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Abstract

Algorithms for online learning typically require
one or more boundedness assumptions: that the
domain is bounded, that the losses are Lipschitz,
or both. In this paper, we develop a new set-
ting for online learning with unbounded domains
and non-Lipschitz losses. For this setting we pro-
vide an algorithm which guarantees Ry (u) <
O(G||u||v/T+ L||u||>v/T) regret on any problem
where the subgradients satisfy ||g;|| < G+L|jw]|,
and show that this bound is unimprovable without
further assumptions. We leverage this algorithm
to develop new saddle-point optimization algo-
rithms that converge in duality gap in unbounded
domains, even in the absence of meaningful cur-
vature. Finally, we provide the first algorithm
achieving non-trivial dynamic regret in an un-
bounded domain for non-Lipschitz losses, as well
as a matching lower bound. The regret of our
dynamic regret algorithm automatically improves
to a novel L* bound when the losses are smooth.

1. Online Learning

This paper introduces new techniques for online convex
optimization (OCO), a standard framework used to model
learning from a stream of data (Cesa-Bianchi & Lugosi,
2006; Shalev-Shwartz, 2011;|Hazan, 2016} |Orabona, 2019)).
Formally, consider 7" rounds of interaction between an al-
gorithm and an environment. In each round, the algorithm
chooses a w; in some convex subset W of a Hilbert space,
after which the environment chooses a convex loss function
¢y : W — R. The standard performance metric in this
setting is regret Rr(u), the cumulative loss relative to an
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unknown benchmark point u € W:

T
Ry(u) = by(wy) — £y(u).

In many applications of interest the appropriate baseline is
not any fixed comparator, but rather a trajectory of points.
This is often the case in true streaming settings, wherein
the losses are generated from a data distribution that may
be slowly shifting over time. To better model settings such
as these, dynamic regret measures the total loss relative to
that of a benchmark sequence of points u = (u1,...,ur)
inW:

T
Rr(u) =Y li(wr) — L(uy).

Our goal in this work is to develop algorithms that achieve
favorable regret and dynamic regret guarantees when both
the domain W and range of ¢/; may be unbounded.

To illustrate the difficulty of our goal, let us consider the
special case where the loss functions are linear functions,
4 (w) = (g¢, w). Clearly, if both ||g;|| and ||w]|| are allowed
to be arbitrarily large then the adversary can always ensure
that the learner takes an arbitrarily large loss on each round.
To alleviate this difficulty, prior works assume that one has
access to a bound D > |jul| (usually by assuming that
the domain is bounded with D > sup, , ¢y ||z — y)), that
the subgradients are bounded &7 > max; ||g;||, that the
losses map to a bounded range ¢; : W — [a, b], or some
combination thereof.

In the simplest case, when one has access to both a bound
D > ||lu|| and a bound on the subgradients &1 > |/g;| for
all ¢, classic methods based on Mirror Descent and Follow
the Regularized Leader achieve minimax optimal regret of
Rr(u) < O(D®7V/T) using a strongly convex regularizer
(Hazan et al., 2007;|Duchi et al., | 2010;McMahan & Streeter,
2010). When D is available but not the Lipschitz bound &,
it is still possible to match this guarantee up to constant fac-
tors, in which case the algorithm is said to be Lipschitz adap-
tive (Orabona & Pall [2018; Mayo et al., [2022; |Cutkosky},
2019). When the losses are L-smooth, these bounds can

be improved to Rp(u) < O (LD2 + Dy/L Zthl ét(u)>

— referred to as an L* bound — though prior works still
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require one or more of the following assumptions: prior
knowledge of &, that ¢; has bounded range (known in
advance), prior knowledge of a lower bound ¢; < ¢;(w) for
all w € W, additional structural assumptions such as strong
convexity or exp-concavity, or by assuming the losses take
some specific form such as the square loss (Cesa-Bianchi
et al., 1996} |Kivinen & Warmuth, |1997; |Srebro et al., [ 2010;
Orabona et al ., [2012).

If a bound Br > max; ||¢:|| is known but not the bound
D > ||lu|, the situation gets significantly trickier. The
essential difficulty is that without prior knowledge of how
large the comparator might be, the predictions w, could
at any point be arbitrarily far away from the benchmark,
leading to high regret. As such, the learner must take great
care to control ||w;|| in such a way that it is adaptive to the
unknown comparator norm ||u||. A standard result in this
setting is

Rr(u) < O (Jul®ry/Tlog(Tul + 1)), (1)

which holds for all w € W and is known to be optimal up
to constants (Orabona, [2013)). Bounds of this form are com-
monly referred to as “comparator adaptive” or “parameter-
free” (Foster et al., [2015; |Orabona & Pal, 2016; [van der
Hoeven, 2019; [Cutkosky & Orabona, [2018; Mhammedi &
Koolen, 2020; |Jacobsen & Cutkoskyl, 2022)).

The first results to avoid both the bounded do-

main and bounded gradient assumptions have
only been achieved in recent years. Cutkosky
(2019) develops an algorithm which achieves

Rr(w) < O (llul &ry/Tlog (W[ T+ 1) + & [[ul),
and Mhammed: & Koolen| (2020) shows that the additional
cubic penalty is unavoidable while maintaining the

0] (||u|\ SrVT ) dependence. Alternatively, (Orabona &

P4l (2018) show that Ry (u) < O(||ul|® &rvT) can be
attained without prior knowledge of &1 in an unbounded
domain, avoiding the cubic penalty in exchange for a
horizon-dependent quadratic penalty. Works such as
Mayo et al|(2022) and Kempka et al.| (2019) show that
Equation (I) can be achieved with essentially no extra
penalty in certain special cases such as regression-type
losses.

When it comes to dynamic regret, much less progress has
been made in alleviating boundedness assumptions, with
nearly all existing results assuming both a bounded do-
main and Lipschitz losses. Under both boundedness as-
sumptions, prior works have achieved minimax optimal

dynamic regret of Rp(u) < O (GST (D2 + DPT)T>,
where Pr = ZtT=2 |lus — we—1]| is the path-length of the

comparator sequence (Zhang et al.| 2018} |Jadbabaie et al.|
2015} |Cutkoskyl, [2020). In an unbounded domain with

Lipschitz losses, recent works have achieved an analo-
gous guarantee of Rp(u) < O(8Br\/(M?+ MPr)T),
where M = max; ||us|| (Jacobsen & Cutkosky, 2022;
Luo et al.| [2022). We are unaware of any existing works
that explicitly investigate Lipschitz-adaptive dynamic re-
gret, though existing results can likely be made Lipschitz-
adaptive in a black-box manner using the gradient clipping
approach of (Cutkosky|(2019) in exchange for an appropriate
&7 max; |Jug||” penalty.

Importantly, note that in all of these prior works there is
an implicit assumption that there exists a uniform bound
such that G > ||V{,(w)|| for any w € W and Vi (w) €
0l (w) — even if it is not known in advance. Otherwise,
the terms &7 = max; ||g:|| can easily make any of the
aforementioned regret guarantees vacuous.

In this work, we study unconstrained online convex opti-
mization under a more general boundedness assumption
on the gradients, allowing the gradient norms to grow arbi-
trarily large away from a given “reference point” wg € W.
In Section |2| we provide an algorithm for this more gen-
eral problem setting which achieves a strict generalization
of the usual comparator-adaptive bound in Equation (T,
as well as a lower bound showing that our result is unim-
provable in general. In Section [3] we leverage this algo-
rithm to develop a new saddle-point optimization algo-
rithm which converges in duality gap in an unbounded
domain without requiring additional curvature assump-
tions such as strong-convexity/concavity. In Section []
we turn to the problem of dynamic regret minimization
and develop an algorithm which achieves dynamic regret

Rr(u) <O (Mg/zx/(M + PT)T) and provide a match-
ing lower bound. This is the first algorithm to significantly
alleviate both the bounded domain and bounded subgra-
dient assumptions for dynamic regret. Moreover, when
the losses are L;-smooth, the same algorithm automati-
cally improves to an L* bound of the form Rp(u) <

0] (\/ (M2 4+ MPr) S Ly [ (ug) — e;]). To the best

of our knowledge, this is in fact the first L* bound to be
achieved for general smooth losses without making either a
uniformly-bounded subgradient or bounded range assump-
tion in an unbounded domain.

Notations. For brevity, we occasionally abuse notation by
letting V f(x) denote an element of Jf(z). The Bregman
divergence w.r.t. a differentiable function ¢ is Dy (z|y) =
P(x) — P(y) — (VY(y), z — y). We use the compressed

. j 2 b 2
sum notation gi,; = 3°0_, g and g2, = S0, lgill”.
We denote a V b = max{a,b} and a A b = min {a, b}.
A denotes the N-dimensional simplex. The notation O(-)
hides constants, O(-) hides constants and log(log) terms,
and O(-) hides up to and including log factors.
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2. Online Learning with Quadratically
Bounded Losses

In an unbounded domain with unbounded losses, it will
generally be impossible to avoid linear regret without some
additional assumptions. Intuitively, what’s missing in this
problem is a frame-of-reference for the magnitude of a given
loss. In the Lipschitz or bounded-range settings, the learner
always has a frame-of-reference for the worst-case loss they
might encounter. In contrast, without these assumptions,
hindsight becomes the only frame-of-reference, and the
adversary can exploit this to “trick” the learner into playing
too greedily or too conservatively.

To make the problem tractable, yet still allowing the losses
to have unbounded range and subgradients, we assume that
the subgradients are bounded for all ¢ at some reference
point wy, but may become arbitrarily large away from wy.
This effectively gives the learner access to an a priori frame-
of-reference for loss magnitudes, yet still captures many
problem settings where the losses can become arbitrarily
large in an unbounded domain.

Definition 2.1. Let (W, ||-||) be a normed space. A function
¢: W — Ris (G, L)-quadratically bounded w.r.t ||-|| at wg
if for any w € W and V/{(w) € 94(w) it holds that

IVE(w)[| < G+ Lijw = wol| . 2

Note that Definition 2.1] is a strict generalization of the
standard Lipschitz condition: any G-Lipschitz function is
(G, 0)-quadratically bounded. The definition also captures
L-smooth functions as a special case, since any L-smooth
function is (||0¢:(wo)|| , L)-quadratically bounded at wy.
However, in general a function satisfying the quadratically
bounded property need not be smooth. |'| For the remainder
of the paper we assume without loss of generality that wy =
0 and ||-|| is the Euclidean norm.

This assumption was initially studied in the context of
stochastic optimization by [Telgarsky| (2022), where it was
sufficient to attain convergence in several settings of practi-
cal relevance. In this work, we show that it is also sufficient
to achieve sublinear regret even in adversarial problem
settings. We will in fact take it one step further and con-
sider a stronger Online Linear Optimization (OLO) version
of the problem. We say that a sequence {g:} is (Gy, Lt)-
quadratically bounded w.r.t {w;} if for every ¢ we have
llg¢|l < G + Ly ||we||. Then using the standard reduction
from OCO to OLO (see e.g. Zinkevich| (2003)), for any se-
quence of (G, L¢)-quadratically bounded convex functions

' As a simple illustration, note that if f(w) is an L-smooth and
(G, L)-quadratically bounded function, then f(w) + ¢ ||w]|| will
be (G + ¢, L) quadratically bounded but non-smooth.

we have the following regret upper bound:

T
Zﬁt ”LUt 71& Z g, Wt —
t=1

where g; € 90, (w;) and {g;} is a (G, Lt)-quadratically
bounded sequence w.r.t {w; }. Hence, one can solve OCO
problems involving quadratically bounded losses using any
OLO algorithm that achieves sublinear regret against se-
quences {g; } that are quadratically bounded w.r.t its outputs
{w;}. Note that this is potentially a more difficult problem,
as it gives the adversary freedom to impose severe penal-
ties whenever the learner plays large wy, yet this effect is
experienced asymmetrically by the comparator: the com-
parator can have large norm and not necessarily experience
large losses unless w is aligned with g; and the learner plays
a point |Jwe|| o ||u||. For brevity we refer to this harder
problem setting as the QB-OLO setting, and QB-OCO for
the setting where adversary must play ¢; satisfying Defini-

tion

Surprisingly, it turns out that it is possible to achieve sub-
linear regret even in the QB-OLO setting. The following
theorem provides an algorithm which achieves sublinear
regret and requires no instance-specific hyperparameter tun-
ing. Proof can be found in Appendix

Theorem 2.2. Let A be an online learning algorithm
and let wy € W its output on round t. Let {g:} be
a (G, Ly)-quadratically bounded sequence w.rt {w.},

where Gy € [0,Gmax] and Ly € [0, Limax] for all
t. Let e > 0 Vi1 = 4G%,. + G3., pry1 =
1 _ €Gmax

Denote

ﬁ, (672N}
— 3 Il

VT 108 (Vi1 /Gh)
log(z/ay+1)
o< m { n + 77‘/;5} dx and
set

wt<w>=wt<w>+%nwu2, po(w) = 2.

\/L?t

Then for any u € W, Algorithm|[I| guarantees

Re(u) < 0 (e ul /G Frlul) + ol /22 )

where Fp(|lu])) < log (m + 1).

Let us briefly develop some intuition for how the above
result is constructed. Algorithm [I]can be interpreted as an
instance of the Centered Mirror Descent algorithm recently
developed by Jacobsen & Cutkosky|(2022)), which admits
a generic regret guarantee of the form Ry (u) < ¢r(u) +
S () + Y, 8, where the &, are similar to the

“stability” terms encountered in vanilla Mirror Descent, but
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Algorithm 1 Algorithm for Quadratically Bounded Losses
Imput: ¢; : W — Ry with min,ew ¢1(w) = 0,
Gmax and Lyax
Initialize: w; = argmin,, oy Y1 (w)
fort=1:T do

Play w;, observe g; € 90 (w;)

Choose G; and L, satisfying ||g:|| < Gt + Ly ||we]|
Choose functions 1111, @t

Set Vo (wy) € Opi(w;) and g = g¢ + Vipr(wy)
Set Ay(w) = Yry1(w) — thy(w)

Update

wy1 = argmin, cyy (Gr, w) + Dy, (w]we) + A¢(w)

end for

with certain additional negative terms A; and ¢;:
0 < 0( (g, wi — wep1) — Dy, (wig1|wy)
— Ay(wesr) — @t(wt))

It's easily verified that that 1741 (u) + 3.1, ¢¢(u) match
the terms in the upper bound, so the main difficulty is mak-
ing sure that the stability terms Zle 0 disappear. Cru-
cially, because {g;} is a (G, L;)-quadratically bounded
sequence w.r.t {w;}, we have ||g;|| < Gy + Ly ||we||. The
utility of this is that we can design separate regularizers
control the “Lipschitz part” G; and the “non-Lipschitz
part” Ly ||w]|. In particular, using a similar argument
to Jacobsen & Cutkosky| (2022), by setting U;(w) =

O(Gmax [lw]| \/T log (||w|| \/T/ﬁ)) we can ensure that
the Lipschitz part of the bound is well-controlled:

T
ZGt |we = wea]| = D, (wegr|we) — Ay (wiq1) < O(1).

t=1
However, in general this Uy is not strong enough to con-
trol the non-Lipschitz part L; ||w;||. Instead, for this term
we use &4 (w) = O (Lmax\/T ||w||2) and then using stan-

dard arguments for Mirror Descent with a strongly convex
regularizer, it can be shown that

Ly |we || |wy — wiga]] = Da, (wig1|we) — e (wy)

2
<O (LtH\/t;—f” - %(W)) <0

Lt”th2)

by choosing ¢ (w:) = O ( N

Note that in the setting of G-Lipschitz losses we
have Lp.x = 0 and hence set G; = | g, so
the bound reduces to the comparator-adaptive rate

of Rr(u) < O (nun \/2?_1 lge]*10g (LT 1)),

which is known to be optimal up to constant and log(log)
terms (Mcmahan & Streeter, |2012; |Orabona, [2013). On
the other hand, if L,,,x > 0 the algorithm can choose any
Gt < Gmax and Lt < Lmax such that Gt + Lt ||’U)t|| >
lg¢]|. Ideally these factors should be chosen to be tight,
i.e., to minimize G + L ||w;|| subject to the constraints
{G < Guax; L < Linax; G + L |lwe|| > [|g¢]|}. However,
there may be many such (G, L) satisfying these conditions,
and in general it is unclear whether there exists a general-
purpose strategy to choose among them without further
assumptions. Indeed, Theorem 2.2] suggests that when ||u||
is very large, we’d prefer to set the L,’s smaller at the ex-
pense of large G’s, and vice-versa when ||u|| is sufficiently
small, so optimally trading off G; and L; would require
some prior knowledge about ||u]|.

Nevertheless, there are many situations in which one can
choose (Gy, L) pairs along some pareto-frontier. As an
illustrative example, consider an online regression setting
in which ¢;(w) = 1(y; — (24, w))? for some target vari-
able y; € R and feature vector x; € R?. Observe that
Vil (we) = —(ye — (@e, we))zy, so setting Gy = |yq| |||
and Ly = [{(x¢, wi/ ||we]])] |||, we have

IVE(wo)l| = 1y — (@, we))wel| < Go+ Lo lwell,

s0 {V{y(w;)} is a (G4, Ly)-quadratically bounded sequence
w.r.t {w,;}, and Theoremquarantees regret scaling as

T w 2
Z<xt, e > el
el

t=1

T

2 2
> v? el + [lull
t=1

which is more adaptive to sequence of observed feature vec-
tors x; and targets y; than the worst-case bound of Rp(u) <

2 2 2
O (Il [y I#masl| VT + 1l [ |* VT ).

Finally, notice that for Ly, > 0 Algorithmﬂ] suffers an ad-
ditional O(Luay |[u||> v/T') penalty which is not present in
the Lipschitz losses setting. The following theorem demon-
strates that this penalty is in fact unavoidable in our problem
setting. Proof can be found in Appendix

Theorem 2.3. Let A be an algorithm defined over R? and
let wy denote the output of A on round t. Let € > 0 and
suppose A guarantees Rt(0) < e against any quadratically
bounded sequence {gi}. Then forany T > 1, G > 0
and L > 0 there exists a sequence g1, ...,gr satisfying
llg:ll < G+ L|jw¢| and a comparator u € R? such that

Rr(u) > Q (G Jeull/T10g (Jlull VT /e) v L Ju] ﬁ) .

Remark 2.4. An alternative way to approach online learn-
ing in our problem setting would be to apply an algo-
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Algorithm 2 Saddle-point Reduction

Input Domain W = X x ), OLO Algorithm A

fort=1:Tdo
Get wy = (x4,y;) € W from A
Receive gf € 0,L(xy, ;) and gf € Oy[—L(xy, yr)]
Send g; = (g7, g7) to A as the ¢ subgradient

end for

Return wr = (

23:1 Tt Z?:l Yt
T ’ T

rithm which is both comparator-adaptive and Lipschitz-
adaptive, since these algorithms do not require an a priori
upper bound on ||u|| nor on ||g¢||. Theorem demon-
strates that this approach would be sub-optimal in our
setting. Indeed, Mhammedi & Koolen| (2020) show that
without prior knowledge of a Lipschitz bound, there is
an unavoidable O(||u||” max,<7 ||g¢||) penalty associated
with comparator-norm adaptivity, which can lead to a sub-
optimal O(||u||®> Lmax; ||w]) > O(L ||u||* VT) depen-
dence in our problem setting.

3. Unconstrained Saddle-point Optimization

As a result of the algorithm in the previous section, we are
immediately able to produce a novel algorithm for saddle-
point optimization in unbounded domains. Consider the
following convex-concave saddle-point problem:

By e £

where X’ and ) are unbounded compact convex sets, x —>
L(x,y) is convex for all y € Y, and y — L(x,y) is
concave for all x € X. The saddle-point (z*,y*) of £
is the point (z*,y*) € X x Y satisfying L(z*,y*) =
mingex maxyey £(x,y) = maxyey mingex L(z,y),
where the last equality follows from Sion’s minimax theo-
rem. Then for any (x,y) € X x Y, we have

L(z,y) — L(z",y") < L(2,y") — L(z7,y) -

=:G(z,y)

Hence, the sub-optimality of a point (z,y) € X x ) can be
controlled so long as we can control the quantity G(z,y),
which we refer to as the duality gap. Fortunately, the duality
gap is easily controlled using an online learning algorithm
via the well-known reduction to Online Linear Optimization
(OLO) shown in Algorithm 2]

Lemma 3.1. For any & = (%,7) € X x Y, Algorithm[2]
guarantees

T / A2
C(Tr o D1 (g, we —w) Ry (w
(@r,9) — L(&,77) < =4 1 {gewe =) Ry )'

Proof. To see why this is true, observe that by convexity
of x — L(x,y) and y — —L(x,y), we can apply Jensen’s

inequality in both arguments to get:

L(z7,y) — L(Z,Y7)
1 T
< T Z’C(‘rta:&) - ‘C(i.vyt)

t=1

now add and subtract £(x¢, y:):

_ ZZ:l E(xtayt) - ‘C(‘%a yt) - ‘C<mt7yt) + L(xtaﬂ)
T

let g7 € 0,L(xy,y:) and g} € 9y[—L(x,y:)] and again
use convexity to upper bound both difference terms:

T ° °
o 2= (95w — &) + (9! e = §)
= T

and now define w; = (x4, 4), w = (&,9), and g¢ =
(g%, g7) to complete the proof:

_ Sl (g we—b) R ()
o .

Thus in order to control the duality gap G(z, y), it suffices
to provide any OLO algorithm that achieves sublinear regret
under the given assumptions.

To the best of our knowledge, the only existing work to
achieve a comparator-adaptive convergence guarantee for
the duality gap in general saddle-point problems is |[Liu &
Orabonal (2022). Their approach does indeed guarantee a
rate of the form G(Zr,7r) < M <0 (%) un-
der the assumption that the £(-,-) is G-Lipschitz in both
arguments, which is justified by assuming that X and Y
are bounded domains. However, generally saddle-point
problems can have some coupling between the x € X
and y € Y, leading to factors of ||z|| and ||y|| showing
up in both |V, L(z,y)| and ||V, L(x,y)|. Thus, even
in a bounded domain a bound of the form R7(w*) <

%) <||w*H G\/T) actually still falls short of being fully

comparator-adaptive because the Lipschitz constant G is
subtly hiding factors of Dy = max, ,cx ||z — 2’| and
Dy = maxy ey |ly —y'||. See Section for a more
explicit example of this issue.

On the other hand, for many interesting problems L(-, -) is
quadratically bounded in both arguments, which will enable
us to immediately apply Algorithm [I]to the linear losses
gt = (g¥, g7) as described above. In particular, we have the
following:
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Proposition 3.2. Suppose that for all y € Y, the func-
tion © — L(x,Y) is (Gy + Loy 1Yl ; Lax)-quadratically
bounded, and for all T € X the function y
—L(z,y) is (Gy + Lyz ||Z|| , Lyy)-quadratically bounded.
Let g7 € O0.L(xz¢,yt) and g € Oy[—L(ze, )],
and set g, = (g.g!). Then {gi} is @ (Gus Lu)-
quadratically bounded sequence w.rt norm ||(x,y)| =

||.’I}”2 + lly 2 Wwhere Gy < O (\/C%TG%) and L, <

O (12 + L3, + L2, + L2,).

Proof. Let (z,y) € W. For g, € 0,,L(x,y) observe that

2
921" < (G + Lay Iyl + Laa [|=]))
<5(G2+ L2, Iyl + L2, [12)
where the first line uses the assumption that x — L(x,y) is
(G + Ly ||lyl| s L) quadratically bounded for any y €

and the last line uses (a + b + ¢)? < 5a? + 5b% + 5c2.
Likewise,

2 2 2
gl <5 (G5 + L2, lall® + L2, lIy)?)
and so overall, letting g, = (g, g,) wWe have

2
I

2
lgwll = /llg=II" + llgy

()
<V5\/G2+ G2

—_———
=:Gy

2 2
VL2, + 12, + L2, + L2,/ [zl + Iyl

L.,
=Gy + Ly |0

where (x) uses /z +y < y/x + /y forz,y > 0. O

Hence, with this in hand we can use Algorithm[I|to guaran-
tee that for any w = (z,y) € W,

,C(ET,:&) — ﬁ(i‘,?T)
Lemzam Rf‘(ﬁ))
- T
Theorem 3 5 (cw ]| + Lo, JJei]|”
< VT ’

which is indeed fully adaptive to comparator .

It is important to note that our results in this section are
made possible because our algorithm works even in the
more difficult QB-OLO setting. It may be possible to get a
similar result by using two QB-OCO algorithms designed
for quadratically bounded functions ¢;, though it it seems

more challenging. In particular, letting ¢7(-) = L(-,y:)
and ¢} (-) = —L(xy, -), one might instead run separate algo-
rithms against the quadratically bounded loss sequences £}
and ¢7. However, now both algorithms need to very care-
fully regularize their iterates such that the gradients received
by the other algorithm are never too large, since ||V 47 (x¢)]]
may can contain factors of ||y,|| and || V¢} (y;)|| can contain
factors of ||z;||. Hence careful coordination between the
two algorithms will be required. The upshot is that by us-
ing un-linearized losses £ and £¢ it may be possible to get
faster rates in some settings by better accounting for local
curvature. We leave this as an exciting direction for future
investigation.

3.1. Example: Bilinearly-coupled saddle-points

Before moving on, let us make things less abstract with a
simple example. Consider a bilinearly-coupled saddle-point
problem of the form

L(z,y) = Fp(x) + H(x,y) — Fy(y) 3)

where F, and F), are convex and (G, L) and (éy, Ey)—
quadratically bounded respectively, and H(z,y) =
(x, By) — (ug,x) + (uy,y) for some coupling matrix B
and vectors u,, u,. This problem captures several notable
problem settings, such as minimizing the mean-squared
projected bellman error for off-policy policy evaluation in
reinforcement learning, quadratic games, and regularized
empirical risk minimization (Du et al.,|2022). The follow-
ing proposition demonstrates that these problems do indeed
satisfy the conditions of Proposition[3.2}

Proposition 3.3. Equation (3)) satisfies the assumptions of
Proposition with Gz =Gy + ||ugl, Lyy = Ly, Ly =
HBHop’ Gy =Gy + |luyll. Lyy = Ly, and Lye = } BTH()p'

Proof. Observe that for any (z,y) € X x Y and g, €
0 L(x,y), we have

192/l = [V Fz(2) + By — ug||
< IVE()] + 1Bllop 191l + lluzl
< G+ el + Lo 2] + (1Bl N1yl
where VF;(z) € OF,(x) and || B|,, denotes the operator

norm || Bl|,, = supy. 4|1 [ Bz|. Likewise,

lgyll < Gy + lluyll + Ly lyll + | BT|,, 1]l

Hence, L(-, ) satisfies the assumptions of Proposition
with G, = G + ||ug||, Lez = La, Ly = ||B||0P, Gy =
Gy + lluyll, Lyy = Ly, and Ly, = ’BTHOp' O

We note that this specific example is mainly for illustrative
purposes — in many instances of Equation (3)) the functions
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F’; and F), satisfy stronger curvature assumptions than used
here, and our approach would be improved by more explic-
itly leveraging these assumptions when they hold. Never-
theless, our approach here does have a few key benefits:
first, we naturally attain convergence in duality gap with
an explicit dependence on the comparator, whereas prior
works generally only attain a bound of this form making
stronger assumptions such as strong convexity or one of the
boundedness assumptions we’re seeking to avoid (Liu &
Orabona, 2022 |Du et al., 2022} [Ibrahim et al., [2020; |Az-
1zian et al., 2020). Second, our approach can be applied
under fairly weak assumptions: L(-,-) need not be Lips-
chitz, strongly-convex, nor smooth in either argument, and
we do not require X X ) to be a bounded domain.

4. Dynamic Regret

Next, we turn our attention to dynamic regret. In the static
regret setting, we saw in Section [2]that to control the stabil-
ity of the algorithm it was necessary to add an additional

term ®,(w) = O <Lmax\/T ||wH2) to the regularizer to

help control the “non-Lipschitz” part of the loss. We will
likewise need a stronger regularizer to control the gradients
for dynamic regret, but now it will lead to difficulties. To
see why, consider the dynamic regret of gradient descent
with a fixed step-size n. Using existing analyses one can
arrive at

T
lur|® + max, ||we|| Pr 7
RT<u>s0< e el Pr 05 g, )
t=1

2n
“4)

where g; € 9, (w,) and Pr = ZtT:2 llur — ug—1]]. Ina
bounded domain of diameter D, we can bound ||uz||* < D2
and max; ||w|| < D, and then by optimally tuning 7 we

get Ry(u) < 0<\/ (D2 + DPr) S, ||gt||2> which is

optimal in the Lipschitz loss setting (Zhang et al., 2018).
More generally, using Mirror Descent with regularizer ¢ (w),
one can derive an analogous bound:

T
Rr(u) <O <¢(UT) + max ||V (w) || Pr + Z&) ;

t=1

where &, are the stability terms discussed in Section[2] In an
unbounded domain, Jacobsen & Cutkosky|(2022) use a regu-
larizer of the form ¢ (w) = O (||w|| log (||w]| T') /n), which
enables them to bound Zthl 0 < O(n), and moreover,
they show that max; ||V, (w;)|| can be bound from above
by O (log (MT/€) /n) after adding a composite penalty
¢ (w) = ||g¢]|” ||w] to the update. Then optimally tuning

Algorithm 3 Dynamic Regret Algorithm

,Br in [0,1], hy-
perparameter set S = {(n,D) < g D> 0},
1€ Ajg)e

for 7 = (n,D) € Sdo

= 0,1Q1(T) =pi(7)

Input: Gax, Lmax, Weights 51, ...

Initialize: w;

Define Hr = 3D(Gmaxt D/1)
Define ¢, () = 5. [ log (v) dv
end for
fort=1:T do

Play w, = > g pt(T)w,ET)
Query ¢;(w;) for any w; € W s.t. ||| < Dmin
forr = (n,D) € Sdo

Query g € 90, (w(")

Setw' ™ = 10
1 fwew: |l <D}

Define 0, = £,(w™)) — £ (iy)

wf? — 1+ 80L)58")

end for _ _
Set gr1 = argmin Y. (Cer+pr07.)qr + Dy (qr |Ptr)
qEA 5] TES
Set pip1 = (1 — Be)qet1 + Bepr.
end for

71 leads to regret scaling as

T
(M2 +MPr) Y lgl* |,

t=1

Rr(u) <O

where M = max; ||u¢||, which matches the bound from the
bounded-domain setting up to logarithmic terms.

In our setting, the situation gets significantly more challeng-
ing. Asin Section we will need to include an O(||w]|* /7)
term in the regularizer 1, in order to control the “non-
Lipschitz” part of the loss function. However, as above this
leads to coupling max; | Vb (wy)|| Py = maxy ||we|| Pr/n
in the dynamic regret, and the term max; ||w;|| is generally
too large to cancel out with additional regularization as done
by Jacobsen & Cutkosky| (2022). Even more troubling is
that our lower bound in Theorem [4.2]suggests that the ideal
dependence would be O(M Pr/n), which we can only hope
to achieve by constraining ||w;|| to a ball of diameter pro-
portional to M = max; ||u¢||. Yet M is unknown to the
learner!

Luckily, hope is not all lost. Taking inspiration from
Luo et al.| (2022), we can still attain a bound similar to
Equation () by tuning the diameter of an artificial do-
main constraint. The approach is as follows: for each
(n, D) in some set S, we run an instance of gradient de-
scent A(n, D) which uses step-size 7 and projects to the
set Wp = {w e W :|w|| <D} Then, using a care-
fully designed experts algorithm, it is possible to ensure
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that the overall regret of the algorithm scales roughly as
Rp(u) < O (R?(W’D) (u)) for any (n,D) € S. Thus if
we can ensure that there is some (n, D) € S for which
D =~ M and 7 is near-optimal, then we’ll be able to achieve
dynamic regret with the desired M Pr dependence. The
following theorem, proven in Appendix [C| characterizes
an algorithm which achieves dynamic regret analogous to
the above bounds, and in Theorem we show that this is
indeed unimprovable. Notably, our result also automatically
improves to a novel L* bound when the losses are smooth.

Theorem 4.1. For all t let {; : W — R be a (Gy, Lt)-
quadratically bounded convex function with G € [0, Gyax|
and Ly € [0, Liyax]- Lete > 0, 5 < 1 —exp(—1/T)
for all t, and for any i,j5 > 0 let D; = £ [2-7 A ZT]
and n; = [S(Gmaxf;Lmax)T A SLl } and let § =
{(ni,Dj) =i ] >0}. For each T = (n,D) € S let

2
By = m and set p1(T) = Z;ﬁ; —. Then
forany w = (uy, ..., ur) in W, Algorithm 3| guarantees

Rr(u)<O (GmaX(M 4+ €) A + Liax (M + €)% A%

+ GmaxPT + Lmax(M + 6)-PT

+\/(M2A5 + MPr)Qr, ) .

o 5 0o (2225) g ()
Qr < S5, [G2+12M?), Pr = 0, [lus —

and M = maxy||ut]|. Moreover, when the losses
are Li-smooth, Qp automatically improves to Qr <

min {07, Lo [taw) — 1, 51, G + LM},

Hiding constants and logarithmic terms, the bound is effec-
tively

T
Ry(u) <O [ (| (M2+MPp)Y G} + L3 M?
t=1

Notice that our result again generalizes the bounds estab-
lished in prior works. Unfortunately, the result is not a strict
generalization as Theorem requires Ly,.x > 0 for the
hyperparameter set S to be finite. To achieve a strict gener-
alization, one can simply define a procedure which runs the
algorithm of Jacobsen & Cutkosky| (2022)) when Ly, = 0
and Algorithm [3| otherwise; this is possible because L, ax
must be provided as input to the algorithm. Notably, the
algorithm of |Jacobsen & Cutkosky| (2022)) does not use the
aforementioned domain tuning trick and requires signifi-
cantly less per-round computation as a result (O(d log (T"))
vs. O(dT log (T'))). We leave open the question of whether

the exists a unifying analysis for Ly, = 0 and Ly > 0,
and whether the per-round computation can be improved.

As in Section [2] we again observe an additional penalty
associated with non-Lipschitzness, this time on the order of

9] <M3/2 \/(M +Pr)Y L%) . The following theorem
shows that these penalties are unavoidable in general (proof
in Appendix [C.3).

Theorem 4.2. Forany M > 0 there is a sequence of (G, L)-

quadratlcally bounded functions with G < M such that for
anyy € [0, 3],

Rr(u) > Q(GM* ™7 [PpT)" + LM~ [PrT]) .

where Pr = Zthz |lue — w1 || and M > maxy ||ue]|-

Notice that with v = % we have Rr(u) >

Q (GVMPrT + LM?/?\/PrT), matching our upper
bound in Theorem up to logarithmic terms. On the
otherhand, for v = 0 we have Rr(u) > GM + LM?2,
suggesting that the lower-order leading terms of our upper
bound are also necessary. We also note that the assumption
G/L < M is without loss of generality: when G/L > M
one can construct a sequence of (G + LM )-Lipschitz losses
according to existing lower bounds to show that

Rr(u) > Q ((G + LM)\/MPTT)
= Q (G\/MPTT + LM3/2m) .

Interestingly, when the losses are smooth, the bound in
Theorem 4.1 has the appealing property that it automatically
improves to an L* bound of the form

T
Rr(u) <O | | (M2 + MPy) Z [0 (ue) — 07] ],

which matches bounds established in the Lipschitz and
bounded domain setting up to logarithmic penalties (Zhao
et al., 2020). This is the first L* bound that we are aware of
to be achieved in an unbounded domain for general smooth
losses without a Lipschitz or bounded-range assumption.
Moreover, our bound features improved adaptivity to the
individial Ly’s, scaling as Zthl Ly [€4(uy) — £5] instead of
the usual L. 23:1 £y (ut) — €5 achieved by prior works
(Srebro et al.,2010; |Orabona et al.,[2012; Zhao et al., 2020).

On the other hand, our upper bound bound contains terms
of the form Cmax ~ Such ratios are unappealing in general
because Gma;;‘nd L.« are not under our control — it’s
possible for this ratio to be arbitrarily large. Fortunately, this
ratio only shows up only in doubly-logarithmic terms, and
hence these penalties can be regarded as effectively constant

as far as the regret bound is concerned.



Unconstrained Online Learning with Unbounded Losses

A more pressing issue is that the ratio shows
up in the number of experts. That is, settir‘fng as in
Theorem requires a collection of O(T log,(vVT) +
T'logy (Gmax/Lmax€)) experts, so in practice we can only
tolerate Grax/Lmax€é < poly(T) without increasing the
(already quite high!) order of computation. We note that
any algorithm that guarantees R1(0) < Gpaxe can’t hope
to ensure non-vacuous regret when Gax/Limax€e > T any-
ways, so this seems to be a fundamental restriction in this
setting. Nevertheless, the following result shows that if we
know a priori that the losses will be smooth, then we can

Gmax
el

avoid this log (log < — )) penalty entirely and reduce

the number of experts to TlogQ(\/T ) by instead setting
Tmin X ﬁ Proof can be found in Appendix

Theorem 4.3. For all t let ¢; : W — R be (Gt,Lt)—
quadratically bounded and Ly-smooth convex function with
Gy € [0,Gumax) and Ly € [0, Lyax]. Let € > 0 and

for any i,5 > 0 let D; = ﬁpj/\ZT] and n; =
Sme\F {21/\\/>] and let S = {(n;,D;) : 1,5 > 0}.
Then for any w = (uy,...,ur) in W, Algorithm[3| guaran-

tees

Rp(u) <O (GmaX(M + €A% + Linax (M + €)%A

T
+Linax(M + €)Pr + | Y [l (wr) — €]
t=1

T
+ (M2A*T—|—MPT) ZLt [Ce(ur) — [:])7

t=1

where A, < O <log (W))

and Pr = 3, ||u,

— ut,1||.

5. Conclusion

In this paper, we developed new algorithms for online
learning in unbounded domains with potentially unbounded
losses. We achieve several regret guarantees that have pre-
viously only been attained by assuming Lipschitz losses,
losses with bounded range, a bounded domain, or a combi-
nation thereof. We provide algorithms for both static and
dynamic regret, as well as an application in saddle-point
optimization leading to new results for unbounded decision
sets. Our lower bounds show that our results are optimal,
and moreover, our algorithms achieve these results without
appealing to any instance-specific hyperparameter tuning.

There are a few natural directions for future work. It is still
unclear whether the dynamic regret achieved in Theorem 4.1
can be achieved in the more general QB-OLO setting. More-
over, while our dynamic regret algorithm attains the optimal

bound, it requires O(dT log(+/T')) computation per round,
whereas the optimal bounds in the Lipschitz loss setting are
attained using O(d log (T")) per-round computation. Yet it
is unclear how to achieve the lower bound in Theorem
without the artificial domain trick discussed in Section [l
We leave these questions as exciting directions for future
work.
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A. Centered Mirror Descent with Adjustment

Algorithm 4 Centered Mirror Descent with Adjustment

Illpllt! w, € W, ¢1 W — RZO

fort=1:Tdo
Play w; € W, observe g,
Choose functions 41, ¢¢
Define Ay (w) = Dy, ., (w|w1) — Dy, (w|w1)
Update w41 = argmingcy (g¢, W) + Dy, (w|wy) + Ag(w) + ¢ (w)
Choose mapping M1 : W — W
Update Wiyl = Mt-{-l(@t—&-l)

end for

The key tool we’ll use to build our algorithms is a slight generalization of the Centered Mirror Descent algorithm of Jacobsen:
& Cutkosky|(2022), which accounts for an additional post-hoc “adjustment” of w; through the use of an arbitrary mapping
My : W — W. Algorithms of this form have been studied in prior works such as |Gyorgy & Szepesvari| (2016); Hall
& Willett| (2016)), wherein M, is interpreted as a dynamical model. In contrast, we will use M, as a convenient way to
formulate a multi-scale version of the fixed-share update, similar to the generalized share algorithm of |Cesa-Bianchi et al.
(2012). Note that when M, is the identity mapping, Algorithm []is identical to the Centered Mirror Descent algorithm of
Jacobsen & Cutkosky|(2022).

The following lemma provides a regret template for Algorithm ] Observe that several of the key terms related to the
algorithm’s stability replace the mirror descent iterates w; with the adjusted iterates w; = M (w;). The trade-off is that
we must be careful to ensure that the new penalty terms & = Dy, , (u|wis1) — Dy, ., (u|Wi41) are not too large, which
places an implicit restriction on how much we can adjust the iterates via M.

Lemma A.1. Foralltlet 1, : W — Rxq be differentiable convex functions, ¢, : W — R be subdifferentiable convex
Sfunctions, and let M, : W — W be arbitrary mappings. Then for any sequence u = (uq,...,ur) in W, Algorithm
guarantees

Ry (u) < Dy, (ur|wy) = Dy, (urlwria) + > é(ur)

=1
T T
+ Z Vp(we) — Vipy (wr), wp—1 — wg) + Z Dy, p, (uglwegr) — Doy, py (ugWeg1)
=2 =1
=Py &t

!

+ > (g1, wp — Wrg1) — Dy, Dy [wr) = Ay (@r41) — be(Wr41) -
=1 ~

Proof. Letting g; € 0¢;(w;), we have

T T T
< Z (9t, wi — ug) = Z (g1, We1 — ug) + Z (g1, wr — Wry1) -
t=1 t=1 t=1

From the first-order optimality condition w1 = argmingcy, (9¢, W) + Dy, (W|wy) + Ay(w) + ¢¢(w), for any uy € W
we have

0> (gt + Ve (Wep1) — Vr(wy), Wep1 — ur) + (VAL (Wii1) + Vo (Wi1), W1 — ue)

12



Unconstrained Online Learning with Unbounded Losses

SO re-arranging,

(9t; W1 — ug) < AVhy(wy) — Vi (Wei1), Wegr — )

— (VA (Wi11), W1 — ug) — (Vi (Wiy1), Werr — ug)

; (Vb (wi) — Vi (Wi1), Wegr — ur)
+ di(ur) — P (Wig1)
+ A¢(ur) — Ag(Wir1) — Da, (ue|Wey1)

where (x) uses the definition of Bregman divergence to write (—V f(z), z

—y) = f(y) — f(z) — Dy(y|z) and bounds
(Vi (Wegr), up — We1) < dyug) —

¢¢(We11) by convexity of ¢;. Plugging this back into the previous display, we have

T
Z Vi/’t wt th({ﬁt+1)a{5t+1 - Ut>

t=1

T T
+ ) [Au(ue) + de(ur)] + D =D, (e 1)

t=1 t=1

+

M=

(9t wp — Wip1) — Ap(Wey1) — Pe(Wir1),

t=1

and using the three-point relation for Bregman divergences (V f(y) — Vf(z),x — z) = Dy (2]y) — Ds(z|z) — Ds(z|y):

HMH

T T
v, (u|wy) — Doy, (we|Wig1) +Z [Ar(ur) + o (wy) +Z D, (ug|Wiy1)
t=1 t=1

T
+ Z (gs wr — We1) — Dy, (Wi |we) — A (Wir1) — G (Wer1)
t=1

=:0;

=
[M]=

Dy, (u|wi) — Dy, (u|we1) + [At(ug) + de(ug)] + 011

~+

1

~+

T
=1
T

Il
[M]=

t=1

t=1

T
Dy, (uilwy) = Dy, (uilwigr) + Y Dyyyy (welwin) = D,y (el @rgn) + > (A () + ¢ (ur)] + rer
t=1

=:&t
T T
= Dy, (w1w1) = Dy, (ur|wrir) + Y [Dy, (welwe) — Dy, (wer|wy)] + > Ar(uy)
t=2 t=1
=:(%)
T
+ > uur) + o + v,
t=1

13
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where (a) observes Da, (u|wWi1) = Dy, (u¢|Wes1) — Dy, (ug|wi41). Observe that the term (x) simplifies as

T

Ai(ur) + Y Dy, (urlw) — Dy, (ur—1wy)
1 t=2

I
M=

(%)

t

T
Dy, (ueJwy) = Dy, (uelwi) + > Dy, (ug|wy) — Dy, (g1 wr)

Il
M-

!

Y41 (UT‘wl) - le (ul ‘wl)

+ Z Dy, py (uelwr) = Dy, (uegr|wr)
—

T

+ 3 Dy, (wiwy) — Dy, (w1 |wy)
t=2

= Dy, (ur|w1) — Dy, (u1]wr)

+ Y Dy, (wi—r|wr) — Dy, (wg]uwn)
t=2
T

+ Z Dy, (ut|we) — Dy, (wr—1|wy)
t=2
= Dy (urfwi) — Dy, (ur|w:)

T
+ Zwt(th) = Pe(ue) = (Vipe(w1), ue—1 — )
+Z¢t Ut % Ut — 1) <V1/1t(wt)7ut _Ut71>

T
= Dy, (ur|wy) = Dy, (urwi) + > (Vb (wy) = Vibr(wn), g1 — ue)
t=2 ey

so plugging this back in above yields

T

Rr(u) < Dy, (ualwr) = Dyg, (urlwri) + () + Y ¢eue) + ir + 61r
t=1

< le (ul‘wl) - D'(/)T+1 (U’T|wT+1) + Dl/JT+1 (UT|w1) - le (u1|w1) + PQ:T

T
+ Z ¢(ue) + &ur + 1
t=1
T
= D¢T+1 (U’T|w1) - Dl/fTJrl (uT|wT+1) + Z(bt(ut) + Po.r + gl:T + 51:T—
t=1

O

In this paper, we will frequently use composite penalties ¢; which are a linearization of some other function ;. The next

lemma shows how this changes the bound.

14
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Lemma A.2. Under the same conditions as Lemmal[A.l| let o, : W — R be subdifferentiable convex functions and
suppose we set ¢y (w) = (Vo (wy), w) for some Vi (wy) € Opy(wy). Then Algorithm | guarantees

T
Ry(uw) < Dy, (ur|wr) = Dy, (ur|wria) + Z ei(ut) + Par + &1
=1
T
+ D (Gt wr — Wigr) = Dy Wy [wr) — Ay (@rg1) — pi(wy),
t=1

=:0¢

where §; = g¢ + Vi (wy).

Proof. The proof is immediate by convexity of ¢;. From Lemma[A.T| we have

T
RT(U’) < Dl/JTJrl (uT|w1) - D¢T+1 (U‘T‘wTJrl) + Z ¢t(ut) + Po.r + glzT

t=1
T
+ Z <gt7wt - '[Et+1> - szt (@t+1|wt) - At(wt+1) - ¢t(wt+1)o
t=1

Observe that we can write

T T
D belur) = $e(@err) = Y (Veor(wy) up — Wern)
t=1

t

Il
—

Il
M=

(Vi (we), us — wi) + (Vs (we), ws — Wegr)
t

1

B

i(ug) — pe(we) + (Vo (wy), wy — Wiy)

l
—

so plugging this back in above gives the stated result:

T
Rp(u) < Dy, (ur|wr) — Dy, (urlwrga) + Y @e(ur) + Por + &1r
=1
T
+ > (Gt wr — Wigr) = Dy, (Wyg1[wr) — Ay (@rg1) = pa(wy),
t=1

where g; = g¢ + Vi, (wy). O

A.1. Multi-scale Experts Algorithm

Algorithm 5 Multi-scale Fixed-share

Input: p; € Ax N (0, 1)V, pu1,. .., uy in Rsg, & > 0, weights By, ..., Br in [0, 1]
Initialize: 1 =p1
Define ;(z) = = ["log (v) dv for i € [N]
fort=1:Tdo _

Play p;, € Ay, receive loss ¢, € R

. N 7 =

Update gy 1 = argmingea D iy (Cei + pil7;)qi + Dy, (¢ilpes)

Set prv1 = (1 = B)qe+1 + Bepr
end for

For completeness, in this section we provide a multi-scale experts algorithm which achieves the bound required for our
dynamic regret algorithm in Section[d] Our approach is inspired by the Multi-scale Multiplicative-weight with Correction

15
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(MsMwC) algorithm of|Chen et al.|(2021), but formulated as a fixed-share update instead of an update on a “clipped” simplex
An = Ay N[B,1]V. The MsMwC algorithm provides a guarantee analogous to the following theorem, but formulating it
as a fixed-share update will allow us a bit more modularity when constructing our dynamic regret algorithm in Appendix [C|
which requires several rather delicate conditions to come together in the right way.

Theorem A.3. Let k > % and assume |11, . .., iy satisfy MZM < 1jforallt € [T) and i € [N]. Then for any u € Ay,
Algorithm|5| guarantees

i<a,pt—u> SZN:uZ- k[log(ui/p1i)+ZtT:110g (1%/3)] ‘HMZE k(1 +51:T)2N:];ﬁ.

t=1 i=1 H =1 "

Moreover, for By <1 —exp (_%)

i<a,pt—u> Z llog uz/P11)+1+ ZE

t=1 Hi t=1

N .
kY P
o1 Hi

Proof. The described algorithm is an instance of Algorithmapplied to the simplex Ay with @ (p) = Zivzl piZfipi, and
Mis1(p) = (1= Bi)p + Bipr. Applying Lemma[A.2}

T
Z <Zt7pt - u> < Dy(ulp1) — Dy (ulpr+1) + e1.7(w) + 1.0 + 017,
t=1

where

§e = Dy(ulpsy1) — Dy (ulgey1)
o = <€t + Vi (pe), pr — (Jt+1> = Dy(qer1lpe) — pi(pe)-

Observe that for any u, p, and ¢ in Ay we can write

N

k
[uz log (ui/pi) — u; + pz Z ; Uz log (ui/qi) — u; + qi]
=1

I
.MZ ,MZ
Elx Fl=~

s
Il
-

Dy (ulp) — Dy (ulq) =

©
Il
=

[ul log (Qz/pz) +pz - QZ] )

so we have

N
_ Z wilog (pr41,i/P1i) + Pri — Pr+1,i

Dy (ulpr) = Dy (ulpr1) "
i=1 v

< kz uilog (p/p1i) + p1i —
p>0 223

_ kz u; log (ui /p1i) + P1s — ws

=1 i

< kZ u; 10gﬂuz/ph 4 kZ D1

zlul

16
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and

T T
> &= Dy(ulpisr) — Dy(ulgei)
t=1 =1
T 4108 (G 1,0/Prat i) + Pesti — eri
_ k ) t+1,2 t+1,2 t+1,0 — Qt4+1,2
22 "

T N ylog (#)
o (1—=B¢)qs4+1,i+8¢q1,4
=k>. >
=1

i

+
t=1 i=1 Hi

T N w g _

=k —log ( t+1,i )

; ; i (1= Be)aes1,i + Bean,s
T N

+ kz Z 6t(q1,z Qt+1,z)
t=1 i=1 Hi

1 )+th“
122

where the last line recalls p; = ¢1. Plugging these bounds back into the above regret bound yields

+ SDI:T(U) + 51:T

T
Z<€t7pt_u <k2lmbg (wi/p1i) + (14 Brr) ph—&-Zbg( )

—1 =1
N k log wi/p1i) + 110g(1 fﬂ o
-3 DS IE b o
2 L =1 i
N T
£S5 ot B Bt — des00) — Do (v snilon) — iome ©
=1 t=1

- 6t1

where the last line recalls §; = <Zt + Vou(pe), pr — Qt> — Dy(ge+1lpe) — oe(pe), pe(p) = Zfil ,ui@%pi, and denotes
Y (p) = uﬁ 3 log (%) da so that 1(p) = Zfil 1;(p;). We next focus our attention on the terms in the last line, dy;.

Note that by construction, we have py; = (1 — B¢)qsi + Biqui > Bequi > 0 for all i. Thus, 1;(p) = % I3 log (v) dv is
twice differentiable everywhere on the line connecting py; and g1 ; for any ¢ with g.1 ; > 0. For any such 7, we have via
Taylor’s theorem that there exists a p; on the line connecting p;; and g;+1 ; such that

(pm‘ - Qt+1,i)2k

1
_ N2 () = Z
(ptl Qt+1,z) 11[}1 (pl) 9 Mzﬁz

DO | =

Dy, (qe41,ilpes) >

17
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b

so using this with the assumption that p; < 1, we have

1 (pti — qe41,0)°k

|Dti — Qet1,i] — 3 — il

0 < ‘Zm + Miz?i

iDs
~ 1 (pti — qi11.4)°k ~
<2 ‘fti |Dti — Qe41,i] — 5—( LA, L J — ,U/zgtzpz + ,uz % |pei — pil
HiDi
@ |~ 1 (py — )2k ~
31lei| |pei — Qes1,i| — §M — pils;p;
HiPi
< ﬁlh étz ,ULEtzpz
(b)
<0,

where (a) uses |p; — pui| < |qi+1,: — pri| for any p; on the line connecting ;1 ; and py; and (b) chooses k > %. Similarly,
for any ¢ for which g¢41; = 0 we have

8ti = (bs + pil3)pei — Dy, (Olpei) — p1ilipi

~ D
< lyipi — —
1
Hi Hi

where the last line again uses ; ZM

< 1. Thus, in either case we have d;; < 0. Plugging this into Equation (H) reveals the
first statement of the theorem:
N

ZT:<E,pt—U><§:ui k[log(ul/p“wrz’f:llg(l >]+ulz€ +k1+ﬁ1T)Z%.

t=1 i—1 Hi i=1 1t

For the second statement of the theorem, observe that 8; < 1 —exp (—1/T) < %, so B1.7 < 1, and likewise log (ﬁ) =

log (exp (1/T)) = %, so Zthl log (ﬁ) < 1. Hence, the previous display is bounded as

T N N
Z<€t,pt—u> Zui +2kz%
i=1

t=1 i=1

T
k [lo U; 1+1 ~
v t=1

B. Proofs for Section 2| (Online Learning with Quadratically Bounded Losses)
B.1. Proof of Theorem

Theorem Let A be an online learning algorithm and let wy € W be its output on round t. Let {g;} be a (G4, L)-

quadratically bounded sequence w.r.t {w,}, where Gy € [0, Giax| and Ly € [0, Liax] forall t. Lete > 0, k > 3, k > 4,
\/ V V /Gxnax

¢ >4, Vi1 = G + Gl pri1 = \/ﬁ Qi1 = e eG(mjjl ) , and set

[l 1 1 2
P (w) = k/ min [Og(l’/;ét-i-) + 77Vt] dx + M and oi(w) =
0

1
NS Gon 2p4

]
\/L?t

Then for any u € W, Algorithm|[I| guarantees

R (u) < 26Gru + o l|u)* \/ L + L + 2kl max { Vi Py 1 (Tul), Gunax Pra (el

where Fry1([[ull) = log (|ull /a1 +1).
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Proof. We can assume without loss of generality that 0 € W, since we could otherwise just perform a coordinate

translation. Hence, we have w; = argmin, .y ¢1(w) = 0, and it is easily seen that for any w € W we’ll have
Dy, (wlwr) = Dy, (w]0) = 1 (w).

First apply Lemmawith My(w) = w and ¢ (w) = 2\/LT [|wl|® to get

M=

T
Z ge,wy —u) < Dy (u|wr) + @rr(u) + (gt + Vo (wy),wy — wegr) — Dy, (W |we) — Ay(wegr) — @i (wy)
t=1

=:0¢

t=1

< pi1(u) + er.r(w) + o1.r.

Let us first bound the leading term tr,1(u). For brevity, denote F(x) log (z/ay + 1) and let U, (|lw]|]) =

it 1 [P V] i and @[] = 2 [w], 50 that v (w) = W ([Jwl]) + P (Jaw]). Then

lul .
vraae) =k [ Wy @de + 3 ol
0 Pt
K 2
< Kl W () + 5 el T+ Lir

Moreover,

Fy([Jul)
v k o
t(||uH) 1N<1/Gmax { n o

{2]@ ‘/tFt ||U imeax Ft(Hu”) < \/vt

kGrmax Fy ([[ull) + kz2—  otherwise

{ ViF([ull)  if Guax/Fe([[ul]) < vVV2

2kGmax Fi(|lu]]) otherwise
ax{\/VtFt D), Gnaxe F (J|1e]]) }

where (%) observes that V;/Gmax < GmaxFi(z) whenever W} (z) = kGmax Fi(2) + kV:/Gmax. Next, using Lemma
we have

<
prr(u || I” Z\/ﬁ lull® /L.

so overall we have

Z (g, we = u) < 2k |[ul| max { Vg1 Pro (Jull), Gunax Proa (ul) } + 5 Nl \/ L + L0 + lul® o/ L3 + G110
- ™
We conclude by bounding the stability terms d;.7. Recall that

¢ = (9t + Vepr(we), we — wip1) — Dy, (wigr|we) — Ay(wirr) — @e(wy),

where Ay (w) = 41 (w) — P (w). We first separate into terms related to the G;’s and terms related to the L,’s:
< (lgell + [IVepe(we)[]) lwe = wea ]
= Dy, (wegr|we) — Ag(wig1) — @e(we)
< G lwe —wisa|| = D, (wrgafwr) — Ag(wiga)

+ 2L¢ [Jwe| [|wy — wigr]| = Da, (e 1]we) — pe(we),
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where we slightly abuse notations Dy, and Dg, to denote the Bregman divergences w.r.t the function w — W (||w]|)
and w — @4(|jw||). In the second line, observe that ®,(||w]||) = o Jwl|? is - strongly convex, so Do, (ws1|we) >

T ||l we41 — w||* and an application of Fenchel-Young inequality yields

K
2Ly lwe| lwg — wegr || = Da, (wig1lwe) — pi(we) < 2L¢ [Jwe] [|[we — wigs || — 0 [wesr — wel|” — @i (wy)
t
Ap L} ||we||®
< 2Pt N
> % @t (wy)
217 ||we||” L}

2
= - [ |

K/ Limax + L%:t—l 2y L%:t
2L |lwe)* L}

K\/ L%:t 2\/ L%:t

2
[ |

IN

<0
for x > 4. Hence,
0 < Gy ||wt - wt+1|| - D\I/t (wt—o—l‘wt) - At(wt—i-l)a

which we will bound by showing that A;(w) > n;(w)G? for some suitable G-Lipschitz convex function 7, and then
invoking Lemma[D.3] To this end, observe that

A(w) = i1 (w) — e (w)
= Uepr([fwll) = Ce([[wl]) + Pesa(lw]]) — Po([[w]])
—AY (w) — AP (w)
> AY (w).

Moreover, writing A¥ (w) = ¥, (Jw])) — U, (Jw])) = i1 ¥, (2) — ¥}(2)dz, we have

|:Ft+1<x) Fi(x)
Ui n
Fi(z)

n

W, (2) — Wi(x) =k min +nvt}

n<1/G +Wt“] R [

N<1/Gmax

>k min {Ftéx)—l—th_‘_l]—k min [

+ Vi
<1/ G <1/ G K t}

and using the fact that for any 7 < 1/Gpax, we can bound % +nVi +nG? > min,«<1 /G {% + 77*\/,5} +nG?, we

have

. Ft(fl)) . Ft(.’II) 2 . Ft(J?) 1
>k — Vil — k Vi kG
- négr/lgim [ n +n t] né?/lglmax [ n A (. Vit1 " Gmax

Ft(I) 1
2‘/;5 ’ C7'max

Ft(l') 1
V;t ’ Gmax ’

> thQ min > Gf min

. 1 _ 1 Vi _ 1 Gt 2 2 i
where the last line observes that Vi T Vin Vi T Vin (1 + v < Vin for V; > G7 and recalls £ > 3. Defining

ne(JJwl]) = O”w” min { %f), Gnlmx } dz, we then immediately have:

Ft(ﬂf) 1
V;f ’ Gmax

[Jw]|
AY ([lwll) > G2 / min dz = (|l G2.
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Hence:

6t < Gy |lwg — wipa|] — Dy, (wisr|we) — Ag(wiy)

< Gy llwr — wesr || = Dy, (wiwigr) — ne(wesr ) GF (8)

Finally, we conclude by showing that ¢ satisfies the assumptions of Lemma[D.3]w.r.t this function 7,.

We can write

* . Fi(v)
U, (z) = Ziv)
o=k [ i [P ao

:k/ max{Z\/VtFt(v),Gmath(v)+ th }dv
0 max

and so for any « > 0 we have

W) (x) = {QWW if Gunae/Fo(0) < VWi

kGmaxFi(x) + CﬂfTV; otherwise

kv Vi :
W) = { Granyigm 1 CmeV @) S VI

kxcj_“(‘l"" otherwise

t
—kVVi(142F, (x .

W (z) = W if Grnax/Fr(z) < VV; .
o Gm’z‘ otherwise
(z+aut)

Clearly, we have U (z) > 0, Uy (z) > 0, ¥}/ (x) > 0, and U}/ () < 0 forall > 0. Moreover, for any > a;(e—1) =: @,
we have

T/ N0 2
U (1)2 EGuax_ (z+at)
(@) (wtan)? FGR

2
()] {ﬁﬁ(jﬁﬂfj@é () o) if G/ Fi(@) < VW

otherwise

2k\1/vt <\/% + 2 \/ Ft(.f)) lf Gmax \/ Ft(x) S \/Vt
1

otherwise

kaax

and since > ay(e — 1), we have Fy(z) > 1 and hence \/ﬁ </ Fi():

A/ Fi(x .
32k\/%) lf Gmax V Ft(x) S \/Vt

= 1
T otherwise
. Ft(l‘) 1 1 ’
< —min , = —n(x),
=2 Vi G | 2

where the last line recalls 7, (z) = [ min{ Ftv(fv), Gnlmx } dv and chooses k > 3. Further, observe that 7;(x) is

convex and 7j(z) < Z—, hence z~—-Lipschitz. Thus, ¥, satisfies the conditions of Lemma with n:(z) =
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J; min { \/ %f), Gnlm } dz and &; = (e — 1), so summing Equation (8) over all , we have

T
Z Z [wi — wiga|l = D, (wegaw;) = me([|wia )G

=5 25 () + )
eIy AU R

T T

2eq, G? aG?
< E < g 2
= A A

where the last line bounds e/k < 3/k < 1 for k > 3. Next, substitute oy = G max

T Tog? (v, /Gy L0 DoUNd

T

Z 5t S 2€Gmax :
t=1 m log (W/Gmax)

T G2
Z ‘ ((c G

= (6= )G + G ) log” (st O )

(c— 1)Gn1'1x+G1 T 1
S ZGGII]&X —dl‘
(c— 1)G,2nmx € IOg (‘T/Gmax)
(e=1)Gha+Glr

1
08(z/ Glax)
2eGmax
log (c—1)
for ¢ > 4. Finally, plugging this back into Equation (7) yields

= ZGGID&X

(e=1)G2

max

< 26Gmaxa

Z gt, we — ) <2k:||uHmax{v Ve Froa([[ul]), GmaxFria( |U||)}
t=1

Sl B g+l /L + 817
< 2k ||u/| max {\/m, GmaxFTJrl(”u”)}
+ 5 Il L+ Bip + [l /L + 26Gin
< 26Gomu + 1 [ul]* /L2 + Ly

2k [jul| max { Vo1 Frsa (Tull), Gnas Fr-1 () }

B.2. Proof of Theorem

Theorem 2.3. Let A be an algorithm defined over R? and let w, denote the output of A on round t. Let € > 0 and suppose
A guarantees Rr(0) < e against any quadratically bounded sequence {gi}. Then for any T > 1, G > 0 and L > 0 there
exists a sequence g, . . . , gt satisfying ||g:|| < G + L ||w;|| and a comparator v € R? such that

Rr(u) = Q (G Jeull/T10g (llull VT/€) v L Jlu] ﬁ) :
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Proof. Let w; € R? be the output of algorithm A at time t. Consider sequences gi,...,gr where g, €
-G ) ( -G )} . . -G .
, , and define the randomized sequence g; = where ¢; are independent ran-
{(Lllwtll —L ] —&i L [Jw|
dom signs. Consider the worst-case regret against a comparator constrained to an ¢, ball of radius U
T T
sup Ry = sup Y (gs,wy) — Z gt, u
g1y gT 91ses9T 17 ullu H -
T T
>E , — mi , U
2B (B )~ i 3 >]

2 Eey e |~ ZG |wel = min Z —Guy — uger L ||wy|
— willull o <U £

r T T

=Ee  ef —GZHth—i-GTU—i- max UQLZEtU/t‘|
t=1 uz|<U t=1

T

Z5t [[wel]

t=1

T T
2
> lwel* = G [l
t=1 t=1

=E.,. . |GTU+UL

T
-Gy IthII]
t=1

(@) UL
> Eeper |GTU + ﬁ

®) UL | <& ) d 2
> Eeyer GTU+$ ZHth -G TZHth

where (a) applies Khintchine inequality, (b) applies Cauchy-Schwarz inequality, and choosing U = % 2T we have

L L|ul®> VT
_arv = Lyzyp - LU VT

V2 2V/2
where the final equality bounds ||u||*> = u2 + u2 < 2U2. Hence, there exists a sequence of g; which incurs at least
Q(L Hu||2 V/T) regret. Moreover, for any algorithm which guarantees R7(0) < ¢, there exists a sequence g1, . . ., g With

llg:]] < G for all ¢ such that for any T and u, Ry (u) > % [l \/Tlog (||u\| \/T/\/?e) (Mcmahan & Streeter, 2012,

Theorem 8). Thus, taking the worst of these two sequences yields

T >
gl?,.u.l’f)g,] R — ma}({ f ||'LLH Tlog (”'LLH ﬁ/ﬁﬁ), 7\/,

C. Proofs for Section 4| (Dynamic Regret)

The main objective of this section is to prove Theorems and At a high level, the strategy is simple: we run several
instances of projected gradient descent, each with a different restricted domain Wp = {w € W : ||w|| < D} and stepsize 7,
and then use a particular experts algorithm to combine them. We first assemble a collection of core lemmas that provide the
regret of the base algorithm (Lemma [C.I)), the regret of Algorithm [3]in terms of the regret of any of the base algorithms
(LemmalC.2), as well as some utility lemmas (Lemmas [C.3]to[C.6) to help tame some unwieldy algebraic expressions and
case work. We then prove the main results Theorems [.T)and [4.3]in Appendices|C.1]and[C.2]respectively. Finally, we prove
our lowerbound Theorem[4.2]in Appendix [C.3]

The base algorithms that we combine are instances of (projected) online gradient descent with an addi-
tional bias term added to the update. The following lemma provides the regret template for this algorithm.

23



Unconstrained Online Learning with Unbounded Losses

Lemma C.1. For all t let {; : W — R be convex. Let K > 1, Ly > 0, and KnL; < 1 forallt. Let Wp =
{w e W : ||w|| < D}, wy = 0, and on each round update w1 = yew,, (wr — (1 + KnLt)g:), where g. € 00y (wy).
Then for any u = (uy,...,ur) in Wp,

2 T T
U +2DP
Rrw) < 2D ey S 1 ) — tutwd] + 203 ol

where Pr = ZtTZQ laee — we—1])-

Proof. The result follows eas11y using existing analyses. For instance, the update can be seen as an instance of Algorithm 4]
with 1y (w) = ||w\| p+(w) = KnLy (¢, w) for g; € 04i(w;), domain Wp = {w € W : |w| < D}, and M (w) = w
for all £. Lettmg w1 = 0 and applying Lemma[A-2] we have:

T
Ry ( )<¢T+1 ur —|—Z V’(/)t wt ,Up—1 — Uy —|—K’I72Lt€t Ut)
t=2 t=1

[M]=

+ (9¢ + KnLigs, ws — wig1) — Dy, (wey1|we) — KnLili(wy)
t=1
Jur? D -
< ZTn +Z; s = a4+ K0 Y Ly (6 () = b (wy)]
t=2 t=1

[M]=

+ > (L+ KnLy) (g, ws — wig1) — Dy, (wig1|wy)

~
Il
-

@ |lur||® + 2DP: -
< ”T”277T+K77;Lt [Ce(ur) — £ (wy)]
lhws = wil®

+ o

M=

(1+ KnLy¢) (g¢, wp — wig1) —

o
o
_

®) |lup|® + 2D Pr

T
+E YLl = ] + 5300+ Kl el

2n t=1

S| ﬂM“]

© ||lu +2DP
W+K ZLt (€, (ue) — £o(wy) +2n2||gt“
t=1

the (a) observes that D, (ws41|we) > % by %-strong convexity of v, (b) is Fenchel-Young inequality, and (c)
uses KnL; < 1.

O

The following lemma provides a generic regret bound for Algorithm [3] The take-away is that the regret will scale
with the regret of any of the experts up to two extra terms Cs and Ar(n, D), which we will later ensure are small.
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Lemma C.2. Forany T = (1, D) € Swithn < 4
t, Algorithm[3] guarantees

— and sequence w = (u1,...,ur) in W satisfying ||u.|| < D for all

lur||? + 2D Pr + 4kD?Ap(7)
2n

RT(’U,) S QkOS + QkDGmaXAT (T) +

+KnZLt [et (ur) — Lo(w }4—4772“9;)

t=1

where k > 9/2 and

def D zes HF def D res M3
Cs = ===—, Ar(7) = log < + 1.
Yres 13 w2

T

Proof. Let T = (n,D) € S and let A, denote an algorithm playing wt(_?l = yew:|jw|<D (wt(T) —n(1+ KnLt)g,ET))

for gﬁT) € (%t(wgﬂ). Algorithmis constructed as a collection of algorithms 4., with an multi-scale experts algorithm
(Algorithm 3 to combine their predictions. First, observe that the regret decomposes into the regret of any expert A, plus
the regret of the experts algorithm relative to expert A :

B

Rr(u) = Cr(wy) — L (ug)

4 (wt(T)) — Ly (ug) + iét(wt) — (wgf))

t=1

#
Il
_

I
M=

#
Il
—

=:R}7 (u)

o +Zet (Zpt )—e (u”)

TES

and by convexity of ¢; and Jensen’s inequality:

<Ry (u)+>

t=1

et (o) - o1

TES

+Zth(wt ) o) — 1{r =7}

t=17eS

(@)
RAT ( )

Yy [t () = 6@)] pu(F) - 2]

t=17e8S

T
=305 @) e(F) - ()

t=17eS

© Ry (u) + zT: > [ﬁt (w,@) - Et(wt)} [p:(7) — P2 (7)]

= R?T (w) + Ry (p}), )
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where w; is an arbitrary reference point with ||w;|| < Dy, (and hence is in the domain of all of the experts A, ), (a) defines
pi(7) = 1if 7 = 7 and 0 otherwise, (b) observes that ) ~_ s £s(w)(ps(T) — pi(T)) = Le(we) Y zc s Pe(T) — pi(T) =0,
and (c) defines £, € RIS| with ¢, . = £,(w™)) — £, ().

Now for any 7 = (1, D) € § with D > max ||u; ||, we have via Lemma [C.1]that

Ry (u) < uT||2—;2DPT+K ZLt |:£t ut) — le(w ]-i-QTIZHgtT) - (10)
t=1

To bound RY%(p*), observe that for any 7 = (7], D), we have

E; = Et(wg?)) — Ly (W) HV& )H Hwt?) — Wy

< (Gmax + LmaxD) 2D,

S S
2D (Gmax+D/7)

and so with uz = and ) < R — Lmax < Lma we have

prlyF < o5 (Gmax N 15/77)

1

( ~> (Gmax + Lmaxﬁ)

Gmax + LaxD

215 (Gmax + Lmaxﬁ>

IN

so these choices meet the assumptions of Theorem[A:3]and we have:

+2kz]917

TES

RMeta Zp'r [ IOg p'r( )/pl'r +/~LTZ€

TES 1z

for k > 9/2. Recalling that p¥(7) = 1 when 7 = 7 and 0 otherwise and that 7 = (D, n), the first sum is bound as

k [log (p%(7)/p1-) +1] o D U 2
) + ;eh = 26D G+ - | log (1/p1r) +11 + 55— =55 ;ft
D 2
< 2kD <Gmax T n) log (1/p1r) + Z Hwt (T))H AD?

)

D T
- 2]€D (Gmax + 77) [10g (1/p17' + 2772 Hgt )

2
and so with p; , = <*= 7. we have
Tes 7

+2kZL

5 -
tes 2uFes HF

D - 2 T T
Ry*%(py) < 2kD (Gmax + 77) [log (ZT;?MT> - 1] +2m) Hgt( )
o t=1
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Combining this with Equations (9) and (I0) yields the stated result:

D s 2 s i
+2kD (Gmax + ) [log (M) + 1} + 2kZL5“2
" T Dres Iz

ur||® + 2D Pr 4 4kD?Ap(T)
2n
+K772Lt [ﬁt ug) — L (w ]4_47]2"9(7)

t=1

RT (u)

\./

= 2kCs + 2kDGmax AT (T) +

where the last line defines the shorthand notations

~ - 2
O 27es T () D log (M) ey
> res M3

Next, we provide bounds on the terms terms Cs and Ar in terms of the hyperparameter ranges [7min, Jmax] and
[Dmin, Dmax] that the meta-algorithm tunes the hyperparameters over.

Lemma C.3. Let 0 < Mmin < Nmax 0 < Dmin < Dmax, and define the hyperparameter set S = S, x Sp for
S, = {771- = [nme /\nmdx] 7> 0} and Sp = {Dj = [Dmir,Zj /\Dmax] iy > O}. For each 7 = (n,D) € S, let

Ur = 72D(Gmax+D/77) Then

D, ..
CS def ZTES o < 2\/7Dmm (Gmax + mm)
ZTES :u'r TImax

and forany T € S,

D4 D2

mm min min

2 4 2
g 7 z 4 D 6|S,| D

T

Proof. For the first statement, we have

D res M7 T T
Cs = <8 7 < 7 < 2
> res M3 Dores Mz F mas s Danin)

= \/T(QDmin)2 (Gmax + Dmin/nmax)2

Dmin
= 2\/fDmin <Gmax + >

max

27



Unconstrained Online Learning with Unbounded Losses

where the first inequality applies Cauchy-Schwarz inequality. Moreover, for any 7 = (7, D) € S we have

Dresh: 1 Z 1
= — .
'u72' ‘LL(%D) (ni,D;)ES (2Dj)2 [Gmax + Dj/nl]
1 n;
S5z D
HnD) (. p;)es
— 1 22i"7r2nin
=12z i o4;
4. p) (n:,D;)€S min2"/

2

’71Og2(7lmax/nmin)-| ’VlogQ (Dmax/Dminﬂ 221

_ nmin
~ 1,2 D4 547
4'”(77,D)Dmin i=0 j=0 2%
e 22Noma(mma/mmin) 142 11
= 4p? DA 3 1- L
(n,D)" min 16
< 7712nin 21085 (Moax/Mmin)+4 _ 1 16
= 72 1 1=
444y, 0) Drmin 3 15
< 7712nin 771211ax 16
- 4,u2 D4, 772 . E
(n,D)~ min min
6lmax  _ SMmax
S 4 2 D4 2 2 4
'u(TLD) min /”L(n,D) min
At the same time, we can also bound this term as
dSreshi 1 Z 1
2 2
" HenD) | (o e (2D0)? [Gunax + Dj /1]
1 1
= 72 2,12
40.0) (n:,Dj)es 4 max
logy (Dmax/Dmin
1S, | [log, ( / ) 1
= 2 2 2 72/.
4'“(77,D)GmaX §j=0 Diin2¥
|Sy] 1
=72 2 2 1
4M(n7D)GmaxDmin 1- 4
418, s
= 4. 3ﬂ%n,D)G12naxD12nin 3/‘%77,D)G?naxD12nin
Hence,
7 M7
Ar(n, D) = log <ZM2 > +1
<1 <|:3"71?ﬂax A ‘87]| :| 1 ) +1
) 2 2 2 D)
2Z)min 3(;max M(n’D)Dmin
3n2 S 2D)2 [Grax + D/n)?
g ([ 1S ] @D Gonas + D/
2l)min 3G12nax Dmin
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Now if Giax < D/, we have

AT(naD)§10g< 2D%.

612, D2 - (2D

min

2492, D
< log (77maD’§l> +1

mm min

34 B D [Gomas + D/n]2> 0

and otherwise

48, D? [Guax + D/n)?
AT(n,D)§10g<| |3G£ o /7’}>+1

max min

2
<6|8|D mdx)+1

max min

D2
= log (6|8 | >+1

min

Thus, we can bound

24130 Dt 61S,| D?
A g | 1

1’1’1111 min min

Ar(n, D) < log (

Lemma [C.4]provides a simple but tedius calculation which we will use a few times in the proof of Theorem 4.1}

Lemma C4. Let {; be (G4, L;)-quadratically bounded, c1,co > 0, u,w € W, and g, € 00 (w). Assume |w|| < D and
||u|| < D. Then

el [6(u) — Lo(w)] + 2 [lg0]* < 3(er + 2) (GF + L D?)
Proof. Since ¢y is (Gy, L;)-quadratically bounded, and ¢; € 9¢;(w) where ||w|| < D we have
ool < (G + Le llwl)? < 2G2 + 212 [uw]]® < 2G2 + 2L2D%.
Moreover, letting V£ (u) € 04 (u) and ||ul| < D we have

Ly (€(u) = Le(w)) < Le [[VE(u) || [lu — w]|
< 2DL [V (u)
<2DL¢ (Gi + Ly D)
=2DL;Gy + 2L} D?
< G? + LID? +2L?D?
=G7 +3L7D%

Thus,

1Ly (6 (u) — 6 (w)) + ¢ HgtH <(c1+ 202)Gf + (3er + 202)Lt2D2
< 3(c1 + ) (G} + L7 D?)
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Lastly, we provide two lemmas which let us assume that there is a 7 = (1, D) € S for which 2D < M = max; ||u|| < D
by showing that the regret is trivially well-controlled whenever M is “too big” (Lemma[C.5) or “too small” (Lemma [C.6).

Lemma C.5. Forallt let ¢ be a (G, Lt)-quadratically bounded convex function for Gy € [0, Gmax| and Ly € [0, Liyax]-
Let & > 0, Dyax = €27, and let w = (u1, ... ,ur) be an arbitrary sequence in W such that M := maxy ||u¢|| > Dax.
Then for any wy, . . . ,wr with ||wi|| < Dmax,

th wt ut) <2 (GmaxM + LinaxM )10g2 <_]€\4> .

Proof. Let g, € 0¢;(w;) and observe that

Z& wi) = by(ug) < Z 1gell llws — ]

S

1gell (Dmax + [[ull)

> llgel
pat

MH i

t=1

IN
ﬂ

M
2M ( max T LmaxDmax) T
M ( max T LmaxM) T

IAIA

M
=~ 2 (GmaxM + LmaxM2) 10g2 (8) )
where the last line uses M > e27 = T <log, (). O

Lemma C.6. For allt let {; be a (G, Lt)-quadratically bounded convex function for Gy € [0, Guax| and Ly € [0, Linax]-
Let e > 0, Dyin = % Nmax = ﬁ and Nmin = m Let w;y € W be the outputs of the algorithm

characterized in Lemmawith 1 = Nmin and D = Dy, and let w = (uy, . . ., ur) be an arbitrary sequence in W with
M = maxy ||ut|| < Dumin. Then

RT(U) S (Gmax + 6Lmax) [K(M + PT) + ECT]

O, (e} Gmax
where C1 < O <lg(lg(me)))

T

Proof. For M < Dy, we can apply Lemma|C.2]with 7 = (1min, Dimin) to get
||UT|| + 2D minPr + 4k D? AT( )

min
2771111]’1

RT(’U,) < 2]€C§ + 2kDminc;’maLxAT( )

T

+ Kﬁmm Z Lt |:€t ut) - Et( :| + 477m1n
t=1

forany 7 = (77, D) € S, k > 9/2, and

)

-1
2D(Gmax+D/7)

~ _ 2
O™ ZLSM; Ar(7) = Ar(Tmins Dinin) 4f 1o <ZT€5“T> +1.
Z?es Mz H(Nemin; Diain )2

Observe that with M = max; ||ut|| < Dpin and Din — K(Gmax + €Lmax), we have

Tmin

where pz =

2
+ 2-DmlnP + 4k‘Dm1nA Dmm 1
[|ur] 2nT. r(7) < 5 (lurll +2Pr + 4k Dynin Az (7))
1 A
= 2K (Gmax + eLmas) <IluT|| +2Pp + 4 =2 ;( )> _
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Moreover, by Lemma[C.4] we have

T 2 T
> EKnminLe [ﬂt(ut) - et(wtm)} + 40in [0 H < hmin »_3(K +4) (G} + LID2,,)
t=1 t=1
G2, + L2, D2
SS(K+4)€( max+ max mln)

K(Gmax + 6Lmax)

3(K + 4) 62Lmax
S T (eGmax + T2

Plugging in the previous two displays back into the full regret bound yields

A 1 A
Ry(u) < 2kCs + 2keGmax# + 5K (Grmax + €Lmax) (IIuTl +2Pr + 4k€TT(T))
3(K + 4) LmaXEQ
T |:5Gmax + T2
3(K+4) (K+1)2kAr(1) 9 3(K+4)  2kKAp(r)
< ; .
> Qk/‘CS + 6C;(ma‘x |: K + T + € Lmdx KT2 T
+ K(Gmax + €Lmax) [M + Pr].
Finally, Lemma|[C.3] bounds
Dmin
2k08 S 2k - 2\/Tl)mim (Gmax + n >
€ KeLax
<A4kVT = |Guax + —————
< AVT [ + = ]
4k (eGmaX + K62LmaX/T)
<
VT
and
A7 (Nmin, Dmin) < log (6 |Sn|) +1 <log (|Sn|) +3
TGIH&X
<1 1 1 3
< o Jos ()| 1) +
TGmax
<1 I 2
= 0g<0g2<€LmaX)+ )+3
Plugging these back in above:
3 k 2kAT(77min7 Dmin)
< o
Rr(u) < €Gax(K +4) [K + T + T
3 4k QkAT(’I]min Dmin)
2 )
+ € Linax(K +4) [KT? + T T

+ K(Gmax + 6Lmax) [M + PT]
S CT (EGmax + 62Lmax) + K(Gmax + 6Lmauc) [M + PT]
= (Gmax + ELmax) [K(M + PT) + GCT]
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where
et )
NG § G))
0
C.1. Proof of Theorem [4.1]

Theorem[@d.1} Forall t let {, : W — R be a (Gy, L,)-quadratically bounded convex function with Gy € [0, Gax| and
€ [0, Linax]- Lete > 0, K > 8, By = 1 — exp (—1/T) for all t, and for any i,j > 0 let D; = & [27 A 2" and
N = [K(Gm,ileme)T A Kle } and let § = {(n;, D;) : i,j > 0}. For each ™ = (1,D) € S let ju; = m,

2
’:S e Then for any w = (uq,...,ur) in W, Algorithmaguarantees

and set p1(T) = >

T
Rr(u) < O([Gmax + (M + e)Lmax} [(M +e)A% + PT} + 4| (M2A% + MPr) ZGE + L%M%).
t=1

where Py = ZtT=2 ||

when the losses are Ly-smooth, the bound automatically improves to

5 <0 <log (w) + log <log ( —max ))) Moreover,

Lmax

Re(u) < O ( G+ (M + ) L | + 7 + P

+ | (M2A% + M Pr)

T T
S Lilli(u) — GIAD GE L%MQ] ) :

t=1 t=1

Proof. First observe that we can assume that there is a 7 = (1, D) € S for which D > max; ||u:|| = M, since otherwise
using Lemma|C.5|with e = £ the regret is bounded as

MT
RT(U) S 2M (Gmax + MLmax) log () . (11)
€

Likewise, if M < Dy, then by Lemma [C.6|we have

Rr(u) < (Gmax + Lmaxe) [K(M + Pr) + eCr], (12)

ma

where Cr < O (bg(log(jiL‘x))) . Otherwise, we have M € [Dyyin, Dmax), in which case there is a D; = % for which
D; > M > Dj_y = 1Dj,soforany 7 = (n, D;) € S we can apply Lemmato get

|ur||® + 2D; Pr + 4kD3A7(7)
2n

RT(U) < 2kC$ + 2ijGmaxAT(T) +

+KT;ZLt {et w) — (") }
t=1
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where g X (w (T)), Pr = Zthz [ ue

Cs =
EFeS pz
Ar(n,D ) log (M) +1
Hin;)
:10g<D]|: max T :| Z,U/T>+1
T€ES

TImin

< log <<2M>2 {Gmaﬁ } Zm) +1
= AT(T]mir”QM).

2
Thus, bounding D; < 2M and denoting Q7 := Y, KL [Zt(ut) — 4 (wt(T))] +4 Hg,ET) , we have:

M? (1 + 16kAT(77min7 QM)) +4MPp
2n

RT(U') < 2kCs + 4kM G naxAr (nmina 2M) +

0 ZT: {KLt () = (w7 +4 H g
t=1

2
} . (13)

::QT
Next, we show that there is an 7 for which the above expression is well-controlled.

Observe that choosing 7 optimally in Equation (T3) would yield

N M2(1 + 16kAT(7]min72M)) +4MPp
n = )
2Qr

If * > Nmax, then choosing n = Nyax yields

M2 (1 + 16kAT(7]min7 QM)) + 4MPT
277max

[M?(1 + 16kA7 (Nmin, 2M)) + 4M Pr]

Rr (u) < 2kCs + 4k MG pax AT (nminv QM) + + U*QT

K Lpax
= 2kCs + 4k M Gmax AT (nmin7 2M) + Ta

1
+ \/2 [M2 (]. + 16kAT<77mjn, QM)) + 4MPT] Qr. (14)

Similarly, if n* < nmin, then choosing n = 1y, yields

M2 (1 4 16kA7 (1jmin, 2M)) + 4M Py

RT(U) < 2kCS + 4kMGmaxAT(7’min7 ZM) + 277*

+ nminQT

1
= 2kCs + 4kM G max A7 (Mmin, 2M) + \/2 [M?2 (1 + 16kA 7T (Nmin, 2M)) + 4M Pr] Qr

€QT
K (Gmax + GLmax) T
Observe that by Lemma|C.4] we have

+

Qp

I
MH

KL, [Et(ut) — fy(w } +4 Hgt

o~
Il
—

B

3(K +4) (Ghax + Lnax D7)
t=1
<3(K +4) (Ghax +AM?L2 ) T.
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Thus
Qr € 3(K +4) (G2 +4AM2L2, )T
K (Gmax + eLmax) T~ K (Gmax + 6Lmax) T
(K +4
< 3B (G AM L)

- K
< (K +4) (6Gmax + 4M? Liyax)

for K > 3. so overall when n* < 1, the regret can be bounded as

1
RT(’LL) S QkCS + 4kMGmaXAT(nmin7 QM) —|— \/2 [M2 (1 —|— 16kAT(77mina 2M)) + 4MPT] QT
+ (K 4 4)eGmax + 4(K + 4)M? L. (15)

Finally, if 7* € [9min, 7max), then there is an n; = m such that n; < n* < ;41 = 21, so choosing n = n;
Equation (T3] is bounded by
M? (1 + 16kA7 (Dmin, 2M)) + 4M Pr

RT(’U,) < 2]605 =+ 4kMGmaxAT(77mim 2M) —+ n*

+ T]*QT

1
< 2kCs + 4kMGmaxAT(77min7 2M) + 3\/2 [M2 (1 + 16kAT(nmina QM)) + 4MPT} Qr. (16)
Now combining Equations (TT), (I2) and (T4) to (T6), we have

MT
RT(U) S 2M (Gmax + MLmax) IOg <6)

+ (Gmax + Lmaxe) [K(M + PT) + ECT]
+ 2kCS + 4kMGmaxAT(77mina 2M)

1
+ 3\/2 [M2 (1 4 16k AT (Nmin, 2M)) + 4M Pr] Qr
+ (K + 4)eGrax + 4(K + 4)M? Linax
K Luax
S M2 (1 + 16k AT (Thin, 2M)) + 4M Py .

From Lemma we have

Dmin
CS < 2\/TDmin <Gmax + )

Tmax

< 2K (eGmax + €2Lmax)
VT
AT(nmina 2M)

2M)?
< 1o (IS0

min

2407 ( [log, (Lo )| +1)
2

<log +1

€

5MT T'Gmax
< 2log (6> + log (log2 < I = ) +2> +1

Hence, hiding constants we may write

RT(U) S 0 (Gmax((M + E)A;1 + PT) + Lmax [(M + 6)2A§1 + (M + 6)—PT:I + \/(MzA} + MPT)QT7>~

34



Unconstrained Online Learning with Unbounded Losses

where A% < O (1og (MT) + log <log (TG‘““))) <0 (log (M> + log <log ( Lmax. ))) Finally, the proof

max 2
is completed by observing that if the ¢; are L;-smooth, then using the self-bounding property we have gt(T) <
oL, (ﬁt(wgﬂ) - z;) for £ = mingey £ (w), and thus
QT—ZKLt [Zt(ut)—ﬁt :| +4ZHgtT
t=1
T
SZK [Zt(ut)—ft :| +8ZLt |:€t —f*:|
t=1
T
<Y KLy (b (uy) — 4]
t=1
where the second-to-last line chooses K > 8, and simultaneously we have using Lemma@ that
T
Qr <3(K +4)Y  [G} + LiD3]
t=1
T
<3(K +4)>[G? +4LIM?],
t=1
and so we have Qr < O (Zthl Lo [0(ug) — )N, G2+ L?MQ). O

C.2. Proof of Theorem
Theorem Forall t let ¢, : W — R be (G, L;)-quadratically bounded and Li-smooth convex function with

G: € |0, Gmax] and Ly € [0,Lmax|. Let € > 0, K > 8, and for any i,j > 0 let D; = ﬁ [2jA2T] and
N = R 7T {2” A \f} and let S = {(n;,D;) : 1,5 > 0}. Then for any w = (u1,...,ur) in W, Algorithm
(g,n,tamntee?ax

RT(U) S 0 (Gmax(M + G)A; + Lmax(M + G)QA; + Lmax(M + 6)PT

T T
+ thut ) — 45 (MQAi}—i—MPTZ [0 (uy) _(})
t=1 P
7231:2 e <0 <log <W>)

Proof. By Lemma|C.5] we can assume that there is a 7 = (1, D) € S for which D > max;, ||u;|| = M, since otherwise the
regret is bounded as

Mﬁ) . (17)

RT(U) S 2M (Gmax + MLmax) IOg (
€
Hence, we can assume there is a (), D) € S which has M < D. For any such (1, D) € S, we can apply Lemma|C.2]to get

lur||® + 2D Pr + 4kD2Ap(7)
2n

Rr(u) < 2kC's + 2kDGrax A (7) +

)

+K772Lt [tuue) = (w7
t=1
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whereg € 5‘&( ) Pr = Zt o lue — w1 and

_ \ oo il
O Zresh e Ar(r) Elog (ZTES “T) +1,
D res Mz

S
2D (Grmax+D/7)

2
g H <2L, [ét(wt(r)) - E;‘} for £; = arg min,,cyy £+ (w), so the last line is bound as

where for any 7 = (l~), 7) € S we define M.y = Using the self-bounding property of smooth functions,

for any gt ) e (%t( ) we have

KnZLt[ztut)—zt< }+8nZLt[zt )—z:}ganTth[et(ut)—m

for K > 8. Hence,

lur||® + 2DPr + 4kD2Ar(7)

RT(’U,) < QkCS + 2k DG max AT (T) + 2n

T

+ K0y Le[le(ug) = ] (18)
t=1

Now suppose that M < Dy, then choosing 7 = Tiin = (Mmin, Dmin) We would have

|ur||® + 2Dumin Pr + 4kD2 A7 (Tmin)
277min

RT (u) S 2]€CS + 2kl)minCTVmaxAT(Tmin) +

T
+ Knmin Z Lt [ét(ut) - E:]

t=1

S ZkCS + 2k'l)minC;(rﬂax‘/\T(TInin) +

ZLt gt Ut —f]

Dmin 1
- (M + 2PT + 4]€DminAT(Tﬂlin))

Tmin

mmx =1
EAT (Tmin) ( 6AT(Tmin)>
< 2kCs 4+ 2kGuax———= + KeLpyax | M + Pr + 2k—————
= S \/T € T \/T
T
| D ) — 657 (19)
t=1

Finally, assume that M € [Dyin, Diax), then there is a D; = % for whichD; > M > D;_ = %Dj. Then, choosing
= (1, D;), Equation (18] yields

where the last line applies Cauchy-Schwarz inequality, observes that Dyyin/Mmin = K €Lmax, and recalls Dy, =

M? + 4M Pr + 16k M?Ar (i, 2M)
2n

RT(U) < QkCS + 4kMGmaXAT(77mina 2M) +

T

+ Ky Li[li(w) — 4] (20)
t=1
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where we’ve observed that

2
A(n,D;) = log (ZTESNT> +1
lu(mDJ)

= log (Z M%DJQ» [Gmax + Dj/?]f) +1

TES

< log (Z p2(2M)? [Gmax + 2M/77]2> +1
TES

so it remains to show that there is an 7 that favorably balances the last two terms of Equation (20).

Observe that the optimal choice for 7 would be

= M2(1 + 16kAT (Nmin, 2M)) + 4M Pr
2K S0y Le [0 (ur) — €]

If n* < Nmin then choosing n = 7y, We have
T

+ KNmin ZLt [Ce(ue) — €]

t=1

M2(1 + 16kAT(nmina ZM) +4MPr

RT('U/) S 2]{305 + 4kMGmaxAT(nmin7 2M) + 277*

§ 2k03 + 4I€MGmaXAT (nmina 2M) + \/]2{ (M2(1 + 16kAT (’I’]min7 QM)) + 4MPT) QT

T

o D () — 61, @1

t=1

where the last line defines the short-hand notation {2y = 23:1 Ly [0¢(us) — £7] and uses Cauchy-Schwarz inequality to

bound K7y Zthl Ly [be(ug) — £5] < \/Zthl [0 (ug) — @‘]2. Likewise, if 7* > 7max then by choosing 7 = nyax We
have via Equation (20) that

M?2 + AM Py + 16kM2 A1 (1)min, 2M)
2N max

RT(U) S 2kCS + 4kMGmaXAT(77mina 2M) +

T
+ Kt L[ (ue) — €]

t=1

= 2kCs + 4kM Grax A1 (1min, 2M) + K Linax (M?(1 + 8kAr (1)min, 2M)) + 2M Pr)

K
+ \/2 (M2(1 + 16kAT(77mina 2M)) + 4MPT) QT (22)

Finally, if 7* € [9min, max] then there is an 7; = = 21 77 for which n; < n* < n;11 = 21, so Equation li is gives us

K
RT(U) S 2kCS + 4kMGmaxAT(77mina 2M) + 3\/2 (M2(1 + 16k‘AT (nmim 2M)) + 4MPT) QT (23)
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Finally, combining Equations (I7), (I9) and ZI) to (23), we have

EAT(Tmin):l
Rr(u) < 2kCs 4+ 4kGmax | M AT (Dmin, 2M) + ——=
T( ) = S a [ T(n ) \/T
+2M (Gmax + MLmax) IOg <M>
€
6AT(Tmin))
+ KeLpmax | M + Pp + 2k———
‘ ( ! VT
+ KLmax (M2(1 + SkAT(nmim 2M)) + 2MPT>
T
ol D [(ur) = 67
t=1

K
+ 3\/2 (M2(1 + 16kAT(1]min, QM)) =+ 4MPT) QT

Lastly, note that by Lemma|C.3] we have

Dmin
CS < 2\/fDmin (Gmax + )

max

2K€2 Lmax

VT
292, DY 6]S,| D?
Ap(7) < log (7)2 dD4 A DZ +1

min~" min min

D2
g (45212 1

min

= 2¢Gmax +

$O  A7(Mmin, Dmin) < log (6 log, ([logQ(\/T)] + 1)) < O (log(log(\/f))) and A7 (Nmin, 2M) <

log <24TM2 Ing(Lgogz(ﬁ)Hl)) <0 (log (M\/Tlog (\/T) /e)) Overall, we have

Rr(u) <O (Gmax(M +e)AT

+ Lmax(M + 6)2/\; + Lmax(M + E)PT

T

ol D [ur) — 67

t=1

+/ (205 + MPy) QT>

where A% < O (log <Mm’g(ﬁ)> + log (1og (\/T))) <0 <log (Mﬁlg(ﬁ)» O

C.3. Proof of Theorem [4.2]

We focus on the case where G/L < M, since otherwise when G//L > M the loss function {,(w) = (3G + 1 LM)&w
for & € {—1,1} satisfies [¢}(w)| = 3(G + LM) < G for any w € W, so ¢, is G-Lipschitz. Hence, existing lower
bounds tell us that there exists a sequence & € [—1, 1] such that Ry (u) > Q(GvMPrT) > Q(%(G + LM)/MP;T) =

Q(LGVMPrT + LLM?/?\/PrT) where M = max; |Ju | and Pr = 32/, |lus — us—1]| (Zhang et al.{ 2018).
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TheorenE For any M > 0 there is a sequence of (G, L)-quadratically bounded functions with % < M such that for
any v € (0, 3,

G

RT(U) > 2.2\417V [PTT]’Y + §M27'y [F’Tﬂ7 .

where Pr = 23:2 [l — ue—1|| and M > maxy ||ug]).

Proof. On each round ¢, we can always find a u; such that u; L w;. Let ||us]| := 0 < M for some o to be decided. Let
G >0,L > 0suchthat G/L < o,let & = H’;—i”, and on each round set

O (w) = —%G (&, w) + %(0’ — (&, w))2

Observe that these losses are (G, L) quadratically bounded with G = 1G+ 1oL and L=LandG/L <o <M as
required. Since w; L & and (&, u;) = ||us|| = o, we have

T
1 L
RT(’U/) = th(wt) - Kt(ut) Z §GO'T—|— ZTO'Q.
t=1

Note also that the path-length of this comparator sequence is bounded as
T
Pr =Y lu — | < 20T.
t=2
Now for i € [0,1/2] set 0 = MT~*, then the path-length is bounded as
Pr <2MT'™*

and the regret is bounded below by

EGMTl—“ + £T1—2HM2.
2 4

L=21t ¢ [0, 1] and consider the second term:

Now set v = 2_7# )5

%T“Q”MQ = g(MTl_“)V(MTl_“)l_”T_”M

> 5 27(PT)V(1\4T1*~)1*7T*M\4
= £M2—’YP:;ZT(1—IL)(1—’Y)—M

8

L
= §M2*7 (PrT)”

where the last line observes v = 12%2#“ €10, 4], so that (1 — p)(1 — ) — p = 7. Similarly,

1 1 1
ZGMTY ™M = ZG(MTY Y™V (MT")1=7 > MY (P YT (=)
5G a( ) ( )7 2 S GM T (Pr)

> _GM'™(PrT)".

=] =N

SO

G

RT(U) > 2.2\417V [PTT]‘Y + §M27’y [PTﬂ7 .
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D. Supporting Lemmas

We collect here various miscellaneous supporting lemmas that we use throughout paper. The following lemma is standard
but shown here for completeness.

Lemma D.1. Let ay,...,ar be arbitrary non-negative numbers in R. Then

; Z=:\/Zs 1 @s

<2

Proof. By concavity of x — \/x, we have

Va1t — /A1:t— 1_2W

so summing over ¢ and observing the resulting telescoping sum yields

Z

t=1 t=1

a1.¢—1 = 2v/ay.r.

ai:¢

For the lower bound, observe that

T T

t ar.t
Z Z o = vaur
— — ay.T

We borrow the following lemma from Jacobsen & Cutkosky|(2022)).

Lemma D.2. (Jacobsen & Cutkosky, 2022, Lemma 7) Let f : R — R and let g : W — R be defined as g(x) = f(||z]])-
Suppose that f'(x) is concave and non-negative. If f is twice-differentiable at ||| and ||z| > 0, then

Vig(z) = f"(llI)1

The following is a simple modification of the stability lemma used inJacobsen & Cutkosky|(2022), reported here with slight
modification to handle a leading constant.

Lemma D.3. For all t, set 11 (w) = Uypq(||w]]) where U, : R>g — R>q isa convexfunctzon satisfying ¥} (x) > 0,
U/ (x) > 0, and O}’ (x) < 0 forall x > 0. Let ¢ > 0 and assume that there exists an &; > 0 and Gy-Lipschitz convex

function n; : R>o — Rxq such that |¥}'(z)| < 21 (2) VY (x)? for all x > &,. Then for any wyyq1,w; € W,

(c+1)2
(c+1)%G?
20y (24)

< d
Ot éfCGt lwe = wiga || = Dy, (wigr|we) — nie(lwea)GF <

Proof. The proof follows using similar arguments to Jacobsen & Cutkosky| (2022) with a few minor adjustments to correct
for the leading term c.

First, consider the case that the origin is contained in the line segment connecting w; and w;1. Then, there exists sequences
;, W3 ... and Wi, 1, @7, ... such that lim,,_,o @ = wy, lim, o @} ; = wy41 and 0 is not contained in the line
segment connecting w}' and wy, ; for all n. Since v is twice differentiable everywhere except the origin, if we define

7= Gi||wp — @y || — Dy, (@7 |@7) — ne (|| [|)GE. then limy, o0 gt” = &;. Thus, it suffices to prove the result
for the case that the origin is not contained in the line segment connecting w; and w;;. The rest of the proof considers
exclusively this case.

For brevity denote 6, = G, l[wy — wegr || — Dy, (wes1[wy) — ne(lwega]]) lge]|”. Since the origin is not in the line segment

connecting wy and w1, Yy is twice differentiable on this line segment. Thus, By Taylor’s theorem, there is a w on the line
connecting w; and w4 such that

1 ) 1 Yy
Dy, (werfwe) = 5 llwe = wesillzy, @) = 5 llwe = wenlI” P ([[0])
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where the last line observes 1 (w) = ¥, (||w||) and uses the regularity assumptions ¥}’ (x) < 0, and ¥}(x) > 0 forz > 0
to apply Lemma[D.2] Hence,

gt = cGy |lwy — wea || - Dy, (wig1|we) — 7lt(||wt+1||)Gf

1 2 -
< Gy l|wy — wigr ]| — 3 Jwe — wegr || Y (|0]]) — me([Jwera ) GF
) 1 29" ~ 2 N 2 ~
< Gy [lwy — wepa ]| — 3 lwe — wera |7 WY (|0]]) — (0] G + ni([[w])GF lwer — ]|

() 1 2 ~ ~
< (4 DGy wy = wesa || = 5 lwe = wena |” ¢ (@) — ne(||@l) G

© (c+1)?%G3

where (a) uses convexity of 7:(z), (b) uses the Lipschitz assumption 7;(||w]|) < 1/G; and the fact that ||w — w;|| <
||wi1 — we|| for any w on the line connecting w; and w;1, and (c) uses Fenchel-Young inequality. If |w|| < &, then we
have

(c+1)’G} n(|@)G2 < (c+ )G}
2uy([[a]) " P2 (n,)
which follows from the fact that ¥}’(xz) < 0 implies ¥} (x) is non-increasing in x, and hence U} (||w||) > U} (&y).
Otherwise, if ||| > #;, we have by assumption that ‘I\Ij,i(i”;y — *\I"Il’/i(';()z) — d%\l,,,l(w) < (207&(1“;2 for any z > i, so
integrating from & to ||w|| we have
1 1 9 ll@]|
~ - o S f X d.’l?,
Y (lwll) ¥ (ze) — (c+ 1) /.fct ()
S0:
1 1 ) llw]]
— < — + / () dx
V) = VG erie )y,
1 9 Il
< — / i (x)d
W) vy
1 @l
Ui(2)  (e+1)27
and hence,
(c+1)%G? o e+ 1)2G? (e+1)2GE 2 _ SO
— = w|)G; < —L + wl|) — w|)G
(c+1)%2G? - .
— et + ITGE w2
e+ 1)2G?
22U (i)

so in either case we have

8 = Gy |lwy — wirr || — Dy, (Wi [we) — me(|Jwer )G
- (c+ 1)2Gt2'
T 20 (7)
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