcus, Michael Sklar,
Adly Templeton, Trenton Bricken, Callum McDougall, Hoagy Cunningham, Thomas Henighan,
Adam Jermyn, Andy Jones, Andrew Persic, Zhenyi Qi, T. Ben Thompson, Sam Zimmerman,
Kelley Rivoire, Thomas Conerly, Chris Olah, and Joshua Batson. Circuit tracing: Revealing
computational graphs in language models. Transformer Circuits Thread, 2025. URL https:
//transformer-circuits.pub/2025/attribution-graphs/methods.html.

Vic Barnett and Toby Lewis. Outliers in Statistical Data. Wiley, 3rd edition, 1994.

Steven Bills, Nick Cammarata, Dan Mossing, Henk Tillman, Leo Gao, Gabriel Goh, Ilya
Sutskever, Jan Leike, Jeff Wu, and William Saunders. Language models can explain
neurons in language models. https://openaipublic.blob.core.windows.net/
neuron-explainer/paper/index.html, 2023.

Steven Bird, Ewan Klein, and Edward Loper. Natural Language Processing with Python. O’Reilly
Media, 2009. ISBN 978-0-596-51649-9. URL https://www.nltk.org/book/.

Trenton Bricken, Adly Templeton, Joshua Batson, Brian Chen, Adam Jermyn, Tom Con-
erly, Nick Turner, Cem Anil, Carson Denison, Amanda Askell, Robert Lasenby, Yifan Wu,
Shauna Kravec, Nicholas Schiefer, Tim Maxwell, Nicholas Joseph, Zac Hatfield-Dodds, Alex
Tamkin, Karina Nguyen, Brayden McLean, Josiah E Burke, Tristan Hume, Shan Carter,
Tom Henighan, and Christopher Olah. Towards monosemanticity: Decomposing language
models with dictionary learning. Transformer Circuits Thread, 2023. https://transformer-
circuits.pub/2023/monosemantic-features/index.html.

Dami Choi, Vincent Huang, Kevin Meng, Daniel D Johnson, Jacob Steinhardt, and Sarah
Schwettmann. Scaling automatic neuron description, 2024.

Arthur Conmy, Augustine Mavor-Parker, Aengus Lynch, Stefan Heimersheim, and Adrià Garriga-
Alonso. Towards automated circuit discovery for mechanistic interpretability. Advances in Neural
Information Processing Systems, 36:16318–16352, 2023.

Maximilian Dreyer, Jim Berend, Tobias Labarta, Johanna Vielhaben, Thomas Wiegand, Sebastian
Lapuschkin, and Wojciech Samek. Mechanistic understanding and validation of large ai models
with semanticlens. Nature Machine Intelligence, pp. 1–14, 2025.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models,
2024. URL https://arxiv.org/abs/2407.21783.

Jacob Dunefsky, Philippe Chlenski, and Neel Nanda. Transcoders find interpretable llm feature
circuits, 2024. URL https://arxiv.org/abs/2406.11944.

Nelson Elhage, Tristan Hume, Catherine Olsson, Nicholas Schiefer, Tom Henighan, Shauna Kravec,
Zac Hatfield-Dodds, Robert Lasenby, Dawn Drain, Carol Chen, et al. Toy models of superposi-
tion. arXiv preprint arXiv:2209.10652, 2022.

Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. A density-based algorithm for
discovering clusters in large spatial databases with noise. In Proceedings of the Second Inter-
national Conference on Knowledge Discovery and Data Mining (KDD’96), pp. 226–231. AAAI
Press, 1996.

Leo Gao, Stella Biderman, Sid Black, et al. The pile: An 800gb dataset of diverse text for language
modeling, 2020. URL https://arxiv.org/abs/2101.00027.

10

https://transformer-circuits.pub/2025/attribution-graphs/methods.html
https://transformer-circuits.pub/2025/attribution-graphs/methods.html
https://openaipublic.blob.core.windows.net/neuron-explainer/paper/index.html
https://openaipublic.blob.core.windows.net/neuron-explainer/paper/index.html
https://www.nltk.org/book/
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2406.11944
https://arxiv.org/abs/2101.00027

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Xuyang Ge, Fukang Zhu, Wentao Shu, Junxuan Wang, Zhengfu He, and Xipeng Qiu. Automatically
identifying local and global circuits with linear computation graphs, 2024. URL https://
arxiv.org/abs/2405.13868.

Yoav Gur-Arieh, Roy Mayan, Chen Agassy, Atticus Geiger, and Mor Geva. Enhancing automated
interpretability with output-centric feature descriptions, 2025. URL https://arxiv.org/
abs/2501.08319.

Bingyi Han, Yuan Yao, and Yisen Zhang. Frequency-aware sampling for deep learning on long-
tailed data. In Advances in Neural Information Processing Systems (NeurIPS), 2022.

Laura Kopf, Nils Feldhus, Kirill Bykov, Philine Lou Bommer, Anna Hedström, Marina M-C Höhne,
and Oliver Eberle. Capturing polysemanticity with prism: A multi-concept feature description
framework. arXiv preprint arXiv:2506.15538, 2025.

Sebastian Lapuschkin, Stephan Wäldchen, Alexander Binder, Grégoire Montavon, Wojciech Samek,
and Klaus-Robert Müller. Unmasking clever hans predictors and assessing what machines really
learn. Nature communications, 10(1):1096, 2019.

Simon Lermen, Mateusz Dziemian, and Natalia Pérez-Campanero Antolı́n. Deceptive automated
interpretability: Language models coordinating to fool oversight systems, 2025. URL https:
//arxiv.org/abs/2504.07831.

Bo Li, Yu Wang, Yixin Liu, Zhifeng Zhang, and Shuo Li. Frequency-aware weighted loss for
imbalanced classification. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), 2019.

Zehan Li, Xin Zhang, Yanzhao Zhang, Dingkun Long, Pengjun Xie, and Meishan Zhang. Towards
general text embeddings with multi-stage contrastive learning, 2023. URL https://arxiv.
org/abs/2308.03281.

Tom Lieberum, Senthooran Rajamanoharan, Arthur Conmy, Lewis Smith, Nicolas Sonnerat, Vikrant
Varma, Janos Kramar, Anca Dragan, Rohin Shah, and Neel Nanda. Gemma scope: Open sparse
autoencoders everywhere all at once on gemma 2. In Yonatan Belinkov, Najoung Kim, Jaap
Jumelet, Hosein Mohebbi, Aaron Mueller, and Hanjie Chen (eds.), Proceedings of the 7th Black-
boxNLP Workshop: Analyzing and Interpreting Neural Networks for NLP, pp. 278–300, Miami,
Florida, US, November 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.
blackboxnlp-1.19. URL https://aclanthology.org/2024.blackboxnlp-1.19/.

Johnny Lin. Neuronpedia: Interactive reference and tooling for analyzing neural networks, 2023.
URL https://www.neuronpedia.org. Software available from neuronpedia.org.

Chris Olah, Arvind Satyanarayan, Ian Johnson, Shan Carter, Ludwig Schubert, Katherine Ye, and
Alexander Mordvintsev. The building blocks of interpretability. Distill, 2018. doi: 10.23915/
distill.00010. https://distill.pub/2018/building-blocks.

Chris Olah, Nick Cammarata, Ludwig Schubert, Gabriel Goh, Michael Petrov, and Shan Carter.
Zoom in: An introduction to circuits. Distill, 5(3):e00024–001, 2020.

Josh OpenAI andAchiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia
Leoni, et al. Gpt-4 technical report, 2024. URL https://arxiv.org/abs/2303.08774.

Gonçalo Paulo, Alex Mallen, Caden Juang, and Nora Belrose. Automatically interpreting millions of
features in large language models, 2025a. URL https://arxiv.org/abs/2410.13928.

Gonçalo Paulo, Stepan Shabalin, and Nora Belrose. Transcoders beat sparse autoencoders for inter-
pretability, 2025b. URL https://arxiv.org/abs/2501.18823.

Bruno Puri, Aakriti Jain, Elena Golimblevskaia, Patrick Kahardipraja, Thomas Wiegand, Woj-
ciech Samek, and Sebastian Lapuschkin. FADE: Why bad descriptions happen to good fea-
tures. In Wanxiang Che, Joyce Nabende, Ekaterina Shutova, and Mohammad Taher Pilehvar
(eds.), Findings of the Association for Computational Linguistics: ACL 2025, pp. 17138–17160,
Vienna, Austria, July 2025. Association for Computational Linguistics. ISBN 979-8-89176-256-
5. doi: 10.18653/v1/2025.findings-acl.881. URL https://aclanthology.org/2025.
findings-acl.881/.

11

https://arxiv.org/abs/2405.13868
https://arxiv.org/abs/2405.13868
https://arxiv.org/abs/2501.08319
https://arxiv.org/abs/2501.08319
https://arxiv.org/abs/2504.07831
https://arxiv.org/abs/2504.07831
https://arxiv.org/abs/2308.03281
https://arxiv.org/abs/2308.03281
https://aclanthology.org/2024.blackboxnlp-1.19/
https://www.neuronpedia.org
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2410.13928
https://arxiv.org/abs/2501.18823
https://aclanthology.org/2025.findings-acl.881/
https://aclanthology.org/2025.findings-acl.881/

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Morgane Riviere, Shreya Pathak, Pier Giuseppe Sessa, Cassidy Hardin, Surya Bhupatiraju, Léonard
Hussenot, Thomas Mesnard, Bobak Shahriari, Alexandre Ramé, et al. Gemma 2: Improving open
language models at a practical size, 2024. URL https://arxiv.org/abs/2408.00118.

Lee Sharkey, Bilal Chughtai, Joshua Batson, Jack Lindsey, Jeff Wu, Lucius Bushnaq, Nicholas
Goldowsky-Dill, Stefan Heimersheim, Alejandro Ortega, Joseph Bloom, Stella Biderman, Adria
Garriga-Alonso, Arthur Conmy, Neel Nanda, Jessica Rumbelow, Martin Wattenberg, Nandi
Schoots, Joseph Miller, Eric J. Michaud, Stephen Casper, Max Tegmark, William Saunders, David
Bau, Eric Todd, Atticus Geiger, Mor Geva, Jesse Hoogland, Daniel Murfet, and Tom McGrath.
Open problems in mechanistic interpretability, 2025.

Karan Singhal, Shekoofeh Azizi, Tao Tu, S Sara Mahdavi, Jason Wei, Hyung Won Chung, Nathan
Scales, Ajay Tanwani, Heather Cole-Lewis, Stephen Pfohl, et al. Large language models encode
clinical knowledge. Nature, 620(7972):172–180, 2023.

Adly Templeton, Tom Conerly, Jonathan Marcus, Jack Lindsey, Trenton Bricken, Brian Chen,
Adam Pearce, Craig Citro, Emmanuel Ameisen, Andy Jones, Hoagy Cunningham, Nicholas L
Turner, Callum McDougall, Monte MacDiarmid, C. Daniel Freeman, Theodore R. Sumers,
Edward Rees, Joshua Batson, Adam Jermyn, Shan Carter, Chris Olah, and Tom Henighan.
Scaling monosemanticity: Extracting interpretable features from claude 3 sonnet. Trans-
former Circuits Thread, 2024. URL https://transformer-circuits.pub/2024/
scaling-monosemanticity/index.html.

Kevin Wang, Alexandre Variengien, Arthur Conmy, Buck Shlegeris, and Jacob Steinhardt. Inter-
pretability in the wild: a circuit for indirect object identification in gpt-2 small. arXiv preprint
arXiv:2211.00593, 2022.

A EXTENDED RELATED WORK

A.1 AUTOMATED INTERPRETABILITY

Most work in automated interpretability builds on the pipeline of Bills et al. (2023), where a dataset
is processed through GPT-2 (Radford et al., 2019) to collect MLP neuron activations. A larger LLM
(GPT-4; (OpenAI andAchiam et al., 2024)) then generates descriptions based on top-k activating
sequences, and is further used as an “activations simulator” to evaluate these descriptions.

To address the polysemanticity of MLP neurons, Bricken et al. (2023) propose sparse autoencoders
(SAEs). Templeton et al. (2024); Paulo et al. (2025a) extend this pipeline to SAEs and show that
their features are more monosemantic and interpretable than MLP neurons.

Subsequent work refines automated interpretability in different ways (Choi et al., 2024; Templeton
et al., 2024; Gur-Arieh et al., 2025; Kopf et al., 2025; Paulo et al., 2025a; Puri et al., 2025). Choi
et al. (2024) fine-tune a smaller LLM (Llama-3.1-8B-Instruct (Dubey et al., 2024)) for neuron de-
scription and evaluation, systematically studying prompt design choices such as token highlighting,
token–activation pairs, and number of examples. Puri et al. (2025) run a broader prompt analysis
on SAEs, finding results that sometimes contradict Choi et al. (2024), especially on how token acti-
vations should be communicated. They also emphasize dependence on explainer model quality and
challenges from the fine-grained specificity of SAE features.

Gur-Arieh et al. (2025) combine input- and output-based analysis, showing that descriptions improve
when considering both what a feature activates on and what it promotes.

Kopf et al. (2025) address polysemanticity by clustering activating inputs. They sample from the
top 1% of activations, embed sequences with gte-Qwen2-1.5B-instruct (Li et al., 2023), and apply
k-means clustering into five groups, generating one description per cluster. This consistently outper-
forms prior work (Bills et al., 2023; Gur-Arieh et al., 2025), demonstrating the benefit of handling
polysemanticity directly.

12

https://arxiv.org/abs/2408.00118
https://transformer-circuits.pub/2024/scaling-monosemanticity/index.html
https://transformer-circuits.pub/2024/scaling-monosemanticity/index.html

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A.2 EVALUATION METRICS

Developing automated evaluation metrics is essential for interpretability research, since manual as-
sessment of description quality does not scale. Several main approaches have been proposed: (i)
simulated activations, where an LLM predicts a feature’s activation on text samples given its de-
scription (Bills et al., 2023; Choi et al., 2024); (ii) classifier-based metrics, where an LLM judges
how strongly a text sample relates to a feature’s description (Templeton et al., 2024; Paulo et al.,
2025a; Puri et al., 2025); (iii) synthetic data approaches, where an LLM generates or labels data
from a description (Gur-Arieh et al., 2025; Puri et al., 2025); and (iv) output-based metrics, which
evaluate how much a feature influences model outputs (Bills et al., 2023; Gur-Arieh et al., 2025;
Paulo et al., 2025a; Puri et al., 2025).

Simulated-activation metrics (Bills et al., 2023; Choi et al., 2024) are inexpensive but fail to capture
many failure modes in description generation (Puri et al., 2025).

Classifier-based metrics instead ask a judge LLM to score how related a sample is to a description,
often on a scale from 0 (not related) to 3 (completely related) (Templeton et al., 2024; Puri et al.,
2025). Similar detection-based setups appear in Paulo et al. (2025b), where the model identifies
which samples match the concept. Evaluation can then be quantified using AUROC scores (Kopf
et al., 2025), or metrics such as Gini coefficient and Average Precision, which Puri et al. (2025)
combine into Responsiveness and Purity scores.

Synthetic data metrics compare activating and non-activating examples, either LLM-generated or
sampled uniformly from a dataset (Gur-Arieh et al., 2025; Puri et al., 2025).

Finally, output-based metrics test whether descriptions capture a feature’s causal effect on model
outputs. Puri et al. (2025) propose Faithfulness, where a judge LLM rates concept presence in
steered generations. Paulo et al. (2025a) introduce Intervention Scoring, while Gur-Arieh et al.
(2025) apply a similar approach; where the model’s task is to distinguish outputs produced under
feature steering from control generations.

A.3 CIRCUIT TRACING

A recent advance in mechanistic interpretability is the introduction of transcoders (Dunefsky et al.,
2024; Ge et al., 2024). Unlike sparse autoencoders (SAEs), transcoders provide a structured way
to trace how upstream feature activations contribute to downstream activations, enabling circuit-
level analysis across layers. Their key innovation is the decomposition of a feature’s activation into
an input-dependent and an input-independent component. The latter depends only on transcoder
weights, allowing it to be analyzed separately and efficiently.

Using GPT-2, Dunefsky et al. (2024) demonstrate cases where activating tokens identified through
weight-based analysis align with those discovered via traditional activation-based methods. This
indicates that transcoders can support both prompt-specific attribution graphs and global, weight-
derived connectivity maps.

Extending this work to Gemma-2-2B (Riviere et al., 2024), Ameisen et al. (2025) highlight a major
limitation of weight-based analysis: interference from context-dependent components of the archi-
tecture. To address this, they introduce target-weighted expected residual attribution (TWERA),
which adjusts virtual weights using empirical coactivation statistics, effectively up-weighting con-
nections between frequently coactivating features. However, they also show that TWERA can sig-
nificantly diverge from the original transcoder weights, making it dependent on the dataset used to
compute coactivations and limiting its reliability as a fully weight-based method.

B DATASET PROCESSING

We used the uncopyrighted version of the Pile dataset Gao et al. (2020), available on Hugging Face
(https://huggingface.co/datasets/monology/pile-uncopyrighted) with all
copyrighted content removed. This version contains over 345.7 GB of training data from various
sources. From this dataset, we extract two datasets of size 6GB (3.6B tokens), and 40MB (24M
tokens) for generating MaxAct* descriptions and circuit based descriptions. The extracted por-
tion from the training partition was used to collect the most activated samples based on frequency

13

https://huggingface.co/datasets/monology/pile-uncopyrighted

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

quantile sampling for the smaller dataset and top percentile sampling for the larger dataset. For eval-
uations, we utilized the test partition from the same dataset, applying identical preprocessing steps
as those used for the training data.

Post processing involves several steps to ensure a balanced and informative dataset. First, we used
the NLTK Bird et al. (2009) sentence tokenizer to split large text chunks into individual sentences.
We then filtered out sentences in the bottom and top fifth percentiles based on length, as these were
typically out-of-distribution cases consisting of single words, characters, or a few outliers. This
step helped achieve a more balanced distribution. Additionally, we removed sentences containing
only numbers or special characters with no meaningful content. Finally, duplicate sentences were
deleted.

C DESCRIPTIONS GENERATION

C.1 POSTPROCESSING WEIGHT-BASED DESCRIPTIONS

LLM-based postprocessing of weight-based analysis enables generating smoother, more coherent
feature descriptions by consolidating input- and output-centric information, specifically, the tokens
that activate a feature and those that it promotes or suppresses. This approach is particularly effective
at filtering out noise, as promoted or suppressed tokens often include unrelated or random terms that
do not reflect the feature’s true function.

We’re studying neurons in a neural network. Each neuron has certain inputs that activate it
and outputs that it leads to. You will receive three pieces of information about a neuron
:

1. The top important tokens.
2. The top tokens it promotes in the output.
3. The tokens it suppresses in the output.

These will be separated into three sections: [Important Tokens], [Text Promoted], and [Text
Suppressed]. All three are a combination of tokens. You can infer the most likely output
or function of the neuron based on these tokens. The tokens, especially [Text Promoted]
and [Text Suppressed], may include noise, such as unrelated terms, symbols, or
programming jargon. If these are not coherent, you may ignore them. If the [Important
Tokens] do not form a common theme, you may simply combine the words to form a single
concept.

Focus on identifying a cohesive theme or concept shared by the most relevant tokens.

Your response should be a concise (1-2 sentence) explanation of the neuron, describing what
triggers it (input) and what it does once triggered (output). If the input and output are
related, you may mention this; otherwise, state them separately.

[Concept: <Your interpretation of the neuron, based on the tokens provided>]

Example 1

Input:
[Important Tokens]: [’on’, ’pada’]
[Tokens Promoted]: [’behalf’]
[Tokens Suppressed]: [’on’, ’in’]

Output:
[Concept: The token "on" in the context of "on behalf of"]
}
...

C.2 GENERATING CIRCUIT-BASED DESCRIPTIONS

At the first step, we treat each cluster of a feature separately. We pass the obtained patterns (input-
centric or full, i.e. with patterns detected in the model’s output) in there in order to generate a
description.

You are an explainable AI researcher analyzing feature activations in language models.
You will receive short patterns: fragments of text where tokens activated a feature.
ONLY the snippets shown are the evidence, do not assume any extra surrounding context.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Pattern formatting:
- _ is 1-3 skipped non-important tokens
- [...] is 4 or more skipped not relevant tokens
- The <<<highlighted>>> token of each snippet is usually the most important signal (it is the

activating token), it can be a part of a word.

Analysis procedure:

1. Do NOT start by interpreting semantics. First treat the data as raw strings.
2. Count and note repeated literal elements (words, single letters, punctuation, suffixes/

prefixes, LaTeX tokens, different symbols, brackets, arrows, parentheses).
3. Pay special attention to:

- exact repeated tokens,
- repeated punctuation or formatting (commas, superscripts, backslashes, braces),
- positional patterns,
- capitalization patterns and single-letter variable tokens,
- functional words, like articles, pronouns, modal verbs, that create a consistent pattern.

4. Only after the literal/structural check, generalize into a short concept (if appropriate).

Decision rules:

- If a single literal token or structural pattern dominates, output that token or structural
label exactly.

- If it is some grammatical pattern, output exactly that.
- Avoid speculative semantic labels unless literal patterns support them.

Output rules:

- Output exactly ONE concise sentence (<20 words) describing the shared concept or structure.
- If a single token/pattern dominates, output it exactly.
- You may include up to one short example group in parentheses to clarify.
- Do NOT include extra labels or the word "Description:".
- If no clear recurring concept or structure is found, output exactly: No concept found.
- Avoid vague phrases like "in various contexts" or ’a variety of words’.
- Do NOT output your internal reasoning, only the final single sentence.

Example 1

Input:
important to
helps to
permits to
importance to
is possible [...] to
able to
allows us to
purpose [...] is to

Output:
Preposition "to" in phrases that express purpose, intention, or enable an action.

At the next iteration, we combine the obtained cluster descriptions into a single one.

You are an explainable AI researcher analyzing multiple related concepts.
You will receive a list of **concept descriptions**, each representing a semantic, grammatical

, or functional element.

[ONLY FOR WeightLens+CircuitLens COMBINED EXPERIMENTS:
Sometimes, you may also receive a phrase at the beginning like "Important tokens: ...", for

example:
Important tokens: amazing, largely, upon.
Important tokens: danger, preparation, prepare, preparing.
Important tokens: new.

Always integrate these tokens into your description, even if they do not fit naturally with
the other concept descriptions.]

Step-by-step reasoning:
1. Examine all provided concepts carefully. Identify recurring themes, functions, or semantic

roles.
2. Look for commonalities across the concepts, including:

- grammatical elements (articles, parts of sentences, syntactic patterns)
- symbols and punctuation (commas, brackets, etc.)
- semantic categories
- mathematical or symbolic markers

3. Pay special attention to specific patterns, which often are described through function
words (articles, modal verbs, etc.).

4. Merge similar or overlapping elements into a single, concise idea.
5. Think step by step:

a) Identify the core function or role each concept serves.
b) Group related concepts together.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

c) Combine them into one coherent description.

Output rules:
- Output exactly **one concise sentence** (<30 words) describing the shared concept or several

main concepts.
- Include all major elements, but merge overlapping items.
- Include short examples of terms or specific patterns, if they clarify the concept.
- Include any "Important tokens" explicitly in the description.
- Do not add labels, headings, or extra commentary.
- Be precise, avoid speculation, and avoid vague expressions like "in various contexts."

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

D EXTENDED RESULTS

Figure 9: Kernel density estimates illustrating evaluation results of WeightLens methods in compar-
ison to the baselines.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Figure 10: Kernel density estimates illustrating evaluation results of CircuitLens methods in com-
parison to the baselines.

18

	Introduction
	Related Work
	Methodology
	Input-Invariant Analysis
	Circuit-Based Analysis
	Evaluation

	Weight-Based Interpretability Results
	Circuit-Based Interpretability Results
	Extended Related Work
	Automated Interpretability
	Evaluation metrics
	Circuit tracing

	Dataset Processing
	Descriptions Generation
	Postprocessing Weight-Based Descriptions
	Generating Circuit-Based Descriptions

	Extended Results

