Under review as a conference paper at ICLR 2026

CIRCUIT INSIGHTS: TOWARDS INTERPRETABILITY
BEYOND ACTIVATIONS

Anonymous authors
Paper under double-blind review

ABSTRACT

The fields of explainable Al and mechanistic interpretability aim to uncover the
internal structure of neural networks, with circuit discovery as a central tool for
understanding model computations. Existing approaches, however, rely on man-
ual inspection and remain limited to toy tasks. Automated interpretability offers
scalability by analyzing isolated features and their activations, but it often misses
interactions between features and depends strongly on external LLMs and dataset
quality. Transcoders have recently made it possible to separate feature attributions
into input-dependent and input-invariant components, providing a foundation for
more systematic circuit analysis. Building on this, we propose WeightLens and
CircuitLens, two complementary methods that go beyond activation-based analy-
sis. WeightLens interprets features directly from their learned weights, removing
the need for explainer models or datasets while matching or exceeding the perfor-
mance of existing methods on context-independent features. CircuitLens captures
how feature activations arise from interactions between components, revealing
circuit-level dynamics that activation-only approaches cannot identify. Together,
these methods increase interpretability robustness and enhance scalable mecha-
nistic analysis of circuits while maintaining efficiency and quality.

1 INTRODUCTION

Large language models (LLMs) have seen rapid adoption in recent years, including in sensitive
domains such as medical analysis (Singhal et all [2023). Despite their remarkable capabilities, we
still understand very little about their internal mechanisms, which is crucial for safe and reliable
deployment (Olah et al., |2018}; |Sharkey et al., 2025; [Lapuschkin et al., 2019). Several methods
have emerged in the fields of mechanistic interpretability and explainable Al to understand how
models encode and utilize mechanisms that influence outputs (Olah et al., 2020} |Achtibat et al.,
2024; Dreyer et al., 2025). Much of the existing work focuses on circuit discovery, identifying
subgraphs responsible for specific tasks (Conmy et al.l |2023). However, these studies are mostly
limited to toy tasks, and understanding the roles of individual neurons and attention heads still
requires extensive manual analysis (Elhage et al.,|2022;|Wang et al., 2022; Bricken et al., |[2023).

Automated interpretability methods have been proposed to address these limitations. Initial work,
such as Bills et al. (2023)), leveraged larger LLMs to analyze activation patterns of MLP neurons
and generate natural language descriptions. Although promising, these approaches face the funda-
mental challenge of polysemanticity of MLP neurons, making them inherently difficult to interpret.
This bottleneck prompted the development of sparse autoencoders (SAEs), which decompose acti-
vations into more monosemantic features (Bricken et al., 2023)), advancing scalable interpretability
pipelines (Templeton et al.| 2024; [Paulo et al., 2025a)). More recently, Transcoders were introduced
by (Dunefsky et al.| 2024} |Ge et al.} 2024)) as another alternative approach for extracting sparse fea-
tures. Unlike SAEs, which reconstruct activations, Transcoders sparsely approximate entire MLP
layers while maintaining a clear separation between input-dependent and weight-dependent contri-
butions. This architecture enables efficient circuit discovery and provides direct attributions to other
features, attention heads and vocabulary.

Despite these advances in sparse feature space construction, automated interpretability remains
heavily dependent on explainer LLMs, which shifts the black box problem to another black box
LLM, introducing notable safety risks which may produce unfaithful or unreliable explanations

Under review as a conference paper at ICLR 2026

(Lermen et al.| [2025). Its effectiveness is influenced by the prompt, fine-tuning strategy, and the
dataset used for generating explanations. Furthermore, sparse features can still be challenging to in-
terpret (Puri et al.,[2025)), as they may activate on highly specific patterns that are not easily captured
by analyzing activations alone, or may be polysemantic.

In this work, we focus on automated interpretability grounded in model weights and circuit structure,
making the following contributions:

* We introduce WeightLens, a framework for interpreting models using only their weights and
the weights of their Transcoders, reducing dependence on both the underlying dataset and
explainer LLMs. Descriptions obtained via WeightLens match or exceed activation-based
descriptions for context-independent features.

* We introduce CircuitLens, a framework for circuit-based analysis of feature activations, ex-
tending interpretability to context-dependent features by (i) isolating input patterns trigger-
ing feature activations and (ii) identifying which model outputs are influenced by specific
features.

Our approach uncovers complex patterns invisible to activation-only methods, addresses the large
dataset requirements and explainer LLM dependence of autointerpretability pipelines |Choi et al.
(2024); Puri et al.| (2025). Additionally, it handles polysemanticity through circuit-based clustering
and combining their interpretations into unified feature descriptions. Code for both the frameworks
will be available on Github with the camera ready version.

2 RELATED WORK

Recently, a series of works has focused on building automated interpretability pipelines for language
models |Choti et al.| (2024); [Paulo et al.| (2025a)); [Puri et al.| (2025)); |Gur-Arieh et al.| (2025). Most
approaches follow the framework introduced by Bills et al.| (2023), which consists of running a large
dataset through a model, collecting maximally activating samples for each neuron or SAE feature,
applying various sampling strategies, and then passing the samples to a larger LLM to generate
natural language descriptions.

Several studies have refined this pipeline by focusing on prompt construction and description eval-
uation. For instance, |(Choi et al.| (2024), and |Puri et al.| (2025) examined how factors such as the
number of samples and the presentation of token activations affect description quality. |Choi et al.
(2024) further fine-tuned an explainer model specifically to produce descriptions conditioned on a
feature’s activations. Beyond input-based evidence, Gur-Arieh et al.|(2025) incorporated output-side
information, analyzing not only what inputs trigger a feature but also how that feature influences the
model’s logits.

These pipelines have been applied to different representational units. Early work focused on MLP
neurons (Bills et al., 2023; |Choi et al., [2024), while later studies extended them to SAE features,
which are generally more interpretable and often monosemantic (Templeton et al.,[2024; |Gur-Arieh
et al.l 2025} |Paulo et al., [2025a; |Puri et al.| [2025)).

As an alternative to SAEs, Dunefsky et al.| (2024) and |Ge et al.| (2024) introduced transcoders, a
sparse approximation of MLP layers that decomposes attributions into input-dependent and input-
invariant components. Variants such as skip-transcoders (Paulo et al., [2025b) and cross-layer
transcoders (CLTs) (Ameisen et al., |2025) have also been explored, demonstrating through quali-
tative and quantitative analysis that transcoders match or exceed interpretability of SAEs. Through
case studies, Dunefsky et al.[(2024) showed that transcoder circuits can be used for interpreting a
feature’s function, although based mainly on manual analysis.

The interpretability of transcoder weights has been studied by [Ameisen et al.| (2025)), who showed
that while some connections appear meaningful, interference is a major challenge. They pro-
posed target-weighted expected residual attribution (TWERA), which averages attributions across
a dataset. However, they found that TWERA weights often diverge substantially from the raw
transcoder weights, making the method sensitive to the distribution of the evaluation dataset.

Finally, Puri et al.| (2025) highlighted a persistent challenge: even though sparse features, specifically
in SAEs, are generally more monosemantic than MLP neurons, they can be highly fine-grained
and activate only on certain patterns. This specificity makes them difficult to interpret; either the

Under review as a conference paper at ICLR 2026

explainer LLM fails to identify the correct trigger, or the resulting description is too vague to be
useful.

3 METHODOLOGY

As introduced by |Dunefsky et al.[(2024), given a transcoder structure, the contribution of transcoder
feature ¢’ in transcoder layer !’ to feature 7 in layer [> I’ on token ¢ can be expressed as:

activation!"?)[t] (f(l) feliCZ)) (1)

input-dependent input-invariant

where fe(rll&i) € Rémeel denotes the i-th column of the encoder matrix We([fc) € R%moger X dieaures - qn(

. . . v .
éec’l) € Rdmast denotes the i'-th row of the decoder matrix Wd(ec) € Rbeawres X dmosel where dpegrures 1S

the dimension of the transcoder, dyoqe1 1S the dimension of the model, and dieatures => dmodel -

This formulation cleanly separates an input-dependent scalar activation from a fixed, input-invariant
connectivity term between features across layers.

3.1 INPUT-INVARIANT ANALYSIS

The input-invariant connections from Equation provide a use- —i5w, L vocabulay
ful foundation for interpretation of transcoder features, as demon- ‘ o
strated in the case studies of (Dunefsky et al., [2024)). To build on §%[prr— :]
this idea, we make the following assumptions: _F
j M Wene
Assumption 1: [nput-invariant connections indicate meaningful [e | {ranscoder
structural relationships only if their magnitude significantly exceeds 4',: i
that of other connections, making them statistical outliers. i 1 e
Since many features are context-dependent, relying solely on 2 J Aenton
weight-based analysis can produce misleading results. To address = [& i
this, we introduce a validation step to determine whether a feature is i MP Il transcader]
truly token-dependent, i.e., whether it consistently activates on spe- S
cific tokens regardless of context. Formally, we state the following |
assumption: L . e
{;[attention]
Assumption 2: If a token is strongly supported by input-invariant =~ ‘“—————=,,.
connections (weights) and semantically aligned with the concept e [transcoder |
encoded by the feature, then the feature should activate on this token [

regardless of context. f e

We generate a feature description — a set of tokens associated with Figure 1: Process of layer-
the feature — by processing the model layer-by-layer, starting from wise input-invariant analysis
layer O as presented on Figure [I} For this we are performing the via WeightLens.

following steps:

1. Extract candidate tokens from vocabulary and previous layers features: Project the
feature encoder vector f. into the input vocabulary embedding space via the embedding
matrix Wg as Wg - fene, and identify candidate tokens as statistical outliers based on their
z-scores (Barnett & Lewis| [1994)), retaining only highly distinctive tokens. For each earlier

layer I’ < 1, compute Wd(l) e(ég, identifying top contributing (outlier) features using the

same criterion, and inherit their token descriptions.

. Validate tokens: Retain only tokens that activate the feature in a forward pass.

. Analyze output effects: Project the feature decoder vector fg.. into vocabulary logits via
fdec - Wy, and identify outlier tokens (strongly promoted) via z-score.

W N

Token-based features often respond to multiple forms of the same word. To process the obtained set
of tokens and produce a coherent feature description, we apply lemmatization (Bird et al., 2009) to
both the promoted tokens and the generated descriptions. This step consolidates different inflected
forms into a single canonical form and can be considered a lightweight alternative to LLM-based
postprocessing for cleaning and standardizing the descriptions.

Under review as a conference paper at ICLR 2026

layer | transcoder features Jayer | this week based on ...
+ | e—
T wy
[oeeeiperoncens T e !
T Ty layer
i iy
« E— encoden® —
,,,,,, layer
layer ... layer ...
decoder(®) layer 1
—decoder(®) layer I’ + " —attention heads layer I’ i
1 T [ceccocco@ococonos |
[eeeres beveeonns | , £
 — 2 Ef
3 i B it 0 H
i :
moon of Saturn, [...] most distant from the [planet ... was proposed

8 target feature — contribution of @ to @ at token §
© source feature ——— backward pass at token
token, activating target feature @

S| token, contributing to @ through attention head

i 9
contribution of Hito @ contribution of @ to the output

——> backward pass at token©

{ 0 output token w

(a) Attributions between transcoder (b) Attributions from transcoder (c) Attributions from model logits to
features. features to attention heads. transcoder features.

Figure 2: Types of attributions in transcoders.

3.2 CIRCUIT-BASED ANALYSIS

To account for interference between layers, Ameisen et al.|(2025) propose incorporating a Jacobian
term into the attribution formulation, which improves the reliability of feature attributions. With this
adjustment, Equation (T) can be redefined as

activation! ¥ [t] (fd(fs/c’i/) g eqﬁ), (2)
where the Jacobian is given by
/ ar [t
J(l—>l)[t] Téll’lll)d[] ’ 3)
0 Tpost [t] stop-grad on MLP outputs,

attention patterns, norm denominators

and rr(rll)l qlt] and rg(;gt [t] denote the residual streams before and after the transcoder at layers / and I/,

respectively (see Figure [2a).
Similarly, we can measure, how much previous tokens influenced the activation of our analyzed
feature ([,) on token ¢ through attribution to attention heads, as presented in Figure [2b| (Dunefsky

et al.|2024). For an attention head h at layer I with I’ < [, the contribution of token s through (I’, h)
to feature (I,) at token ¢ can be expressed as

U h) o (1 I (VS IONT p(1yi v

score” M (rG)[t], rid[s) ((Woy™) T L&) - rindls]))
attention score from s to ¢ projection of feature onto head output

where rI(,lre) [s] denotes the residual stream at token s before the attention block in layer I/, ng’h) is

the output-value matrix of head h, and fen.’ is the encoder vector of feature (I, 7).

The contribution of our target feature (I,4) to the output logit y[t] at token ¢ is demonstrated on
Figure[2c] and can be expressed as

activation ") [¢] (F ARl COI T IS 17 y[t]]),)
where féi’é) is the decoder vector of feature (1,4), J¥=7 D [¢] is the Jacobian from the final residual
stream to the post-residual of feature (I,7) at token ¢ (calculated as before with nonlinearities and

attention patterns considered as a constant on a given input), and Wy [:, y[t]] is the unembedding
vector for token y[t] .

Interpretability Beyond Activations A central challenge in interpreting feature activations is that
raw activation values do not always reveal what triggered an activation of a given feature. Sim-
ply highlighting token activations and prompting language models often yields vague or generic
explanations such as “variety of words on variety of topics.

'https://www.neuronpedia.org/gemma-2-2b/4-gemmascope-transcoder-16k/13598

Under review as a conference paper at ICLR 2026

To address this, we focus on identifying patterns in the data that both lead to a feature’s activation
and determine how the feature influences the output.

* Input-centric focus: Using the attribution formulation in Equation (), we extract attention
head—token pairs that provide strong contribution for a feature’s activation. Outlier pairs
are selected based on their z-score (Barnett & Lewis, |1994) relative to the distribution of
contributions, ensuring that only the strongest connections are retained. We then mask
the original input sequence, keeping only tokens that either directly activated the feature
or contributed significantly through attention. This procedure isolates interpretable token
patterns underlying the activation of a feature, as illustrated in Figure 2bl where the feature
activates on references to already mentioned entities.

* Output-centric analysis: Using Equation (5), we evaluate whether the analyzed feature
contributed to the prediction of the generated tokens after being activated. This highlights
which output tokens were influenced by the feature and thus provides an estimate of its
downstream impact, as shown in Figure

Circuit-Based Clustering A single feature often responds to multiple concepts, which may be en-
tangled and hard to interpret. Semantic clustering in embedding space is insufficient, as it ignores
the causal, circuit-level mechanisms.

We propose circuit-based clustering: for each input, we collect contributing elements, such as
transcoder features and token/attention head pairs via Equation and Equation (@) respectively,
including significant transcoder features (I’,¢’) and attention head contributions (I, h, A), where A
is the relative token position. Sparse activations ensure that each input has only a few contributors.

To reduce noise, we apply a frequency filter, retaining a feature or head only if it appears in at

least a fraction p of inputs: % > p, where S; is the contribution set for input j. This
step removes features and heads that contribute only for isolated inputs and are unlikely to reflect
consistent circuit-level behavior relevant to the feature activation, as well as reduces the size of the
set, making subsequent clustering more robust and computationally efficient.

We then compute pairwise Jaccard similarities J (A, B) = |S4 N Sp|/|S4USg|, forming ann x n
distance matrix. Clusters are extracted via DBSCAN (Ester et al., [1996) on this similarity matrix,
which is robust to noise and does not require a predefined number of clusters.

Sampling Strategy Most prior works (Bills et al., 2023} |Choi et al., |2024; Pur1 et al.| [2025; |Gur-
Arieh et al.l |2025) focus on analyzing the most highly activating examples of a feature. This ap-
proach is especially sensible for MLP neurons, whose activations are often noisy and unstructured.
In contrast, both SAEs and transcoders are explicitly designed to yield monosemantic features. For
this reason, we aim to analyze the entire distribution of a feature’s activations, in order to capture
the broader concept(s) that drive its behavior.

Because activation distributions are typically highly skewed toward zero, we adopt inverse-
frequency quantile sampling (L1 et al., 2019; Han et al.| 2022) to ensure sufficient coverage of
rare but strongly activating cases. Specifically, activations are partitioned into B = 20 quantile
bins. If n;, denotes the number of activations in bin b, then each activation ¢ in b is assigned weight
w; = 1/ng with @ = 0.9, and corresponding normalized probability p, = w;/ > j Wj-

Finally, we sample NV = 100 activations without replacement, producing a diverse set of contexts
that up-samples tail cases while still maintaining broad overall coverage.

Automated Interpretability Sampled inputs are first analyzed from input- and/or output-centric
perspectives, then grouped into clusters according to the detected circuits. Each cluster is inter-
preted independently using an explainer LLM (GPT-40-mini; see Appendix [C.2). Rather than pro-
viding full inputs with highlighted activations or token—activation pairs, we supply only the detected
pattern, marking the single most activating token. Finally, for each feature, the explainer LLM
synthesizes a unified description from the individual cluster-level interpretations.

3.3 EVALUATION

All evaluations were performed on input-centric metrics Clarity, Responsiveness, Purity and the
output-centric metric Faithfulness from the FADE framework (Puri et al., 2025)), where Clarity mea-

Under review as a conference paper at ICLR 2026

Layer 0 Layer 7 Layer 12 Layer 21
C R P F C R P F C R P F C R P F
WeightLens 056 024 0.03 0.00 0.62 022 0.02 0.01 047 0.13 0.02 0.01 071 0.86 0.65 0.02
WeightLens+Out 051 026 0.03 0.00 055 024 0.02 0.01 039 015 002 0.01 0.63 0.87 0.63 0.04
WeigthLens+Out+LLM 0.52 0.27 0.04 001 058 020 003 002 041 013 003 000 068 084 063 0.03
Neuronpedia 0.53 022 0.07 0.03 051 0.17 010 0.03 028 0.10 0.08 0.00 050 0.80 0.73 0.02
MaxAct* 0.50 0.21 0.08 0.04 0.54 0.15 0.08 0.05 033 0.11 07 0.00 053 0.80 0.74 0.03

Table 1: Evaluation of Gemma-2-2b transcoder descriptions (C = Clarity, R = Responsiveness, P
= Purity, F = Faithfulness; metrics in range 0-1, higher is better). Best results marked in bold.
Methods: WeightLens variants; Circuit-Based; Neuronpedia and MaxAct* (activation-based).

sures if the concept is expressed clearly enough to generate synthetic data, that would activate a
feature. Responsiveness measures that a feature activating on the given concept is significantly-
higher than the baseline activation distribution of the feature. Purity measures if the feature only
strongly activates on the described concept and also on unrelated concepts. Finally, Faithfulness
measures the extent to which steering the feature influences the model output in the direction of the
described concept.

4 WEIGHT-BASED INTERPRETABILITY RESULTS

We analyze the interpretability of transcoders for GPT-2 Small (Dunefsky et al.| [2024), Gemma-2-
2b (Lieberum et al., |2024), and Llama-3.2-1B (Paulo et al., 2025b) via WeightLens, and we focus
on Gemma-2-2b transcoders for qualitative analysis. We evaluate and compare:

* WeightLens (Weights-based descriptions): descriptions composed solely of the tokens
that activate the feature, postprocessed via lemmatization;

* WeightLens+Out (Weight-based with logits-based analysis): weight-based descriptions
augmented with tokens derived from the feature’s unembedding vectors;

* WeightLens+Output+LLM (Weight-based with logits and LLM refinement): descrip-
tions further refined using a secondary LLM (gpt-40-mini-2024-07-18) to generate a con-
cise, descriptive single-line summary based on both activating and promoted tokens (see
Appendix [C.T).

They are further compared to activation-based methods, specifically descriptions from Neuronpedia
(Lin, 2023) and MaxAct* method (Puri et al., 2025).

— a2 smn WeightLens matches or exceeds activation-based methods

— el Across ~250 features per layer, our weight-based method performs
on par with or better than activation maximization methods. It
achieves higher scores on Clarity and Responsiveness (Table [I),

while activation-based methods tend to overgeneralize, leading to
lower scores. However, activation maximization attains higher Pu-
omotaasoer et «»= pity, highlighting that many features might be context-dependent
Figure 3: Percentage of which is not discovered through WeightLens.

validated feature descrip-
tions per layer obtained via
WeightLens.

Layer-wise trends in token-based feature interpretability Fig-
ure [3] shows that token-based interpretability varies strongly with
depth.

Early layers exhibit clear token-level structure, making them well-suited for weight-based analysis,
with many features activating reliably on specific tokens. In Gemma-2-2B, however, layers 0 and 7
perform poorly in terms of descriptions quality (Table[I)), reflecting their high activation count (¢y =
76, 70 which also explains the weak activation-based baselines.

Number of token-based features, as well as the quality of their descriptions, drops sharply in the
middle layers of Llama and Gemma, as presented on Figure [3] consistent with prior interpretability
analysis (Choi et al.,2024)), but not in GPT-2, similarly to|Bills et al.|(2023). A likely explanation is
the use of RoPE in Llama and Gemma, which introduces additional non-linearities. Within Gemma-

Zhttps://huggingface.co/google/gemma-scope-2b-pt-transcoders

Under review as a conference paper at ICLR 2026

2-2B, layer 12 is the least interpretable based on weights: despite high sparsity (¢, = 6), it contains
few validated token-based features. Majority of the features in this layer are extremely context-
dependent and encode very specific patterns.

Higher layers partially recover in terms of presence of token-based features, though still below
early-layer levels. For instance, Gemma-2-2B layer 21 (£, = 13) shows strong interpretability, with
token-based features often acting as key—value pairs that map input tokens to predictable collocations
(e.g., “apologize for”, “will be”).

Faithfulness is consistently low across layers and meth- 08] == Tokenbased =3 Responsiveness
. . ntext-based rif

ods, likely due to the transcoder architecture: un- 07 { mm coriy o gE ithuiness

like SAEs, which decompose the full residual stream, 06

0.5

transcoders write into it like MLPs, so modifying a sin-
gle feature rarely produces large effects because similar

0.4

Mean score

concepts are distributed across layers and features. o3

Most interpretable features are token-based Only a 01

subset of features receive validated input-invariant de- 00 @
scriptions: 32.7% for Gemma, 58.8% for GPT-2, and Layer

25.4% for Llama (Figure[3). However, when the weight- Figure 4. Comparison of Neuron-
based descriptions fail, activation-based ones also per- Pedia feature descriptions for token-
form poorly (see Figure). This is especially visible on based features (i.e., those for which de-

layer 21, which overall demonstrated the best results in Scriptions were successfully generated
terms of interpretability. via WeightLens) and context-based fea-

L. . tures, whose activations are strongly in-
LLM postprocessing is not essential Although an LLM fiyenced by context.

can produce more general results and filter out noise in
the output logits, it’s utilization is not mandatory in this analysis, since the results are comparable,
as seen in Table|l} This is a promising step to reducing reliance on the explainer models.

5 CIRCUIT-BASED INTERPRETABILITY RESULTS

For the input-dependent analysis, we evaluate the following approaches, implemented within the
CircuitLens framework:

¢ CircuitLens-Input (Circuit-based descriptions): descriptions derived from the activa-
tion patterns of the feature, obtained via attribution to attention heads;

¢ CircuitLens-Full (Circuit-based full descriptions): descriptions based on activation pat-
terns obtained through attributions to attention heads, augmented with tokens, which gen-
eration was influenced by the feature.

¢ WeightLens (WL) + CircuitLens-Full (Circuit-based full descriptions integrated with
WeigthLens results): circuit-based descriptions are enriched with weight-based tokens
obtained via WeightLens, which are incorporated when merging cluster-level descriptions
into a full feature description.

For generating circuit-based descriptions, we use sampling, described in the Subsection on a
relatively small dataset of 24M tokens (see Appendix [B). In addition, to eliminate the factor of the
dataset influence, we compare the circuit-based analysis performed on the same data, as was used in
MaxAct* baseline, i.e. on a large dataset with sampling from the top, as presented in Appendix
These results will be marked by (top), i.e. CB-Input (top).

As baselines, we consider Neuronpedia (Lin, 2023) and MaxAct* (Puri et al., [2025]) feature de-
sciprions. We do not analyze output-based patterns separately, as they are more computationally
expensive to obtain and, in most cases, provide little additional information without the activation
patterns that originally triggered the feature.

Activations alone are not sufficient Figure [5|shows three circuit-based clusters of activating input
samples for feature 619 in layer 12 (L12F619). Within each cluster, some commonality in activating
concepts exists, but no clear general pattern emerges from activations alone. Isolating the tokens
that contribute most through attention heads reveals that each activating entity is either explicitly
mentioned or marked as definite or demonstrative references such as “the,” “this,” or “that,” as well
as “former” or “latter,” where contributing tokens align semantically.

Under review as a conference paper at ICLR 2026

25%

— Layer0
— Layer7
16% Layer 12
Layer 21

9%
4%

1% s

O
., NN

0% 1% 4% 9% 16% 25% 36% 49% 64% 81%
Percentage of outputs influenced by a feature

Percentage of analyzed features per layer

100%

(a) Smoothed histogram of the fraction of features
per layer influencing a given percentage of outputs,
with both axes square-root transformed to highlight

50%
. Layer 0
B Layer 7
20% =3 Layer 12
3 Layer 21

30%

20%

Percentage of outputs influenced

10%

0% ‘Jz—ﬂ

1

=

P S 5 B S . N Y . TS . S . B - [. B - . |
4 5 6 7 8 9 10 11 12 13 14 15
utput position influenced by feature (positions 1-15)

ow

(b) Fraction of features in each layer that contribute to
generated outputs, plotted by output position relative
to the activating token.

skewed distributions.

Figure 7: Influence of features on the new 15 generated tokens from the position of the maximally

activating token on a given feature.

Inputs, activating L12F619 Obtained patterns

Cluster 1: A toa

... is orthogonal to all but the j-th row of M, again, since the [Matfix
... we performed a statistical study of this Guantity

... it has been argued, that this Gperaton

... are edges in $G"S$, the average degree of this graph

or technical entity via “the” or “this”
M [...] the matrix
this quantity
this operator
G [...] this graph

Cluster 2: A reference to a previously mentioned celestial object using a definite or demonstrative noun.
Jupiter's enormous magnetic field is ... Near the planet Jupiter [...] the planet
..12.6 spiral galaxy (type (R')SA(rs)a?) ... north-northwest of the galaxy. galaxy [...] the galaxy
Kepler-22b orbits within the habitable zone of its star, and this planet Kepler-22b [...] this planet

Cluster 3: A toa
There are no contractions between Q and T, since the former
... combination of an inner type Il and an outer type Il with the latter
... tried to related them directly, probably because the former

... β instead of γ is the same, but for the latter

or technical entity using “the former” or “the latter.”

Q [...] the former
type Il [...] the latter
the former

gamma [...] the latter

Figure 5: Clusters of activating inputs for L12F619 and their
patterns, obtained through attribution to attention heads.

Downstream effect of a feature
Output-based analysis is computation-
ally expensive, as each generated to-
ken requires both a forward and back-
ward pass. We generate 15 new to-
kens per sample to assess how many
are needed for reliable results. As
expected, early layers (e.g., layers O
and 7) rarely contribute directly to the
output (Figure [7a)), and when they do,
the effect is usually limited to the to-
ken immediately following the activat-
ing one (Figure [7b). Extending the
analysis to additional tokens adds only
about 1.4% of samples for layer 0, a
negligible gain given the computational
cost. In deeper layers, most influence
remains on the first generated token,

Extending to the output, feature
L21F91 shows that functional roles
are not fully captured by input acti-
vations: while it activates on tokens
like “on” or certain verbs, its main
effect is generating output phrases
such as “the basis of”” or “based on”
(Figure @ These contributions, de-
tectable via attributions from output
logits, illustrate how features influ-
ence output patterns beyond input ac-
tivations.

INPUT: Subsequent work in this direction shall be conducted on

OUTPUT: the basis of the results of the present study.
PATTERN: [...] work [...] conducted on the basis [...]

INPUT: Therefore, we have divided subpopulations of RGB stars in NGC 5286 on
OUTPUT: the basis of their color and the color of their host galaxies.

PATTERN: [...] on the basis of [...]

INPUT: The targets, which are likely members of the cluster NGC, were |identified
OUTPUT: using the 2MASS survey. The targets were selected from the ...

PATTERN: [...] targets [...] were identified [...] from [...]

INPUT: A new mechanism of tunnelling at macroscopic distances isproposed
OUTPUT: The mechanism is based on the existence of a new type of [...]
PATTERN: [...] mechanism [...] is proposed [...] based on [...]

Figure 6: Input patterns for feature L21F91, obtained via
attributions to attention heads, and output patterns, via
attributions from logits to the feature. Tokens isolated
through attribution are shown in bold, and activating to-
kens are highlighted in green.

though multi-token output patterns also appear, and might be crucial for interpreting a feature’s

function, particularly in later layers (e.g., Figure[6).

Circuit-based polysemanticity Layer 0 has almost no underlying circuit structure: activations are
largely token-based (Figure [3), with few or no clusters beyond outliers. This aligns with its low
sparsity, broad topic coverage, and context-independent behavior, yielding on average only 1.05
clusters per feature (see Figure [§). By contrast, Layer 7 exhibits clear polysemanticity, averaging
4.5 clusters per feature and showing the fewest single-cluster cases, indicating widespread circuit
formation. Layer 12 presents a mixed picture. While it averages 2.8 clusters per feature, many are
either single-cluster or highly clustered. Qualitative inspection suggests that circuit-based clustering

Under review as a conference paper at ICLR 2026

Layer 0 Layer 7 Layer 12 Layer 21
C R P F C R P F C R P F C R P F
CircuitLens-Input 0.51 020 0.11 0.01 039 0.14 014 0.03 0.19 0.10 0.10 0.01 042 059 051 0.03

CircuitLens-Full 052 022 011 0.02 044 0.14 0.13 0.03 024 0.09 009 0.01 052 0.64 054 0.03
CircuitLens-Input (top) 0.66 024 0.05 002 0.62 0.17 008 003 027 009 008 000 054 072 063 0.03
CircuitLens-Full (top) 0.66 024 0.04 0.02 061 018 0.07 0.04 026 0.10 007 0.01 056 0.73 0.62 0.03
WL + CircuitLens-Full ~ 0.55 022 0.10 002 051 0.14 011 002 025 010 008 001 055 068 056 0.03

Neuronpedia 0.51 023 0.09 0.03 044 0.17 0.11 0.03 0.15 0.10 011 0.00 036 0.71 0.64 0.02
MaxAct* 050 021 0.09 0.04 048 0.15 0.09 0.03 0.17 0.10 0.10 0.00 039 0.71 0.64 0.02

Table 2: Evaluation of Gemma-2-2b transcoder descriptions (C = Clarity, R = Responsiveness, P
= Purity, F = Faithfulness; metrics in range 0-1, higher is better). Best results marked in bold.
Methods: Circuit-Based variants. Baselines: Neuronpedia and MaxAct*.

can capture both main circuits and sub-circuits, and more careful hyperparameter tuning could yield
more generalizable results (Figure[5). It also has the largest share of outlier-only features, reflecting
the difficulty of disentangling circuit-driven from semantic-driven activations. Layer 21 is similar
(avg. 2.95 clusters/feature) but shows fewer extreme cases. As this layer is closely tied to output
generation, we hypothesize that features flexibly participate in multiple circuits to support specific
outputs (Figure [6).

Resolving the Clarity Problem As shown by [Puri et al. - Loyero
(2023)), sparse feature descriptions are often not clear 1 = e 12

enough, as they fail to specify what precisely triggers a B Layer2d

feature’s activation. In Table[2] we compare circuit-based
analysis with activation-based baselines, including exper-
iments performed on a smaller dataset sampled from the
full distribution, as described in Section[3.2](CircuitLens-
Input and -Full), and on a MaxAct*-like dataset (Cir- H-L rH
cuitLens (top)), which is drawn from a much larger cor- T et
pus but restricted to top activations (see Appendix Number of clusters per feature

Figure 8: Histogram of number discov-
ered clusters per layer with log scale (y-
axis).

Our results show that circuit-based methods still depend
on the dataset, with descriptions from the larger dataset
achieving the strongest performance across layers, partic-
ularly in clarity and responsiveness. However, descrip-
tions derived from the smaller dataset remain competitive and in some cases outperform activation-
based baselines, generated on the larger dataset. Combining weight-based and circuit-based analy-
sis further reduces sensitivity to dataset size and distribution, making interpretability more robust.
Moreover, analysis of the metrics distributions reveals that circuit-based methods yield far fewer fea-
tures with extremely low clarity compared to purely activation-based approaches (see Appendix D).
Finally, both qualitative and quantitative evidence indicate that sampling from the full distribution,
though memory-intensive, provides a more faithful picture of general feature behavior.

CONCLUSION

In this work, we address a fundamental missing piece in automated interpretability pipelines by
developing methods that leverage models’ underlying structural information. We show that raw
activations alone often fail to reveal the patterns driving feature activation, while transcoders, well-
suited for circuit discovery, enable efficient incorporation of structural information. Our proposed
frameworks demonstrate that structural information allow more scalable and robust interpretability.
The weight-based analysis offers an efficient alternative for context-independent features — covering
up to 58.8% of cases — without requiring large datasets or external LLMs. Circuit-based clustering
isolates groups of activating texts into more interpretable clusters, while input- and output-based
analysis further clarifies each feature’s functional role. Together, these methods reduce dependence
on large datasets, improve robustness, and make automated interpretability more scalable and practi-
cal for real-world applications. By bridging activation-based approaches with weight-based analysis
and circuit discovery, our work opens new avenues for understanding model behavior at scale.

Under review as a conference paper at ICLR 2026

REFERENCES

Reduan Achtibat, Sayed Mohammad Vakilzadeh Hatefi, Maximilian Dreyer, Aakriti Jain, Thomas
Wiegand, Sebastian Lapuschkin, and Wojciech Samek. Attnlrp: attention-aware layer-wise rel-
evance propagation for transformers. In Proceedings of the 41st International Conference on
Machine Learning, pp. 135-168, 2024.

Emmanuel Ameisen, Jack Lindsey, Adam Pearce, Wes Gurnee, Nicholas L. Turner, Brian Chen,
Craig Citro, David Abrahams, Shan Carter, Basil Hosmer, Jonathan Marcus, Michael Sklar,
Adly Templeton, Trenton Bricken, Callum McDougall, Hoagy Cunningham, Thomas Henighan,
Adam Jermyn, Andy Jones, Andrew Persic, Zhenyi Qi, T. Ben Thompson, Sam Zimmerman,
Kelley Rivoire, Thomas Conerly, Chris Olah, and Joshua Batson. Circuit tracing: Revealing
computational graphs in language models. Transformer Circuits Thread, 2025. URL https:
//transformer—-circuits.pub/2025/attribution-graphs/methods.htmll.

Vic Barnett and Toby Lewis. Outliers in Statistical Data. Wiley, 3rd edition, 1994.

Steven Bills, Nick Cammarata, Dan Mossing, Henk Tillman, Leo Gao, Gabriel Goh, Ilya
Sutskever, Jan Leike, Jeff Wu, and William Saunders. Language models can explain
neurons in language models. https://openaipublic.blob.core.windows.net/
neuron-explainer/paper/index.html) 2023.

Steven Bird, Ewan Klein, and Edward Loper. Natural Language Processing with Python. O’Reilly
Media, 2009. ISBN 978-0-596-51649-9. URL https://www.nltk.org/book/.

Trenton Bricken, Adly Templeton, Joshua Batson, Brian Chen, Adam Jermyn, Tom Con-
erly, Nick Turner, Cem Anil, Carson Denison, Amanda Askell, Robert Lasenby, Yifan Wu,
Shauna Kravec, Nicholas Schiefer, Tim Maxwell, Nicholas Joseph, Zac Hatfield-Dodds, Alex
Tamkin, Karina Nguyen, Brayden McLean, Josiah E Burke, Tristan Hume, Shan Carter,
Tom Henighan, and Christopher Olah. Towards monosemanticity: Decomposing language
models with dictionary learning. Transformer Circuits Thread, 2023. https://transformer-
circuits.pub/2023/monosemantic-features/index.html.

Dami Choi, Vincent Huang, Kevin Meng, Daniel D Johnson, Jacob Steinhardt, and Sarah
Schwettmann. Scaling automatic neuron description, 2024.

Arthur Conmy, Augustine Mavor-Parker, Aengus Lynch, Stefan Heimersheim, and Adria Garriga-
Alonso. Towards automated circuit discovery for mechanistic interpretability. Advances in Neural
Information Processing Systems, 36:16318-16352, 2023.

Maximilian Dreyer, Jim Berend, Tobias Labarta, Johanna Vielhaben, Thomas Wiegand, Sebastian
Lapuschkin, and Wojciech Samek. Mechanistic understanding and validation of large ai models
with semanticlens. Nature Machine Intelligence, pp. 1-14, 2025.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models,
2024. URL https://arxiv.org/abs/2407.21783.

Jacob Dunefsky, Philippe Chlenski, and Neel Nanda. Transcoders find interpretable 1lm feature
circuits, 2024. URL https://arxiv.org/abs/2406.11944.

Nelson Elhage, Tristan Hume, Catherine Olsson, Nicholas Schiefer, Tom Henighan, Shauna Kravec,
Zac Hatfield-Dodds, Robert Lasenby, Dawn Drain, Carol Chen, et al. Toy models of superposi-
tion. arXiv preprint arXiv:2209.10652, 2022.

Martin Ester, Hans-Peter Kriegel, Jorg Sander, and Xiaowei Xu. A density-based algorithm for
discovering clusters in large spatial databases with noise. In Proceedings of the Second Inter-
national Conference on Knowledge Discovery and Data Mining (KDD’96), pp. 226-231. AAAI
Press, 1996.

Leo Gao, Stella Biderman, Sid Black, et al. The pile: An 800gb dataset of diverse text for language
modeling, 2020. URL https://arxiv.org/abs/2101.00027.

10

https://transformer-circuits.pub/2025/attribution-graphs/methods.html
https://transformer-circuits.pub/2025/attribution-graphs/methods.html
https://openaipublic.blob.core.windows.net/neuron-explainer/paper/index.html
https://openaipublic.blob.core.windows.net/neuron-explainer/paper/index.html
https://www.nltk.org/book/
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2406.11944
https://arxiv.org/abs/2101.00027

Under review as a conference paper at ICLR 2026

Xuyang Ge, Fukang Zhu, Wentao Shu, Junxuan Wang, Zhengfu He, and Xipeng Qiu. Automatically
identifying local and global circuits with linear computation graphs, 2024. URL https://
arxiv.org/abs/2405.13868l

Yoav Gur-Arieh, Roy Mayan, Chen Agassy, Atticus Geiger, and Mor Geva. Enhancing automated
interpretability with output-centric feature descriptions, 2025. URL https://arxiv.org/
abs/2501.08319.

Bingyi Han, Yuan Yao, and Yisen Zhang. Frequency-aware sampling for deep learning on long-
tailed data. In Advances in Neural Information Processing Systems (NeurIPS), 2022.

Laura Kopf, Nils Feldhus, Kirill Bykov, Philine Lou Bommer, Anna Hedstrom, Marina M-C Hohne,
and Oliver Eberle. Capturing polysemanticity with prism: A multi-concept feature description
framework. arXiv preprint arXiv:2506.15538, 2025.

Sebastian Lapuschkin, Stephan Wildchen, Alexander Binder, Grégoire Montavon, Wojciech Samek,
and Klaus-Robert Miiller. Unmasking clever hans predictors and assessing what machines really
learn. Nature communications, 10(1):1096, 2019.

Simon Lermen, Mateusz Dziemian, and Natalia Pérez-Campanero Antolin. Deceptive automated
interpretability: Language models coordinating to fool oversight systems, 2025. URL https:
//arxiv.orqg/abs/2504.07831.

Bo Li, Yu Wang, Yixin Liu, Zhifeng Zhang, and Shuo Li. Frequency-aware weighted loss for
imbalanced classification. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), 2019.

Zehan Li, Xin Zhang, Yanzhao Zhang, Dingkun Long, Pengjun Xie, and Meishan Zhang. Towards
general text embeddings with multi-stage contrastive learning, 2023. URL https://arxiv.
org/abs/2308.03281.

Tom Lieberum, Senthooran Rajamanoharan, Arthur Conmy, Lewis Smith, Nicolas Sonnerat, Vikrant
Varma, Janos Kramar, Anca Dragan, Rohin Shah, and Neel Nanda. Gemma scope: Open sparse
autoencoders everywhere all at once on gemma 2. In Yonatan Belinkov, Najoung Kim, Jaap
Jumelet, Hosein Mohebbi, Aaron Mueller, and Hanjie Chen (eds.), Proceedings of the 7th Black-
boxNLP Workshop: Analyzing and Interpreting Neural Networks for NLP, pp. 278-300, Miami,
Florida, US, November 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.
blackboxnlp-1.19. URL https://aclanthology.org/2024.blackboxnlp-1.19/.

Johnny Lin. Neuronpedia: Interactive reference and tooling for analyzing neural networks, 2023.
URL https://www.neuronpedia.org. Software available from neuronpedia.org.

Chris Olah, Arvind Satyanarayan, Ian Johnson, Shan Carter, Ludwig Schubert, Katherine Ye, and
Alexander Mordvintsev. The building blocks of interpretability. Distill, 2018. doi: 10.23915/
distill.00010. https://distill.pub/2018/building-blocks.

Chris Olah, Nick Cammarata, Ludwig Schubert, Gabriel Goh, Michael Petrov, and Shan Carter.
Zoom in: An introduction to circuits. Distill, 5(3):e00024-001, 2020.

Josh OpenAl andAchiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia
Leoni, et al. Gpt-4 technical report, 2024. URL https://arxiv.org/abs/2303.08774.

Gongalo Paulo, Alex Mallen, Caden Juang, and Nora Belrose. Automatically interpreting millions of
features in large language models, 2025a. URL https://arxiv.org/abs/2410.13928|

Gongalo Paulo, Stepan Shabalin, and Nora Belrose. Transcoders beat sparse autoencoders for inter-
pretability, 2025b. URL https://arxiv.org/abs/2501.18823|

Bruno Puri, Aakriti Jain, Elena Golimblevskaia, Patrick Kahardipraja, Thomas Wiegand, Woj-
ciech Samek, and Sebastian Lapuschkin. FADE: Why bad descriptions happen to good fea-
tures. In Wanxiang Che, Joyce Nabende, Ekaterina Shutova, and Mohammad Taher Pilehvar
(eds.), Findings of the Association for Computational Linguistics: ACL 2025, pp. 17138-17160,
Vienna, Austria, July 2025. Association for Computational Linguistics. ISBN 979-8-89176-256-
5. doi: 10.18653/v1/2025.findings-acl.881. URL https://aclanthology.org/2025.
findings-acl.881/!\

11

https://arxiv.org/abs/2405.13868
https://arxiv.org/abs/2405.13868
https://arxiv.org/abs/2501.08319
https://arxiv.org/abs/2501.08319
https://arxiv.org/abs/2504.07831
https://arxiv.org/abs/2504.07831
https://arxiv.org/abs/2308.03281
https://arxiv.org/abs/2308.03281
https://aclanthology.org/2024.blackboxnlp-1.19/
https://www.neuronpedia.org
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2410.13928
https://arxiv.org/abs/2501.18823
https://aclanthology.org/2025.findings-acl.881/
https://aclanthology.org/2025.findings-acl.881/

Under review as a conference paper at ICLR 2026

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAl blog, 1(8):9, 2019.

Morgane Riviere, Shreya Pathak, Pier Giuseppe Sessa, Cassidy Hardin, Surya Bhupatiraju, Léonard
Hussenot, Thomas Mesnard, Bobak Shahriari, Alexandre Ramé, et al. Gemma 2: Improving open
language models at a practical size, 2024. URL https://arxiv.org/abs/2408.00118,

Lee Sharkey, Bilal Chughtai, Joshua Batson, Jack Lindsey, Jeff Wu, Lucius Bushnaq, Nicholas
Goldowsky-Dill, Stefan Heimersheim, Alejandro Ortega, Joseph Bloom, Stella Biderman, Adria
Garriga-Alonso, Arthur Conmy, Neel Nanda, Jessica Rumbelow, Martin Wattenberg, Nandi
Schoots, Joseph Miller, Eric J. Michaud, Stephen Casper, Max Tegmark, William Saunders, David
Bau, Eric Todd, Atticus Geiger, Mor Geva, Jesse Hoogland, Daniel Murfet, and Tom McGrath.
Open problems in mechanistic interpretability, 2025.

Karan Singhal, Shekoofeh Azizi, Tao Tu, S Sara Mahdavi, Jason Wei, Hyung Won Chung, Nathan
Scales, Ajay Tanwani, Heather Cole-Lewis, Stephen Pfohl, et al. Large language models encode
clinical knowledge. Nature, 620(7972):172—-180, 2023.

Adly Templeton, Tom Conerly, Jonathan Marcus, Jack Lindsey, Trenton Bricken, Brian Chen,
Adam Pearce, Craig Citro, Emmanuel Ameisen, Andy Jones, Hoagy Cunningham, Nicholas L
Turner, Callum McDougall, Monte MacDiarmid, C. Daniel Freeman, Theodore R. Sumers,
Edward Rees, Joshua Batson, Adam Jermyn, Shan Carter, Chris Olah, and Tom Henighan.
Scaling monosemanticity: Extracting interpretable features from claude 3 sonnet. Trans-
former Circuits Thread, 2024. URL https://transformer-circuits.pub/2024/
scaling-monosemanticity/index.html.

Kevin Wang, Alexandre Variengien, Arthur Conmy, Buck Shlegeris, and Jacob Steinhardt. Inter-
pretability in the wild: a circuit for indirect object identification in gpt-2 small. arXiv preprint
arXiv:2211.00593, 2022.

A EXTENDED RELATED WORK

A.1 AUTOMATED INTERPRETABILITY

Most work in automated interpretability builds on the pipeline of Bills et al.|(2023), where a dataset
is processed through GPT-2 (Radford et al.,|2019)) to collect MLP neuron activations. A larger LLM
(GPT-4; (OpenAl andAchiam et al., 2024)) then generates descriptions based on top-k activating
sequences, and is further used as an “activations simulator” to evaluate these descriptions.

To address the polysemanticity of MLP neurons, Bricken et al.| (2023) propose sparse autoencoders
(SAEs). [Templeton et al.| (2024); Paulo et al.|(2025a) extend this pipeline to SAEs and show that
their features are more monosemantic and interpretable than MLP neurons.

Subsequent work refines automated interpretability in different ways (Choi et al., [2024; 'Templeton
et al., 2024} |Gur-Arieh et al.| 2025} [Kopf et al., 2025} [Paulo et al.| [2025a}, [Puri et al.| [2025)). |Choi
et al.[(2024)) fine-tune a smaller LLM (Llama-3.1-8B-Instruct (Dubey et al., [2024)) for neuron de-
scription and evaluation, systematically studying prompt design choices such as token highlighting,
token—activation pairs, and number of examples. [Puri et al.| (2025) run a broader prompt analysis
on SAEs, finding results that sometimes contradict Choi et al.|(2024), especially on how token acti-
vations should be communicated. They also emphasize dependence on explainer model quality and
challenges from the fine-grained specificity of SAE features.

Gur-Arieh et al.|(2025) combine input- and output-based analysis, showing that descriptions improve
when considering both what a feature activates on and what it promotes.

Kopf et al.| (2025) address polysemanticity by clustering activating inputs. They sample from the
top 1% of activations, embed sequences with gte-Qwen2-1.5B-instruct (L1 et al., [2023), and apply
k-means clustering into five groups, generating one description per cluster. This consistently outper-
forms prior work (Bills et al., [2023; |Gur-Arieh et al., [2025), demonstrating the benefit of handling
polysemanticity directly.

12

https://arxiv.org/abs/2408.00118
https://transformer-circuits.pub/2024/scaling-monosemanticity/index.html
https://transformer-circuits.pub/2024/scaling-monosemanticity/index.html

Under review as a conference paper at ICLR 2026

A.2 EVALUATION METRICS

Developing automated evaluation metrics is essential for interpretability research, since manual as-
sessment of description quality does not scale. Several main approaches have been proposed: (i)
simulated activations, where an LLM predicts a feature’s activation on text samples given its de-
scription (Bills et al.l 2023} |Chot et al., [2024); (ii) classifier-based metrics, where an LLM judges
how strongly a text sample relates to a feature’s description (Templeton et al.| [2024} [Paulo et al.,
2025a; |Puri et al., [2025)); (iii) synthetic data approaches, where an LLM generates or labels data
from a description (Gur-Arieh et al. [2025} Puri et al.| [2025); and (iv) output-based metrics, which
evaluate how much a feature influences model outputs (Bills et al.| |2023}; |Gur-Arieh et al., 2025;
Paulo et al.| 2025a; |Puri et al., 2025).

Simulated-activation metrics (Bills et al.l 2023} Choi et al., 2024)) are inexpensive but fail to capture
many failure modes in description generation (Puri et al., [2025).

Classifier-based metrics instead ask a judge LLM to score how related a sample is to a description,
often on a scale from O (not related) to 3 (completely related) (Templeton et al., 2024} Puri et al.,
20235). Similar detection-based setups appear in |Paulo et al. (2025b), where the model identifies
which samples match the concept. Evaluation can then be quantified using AUROC scores (Kopf
et al.l 2025)), or metrics such as Gini coefficient and Average Precision, which [Puri et al. (2025)
combine into Responsiveness and Purity scores.

Synthetic data metrics compare activating and non-activating examples, either LLM-generated or
sampled uniformly from a dataset (Gur-Arieh et al.,|[2025}; |Puri et al.| 2025)).

Finally, output-based metrics test whether descriptions capture a feature’s causal effect on model
outputs. |[Puri et al.| (2025)) propose Faithfulness, where a judge LLM rates concept presence in
steered generations. [Paulo et al.| (2025a) introduce Intervention Scoring, while (Gur-Arieh et al.
(2025) apply a similar approach; where the model’s task is to distinguish outputs produced under
feature steering from control generations.

A.3 CIRCUIT TRACING

A recent advance in mechanistic interpretability is the introduction of transcoders (Dunefsky et al.,
2024; |Ge et al., 2024). Unlike sparse autoencoders (SAEs), transcoders provide a structured way
to trace how upstream feature activations contribute to downstream activations, enabling circuit-
level analysis across layers. Their key innovation is the decomposition of a feature’s activation into
an input-dependent and an input-independent component. The latter depends only on transcoder
weights, allowing it to be analyzed separately and efficiently.

Using GPT-2, |Dunefsky et al.| (2024)) demonstrate cases where activating tokens identified through
weight-based analysis align with those discovered via traditional activation-based methods. This
indicates that transcoders can support both prompt-specific attribution graphs and global, weight-
derived connectivity maps.

Extending this work to Gemma-2-2B (Riviere et al.| 2024), Ameisen et al.|(2025]) highlight a major
limitation of weight-based analysis: interference from context-dependent components of the archi-
tecture. To address this, they introduce farget-weighted expected residual attribution (TWERA),
which adjusts virtual weights using empirical coactivation statistics, effectively up-weighting con-
nections between frequently coactivating features. However, they also show that TWERA can sig-
nificantly diverge from the original transcoder weights, making it dependent on the dataset used to
compute coactivations and limiting its reliability as a fully weight-based method.

B DATASET PROCESSING

We used the uncopyrighted version of the Pile dataset|Gao et al.| (2020), available on Hugging Face
(https://huggingface.co/datasets/monology/pile—uncopyrighted) with all
copyrighted content removed. This version contains over 345.7 GB of training data from various
sources. From this dataset, we extract two datasets of size 6GB (3.6B tokens), and 40MB (24M
tokens) for generating MaxAct* descriptions and circuit based descriptions. The extracted por-
tion from the training partition was used to collect the most activated samples based on frequency

13

https://huggingface.co/datasets/monology/pile-uncopyrighted

Under review as a conference paper at ICLR 2026

quantile sampling for the smaller dataset and top percentile sampling for the larger dataset. For eval-
uations, we utilized the test partition from the same dataset, applying identical preprocessing steps
as those used for the training data.

Post processing involves several steps to ensure a balanced and informative dataset. First, we used
the NLTK Bird et al.| (2009) sentence tokenizer to split large text chunks into individual sentences.
We then filtered out sentences in the bottom and top fifth percentiles based on length, as these were
typically out-of-distribution cases consisting of single words, characters, or a few outliers. This
step helped achieve a more balanced distribution. Additionally, we removed sentences containing
only numbers or special characters with no meaningful content. Finally, duplicate sentences were
deleted.

C DESCRIPTIONS GENERATION

C.1 POSTPROCESSING WEIGHT-BASED DESCRIPTIONS

LLM-based postprocessing of weight-based analysis enables generating smoother, more coherent
feature descriptions by consolidating input- and output-centric information, specifically, the tokens
that activate a feature and those that it promotes or suppresses. This approach is particularly effective
at filtering out noise, as promoted or suppressed tokens often include unrelated or random terms that
do not reflect the feature’s true function.

We’re studying neurons in a neural network. Each neuron has certain inputs that activate it
and outputs that it leads to. You will receive three pieces of information about a neuron

1. The top important tokens.
2. The top tokens it promotes in the output.
3. The tokens it suppresses in the output.

These will be separated into three sections: [Important Tokens], [Text Promoted], and [Text
Suppressed]. All three are a combination of tokens. You can infer the most likely output
or function of the neuron based on these tokens. The tokens, especially [Text Promoted]
and [Text Suppressed], may include noise, such as unrelated terms, symbols, or
programming jargon. If these are not coherent, you may ignore them. If the [Important
Tokens] do not form a common theme, you may simply combine the words to form a single
concept.

Focus on identifying a cohesive theme or concept shared by the most relevant tokens.
Your response should be a concise (1-2 sentence) explanation of the neuron, describing what
triggers it (input) and what it does once triggered (output). If the input and output are

related, you may mention this; otherwise, state them separately.

[Concept: <Your interpretation of the neuron, based on the tokens provided>]

Example 1

Input:

[Important Tokens]: [‘on’, ’‘pada’
[Tokens Promoted]: [’"behalf’
[Tokens Suppressed]: [‘on’, ’in’
Output:

[Concept: The token "on" in the context of "on behalf of"]

}

C.2 GENERATING CIRCUIT-BASED DESCRIPTIONS

At the first step, we treat each cluster of a feature separately. We pass the obtained patterns (input-
centric or full, i.e. with patterns detected in the model’s output) in there in order to generate a
description.

You are an explainable AI researcher analyzing feature activations in language models.
You will receive short patterns: fragments of text where tokens activated a feature.
ONLY the snippets shown are the evidence, do not assume any extra surrounding context.

14

Under review as a conference paper at ICLR 2026

Pattern formatting:

- _ is 1-3 skipped non-important tokens

- [...] is 4 or more skipped not relevant tokens

— The <<<highlighted>>> token of each snippet is usually the most important signal (it is the
activating token), it can be a part of a word.

Analysis procedure:

1. Do NOT start by interpreting semantics. First treat the data as raw strings.
2. Count and note repeated literal elements (words, single letters, punctuation, suffixes/
prefixes, LaTeX tokens, different symbols, brackets, arrows, parentheses).
3. Pay special attention to:
- exact repeated tokens,
- repeated punctuation or formatting (commas, superscripts, backslashes, braces),
- positional patterns,
— capitalization patterns and single-letter variable tokens,
— functional words, like articles, pronouns, modal verbs, that create a consistent pattern.
4. Only after the literal/structural check, generalize into a short concept (if appropriate) .

Decision rules:

- If a single literal token or structural pattern dominates, output that token or structural
label exactly.

- If it is some grammatical pattern, output exactly that.

— Avoid speculative semantic labels unless literal patterns support them.

Output rules:

— Output exactly ONE concise sentence (<20 words) describing the shared concept or structure.
- If a single token/pattern dominates, output it exactly.

— You may include up to one short example group in parentheses to clarify.

— Do NOT include extra labels or the word "Description:".

— If no clear recurring concept or structure is found, output exactly: No concept found.

- Avoid vague phrases like "in various contexts" or ’a variety of words’.

— Do NOT output your internal reasoning, only the final single sentence.

Example 1

Input:
important to
helps to
permits to
importance to

is possible [...] to
able to

allows us to

purpose [...] is to
Output:

Preposition "to" in phrases that express purpose, intention, or enable an action.

At the next iteration, we combine the obtained cluster descriptions into a single one.

You are an explainable AI researcher analyzing multiple related concepts.
You will receive a list of xxconcept descriptionsx*, each representing a semantic, grammatical
, or functional element.

[ONLY FOR WeightLens+CircuitLens COMBINED EXPERIMENTS:
Sometimes, you may also receive a phrase at the beginning like "Important tokens: ...", for
example:
Important tokens: amazing, largely, upon.
Important tokens: danger, preparation, prepare, preparing.
Important tokens: new.
Always integrate these tokens into your description, even if they do not fit naturally with
the other concept descriptions.]

Step-by-step reasoning:
1. Examine all provided concepts carefully. Identify recurring themes, functions, or semantic
roles.
2. Look for commonalities across the concepts, including:
- grammatical elements (articles, parts of sentences, syntactic patterns)
— symbols and punctuation (commas, brackets, etc.)
— semantic categories
- mathematical or symbolic markers
3. Pay special attention to specific patterns, which often are described through function
words (articles, modal verbs, etc.).
4. Merge similar or overlapping elements into a single, concise idea.
5. Think step by step:
a) Identify the core function or role each concept serves.
b) Group related concepts together.

15

Under review as a conference paper at ICLR 2026

c) Combine them into one coherent description.

Output rules:

— Output exactly x*one concise sentencexx (<30 words) describing the shared concept or several
main concepts.

— Include all major elements, but merge overlapping items.

— Include short examples of terms or specific patterns, if they clarify the concept.

— Include any "Important tokens" explicitly in the description.

— Do not add labels, headings, or extra commentary.

- Be precise, avoid speculation, and avoid vague expressions like "in various contexts."

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

D EXTENDED RESULTS

1 wWB

1 WB + Output

[WB + Output + LLM

[Neuronpedia
MaxAct*

00 02 04 06 08 1.0 00 02 0.4 06 08 1.0 00 02 04 06 08 1.0 0.2 0.4
Clarity Responsiveness Purity Faithfulness

-
2

Density
Number of samples

=
Q
=3
—
=
=

o
=)

1 wB

[WB + Output , 6% 10°
[WB + Output + LLM %_

[Neuronpedia .Eu 4x10°

MaxAct* 2 3x10°
5

E 0

€ 2% 10
]
z

\ 10° 1 L
00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10 0.0 0.1 0.2
Clarity Responsiveness Purity Faithfulness

0

1 wB 3 %10
1 WB + Output "
[WB + Output + LLM 2

> [Neuronpedia E 2x10°
3 MaxAct* -
e S
T o
=] @
2
£
5
z

_ 1004
00 02 04 06 08 1.0 00 02 04 06 08 1.0 00 02 04 06 08 1.0 0.0 0.1
Clarity Responsiveness Purity Faithfulness

[wWB
1 WB + Output " 102
] WB + Output + LLM %
[Neuronpedia E
MaxAct* 2
3
5 10
2
E
E}
=z
10°
0.0 0.2 04 06 . N 00 02 0.4 06 08 1.0 00 02 04 06 08 1.0 0.0 0.2 0.4 0.6 0.8
Clarity Responsiveness Purity Faithfulness

Figure 9: Kernel density estimates illustrating evaluation results of WeightLens methods in compar-
ison to the baselines.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

[Cl-input

[CLAull

1 CL-input-top

[CL-full-top

3 WL + CL-Full
Neuronpedia

[MaxAct*

Density

Number of samples
= =
S 15
2 2

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.1 0.2 0.3 0.4
Clarity Responsiveness Purity Faithfulness

[Cl-input

[CLAull

[CL-input-top

[CL-full-top

3 WL + CL-Full
Neuronpedia

[MaxAct*

Density

Number of samples
= =
S 15
2 2

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.1 0.2 0.3 0.4
Clarity Responsiveness Purity Faithfulness

3x10°

1 Cl-input

[CLAull

[Cl-input-top

[CL-full-top

3 WL + CL-Full
Neuronpedia

[0 MaxAct*

2x10°

Number of samples
=
=)
2

00 02 04 06 08 1.0 00 02 04 06 08 1.0 00 02 04 06 08 1.0 0.0 0.1
Clarity Responsiveness Purity Faithfulness

[Cl-input

[CLAull

[CL-input-top

[CL-full-top

3 WL + CL-Full
Neuronpedia

[MaxAct*

o
b3

Density

L

Number of samples
=
<

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8
Clarity Responsiveness Purity Faithfulness

Figure 10: Kernel density estimates illustrating evaluation results of CircuitLens methods in com-
parison to the baselines.

18

	Introduction
	Related Work
	Methodology
	Input-Invariant Analysis
	Circuit-Based Analysis
	Evaluation

	Weight-Based Interpretability Results
	Circuit-Based Interpretability Results
	Extended Related Work
	Automated Interpretability
	Evaluation metrics
	Circuit tracing

	Dataset Processing
	Descriptions Generation
	Postprocessing Weight-Based Descriptions
	Generating Circuit-Based Descriptions

	Extended Results

