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Abstract

Algorithms for online learning typically require
one or more boundedness assumptions: that the
domain is bounded, that the losses are Lipschitz,
or both. In this paper, we develop a new set-
ting for online learning with unbounded domains
and non-Lipschitz losses. For this setting we pro-
vide an algorithm which guarantees RT (u) ≤
Õ(G‖u‖

√
T +L‖u‖2

√
T ) regret on any problem

where the subgradients satisfy ‖gt‖ ≤ G+L‖wt‖,
and show that this bound is unimprovable without
further assumptions. We leverage this algorithm
to develop new saddle-point optimization algo-
rithms that converge in duality gap in unbounded
domains, even in the absence of meaningful cur-
vature. Finally, we provide the first algorithm
achieving non-trivial dynamic regret in an un-
bounded domain for non-Lipschitz losses, as well
as a matching lower bound. The regret of our
dynamic regret algorithm automatically improves
to a novel L∗ bound when the losses are smooth.

1. Online Learning
This paper introduces new techniques for online convex
optimization (OCO), a standard framework used to model
learning from a stream of data (Cesa-Bianchi & Lugosi,
2006; Shalev-Shwartz, 2011; Hazan, 2016; Orabona, 2019).
Formally, consider T rounds of interaction between an al-
gorithm and an environment. In each round, the algorithm
chooses a wt in some convex subset W of a Hilbert space,
after which the environment chooses a convex loss function
`t : W → R. The standard performance metric in this
setting is regret RT (u), the cumulative loss relative to an
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unknown benchmark point u ∈W :

RT (u) =

T∑
t=1

`t(wt)− `t(u).

In many applications of interest the appropriate baseline is
not any fixed comparator, but rather a trajectory of points.
This is often the case in true streaming settings, wherein
the losses are generated from a data distribution that may
be slowly shifting over time. To better model settings such
as these, dynamic regret measures the total loss relative to
that of a benchmark sequence of points u = (u1, . . . , uT )
in W :

RT (u) =

T∑
t=1

`t(wt)− `t(ut).

Our goal in this work is to develop algorithms that achieve
favorable regret and dynamic regret guarantees when both
the domain W and range of `t may be unbounded.

To illustrate the difficulty of our goal, let us consider the
special case where the loss functions are linear functions,
`t(w) = 〈gt, w〉. Clearly, if both ‖gt‖ and ‖w‖ are allowed
to be arbitrarily large then the adversary can always ensure
that the learner takes an arbitrarily large loss on each round.
To alleviate this difficulty, prior works assume that one has
access to a bound D ≥ ‖u‖ (usually by assuming that
the domain is bounded with D ≥ supx,y∈W ‖x− y‖), that
the subgradients are bounded GT ≥ maxt ‖gt‖, that the
losses map to a bounded range `t : W → [a, b], or some
combination thereof.

In the simplest case, when one has access to both a bound
D ≥ ‖u‖ and a bound on the subgradients GT ≥ ‖gt‖ for
all t, classic methods based on Mirror Descent and Follow
the Regularized Leader achieve minimax optimal regret of
RT (u) ≤ O

(
DGT

√
T
)

using a strongly convex regularizer
(Hazan et al., 2007; Duchi et al., 2010; McMahan & Streeter,
2010). WhenD is available but not the Lipschitz bound GT ,
it is still possible to match this guarantee up to constant fac-
tors, in which case the algorithm is said to be Lipschitz adap-
tive (Orabona & Pál, 2018; Mayo et al., 2022; Cutkosky,
2019). When the losses are L-smooth, these bounds can

be improved to RT (u) ≤ O
(
LD2 + D

√
L
∑T
t=1 `t(u)

)
— referred to as an L∗ bound — though prior works still
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require one or more of the following assumptions: prior
knowledge of GT , that `t has bounded range (known in
advance), prior knowledge of a lower bound `∗t ≤ `t(w) for
all w ∈W , additional structural assumptions such as strong
convexity or exp-concavity, or by assuming the losses take
some specific form such as the square loss (Cesa-Bianchi
et al., 1996; Kivinen & Warmuth, 1997; Srebro et al., 2010;
Orabona et al., 2012).

If a bound GT ≥ maxt ‖gt‖ is known but not the bound
D ≥ ‖u‖, the situation gets significantly trickier. The
essential difficulty is that without prior knowledge of how
large the comparator might be, the predictions wt could
at any point be arbitrarily far away from the benchmark,
leading to high regret. As such, the learner must take great
care to control ‖wt‖ in such a way that it is adaptive to the
unknown comparator norm ‖u‖. A standard result in this
setting is

RT (u) ≤ O
(
‖u‖GT

√
T log(T‖u‖+ 1)

)
, (1)

which holds for all u ∈ W and is known to be optimal up
to constants (Orabona, 2013). Bounds of this form are com-
monly referred to as “comparator adaptive” or “parameter-
free” (Foster et al., 2015; Orabona & Pál, 2016; van der
Hoeven, 2019; Cutkosky & Orabona, 2018; Mhammedi &
Koolen, 2020; Jacobsen & Cutkosky, 2022).

The first results to avoid both the bounded do-
main and bounded gradient assumptions have
only been achieved in recent years. Cutkosky
(2019) develops an algorithm which achieves
RT (u) ≤ O

(
‖u‖GT

√
T log (‖u‖T + 1) + GT ‖u‖3

)
,

and Mhammedi & Koolen (2020) shows that the additional
cubic penalty is unavoidable while maintaining the
Õ
(
‖u‖GT

√
T
)

dependence. Alternatively, Orabona &

Pál (2018) show that RT (u) ≤ O(‖u‖2 GT
√
T ) can be

attained without prior knowledge of GT in an unbounded
domain, avoiding the cubic penalty in exchange for a
horizon-dependent quadratic penalty. Works such as
Mayo et al. (2022) and Kempka et al. (2019) show that
Equation (1) can be achieved with essentially no extra
penalty in certain special cases such as regression-type
losses.

When it comes to dynamic regret, much less progress has
been made in alleviating boundedness assumptions, with
nearly all existing results assuming both a bounded do-
main and Lipschitz losses. Under both boundedness as-
sumptions, prior works have achieved minimax optimal
dynamic regret of RT (u) ≤ O

(
GT
√

(D2 +DPT )T
)

,

where PT =
∑T
t=2 ‖ut − ut−1‖ is the path-length of the

comparator sequence (Zhang et al., 2018; Jadbabaie et al.,
2015; Cutkosky, 2020). In an unbounded domain with

Lipschitz losses, recent works have achieved an analo-
gous guarantee of RT (u) ≤ Õ(GT

√
(M2 +MPT )T ),

where M = maxt ‖ut‖ (Jacobsen & Cutkosky, 2022;
Luo et al., 2022). We are unaware of any existing works
that explicitly investigate Lipschitz-adaptive dynamic re-
gret, though existing results can likely be made Lipschitz-
adaptive in a black-box manner using the gradient clipping
approach of Cutkosky (2019) in exchange for an appropriate
GT maxt ‖ut‖3 penalty.

Importantly, note that in all of these prior works there is
an implicit assumption that there exists a uniform bound
such that G ≥ ‖∇`t(w)‖ for any w ∈ W and ∇`t(w) ∈
∂`t(w) — even if it is not known in advance. Otherwise,
the terms GT = maxt ‖gt‖ can easily make any of the
aforementioned regret guarantees vacuous.

In this work, we study unconstrained online convex opti-
mization under a more general boundedness assumption
on the gradients, allowing the gradient norms to grow arbi-
trarily large away from a given “reference point” w0 ∈W .
In Section 2 we provide an algorithm for this more gen-
eral problem setting which achieves a strict generalization
of the usual comparator-adaptive bound in Equation (1),
as well as a lower bound showing that our result is unim-
provable in general. In Section 3 we leverage this algo-
rithm to develop a new saddle-point optimization algo-
rithm which converges in duality gap in an unbounded
domain without requiring additional curvature assump-
tions such as strong-convexity/concavity. In Section 4,
we turn to the problem of dynamic regret minimization
and develop an algorithm which achieves dynamic regret
RT (u) ≤ Õ

(
M3/2

√
(M + PT )T

)
and provide a match-

ing lower bound. This is the first algorithm to significantly
alleviate both the bounded domain and bounded subgra-
dient assumptions for dynamic regret. Moreover, when
the losses are Lt-smooth, the same algorithm automati-
cally improves to an L∗ bound of the form RT (u) ≤

Õ

(√
(M2 +MPT )

∑T
t=1 Lt [`t(ut)− `∗t ]

)
. To the best

of our knowledge, this is in fact the first L∗ bound to be
achieved for general smooth losses without making either a
uniformly-bounded subgradient or bounded range assump-
tion in an unbounded domain.

Notations. For brevity, we occasionally abuse notation by
letting ∇f(x) denote an element of ∂f(x). The Bregman
divergence w.r.t. a differentiable function ψ is Dψ(x|y) =
ψ(x) − ψ(y) − 〈∇ψ(y), x− y〉. We use the compressed
sum notation gi:j =

∑j
t=i gt and ‖g‖2a:b =

∑b
t=a ‖gt‖

2.
We denote a ∨ b = max {a, b} and a ∧ b = min {a, b}.
∆N denotes the N -dimensional simplex. The notation O(·)
hides constants, Ô(·) hides constants and log(log) terms,
and Õ(·) hides up to and including log factors.

2



Unconstrained Online Learning with Unbounded Losses

2. Online Learning with Quadratically
Bounded Losses

In an unbounded domain with unbounded losses, it will
generally be impossible to avoid linear regret without some
additional assumptions. Intuitively, what’s missing in this
problem is a frame-of-reference for the magnitude of a given
loss. In the Lipschitz or bounded-range settings, the learner
always has a frame-of-reference for the worst-case loss they
might encounter. In contrast, without these assumptions,
hindsight becomes the only frame-of-reference, and the
adversary can exploit this to “trick” the learner into playing
too greedily or too conservatively.

To make the problem tractable, yet still allowing the losses
to have unbounded range and subgradients, we assume that
the subgradients are bounded for all t at some reference
point w0, but may become arbitrarily large away from w0.
This effectively gives the learner access to an a priori frame-
of-reference for loss magnitudes, yet still captures many
problem settings where the losses can become arbitrarily
large in an unbounded domain.

Definition 2.1. Let (W, ‖·‖) be a normed space. A function
` : W → R is (G,L)-quadratically bounded w.r.t ‖·‖ at w0

if for any w ∈W and∇`(w) ∈ ∂`(w) it holds that

‖∇`(w)‖ ≤ G+ L ‖w − w0‖ . (2)

Note that Definition 2.1 is a strict generalization of the
standard Lipschitz condition: any G-Lipschitz function is
(G, 0)-quadratically bounded. The definition also captures
L-smooth functions as a special case, since any L-smooth
function is (‖∂`t(w0)‖ , L)-quadratically bounded at w0.
However, in general a function satisfying the quadratically
bounded property need not be smooth. 1 For the remainder
of the paper we assume without loss of generality that w0 =
0 and ‖·‖ is the Euclidean norm.

This assumption was initially studied in the context of
stochastic optimization by Telgarsky (2022), where it was
sufficient to attain convergence in several settings of practi-
cal relevance. In this work, we show that it is also sufficient
to achieve sublinear regret even in adversarial problem
settings. We will in fact take it one step further and con-
sider a stronger Online Linear Optimization (OLO) version
of the problem. We say that a sequence {gt} is (Gt, Lt)-
quadratically bounded w.r.t {wt} if for every t we have
‖gt‖ ≤ Gt + Lt ‖wt‖. Then using the standard reduction
from OCO to OLO (see e.g. Zinkevich (2003)), for any se-
quence of (Gt, Lt)-quadratically bounded convex functions

1As a simple illustration, note that if f(w) is an L-smooth and
(G,L)-quadratically bounded function, then f(w) + c ‖w‖ will
be (G+ c, L) quadratically bounded but non-smooth.

we have the following regret upper bound:

RT (u) =

T∑
t=1

`t(wt)− `t(u) ≤
T∑
t=1

〈gt, wt − u〉 ,

where gt ∈ ∂`t(wt) and {gt} is a (Gt, Lt)-quadratically
bounded sequence w.r.t {wt}. Hence, one can solve OCO
problems involving quadratically bounded losses using any
OLO algorithm that achieves sublinear regret against se-
quences {gt} that are quadratically bounded w.r.t its outputs
{wt}. Note that this is potentially a more difficult problem,
as it gives the adversary freedom to impose severe penal-
ties whenever the learner plays large wt, yet this effect is
experienced asymmetrically by the comparator: the com-
parator can have large norm and not necessarily experience
large losses unless u is aligned with gt and the learner plays
a point ‖wt‖ ∝ ‖u‖. For brevity we refer to this harder
problem setting as the QB-OLO setting, and QB-OCO for
the setting where adversary must play `t satisfying Defini-
tion 2.1.

Surprisingly, it turns out that it is possible to achieve sub-
linear regret even in the QB-OLO setting. The following
theorem provides an algorithm which achieves sublinear
regret and requires no instance-specific hyperparameter tun-
ing. Proof can be found in Appendix B.

Theorem 2.2. Let A be an online learning algorithm
and let wt ∈ W its output on round t. Let {gt} be
a (Gt, Lt)-quadratically bounded sequence w.r.t {wt},
where Gt ∈ [0, Gmax] and Lt ∈ [0, Lmax] for all
t. Let ε > 0, Vt+1 = 4G2

max + G2
1:t, ρt+1 =

1√
L2

max+L2
1:t

, αt+1 = εGmax√
Vt+1 log2(Vt+1/G2

max)
. Denote

Ψt(w) = 3
∫ ‖w‖

0
minη≤ 1

Gmax

[
log(x/αt+1)

η + ηVt

]
dx and

set

ψt(w) = Ψt(w) +
2

ρt
‖w‖2 , ϕt(w) =

L2
t

2
√
L2

1:t

‖w‖2 .

Then for any u ∈W , Algorithm 1 guarantees

RT (u) ≤ O
(
ε+ ‖u‖

√
G2

1:TFT (‖u‖) + ‖u‖2
√
L2

1:T

)

where FT (‖u‖) ≤ log
(
‖u‖
√
T log2(T )
ε + 1

)
.

Let us briefly develop some intuition for how the above
result is constructed. Algorithm 1 can be interpreted as an
instance of the Centered Mirror Descent algorithm recently
developed by Jacobsen & Cutkosky (2022), which admits
a generic regret guarantee of the form RT (u) ≤ ψT (u) +∑T
t=1 ϕt(u) +

∑T
t=1 δt, where the δt are similar to the

“stability” terms encountered in vanilla Mirror Descent, but
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Algorithm 1 Algorithm for Quadratically Bounded Losses
Input: ψ1 : W → R≥0 with minw∈W ψ1(w) = 0,
Gmax and Lmax

Initialize: w1 = arg minw∈W ψ1(w)
for t = 1 : T do

Play wt, observe gt ∈ ∂`t(wt)
Choose Gt and Lt satisfying ‖gt‖ ≤ Gt + Lt ‖wt‖
Choose functions ψt+1, ϕt
Set∇ϕt(wt) ∈ ∂ϕt(wt) and g̃t = gt +∇ϕt(wt)
Set ∆t(w) = ψt+1(w)− ψt(w)
Update

wt+1 = arg minw∈W 〈g̃t, w〉+Dψt(w|wt) + ∆t(w)

end for

with certain additional negative terms ∆t and ϕt:

δt ≤ O
(
〈gt, wt − wt+1〉 −Dψt(wt+1|wt)

−∆t(wt+1)− ϕt(wt)
)
.

It’s easily verified that that ψT+1(u) +
∑T
t=1 ϕt(u) match

the terms in the upper bound, so the main difficulty is mak-
ing sure that the stability terms

∑T
t=1 δt disappear. Cru-

cially, because {gt} is a (Gt, Lt)-quadratically bounded
sequence w.r.t {wt}, we have ‖gt‖ ≤ Gt + Lt ‖wt‖. The
utility of this is that we can design separate regularizers
control the “Lipschitz part” Gt and the “non-Lipschitz
part” Lt ‖wt‖. In particular, using a similar argument
to Jacobsen & Cutkosky (2022), by setting Ψt(w) =

O

(
Gmax ‖w‖

√
T log

(
‖w‖
√
T/ε

))
we can ensure that

the Lipschitz part of the bound is well-controlled:

T∑
t=1

Gt ‖wt − wt+1‖−DΨt(wt+1|wt)−∆t(wt+1)≤O(1).

However, in general this Ψt is not strong enough to con-
trol the non-Lipschitz part Lt ‖wt‖. Instead, for this term
we use Φt(w) = O

(
Lmax

√
T ‖w‖2

)
, and then using stan-

dard arguments for Mirror Descent with a strongly convex
regularizer, it can be shown that

Lt ‖wt‖ ‖wt − wt+1‖ −DΦt(wt+1|wt)− ϕt(wt)

≤ O

(
Lt ‖wt‖2√

T
− ϕt(wt)

)
≤ 0

by choosing ϕt(wt) = O
(
Lt‖wt‖2√

T

)
.

Note that in the setting of G-Lipschitz losses we
have Lmax = 0 and hence set Gt = ‖gt‖, so
the bound reduces to the comparator-adaptive rate

of RT (u) ≤ Ô

(
‖u‖

√∑T
t=1 ‖gt‖

2
log
(
‖u‖
√
T

ε + 1
))

,

which is known to be optimal up to constant and log(log)
terms (Mcmahan & Streeter, 2012; Orabona, 2013). On
the other hand, if Lmax > 0 the algorithm can choose any
Gt ≤ Gmax and Lt ≤ Lmax such that Gt + Lt ‖wt‖ ≥
‖gt‖. Ideally these factors should be chosen to be tight,
i.e., to minimize G + L ‖wt‖ subject to the constraints
{G ≤ Gmax, L ≤ Lmax, G+ L ‖wt‖ ≥ ‖gt‖}. However,
there may be many such (G,L) satisfying these conditions,
and in general it is unclear whether there exists a general-
purpose strategy to choose among them without further
assumptions. Indeed, Theorem 2.2 suggests that when ‖u‖
is very large, we’d prefer to set the Lt’s smaller at the ex-
pense of large Gt’s, and vice-versa when ‖u‖ is sufficiently
small, so optimally trading off Gt and Lt would require
some prior knowledge about ‖u‖.

Nevertheless, there are many situations in which one can
choose (Gt, Lt) pairs along some pareto-frontier. As an
illustrative example, consider an online regression setting
in which `t(w) = 1

2 (yt − 〈xt, w〉)2 for some target vari-
able yt ∈ R and feature vector xt ∈ Rd. Observe that
∇`t(wt) = −(yt − 〈xt, wt〉)xt, so setting Gt = |yt| ‖xt‖
and Lt = |〈xt, wt/ ‖wt‖〉| ‖xt‖, we have

‖∇`t(wt)‖ = ‖(yt − 〈xt, wt〉)xt‖ ≤ Gt + Lt ‖wt‖ ,

so {∇`t(wt)} is a (Gt, Lt)-quadratically bounded sequence
w.r.t {wt}, and Theorem 2.2 quarantees regret scaling as

Õ

‖u‖
√√√√ T∑

t=1

y2
t ‖xt‖

2
+ ‖u‖2

√√√√ T∑
t=1

〈
xt,

wt
‖wt‖

〉2

‖xt‖2
 ,

which is more adaptive to sequence of observed feature vec-
tors xt and targets yt than the worst-case bound ofRT (u) ≤
Õ
(
‖u‖ |ymax| ‖xmax‖

√
T + ‖u‖2 ‖xmax‖2

√
T
)

.

Finally, notice that for Lmax > 0 Algorithm 1 suffers an ad-
ditional O(Lmax ‖u‖2

√
T ) penalty which is not present in

the Lipschitz losses setting. The following theorem demon-
strates that this penalty is in fact unavoidable in our problem
setting. Proof can be found in Appendix B.2.

Theorem 2.3. Let A be an algorithm defined over R2 and
let wt denote the output of A on round t. Let ε > 0 and
supposeA guaranteesRT (0) ≤ ε against any quadratically
bounded sequence {gt}. Then for any T ≥ 1, G > 0
and L ≥ 0 there exists a sequence g1, . . . , gT satisfying
‖gt‖ ≤ G+ L ‖wt‖ and a comparator u ∈ R2 such that

RT (u) ≥ Ω

(
G ‖u‖

√
T log

(
‖u‖
√
T/ε

)
∨ L ‖u‖2

√
T

)
.

Remark 2.4. An alternative way to approach online learn-
ing in our problem setting would be to apply an algo-
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Algorithm 2 Saddle-point Reduction
Input Domain W = X × Y , OLO Algorithm A
for t = 1 : T do

Get wt = (xt, yt) ∈W from A
Receive gxt ∈ ∂xL(xt, yt) and gyt ∈ ∂y[−L(xt, yt)]
Send gt = (gxt , g

y
t ) to A as the tth subgradient

end for
Return wT =

(∑T
t=1 xt
T ,

∑T
t=1 yt
T

)

rithm which is both comparator-adaptive and Lipschitz-
adaptive, since these algorithms do not require an a priori
upper bound on ‖u‖ nor on ‖gt‖. Theorem 2.3 demon-
strates that this approach would be sub-optimal in our
setting. Indeed, Mhammedi & Koolen (2020) show that
without prior knowledge of a Lipschitz bound, there is
an unavoidable O(‖u‖3 maxt≤T ‖gt‖) penalty associated
with comparator-norm adaptivity, which can lead to a sub-
optimal O(‖u‖3 Lmaxt ‖wt‖) ≥ O(L ‖u‖3

√
T ) depen-

dence in our problem setting.

3. Unconstrained Saddle-point Optimization
As a result of the algorithm in the previous section, we are
immediately able to produce a novel algorithm for saddle-
point optimization in unbounded domains. Consider the
following convex-concave saddle-point problem:

min
x∈X

max
y∈Y
L(x, y)

where X and Y are unbounded compact convex sets, x 7→
L(x, y) is convex for all y ∈ Y , and y 7→ L(x, y) is
concave for all x ∈ X . The saddle-point (x∗, y∗) of L
is the point (x∗, y∗) ∈ X × Y satisfying L(x∗, y∗) =
minx∈X maxy∈Y L(x, y) = maxy∈Y minx∈X L(x, y),
where the last equality follows from Sion’s minimax theo-
rem. Then for any (x, y) ∈ X × Y , we have

L(x, y)− L(x∗, y∗) ≤ L(x, y∗)− L(x∗, y)︸ ︷︷ ︸
=:G(x,y)

.

Hence, the sub-optimality of a point (x, y) ∈ X ×Y can be
controlled so long as we can control the quantity G(x, y),
which we refer to as the duality gap. Fortunately, the duality
gap is easily controlled using an online learning algorithm
via the well-known reduction to Online Linear Optimization
(OLO) shown in Algorithm 2.
Lemma 3.1. For any ẘ = (̊x, ẙ) ∈ X × Y , Algorithm 2
guarantees

L(xT , ẙ)− L(̊x, yT ) ≤
∑T
t=1 〈gt, wt − ẘ〉

T
=
RAT (ẘ)

T
.

Proof. To see why this is true, observe that by convexity
of x 7→ L(x, y) and y 7→ −L(x, y), we can apply Jensen’s

inequality in both arguments to get:

L(xT , ẙ)− L(̊x, yT )

≤ 1

T

[
T∑
t=1

L(xt, ẙ)− L(̊x, yt)

]

now add and subtract L(xt, yt):

=

∑T
t=1 L(xt, yt)− L(̊x, yt)− L(xt, yt) + L(xt, ẙ)

T

let gxt ∈ ∂xL(xt, yt) and gyt ∈ ∂y[−L(xt, yt)] and again
use convexity to upper bound both difference terms:

≤
∑T
t=1 〈gxt , xt − x̊〉+ 〈gyt , yt − ẙ〉

T

and now define wt = (xt, yt), ẘ = (̊x, ẙ), and gt =
(gxt , g

y
t ) to complete the proof:

=

∑T
t=1 〈gt, wt − ẘ〉

T
=
RAT (ẘ)

T
.

Thus in order to control the duality gap G(x, y), it suffices
to provide any OLO algorithm that achieves sublinear regret
under the given assumptions.

To the best of our knowledge, the only existing work to
achieve a comparator-adaptive convergence guarantee for
the duality gap in general saddle-point problems is Liu &
Orabona (2022). Their approach does indeed guarantee a
rate of the form G(xT , yT ) ≤ RAT (w∗)

T ≤ Õ
(
G‖w∗‖√

T

)
un-

der the assumption that the L(·, ·) is G-Lipschitz in both
arguments, which is justified by assuming that X and Y
are bounded domains. However, generally saddle-point
problems can have some coupling between the x ∈ X
and y ∈ Y , leading to factors of ‖x‖ and ‖y‖ showing
up in both ‖∇xL(x, y)‖ and ‖∇yL(x, y)‖. Thus, even
in a bounded domain a bound of the form RAT (w∗) ≤
Õ
(
‖w∗‖G

√
T
)

actually still falls short of being fully
comparator-adaptive because the Lipschitz constant G is
subtly hiding factors of DX = maxx,x′∈X ‖x− x′‖ and
DY = maxy,y′∈Y ‖y − y′‖. See Section 3.1 for a more
explicit example of this issue.

On the other hand, for many interesting problems L(·, ·) is
quadratically bounded in both arguments, which will enable
us to immediately apply Algorithm 1 to the linear losses
gt = (gxt , g

y
t ) as described above. In particular, we have the

following:
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Proposition 3.2. Suppose that for all ỹ ∈ Y , the func-
tion x 7→ L(x, ỹ) is (Gx + Lxy ‖ỹ‖ , Lxx)-quadratically
bounded, and for all x̃ ∈ X the function y 7→
−L(x̃, y) is (Gy + Lyx ‖x̃‖ , Lyy)-quadratically bounded.
Let gxt ∈ ∂xL(xt, yt) and gyt ∈ ∂y[−L(xt, yt)],
and set gt = (gxt , g

y
t ). Then {gt} is a (Gw, Lw)-

quadratically bounded sequence w.r.t norm ‖(x, y)‖ =√
‖x‖2 + ‖y‖2, where Gw ≤ O

(√
G2
x +G2

y

)
and Lw ≤

O
(√

L2
xx + L2

yy + L2
xy + L2

yx

)
.

Proof. Let (x, y) ∈W . For gx ∈ ∂xL(x, y) observe that

‖gx‖2 ≤ (Gx + Lxy ‖y‖+ Lxx ‖x‖)2

≤ 5
(
G2
x + L2

xy ‖y‖
2

+ L2
xx ‖x‖

2
)
,

where the first line uses the assumption that x 7→ L(x, y) is
(Gx + Lxy ‖y‖ , Lxx) quadratically bounded for any y ∈ Y
and the last line uses (a + b + c)2 ≤ 5a2 + 5b2 + 5c2.
Likewise,

‖gy‖2 ≤ 5
(
G2
y + L2

yx ‖x‖
2

+ L2
yy ‖y‖

2
)
,

and so overall, letting gw = (gx, gy) we have

‖gw‖ =

√
‖gx‖2 + ‖gy‖2

(?)

≤
√

5
√
G2
x +G2

y︸ ︷︷ ︸
=:Gw

+
√

5
√
L2
xx + L2

yy + L2
xy + L2

yx︸ ︷︷ ︸
Lw

√
‖x‖2 + ‖y‖2

= Gw + Lw ‖w‖

where (?) uses
√
x+ y ≤

√
x+
√
y for x, y ≥ 0.

Hence, with this in hand we can use Algorithm 1 to guaran-
tee that for any ẘ = (̊x, ẙ) ∈W ,

L(xT , ẙ)− L(̊x, yT )

Lemma 3.1
≤ RAT (ẘ)

T

Theorem 2.2
≤ Õ

(
Gw ‖ẘ‖+ Lw ‖ẘ‖2√

T

)
,

which is indeed fully adaptive to comparator ẘ.

It is important to note that our results in this section are
made possible because our algorithm works even in the
more difficult QB-OLO setting. It may be possible to get a
similar result by using two QB-OCO algorithms designed
for quadratically bounded functions `t, though it it seems

more challenging. In particular, letting `xt (·) = L(·, yt)
and `yt (·) = −L(xt, ·), one might instead run separate algo-
rithms against the quadratically bounded loss sequences `xt
and `yt . However, now both algorithms need to very care-
fully regularize their iterates such that the gradients received
by the other algorithm are never too large, since ‖∇`xt (xt)‖
may can contain factors of ‖yt‖ and ‖∇`yt (yt)‖ can contain
factors of ‖xt‖. Hence careful coordination between the
two algorithms will be required. The upshot is that by us-
ing un-linearized losses `xt and `yt it may be possible to get
faster rates in some settings by better accounting for local
curvature. We leave this as an exciting direction for future
investigation.

3.1. Example: Bilinearly-coupled saddle-points

Before moving on, let us make things less abstract with a
simple example. Consider a bilinearly-coupled saddle-point
problem of the form

L(x, y) = Fx(x) +H(x, y)− Fy(y) (3)

where Fx and Fy are convex and (G̃x, L̃x) and (G̃y, L̃y)-
quadratically bounded respectively, and H(x, y) =
〈x,By〉 − 〈ux, x〉 + 〈uy, y〉 for some coupling matrix B
and vectors ux, uy. This problem captures several notable
problem settings, such as minimizing the mean-squared
projected bellman error for off-policy policy evaluation in
reinforcement learning, quadratic games, and regularized
empirical risk minimization (Du et al., 2022). The follow-
ing proposition demonstrates that these problems do indeed
satisfy the conditions of Proposition 3.2.

Proposition 3.3. Equation (3) satisfies the assumptions of
Proposition 3.2 with Gx = G̃x + ‖ux‖, Lxx = L̃x, Lxy =

‖B‖op, Gy = G̃y + ‖uy‖, Lyy = L̃y , and Lyx =
∥∥B>∥∥op.

Proof. Observe that for any (x, y) ∈ X × Y and gx ∈
∂xL(x, y), we have

‖gx‖ = ‖∇Fx(x) +By − ux‖
≤ ‖∇Fx(x)‖+ ‖B‖op ‖y‖+ ‖ux‖

≤ G̃x + ‖ux‖+ L̃x ‖x‖+ ‖B‖op ‖y‖ ,

where ∇Fx(x) ∈ ∂Fx(x) and ‖B‖op denotes the operator
norm ‖B‖op = supx:‖x‖=1 ‖Bx‖. Likewise,

‖gy‖ ≤ G̃y + ‖uy‖+ L̃y ‖y‖+
∥∥B>∥∥op ‖x‖ .

Hence, L(·, ·) satisfies the assumptions of Proposition 3.2
with Gx = G̃x + ‖ux‖, Lxx = L̃x, Lxy = ‖B‖op, Gy =

G̃y + ‖uy‖, Lyy = L̃y , and Lyx =
∥∥B>∥∥op.

We note that this specific example is mainly for illustrative
purposes — in many instances of Equation (3) the functions
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Fx and Fy satisfy stronger curvature assumptions than used
here, and our approach would be improved by more explic-
itly leveraging these assumptions when they hold. Never-
theless, our approach here does have a few key benefits:
first, we naturally attain convergence in duality gap with
an explicit dependence on the comparator, whereas prior
works generally only attain a bound of this form making
stronger assumptions such as strong convexity or one of the
boundedness assumptions we’re seeking to avoid (Liu &
Orabona, 2022; Du et al., 2022; Ibrahim et al., 2020; Az-
izian et al., 2020). Second, our approach can be applied
under fairly weak assumptions: L(·, ·) need not be Lips-
chitz, strongly-convex, nor smooth in either argument, and
we do not require X × Y to be a bounded domain.

4. Dynamic Regret
Next, we turn our attention to dynamic regret. In the static
regret setting, we saw in Section 2 that to control the stabil-
ity of the algorithm it was necessary to add an additional
term Φt(w) = O

(
Lmax

√
T ‖w‖2

)
to the regularizer to

help control the “non-Lipschitz” part of the loss. We will
likewise need a stronger regularizer to control the gradients
for dynamic regret, but now it will lead to difficulties. To
see why, consider the dynamic regret of gradient descent
with a fixed step-size η. Using existing analyses one can
arrive at

RT (u) ≤ O

(
‖uT ‖2 + maxt ‖wt‖PT

2η
+
η

2

T∑
t=1

‖gt‖2
)
,

(4)

where gt ∈ ∂`t(wt) and PT =
∑T
t=2 ‖ut − ut−1‖. In a

bounded domain of diameterD, we can bound ‖uT ‖2 ≤ D2

and maxt ‖wt‖ ≤ D, and then by optimally tuning η we

get RT (u) ≤ O

(√
(D2 +DPT )

∑T
t=1 ‖gt‖

2

)
which is

optimal in the Lipschitz loss setting (Zhang et al., 2018).
More generally, using Mirror Descent with regularizerψ(w),
one can derive an analogous bound:

RT (u) ≤ O

(
ψ(uT ) + max

t
‖∇ψ(wt)‖PT +

T∑
t=1

δt

)
,

where δt are the stability terms discussed in Section 2. In an
unbounded domain, Jacobsen & Cutkosky (2022) use a regu-
larizer of the form ψ(w) = O (‖w‖ log (‖w‖T ) /η), which
enables them to bound

∑T
t=1 δt ≤ O(η), and moreover,

they show that maxt ‖∇ψt(wt)‖ can be bound from above
by O (log (MT/ε) /η) after adding a composite penalty
ϕt(w) = η ‖gt‖2 ‖w‖ to the update. Then optimally tuning

Algorithm 3 Dynamic Regret Algorithm
Input: Gmax, Lmax, weights β1, . . . , βT in [0, 1], hy-
perparameter set S =

{
(η,D) : η ≤ 1

8Lmax
, D > 0

}
,

p1 ∈ ∆|S|.
for τ = (η,D) ∈ S do

Initialize: w(τ)
1 = 0, q1(τ) = p1(τ)

Define µτ = 1
2D(Gmax+D/η)

Define ψτ (x) = 9
2µτ

∫ x
0

log (v) dv
end for
for t = 1 : T do

Play wt =
∑
τ∈S pt(τ)w

(τ)
t

Query `t(w̃t) for any w̃t ∈W s.t. ‖w̃t‖ ≤ Dmin

for τ = (η,D) ∈ S do
Query g(τ)

t ∈ ∂`t(w(τ)
t )

Setw(τ)
t+1 = Π

{w∈W :‖w‖≤D}

(
w

(τ)
t − η(1 + 8ηLt)g

(τ)
t

)
Define ˜̀t,τ = `t(w

(τ)
t )− `t(w̃t)

end for
Set qt+1 = argmin

q∈∆|S|

∑
τ∈S

(˜̀tτ+µτ ˜̀2tτ )qτ+Dψτ (qτ |ptτ )

Set pt+1 = (1− βt)qt+1 + βtp1.
end for

η leads to regret scaling as

RT (u) ≤ Õ


√√√√(M2 +MPT )

T∑
t=1

‖gt‖2
 , (5)

where M = maxt ‖ut‖, which matches the bound from the
bounded-domain setting up to logarithmic terms.

In our setting, the situation gets significantly more challeng-
ing. As in Section 2, we will need to include anO(‖w‖2 /η)
term in the regularizer ψt in order to control the “non-
Lipschitz” part of the loss function. However, as above this
leads to coupling maxt ‖∇ψt(wt)‖Pt = maxt ‖wt‖PT /η
in the dynamic regret, and the term maxt ‖wt‖ is generally
too large to cancel out with additional regularization as done
by Jacobsen & Cutkosky (2022). Even more troubling is
that our lower bound in Theorem 4.2 suggests that the ideal
dependence would beO(MPT /η), which we can only hope
to achieve by constraining ‖wt‖ to a ball of diameter pro-
portional to M = maxt ‖ut‖. Yet M is unknown to the
learner!

Luckily, hope is not all lost. Taking inspiration from
Luo et al. (2022), we can still attain a bound similar to
Equation (5) by tuning the diameter of an artificial do-
main constraint. The approach is as follows: for each
(η,D) in some set S, we run an instance of gradient de-
scent A(η,D) which uses step-size η and projects to the
set WD = {w ∈W : ‖w‖ ≤ D}. Then, using a care-
fully designed experts algorithm, it is possible to ensure
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that the overall regret of the algorithm scales roughly as
RT (u) ≤ Õ

(
R
A(η,D)
T (u)

)
for any (η,D) ∈ S. Thus if

we can ensure that there is some (η,D) ∈ S for which
D ≈M and η is near-optimal, then we’ll be able to achieve
dynamic regret with the desired MPT dependence. The
following theorem, proven in Appendix C, characterizes
an algorithm which achieves dynamic regret analogous to
the above bounds, and in Theorem 4.2 we show that this is
indeed unimprovable. Notably, our result also automatically
improves to a novel L∗ bound when the losses are smooth.

Theorem 4.1. For all t let `t : W → R be a (Gt, Lt)-
quadratically bounded convex function withGt ∈ [0, Gmax]
and Lt ∈ [0, Lmax]. Let ε > 0, βt ≤ 1 − exp (−1/T )
for all t, and for any i, j ≥ 0 let Dj = ε

T

[
2j ∧ 2T

]
and ηi =

[
ε2i

8(Gmax+εLmax)T ∧
1

8Lmax

]
, and let S =

{(ηi, Dj) : i, j ≥ 0}. For each τ = (η,D) ∈ S let

µτ = 1
2D(Gmax+D/η) and set p1(τ) =

µ2
τ∑

τ̃∈S µ
2
τ̃

. Then

for any u = (u1, . . . , uT ) in W , Algorithm 3 guarantees

RT (u)≤O

(
Gmax(M + ε)Λ∗T + Lmax(M + ε)2Λ∗T

+GmaxPT + Lmax(M + ε)PT

+
√

(M2Λ∗T +MPT )ΩT ,

)
.

where Λ∗T ≤ O
(

log
(
MT log(T )

ε

)
+ log

(
log
(
Gmax

εLmax

)))
,

ΩT ≤
∑T
t=1

[
G2
t + L2

tM
2
]
, PT =

∑T
t=2 ‖ut − ut−1‖,

and M = maxt ‖ut‖. Moreover, when the losses
are Lt-smooth, ΩT automatically improves to ΩT ≤
min

{∑T
t=1 Lt [`t(ut)− `∗t ] ,

∑T
t=1G

2
t + L2

tM
2
}

.

Hiding constants and logarithmic terms, the bound is effec-
tively

RT (u) ≤ Õ


√√√√(M2 +MPT )

T∑
t=1

G2
t + L2

tM
2

 .

Notice that our result again generalizes the bounds estab-
lished in prior works. Unfortunately, the result is not a strict
generalization as Theorem 4.1 requires Lmax > 0 for the
hyperparameter set S to be finite. To achieve a strict gener-
alization, one can simply define a procedure which runs the
algorithm of Jacobsen & Cutkosky (2022) when Lmax = 0
and Algorithm 3 otherwise; this is possible because Lmax

must be provided as input to the algorithm. Notably, the
algorithm of Jacobsen & Cutkosky (2022) does not use the
aforementioned domain tuning trick and requires signifi-
cantly less per-round computation as a result (O(d log (T ))
vs. O(dT log (T ))). We leave open the question of whether

the exists a unifying analysis for Lmax = 0 and Lmax > 0,
and whether the per-round computation can be improved.

As in Section 2, we again observe an additional penalty
associated with non-Lipschitzness, this time on the order of

Õ

(
M3/2

√
(M + PT )

∑T
t=1 L

2
t

)
. The following theorem

shows that these penalties are unavoidable in general (proof
in Appendix C.3).

Theorem 4.2. For anyM > 0 there is a sequence of (G,L)-
quadratically bounded functions with G

L ≤M such that for
any γ ∈ [0, 1

2 ],

RT (u) ≥ Ω
(
GM1−γ [PTT ]

γ
+ LM2−γ [PTT ]

γ)
.

where PT =
∑T
t=2 ‖ut − ut−1‖ and M ≥ maxt ‖ut‖.

Notice that with γ = 1
2 , we have RT (u) ≥

Ω
(
G
√
MPTT + LM3/2

√
PTT

)
, matching our upper

bound in Theorem 4.1 up to logarithmic terms. On the
otherhand, for γ = 0 we have RT (u) ≥ GM + LM2,
suggesting that the lower-order leading terms of our upper
bound are also necessary. We also note that the assumption
G/L ≤ M is without loss of generality: when G/L ≥ M
one can construct a sequence of (G+LM)-Lipschitz losses
according to existing lower bounds to show that

RT (u) ≥ Ω
(

(G+ LM)
√
MPTT

)
= Ω

(
G
√
MPTT + LM3/2

√
PTT

)
.

Interestingly, when the losses are smooth, the bound in
Theorem 4.1 has the appealing property that it automatically
improves to an L∗ bound of the form

RT (u) ≤ Õ


√√√√(M2 +MPT )

T∑
t=1

Lt [`t(ut)− `∗t ]

 ,

which matches bounds established in the Lipschitz and
bounded domain setting up to logarithmic penalties (Zhao
et al., 2020). This is the first L∗ bound that we are aware of
to be achieved in an unbounded domain for general smooth
losses without a Lipschitz or bounded-range assumption.
Moreover, our bound features improved adaptivity to the
individial Lt’s, scaling as

∑T
t=1 Lt [`t(ut)− `∗t ] instead of

the usual Lmax

∑T
t=1 `t(ut)− `∗t achieved by prior works

(Srebro et al., 2010; Orabona et al., 2012; Zhao et al., 2020).

On the other hand, our upper bound bound contains terms
of the form Gmax

Lmaxε
. Such ratios are unappealing in general

because Gmax and Lmax are not under our control — it’s
possible for this ratio to be arbitrarily large. Fortunately, this
ratio only shows up only in doubly-logarithmic terms, and
hence these penalties can be regarded as effectively constant
as far as the regret bound is concerned.
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A more pressing issue is that the ratio Gmax

εLmax
shows

up in the number of experts. That is, setting S as in
Theorem 4.1 requires a collection of O(T log2(

√
T ) +

T log2 (Gmax/Lmaxε)) experts, so in practice we can only
tolerate Gmax/Lmaxε ≤ poly(T ) without increasing the
(already quite high!) order of computation. We note that
any algorithm that guarantees RT (0) ≤ Gmaxε can’t hope
to ensure non-vacuous regret when Gmax/Lmaxε > T any-
ways, so this seems to be a fundamental restriction in this
setting. Nevertheless, the following result shows that if we
know a priori that the losses will be smooth, then we can
avoid this log

(
log
(
Gmax

Lmaxε

))
penalty entirely and reduce

the number of experts to T log2(
√
T ) by instead setting

ηmin ∝ 1
Lmax

√
T

. Proof can be found in Appendix C.2.

Theorem 4.3. For all t let `t : W → R be (Gt, Lt)-
quadratically bounded and Lt-smooth convex function with
Gt ∈ [0, Gmax] and Lt ∈ [0, Lmax]. Let ε > 0 and
for any i, j ≥ 0 let Dj = ε√

T

[
2j ∧ 2T

]
and ηi =

1
8Lmax

√
T

[
2i ∧
√
T
]
, and let S = {(ηi, Dj) : i, j ≥ 0}.

Then for any u = (u1, . . . , uT ) in W , Algorithm 3 guaran-
tees

RT (u)≤O

(
Gmax(M + ε)Λ∗T + Lmax(M + ε)2Λ∗T

+Lmax(M + ε)PT +

√√√√ T∑
t=1

[`t(ut)− `∗t ]
2

+

√√√√(M2Λ∗T +MPT )

T∑
t=1

Lt [`t(ut)− `∗t ]

)
,

where Λ∗T ≤ O
(

log

(
M
√
T log(

√
T)

ε

))
, M = maxt ‖ut‖,

and PT =
∑T
t=2 ‖ut − ut−1‖.

5. Conclusion
In this paper, we developed new algorithms for online
learning in unbounded domains with potentially unbounded
losses. We achieve several regret guarantees that have pre-
viously only been attained by assuming Lipschitz losses,
losses with bounded range, a bounded domain, or a combi-
nation thereof. We provide algorithms for both static and
dynamic regret, as well as an application in saddle-point
optimization leading to new results for unbounded decision
sets. Our lower bounds show that our results are optimal,
and moreover, our algorithms achieve these results without
appealing to any instance-specific hyperparameter tuning.

There are a few natural directions for future work. It is still
unclear whether the dynamic regret achieved in Theorem 4.1
can be achieved in the more general QB-OLO setting. More-
over, while our dynamic regret algorithm attains the optimal

bound, it requires O(dT log(
√
T )) computation per round,

whereas the optimal bounds in the Lipschitz loss setting are
attained using O(d log (T )) per-round computation. Yet it
is unclear how to achieve the lower bound in Theorem 4.2
without the artificial domain trick discussed in Section 4.
We leave these questions as exciting directions for future
work.
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A. Centered Mirror Descent with Adjustment

Algorithm 4 Centered Mirror Descent with Adjustment
Input: w1 ∈W , ψ1 : W → R≥0

for t = 1 : T do
Play wt ∈W , observe gt
Choose functions ψt+1, φt
Define ∆t(w) = Dψt+1

(w|w1)−Dψt(w|w1)
Update w̃t+1 = arg minw̃∈W 〈gt, w̃〉+Dψt(w̃|wt) + ∆t(w̃) + φt(w̃)
Choose mappingMt+1 : W →W
Update wt+1 =Mt+1(w̃t+1)

end for

The key tool we’ll use to build our algorithms is a slight generalization of the Centered Mirror Descent algorithm of Jacobsen
& Cutkosky (2022), which accounts for an additional post-hoc “adjustment” of wt through the use of an arbitrary mapping
Mt : W → W . Algorithms of this form have been studied in prior works such as Gyorgy & Szepesvari (2016); Hall
& Willett (2016), whereinMt is interpreted as a dynamical model. In contrast, we will useMt as a convenient way to
formulate a multi-scale version of the fixed-share update, similar to the generalized share algorithm of Cesa-Bianchi et al.
(2012). Note that whenMt is the identity mapping, Algorithm 4 is identical to the Centered Mirror Descent algorithm of
Jacobsen & Cutkosky (2022).

The following lemma provides a regret template for Algorithm 4. Observe that several of the key terms related to the
algorithm’s stability replace the mirror descent iterates w̃t with the adjusted iterates wt =Mt(w̃t). The trade-off is that
we must be careful to ensure that the new penalty terms ξt = Dψt+1(ut|wt+1)−Dψt+1(ut|w̃t+1) are not too large, which
places an implicit restriction on how much we can adjust the iterates viaMt.

Lemma A.1. For all t let ψt : W → R≥0 be differentiable convex functions, φt : W → R≥0 be subdifferentiable convex
functions, and letMt : W → W be arbitrary mappings. Then for any sequence u = (u1, . . . , uT ) in W , Algorithm 4
guarantees

RT (u) ≤ DψT+1
(uT |w1)−DψT+1

(uT |wT+1) +

T∑
t=1

φt(ut)

+

T∑
t=2

〈∇ψt(wt)−∇ψt(w1), ut−1 − ut〉︸ ︷︷ ︸
=:Pt

+

T∑
t=1

Dψt+1
(ut|wt+1)−Dψt+1

(ut|w̃t+1)︸ ︷︷ ︸
ξt

+

T∑
t=1

〈gt, wt − w̃t+1〉 −Dψt(w̃t+1|wt)−∆t(w̃t+1)− φt(w̃t+1)︸ ︷︷ ︸
=:δt

.

Proof. Letting gt ∈ ∂`t(wt), we have

RT (u) ≤
T∑
t=1

〈gt, wt − ut〉 =

T∑
t=1

〈gt, w̃t+1 − ut〉+

T∑
t=1

〈gt, wt − w̃t+1〉 .

From the first-order optimality condition w̃t+1 = arg minw̃∈W 〈gt, w̃〉+Dψt(w̃|wt) + ∆t(w̃) + φt(w̃), for any ut ∈W
we have

0 ≥ 〈gt +∇ψt(w̃t+1)−∇ψt(wt), w̃t+1 − ut〉+ 〈∇∆t(w̃t+1) +∇φt(w̃t+1), w̃t+1 − ut〉

12
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so re-arranging,

〈gt, w̃t+1 − ut〉 ≤ 〈∇ψt(wt)−∇ψt(w̃t+1), w̃t+1 − ut〉
− 〈∇∆t(w̃t+1), w̃t+1 − ut〉 − 〈∇φt(w̃t+1), w̃t+1 − ut〉

(∗)
≤ 〈∇ψt(wt)−∇ψt(w̃t+1), w̃t+1 − ut〉

+ φt(ut)− φt(w̃t+1)

+ ∆t(ut)−∆t(w̃t+1)−D∆t(ut|w̃t+1)

where (∗) uses the definition of Bregman divergence to write 〈−∇f(x), x− y〉 = f(y) − f(x) −Df (y|x) and bounds
〈∇φt(w̃t+1), ut − w̃t+1〉 ≤ φt(ut)− φt(w̃t+1) by convexity of φt. Plugging this back into the previous display, we have

RT (u) ≤
T∑
t=1

〈∇ψt(wt)−∇ψt(w̃t+1), w̃t+1 − ut〉

+

T∑
t=1

[∆t(ut) + φt(ut)] +

T∑
t=1

−D∆t
(ut|w̃t+1)

+

T∑
t=1

〈gt, wt − w̃t+1〉 −∆t(w̃t+1)− φt(w̃t+1),

and using the three-point relation for Bregman divergences 〈∇f(y)−∇f(x), x− z〉 = Df (z|y)−Df (z|x)−Df (x|y):

=

T∑
t=1

Dψt(ut|wt)−Dψt(ut|w̃t+1) +

T∑
t=1

[∆t(ut) + φt(ut)] +

T∑
t=1

−D∆t
(ut|w̃t+1)

+

T∑
t=1

〈gt, wt − w̃t+1〉 −Dψt(w̃t+1|wt)−∆t(w̃t+1)− φt(w̃t+1)︸ ︷︷ ︸
=:δt

(a)
=

T∑
t=1

Dψt(ut|wt)−Dψt+1
(ut|w̃t+1) +

T∑
t=1

[∆t(ut) + φt(ut)] + δ1:T

=

T∑
t=1

Dψt(ut|wt)−Dψt+1
(ut|wt+1) +

T∑
t=1

Dψt+1
(ut|wt+1)−Dψt+1

(ut|w̃t+1)︸ ︷︷ ︸
=:ξt

+

T∑
t=1

[∆t(ut) + φt(ut)] + δ1:T

= Dψ1
(u1|w1)−DψT+1

(uT |wT+1) +

T∑
t=2

[Dψt(ut|wt)−Dψt(ut−1|wt)] +

T∑
t=1

∆t(ut)︸ ︷︷ ︸
=:(?)

+

T∑
t=1

φt(ut) + ξ1:T + δ1:T ,
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where (a) observes D∆t
(ut|w̃t+1) = Dψt+1

(ut|w̃t+1)−Dψt(ut|w̃t+1). Observe that the term (?) simplifies as

(?) =

T∑
t=1

∆t(ut) +

T∑
t=2

Dψt(ut|wt)−Dψt(ut−1|wt)

=

T∑
t=1

Dψt+1(ut|w1)−Dψt(ut|w1) +

T∑
t=2

Dψt(ut|wt)−Dψt(ut−1|wt)

= DψT+1
(uT |w1)−Dψ1

(u1|w1)

+

T−1∑
t=1

Dψt+1(ut|w1)−Dψt+1(ut+1|w1)

+

T∑
t=2

Dψt(ut|wt)−Dψt(ut−1|wt)

= DψT+1
(uT |w1)−Dψ1

(u1|w1)

+

T∑
t=2

Dψt(ut−1|w1)−Dψt(ut|w1)

+

T∑
t=2

Dψt(ut|wt)−Dψt(ut−1|wt)

= DψT+1
(uT |w1)−Dψ1

(u1|w1)

+

T∑
t=2

ψt(ut−1)− ψt(ut)− 〈∇ψt(w1), ut−1 − ut〉

+

T∑
t=2

ψt(ut)− ψt(ut−1)− 〈∇ψt(wt), ut − ut−1〉

= DψT+1
(uT |w1)−Dψ1(u1|w1) +

T∑
t=2

〈∇ψt(wt)−∇ψt(w1), ut−1 − ut〉︸ ︷︷ ︸
=:Pt

so plugging this back in above yields

RT (u) ≤ Dψ1(u1|w1)−DψT+1
(uT |wT+1) + (?) +

T∑
t=1

φt(ut) + ξ1:T + δ1:T

≤ Dψ1
(u1|w1)−DψT+1

(uT |wT+1) +DψT+1
(uT |w1)−Dψ1

(u1|w1) + P2:T

+

T∑
t=1

φt(ut) + ξ1:T + δ1:T

= DψT+1
(uT |w1)−DψT+1

(uT |wT+1) +

T∑
t=1

φt(ut) + P2:T + ξ1:T + δ1:T .

In this paper, we will frequently use composite penalties φt which are a linearization of some other function ϕt. The next
lemma shows how this changes the bound.
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Lemma A.2. Under the same conditions as Lemma A.1, let ϕt : W → R+ be subdifferentiable convex functions and
suppose we set φt(w) = 〈∇ϕt(wt), w〉 for some ∇ϕt(wt) ∈ ∂ϕt(wt). Then Algorithm 4 guarantees

RT (u) ≤ DψT+1
(uT |w1)−DψT+1

(uT |wT+1) +

T∑
t=1

ϕt(ut) + P2:T + ξ1:T

+

T∑
t=1

〈g̃t, wt − w̃t+1〉 −Dψt(w̃t+1|wt)−∆t(w̃t+1)− ϕt(wt)︸ ︷︷ ︸
=:δt

,

where g̃t = gt +∇ϕt(wt).

Proof. The proof is immediate by convexity of ϕt. From Lemma A.1 we have

RT (u) ≤ DψT+1
(uT |w1)−DψT+1

(uT |wT+1) +

T∑
t=1

φt(ut) + P2:T + ξ1:T

+

T∑
t=1

〈gt, wt − w̃t+1〉 −Dψt(w̃t+1|wt)−∆t(w̃t+1)− φt(w̃t+1).

Observe that we can write

T∑
t=1

φt(ut)− φt(w̃t+1) =

T∑
t=1

〈∇ϕt(wt), ut − w̃t+1〉

=

T∑
t=1

〈∇ϕt(wt), ut − wt〉+ 〈∇ϕt(wt), wt − w̃t+1〉

≤
T∑
t=1

ϕt(ut)− ϕt(wt) + 〈∇ϕt(wt), wt − w̃t+1〉 ,

so plugging this back in above gives the stated result:

RT (u) ≤ DψT+1
(uT |w1)−DψT+1

(uT |wT+1) +

T∑
t=1

ϕt(ut) + P2:T + ξ1:T

+

T∑
t=1

〈g̃t, wt − w̃t+1〉 −Dψt(w̃t+1|wt)−∆t(w̃t+1)− ϕt(wt),

where g̃t = gt +∇ϕt(wt).

A.1. Multi-scale Experts Algorithm

Algorithm 5 Multi-scale Fixed-share
Input: p1 ∈ ∆N ∩ (0, 1]N , µ1, . . . , µN in R>0, k > 0, weights β1, . . . , βT in [0, 1]
Initialize: q1 = p1

Define ψi(x) = k
µi

∫ x
0

log (v) dv for i ∈ [N ]
for t = 1 : T do

Play pt ∈ ∆N , receive loss ˜̀t ∈ RN
Update qt+1 = arg minq∈∆N

∑N
i=1(˜̀ti + µi ˜̀2ti)qi +Dψi(qi|pti)

Set pt+1 = (1− βt)qt+1 + βtp1

end for

For completeness, in this section we provide a multi-scale experts algorithm which achieves the bound required for our
dynamic regret algorithm in Section 4. Our approach is inspired by the Multi-scale Multiplicative-weight with Correction

15



Unconstrained Online Learning with Unbounded Losses

(MsMwC) algorithm of Chen et al. (2021), but formulated as a fixed-share update instead of an update on a “clipped” simplex
∆̃N = ∆N ∩ [β, 1]N . The MsMwC algorithm provides a guarantee analogous to the following theorem, but formulating it
as a fixed-share update will allow us a bit more modularity when constructing our dynamic regret algorithm in Appendix C,
which requires several rather delicate conditions to come together in the right way.

Theorem A.3. Let k ≥ 9
2 and assume µ1, . . . , µN satisfy µi ˜̀ti ≤ 1 for all t ∈ [T ] and i ∈ [N ]. Then for any u ∈ ∆N ,

Algorithm 5 guarantees

T∑
t=1

〈˜̀
t, pt − u

〉
≤

N∑
i=1

ui

k
[
log (ui/p1i) +

∑T
t=1 log

(
1

1−βt

)]
µi

+ µi

T∑
t=1

˜̀2
ti

+ k(1 + β1:T )

N∑
i=1

p1i

µi
.

Moreover, for βt ≤ 1− exp
(
− 1
T

)
,

T∑
t=1

〈˜̀
t, pt − u

〉
≤

N∑
i=1

ui

[
k [log (ui/p1i) + 1]

µi
+ µi

T∑
t=1

˜̀2
ti

]
+ 2k

N∑
i=1

p1i

µi

Proof. The described algorithm is an instance of Algorithm 4 applied to the simplex ∆N with ϕt(p) =
∑N
i=1 µi

˜̀2
tipi, and

Mt+1(p) = (1− βt)p+ βtp1. Applying Lemma A.2:

T∑
t=1

〈˜̀
t, pt − u

〉
≤ Dψ(u|p1)−Dψ(u|pT+1) + ϕ1:T (u) + ξ1:T + δ1:T ,

where

ξt = Dψ(u|pt+1)−Dψ(u|qt+1)

δt =
〈˜̀
t +∇ϕt(pt), pt − qt+1

〉
−Dψ(qt+1|pt)− ϕt(pt).

Observe that for any u, p, and q in ∆N we can write

Dψ(u|p)−Dψ(u|q) =

N∑
i=1

k

µi
[ui log (ui/pi)− ui + pi]−

N∑
i=1

k

µi
[ui log (ui/qi)− ui + qi]

=

N∑
i=1

k

µi
[ui log (qi/pi) + pi − qi] ,

so we have

Dψ(u|p1)−Dψ(u|pT+1) = k

N∑
i=1

ui log (pT+1,i/p1i) + p1i − pT+1,i

µi

≤ k
N∑
i=1

sup
p≥0

ui log (p/p1i) + p1i − p
µi

= k

N∑
i=1

ui log (ui/p1i) + p1i − ui
µi

≤ k
N∑
i=1

ui log (ui/p1i)

µi
+ k

N∑
i=1

p1i

µi
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and

T∑
t=1

ξt =

T∑
t=1

Dψ(u|pt+1)−Dψ(u|qt+1)

= k

T∑
t=1

N∑
i=1

ui log (qt+1,i/pt+1,i) + pt+1,i − qt+1,i

µi

= k

T∑
t=1

N∑
i=1

ui log
(

qt+1,i

(1−βt)qt+1,i+βtq1,i

)
µi

+ k

T∑
t=1

N∑
i=1

(1− βt)qt+1,i + βtq1,i − qt+1,i

µi

= k

T∑
t=1

N∑
i=1

ui
µi

log

(
qt+1,i

(1− βt)qt+1,i + βtq1,i

)

+ k

T∑
t=1

N∑
i=1

βt(q1,i − qt+1,i)

µi

≤ k
T∑
t=1

N∑
i=1

ui
µi

log

(
1

1− βt

)
+
βtq1i

µi

= k

N∑
i=1

ui
µi

T∑
t=1

log

(
1

1− βt

)
+ kβ1:T

N∑
i=1

p1i

µi
,

where the last line recalls p1 = q1. Plugging these bounds back into the above regret bound yields

T∑
t=1

〈˜̀
t, pt − u

〉
≤ k

N∑
i=1

[
ui log (ui/p1i)

µi
+ (1 + β1:T )

p1i

µi
+
ui
µi

T∑
t=1

log

(
1

1− βt

)]
+ ϕ1:T (u) + δ1:T

=

N∑
i=1

ui

[
k
[
log (ui/p1i) +

∑T
t=1 log

(
1

1−βt

)]
µi

+ µi

T∑
t=1

˜̀2
ti

]
+ k(1 + β1:T )

N∑
i=1

p1i

µi

+

N∑
i=1

T∑
t=1

(˜̀ti + µi ˜̀2ti)(pti − qt+1,i)−Dψi(qt+1,i|pt,i)− µi ˜̀2tipti︸ ︷︷ ︸
=:δti

, (6)

where the last line recalls δt =
〈˜̀
t +∇ϕt(pt), pt − qt

〉
− Dψ(qt+1|pt) − ϕt(pt), ϕt(p) =

∑N
i=1 µi

˜̀2
tipi, and denotes

ψi(p) = k
µi

∫ p
0

log (x) dx so that ψ(p) =
∑N
i=1 ψi(pi). We next focus our attention on the terms in the last line, δti.

Note that by construction, we have pti = (1 − βt)qti + βtq1i ≥ βtq1i > 0 for all i. Thus, ψi(p) = k
µi

∫ p
0

log (v) dv is
twice differentiable everywhere on the line connecting pti and qt+1,i for any i with qt+1,i > 0. For any such i, we have via
Taylor’s theorem that there exists a p̃i on the line connecting pti and qt+1,i such that

Dψi(qt+1,i|pti) ≥
1

2
(pti − qt+1,i)

2ψ′′i (p̃i) =
1

2

(pti − qt+1,i)
2k

µip̃i
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so using this with the assumption that µi
∣∣∣˜̀ti∣∣∣ ≤ 1, we have

δti ≤
∣∣∣˜̀ti + µi ˜̀2ti∣∣∣ |pti − qt+1,i| −

1

2

(pti − qt+1,i)
2k

µip̃i
− µi ˜̀2tipti

≤ 2
∣∣∣˜̀ti∣∣∣ |pti − qt+1,i| −

1

2

(pti − qt+1,i)
2k

µip̃i
− µi ˜̀2tip̃i + µi ˜̀2ti |pti − p̃i|

(a)

≤ 3
∣∣∣˜̀ti∣∣∣ |pti − qt+1,i| −

1

2

(pti − qt+1,i)
2k

µip̃i
− µi ˜̀2tip̃i

≤ 9

2k
µi

∣∣∣˜̀ti∣∣∣2 p̃i − µi ˜̀2tip̃i
(b)

≤ 0,

where (a) uses |p̃i − pti| ≤ |qt+1,i − pti| for any p̃i on the line connecting qt+1,i and pti and (b) chooses k ≥ 9
2 . Similarly,

for any i for which qt+1,i = 0 we have

δti = (˜̀ti + µi ˜̀2ti)pti −Dψi(0|pti)− µi ˜̀2tipti
≤ ˜̀tipti − pti

µi

≤ pti
µi
− pti
µi
≤ 0,

where the last line again uses µi
∣∣∣˜̀ti∣∣∣ ≤ 1. Thus, in either case we have δti ≤ 0. Plugging this into Equation (6) reveals the

first statement of the theorem:

T∑
t=1

〈˜̀
t, pt − u

〉
≤

N∑
i=1

ui

k
[
log (ui/p1i) +

∑T
t=1 log

(
1

1−βt

)]
µi

+ µi

T∑
t=1

˜̀2
ti

+ k(1 + β1:T )

N∑
i=1

p1i

µi
.

For the second statement of the theorem, observe that βt ≤ 1− exp (−1/T ) ≤ 1
T , so β1:T ≤ 1, and likewise log

(
1

1−βt

)
=

log (exp (1/T )) = 1
T , so

∑T
t=1 log

(
1

1−βt

)
≤ 1. Hence, the previous display is bounded as

T∑
t=1

〈˜̀
t, pt − u

〉
≤

N∑
i=1

ui

[
k [log (ui/p1i) + 1]

µi
+ µi

T∑
t=1

˜̀2
ti

]
+ 2k

N∑
i=1

p1i

µi

B. Proofs for Section 2 (Online Learning with Quadratically Bounded Losses)
B.1. Proof of Theorem 2.2

Theorem 2.2. Let A be an online learning algorithm and let wt ∈ W be its output on round t. Let {gt} be a (Gt, Lt)-
quadratically bounded sequence w.r.t {wt}, where Gt ∈ [0, Gmax] and Lt ∈ [0, Lmax] for all t. Let ε > 0, k ≥ 3, κ ≥ 4,

c ≥ 4, Vt+1 = cG2
max +G2

1:t, ρt+1 = 1√
L2

max+L2
1:t

, αt+1 =

√
Vt+1 log2(Vt+1/G

2
max)

εGmax
, and set

ψt(w) = k

∫ ‖w‖
0

min
η≤ 1

Gmax

[
log (x/αt + 1)

η
+ ηVt

]
dx+

κ ‖w‖2

2ρt
and ϕt(w) =

L2
t

2
√
L2

1:t

‖w‖2 .

Then for any u ∈W , Algorithm 1 guarantees

RT (u) ≤ 2εGmax + κ ‖u‖2
√
L2

max + L2
1:T + 2k ‖u‖max

{√
VT+1FT+1(‖u‖), GmaxFT+1(‖u‖)

}
where FT+1(‖u‖) = log (‖u‖ /αT+1 + 1).
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Proof. We can assume without loss of generality that 0 ∈ W , since we could otherwise just perform a coordinate
translation. Hence, we have w1 = arg minw∈W ψ1(w) = 0, and it is easily seen that for any w ∈ W we’ll have
Dψt(w|w1) = Dψt(w|0) = ψt(w).

First apply Lemma A.2 withMt(w) = w and ϕt(w) =
L2
t

2
√
L2

1:t

‖w‖2 to get

T∑
t=1

〈gt, wt − u〉 ≤ DψT+1
(u|w1) + ϕ1:T (u) +

T∑
t=1

〈gt +∇ϕt(wt), wt − wt+1〉 −Dψt(wt+1|wt)−∆t(wt+1)− ϕt(wt)︸ ︷︷ ︸
=:δt

≤ ψT+1(u) + ϕ1:T (u) + δ1:T .

Let us first bound the leading term ψT+1(u). For brevity, denote Ft(x) = log (x/αt + 1) and let Ψt(‖w‖) =∫ ‖w‖
0

minη≤1/Gmax

[
Ft(x)
η + ηVt

]
dx and Φt(‖w‖) = κ

2ρt
‖w‖2, so that ψt(w) = Ψt(‖w‖) + Φt(‖w‖). Then

ψT+1(u) = k

∫ ‖u‖
0

Ψ′T+1(x)dx+
κ

2ρt
‖u‖2

≤ k ‖u‖Ψ′T+1(‖u‖) +
κ

2
‖u‖2

√
L2

max + L2
1:T .

Moreover,

Ψ′t(‖u‖) = k min
η≤1/Gmax

[
Ft(‖u‖)

η
+ ηVt

]
=

{
2k
√
VtFt(‖u‖) if Gmax

√
Ft(‖u‖) ≤

√
Vt

kGmaxFt(‖u‖) + k Vt
Gmax

otherwise

(∗)
≤

{
2k
√
VtFt(‖u‖) if Gmax

√
Ft(‖u‖) ≤

√
Vt

2kGmaxFt(‖u‖) otherwise

= 2kmax
{√

VtFt(‖u‖), GmaxFt(‖u‖)
}
.

where (∗) observes that Vt/Gmax ≤ GmaxFt(x) whenever Ψ′t(x) = kGmaxFt(x) + kVt/Gmax. Next, using Lemma D.1
we have

ϕ1:T (u) =
1

2
‖u‖2

T∑
t=1

L2
t√
L2

1:t

≤ ‖u‖2
√
L2

1:T ,

so overall we have

T∑
t=1

〈gt, wt − u〉 ≤ 2k ‖u‖max
{√

VT+1FT+1(‖u‖), GmaxFT+1(‖u‖)
}

+
κ

2
‖u‖2

√
L2

max + L2
1:T + ‖u‖2

√
L2

1:T + δ1:T

(7)

We conclude by bounding the stability terms δ1:T . Recall that

δt = 〈gt +∇ϕt(wt), wt − wt+1〉 −Dψt(wt+1|wt)−∆t(wt+1)− ϕt(wt),

where ∆t(w) = ψt+1(w)− ψt(w). We first separate into terms related to the Gt’s and terms related to the Lt’s:

δt ≤ (‖gt‖+ ‖∇ϕt(wt)‖) ‖wt − wt+1‖
−Dψt(wt+1|wt)−∆t(wt+1)− ϕt(wt)
≤ Gt ‖wt − wt+1‖ −DΨt(wt+1|wt)−∆t(wt+1)

+ 2Lt ‖wt‖ ‖wt − wt+1‖ −DΦt(wt+1|wt)− ϕt(wt),
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where we slightly abuse notations DΨt and DΦt to denote the Bregman divergences w.r.t the function w 7→ Ψt(‖w‖)
and w 7→ Φt(‖w‖). In the second line, observe that Φt(‖w‖) = κ

2ρt
‖w‖2 is κ

ρt
strongly convex, so DΦt(wt+1|wt) ≥

κ
2ρt
‖wt+1 − wt‖2 and an application of Fenchel-Young inequality yields

2Lt ‖wt‖ ‖wt − wt+1‖ −DΦt(wt+1|wt)− ϕt(wt) ≤ 2Lt ‖wt‖ ‖wt − wt+1‖ −
κ

2ρt
‖wt+1 − wt‖2 − ϕt(wt)

≤ 4ρtL
2
t ‖wt‖

2

2κ
− ϕt(wt)

=
2L2

t ‖wt‖
2

κ
√
Lmax + L2

1:t−1

− L2
t

2
√
L2

1:t

‖wt‖2

≤ 2L2
t ‖wt‖

2

κ
√
L2

1:t

− L2
t

2
√
L2

1:t

‖wt‖2

≤ 0

for κ ≥ 4. Hence,

δt ≤ Gt ‖wt − wt+1‖ −DΨt(wt+1|wt)−∆t(wt+1),

which we will bound by showing that ∆t(w) ≥ ηt(w)G2
t for some suitable Gt-Lipschitz convex function ηt and then

invoking Lemma D.3. To this end, observe that

∆t(w) = ψt+1(w)− ψt(w)

= Ψt+1(‖w‖)−Ψt(‖w‖)︸ ︷︷ ︸
=:∆Ψ

t (w)

+ Φt+1(‖w‖)− Φt(‖w‖)︸ ︷︷ ︸
=:∆Φ

t (w)

≥ ∆Ψ
t (w).

Moreover, writing ∆Ψ
t (w) = Ψt+1(‖w‖)−Ψt(‖w‖) =

∫ ‖w‖
0

Ψ′t+1(x)−Ψ′t(x)dx, we have

Ψ′t+1(x)−Ψ′t(x) = k min
η≤1/Gmax

[
Ft+1(x)

η
+ ηVt+1

]
− k min

η≤1/Gmax

[
Ft(x)

η
+ ηVt

]
≥ k min

η≤1/Gmax

[
Ft(x)

η
+ ηVt+1

]
− k min

η≤1/Gmax

[
Ft(x)

η
+ ηVt

]

and using the fact that for any η ≤ 1/Gmax, we can bound Ft(x)
η + ηVt + ηG2

t ≥ minη∗≤1/G

[
Ft(x)
η∗ + η∗Vt

]
+ ηG2

t , we
have

≥ k min
η≤1/Gmax

[
Ft(x)

η
+ ηVt

]
− k min

η≤1/Gmax

[
Ft(x)

η
+ ηVt

]
+ kG2

t min

{√
Ft(x)

Vt+1
,

1

Gmax

}

≥ kG2
t min


√
Ft(x)

2Vt
,

1

Gmax

 ≥ G2
t min


√
Ft(x)

Vt
,

1

Gmax

 ,

where the last line observes that 1
Vt

= 1
Vt+1

Vt+1

Vt
= 1

Vt+1

(
1 +

G2
t

Vt

)
≤ 2

Vt+1
for Vt ≥ G2

t and recalls k ≥ 3. Defining

ηt(‖w‖) =
∫ ‖w‖

0
min

{√
Ft(x)
Vt

, 1
Gmax

}
dx, we then immediately have:

∆Ψ
t (‖w‖) ≥ G2

t

∫ ‖w‖
0

min


√
Ft(x)

Vt
,

1

Gmax

 dx = ηt(‖w‖)G2
t .
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Hence:

δt ≤ Gt ‖wt − wt+1‖ −Dψt(wt+1|wt)−∆t(wt+1)

≤ Gt ‖wt − wt+1‖ −Dψt(wt|wt+1)− ηt(‖wt+1‖)G2
t (8)

Finally, we conclude by showing that ψt satisfies the assumptions of Lemma D.3 w.r.t this function ηt.

We can write

Ψt(x) = k

∫ x

0

min
η≤1/Gmax

[
Ft(v)

η
+ ηVt

]
dv

= k

∫ x

0

max

{
2
√
VtFt(v), GmaxFt(v) +

Vt
Gmax

}
dv

and so for any x > 0 we have

Ψ′t(x) =

{
2k
√
VtFt(x) if Gmax

√
Ft(x) ≤

√
Vt

kGmaxFt(x) + kVt
Gmax

otherwise

Ψ′′t (x) =


k
√
Vt

(x+αt)
√
Ft(x)

if Gmax

√
Ft(x) ≤

√
Vt

kGmax

x+αt
otherwise

Ψ′′′t (x) =

{
−k
√
Vt(1+2Ft(x))

2(x+αt)2Ft(x)3/2 if Gmax

√
Ft(x) ≤

√
Vt

−kGmax

(x+αt)2 otherwise
.

Clearly, we have Ψt(x) ≥ 0, Ψ′t(x) ≥ 0, Ψ′′t (x) ≥ 0, and Ψ′′′t (x) ≤ 0 for all x > 0. Moreover, for any x ≥ αt(e−1) =: x̊t,
we have

|Ψ′′′t (x)|
Ψ′′t (x)2

=

{
k
√
Vt(1+2Ft(x))

2(x+αt)2Ft(x)3/2

(x+αt)
2Ft(x)

k2Vt
if Gmax

√
Ft(x) ≤

√
Vt

kGmax

(x+αt)2

(x+αt)
2

k2G2
max

otherwise

=

 1
2k
√
Vt

(
1√
Ft(x)

+ 2
√
Ft(x)

)
if Gmax

√
Ft(x) ≤

√
Vt

1
kGmax

otherwise

and since x > αt(e− 1), we have Ft(x) > 1 and hence 1√
Ft(x)

≤
√
Ft(x):

≤

 3
√
Ft(x)

2k
√
Vt

if Gmax

√
Ft(x) ≤

√
Vt

1
kGmax

otherwise

≤ 1

2
min


√
Ft(x)

Vt
,

1

Gmax

 =
1

2
η′t(x),

where the last line recalls ηt(x) =
∫ x

0
min

{√
Ft(v)
Vt

, 1
Gmax

}
dv and chooses k ≥ 3. Further, observe that ηt(x) is

convex and η′t(x) ≤ 1
Gmax

, hence 1
Gmax

-Lipschitz. Thus, Ψt satisfies the conditions of Lemma D.3 with ηt(x) =
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∫ x
0

min

{√
Ft(x)
Vt

, 1
Gmax

}
dx and x̊t = αt(e− 1), so summing Equation (8) over all t, we have

T∑
t=1

δt ≤
T∑
t=1

Gt ‖wt − wt+1‖ −DΨt(wt+1|wt)− ηt(‖wt+1‖)G2
t

≤
T∑
t=1

2G2
t

Ψ′′t (̊xt)
=

T∑
t=1

2G2
t

k
√
Vt

(‖x̊t‖+ αt)

≤
T∑
t=1

2eαtG
2
t

k
√
Vt
≤

T∑
t=1

2
αtG

2
t√

Vt

where the last line bounds e/k ≤ 3/k ≤ 1 for k ≥ 3. Next, substitute αt = εGmax√
Vt log2(Vt/Gmax)

to bound

T∑
t=1

δt ≤ 2εGmax

T∑
t=1

G2
t

Vt log2 (Vt/G2
max)

≤ 2εGmax

T∑
t=1

G2
t

((c− 1)G2
max +G2

1:t) log2
(

(c−1)G2
max+G2

1:t

G2
max

)
≤ 2εGmax

∫ (c−1)G2
max+G2

1:T

(c−1)G2
max

1

x log2(x/G2
max)

dx

= 2εGmax
1

log(x/G2
max)

∣∣∣∣∣
(c−1)G2

max+G2
1:T

(c−1)G2
max

≤ 2εGmax

log (c− 1)
≤ 2εGmax,

for c ≥ 4. Finally, plugging this back into Equation (7) yields

T∑
t=1

〈gt, wt − u〉 ≤ 2k ‖u‖max
{√

VT+1FT+1(‖u‖), GmaxFT+1(‖u‖)
}

+
κ

2
‖u‖2

√
L2

max + L2
1:T + ‖u‖2

√
L2

1:T + δ1:T

≤ 2k ‖u‖max
{√

VT+1FT+1(‖u‖), GmaxFT+1(‖u‖)
}

+
κ

2
‖u‖2

√
L2

max + L2
1:T + ‖u‖2

√
L2

1:T + 2εGmax

≤ 2εGmax + κ ‖u‖2
√
L2

max + L2
1:T

2k ‖u‖max
{√

VT+1FT+1(‖u‖), GmaxFT+1(‖u‖)
}

B.2. Proof of Theorem 2.3

Theorem 2.3. Let A be an algorithm defined over R2 and let wt denote the output of A on round t. Let ε > 0 and suppose
A guarantees RT (0) ≤ ε against any quadratically bounded sequence {gt}. Then for any T ≥ 1, G > 0 and L ≥ 0 there
exists a sequence g1, . . . , gT satisfying ‖gt‖ ≤ G+ L ‖wt‖ and a comparator u ∈ R2 such that

RT (u) ≥ Ω

(
G ‖u‖

√
T log

(
‖u‖
√
T/ε

)
∨ L ‖u‖2

√
T

)
.
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Proof. Let wt ∈ R2 be the output of algorithm A at time t. Consider sequences g1, . . . , gT where gt ∈{(
−G

L ‖wt‖

)
,

(
−G

−L ‖wt‖

)}
, and define the randomized sequence g̃t =

(
−G

−εtL ‖wt‖

)
where εt are independent ran-

dom signs. Consider the worst-case regret against a comparator constrained to an `∞ ball of radius U :

sup
g1,...,gT

RT = sup
g1,...,gT

T∑
t=1

〈gt, wt〉 − min
u:‖u‖∞≤U

T∑
t=1

〈gt, u〉

≥ Eε1,...,εT

[
T∑
t=1

〈g̃t, wt〉 − min
u:‖u‖∞≤U

T∑
t=1

〈g̃t, u〉

]

≥ Eε1,...,εT

[
−

T∑
t=1

G ‖wt‖ − min
u:‖u‖∞≤U

T∑
t=1

−Gu1 − u2εtL ‖wt‖

]

= Eε1,...,εT

[
−G

T∑
t=1

‖wt‖+GTU + max
|u2|≤U

u2L

T∑
t=1

εt ‖wt‖

]

= Eε1,...,εT

[
GTU + UL

∣∣∣∣∣
T∑
t=1

εt ‖wt‖

∣∣∣∣∣−G
T∑
t=1

‖wt‖

]

(a)

≥ Eε1,...,εT

GTU +
UL√

2

√√√√ T∑
t=1

‖wt‖2 −G
T∑
t=1

‖wt‖


(b)

≥ Eε1,...,εT

GTU +
UL√

2

√√√√ T∑
t=1

‖wt‖2 −G

√√√√T

T∑
t=1

‖wt‖2


where (a) applies Khintchine inequality, (b) applies Cauchy-Schwarz inequality, and choosing U = G
L

√
2T we have

= GTU =
L√
2
U2
√
T =

L ‖u‖2
√
T

2
√

2
,

where the final equality bounds ‖u‖2 = u2
1 + u2

2 ≤ 2U2. Hence, there exists a sequence of gt which incurs at least
Ω(L ‖u‖2

√
T ) regret. Moreover, for any algorithm which guarantees RT (0) ≤ ε, there exists a sequence g1, . . . , gT with

‖gt‖ ≤ G for all t such that for any T and u, RT (u) ≥ G
3
√

2
‖u‖

√
T log

(
‖u‖
√
T/
√

2ε
)

(Mcmahan & Streeter, 2012,

Theorem 8). Thus, taking the worst of these two sequences yields

sup
g1,...,gT

RT ≥ max

{
G

3
√

2
‖u‖

√
T log

(
‖u‖
√
T/
√

2ε
)
,
L ‖u‖2

√
T

2
√

2

}

C. Proofs for Section 4 (Dynamic Regret)
The main objective of this section is to prove Theorems 4.1 and 4.3. At a high level, the strategy is simple: we run several
instances of projected gradient descent, each with a different restricted domain WD = {w ∈W : ‖w‖ ≤ D} and stepsize η,
and then use a particular experts algorithm to combine them. We first assemble a collection of core lemmas that provide the
regret of the base algorithm (Lemma C.1), the regret of Algorithm 3 in terms of the regret of any of the base algorithms
(Lemma C.2), as well as some utility lemmas (Lemmas C.3 to C.6) to help tame some unwieldy algebraic expressions and
case work. We then prove the main results Theorems 4.1 and 4.3 in Appendices C.1 and C.2 respectively. Finally, we prove
our lowerbound Theorem 4.2 in Appendix C.3.

The base algorithms that we combine are instances of (projected) online gradient descent with an addi-
tional bias term added to the update. The following lemma provides the regret template for this algorithm.
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Lemma C.1. For all t let `t : W → R be convex. Let K ≥ 1, Lt ≥ 0, and KηLt ≤ 1 for all t. Let WD =
{w ∈W : ‖w‖ ≤ D}, w1 = 0, and on each round update wt+1 = Πw∈WD

(wt − η(1 +KηLt)gt), where gt ∈ ∂`t(wt).
Then for any u = (u1, . . . , uT ) in WD,

RT (u) ≤ ‖uT ‖
2

+ 2DPT
2η

+Kη

T∑
t=1

Lt [`t(ut)− `t(wt)] + 2η

T∑
t=1

‖gt‖2

where PT =
∑T
t=2 ‖ut − ut−1‖.

Proof. The result follows easily using existing analyses. For instance, the update can be seen as an instance of Algorithm 4
with ψt(w) = 1

2η ‖w‖
2, φt(w) = KηLt 〈gt, w〉 for gt ∈ ∂`t(wt), domain WD = {w ∈W : ‖w‖ ≤ D}, andMt(w) = w

for all t. Letting w1 = 0 and applying Lemma A.2, we have:

RT (u) ≤ ψT+1(uT ) +

T∑
t=2

〈∇ψt(wt), ut−1 − ut〉+Kη

T∑
t=1

Lt`t(ut)

+

T∑
t=1

〈gt +KηLtgt, wt − wt+1〉 −Dψt(wt+1|wt)−KηLt`t(wt)

≤ ‖uT ‖
2

2η
+
∑
t=2

D

η
‖ut − ut−1‖+Kη

T∑
t=1

Lt [`t(ut)− `t(wt)]

+

T∑
t=1

(1 +KηLt) 〈gt, wt − wt+1〉 −Dψt(wt+1|wt)

(a)

≤ ‖uT ‖
2

+ 2DPT
2η

+Kη

T∑
t=1

Lt [`t(ut)− `t(wt)]

+

T∑
t=1

(1 +KηLt) 〈gt, wt − wt+1〉 −
‖wt+1 − wt‖2

2η

(b)

≤ ‖uT ‖
2

+ 2DPT
2η

+Kη

T∑
t=1

Lt [`t(ut)− `t(wt)] +
η

2

T∑
t=1

(1 +KηLt)
2 ‖gt‖2

(c)

≤ ‖uT ‖
2

+ 2DPT
2η

+Kη

T∑
t=1

Lt [`t(ut)− `t(wt)] + 2η

T∑
t=1

‖gt‖2

the (a) observes that Dψt(wt+1|wt) ≥ ‖wt+1−wt‖2
2η by 1

η -strong convexity of ψ, (b) is Fenchel-Young inequality, and (c)
uses KηLt ≤ 1.

The following lemma provides a generic regret bound for Algorithm 3. The take-away is that the regret will scale
with the regret of any of the experts up to two extra terms CS and ΛT (η,D), which we will later ensure are small.
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Lemma C.2. For any τ = (η,D) ∈ S with η ≤ 1
KLmax

and sequence u = (u1, . . . , uT ) in W satisfying ‖ut‖ ≤ D for all
t, Algorithm 3 guarantees

RT (u) ≤ 2kCS + 2kDGmaxΛT (τ) +
‖uT ‖2 + 2DPT + 4kD2ΛT (τ)

2η

+Kη

T∑
t=1

Lt

[
`t(ut)− `t(w(τ)

t )
]

+ 4η

T∑
t=1

∥∥∥g(τ)
t

∥∥∥2

where k ≥ 9/2 and

CS
def
=

∑
τ̃∈S µτ̃∑
τ̃∈S µ

2
τ̃

, ΛT (τ)
def
= log

(∑
τ̃∈S µ

2
τ̃

µ2
τ

)
+ 1.

Proof. Let τ = (η,D) ∈ S and let Aτ denote an algorithm playing w(τ)
t+1 = Πw∈W :‖w‖≤D

(
w

(τ)
t − η(1 +KηLt)g

(τ)
t

)
for g(τ)

t ∈ ∂`t(w(τ)
t ). Algorithm 3 is constructed as a collection of algorithms Aτ , with an multi-scale experts algorithm

(Algorithm 5) to combine their predictions. First, observe that the regret decomposes into the regret of any expert Aτ plus
the regret of the experts algorithm relative to expert Aτ :

RT (u) =

T∑
t=1

`t(wt)− `t(ut)

=

T∑
t=1

`t

(
w

(τ)
t

)
− `t(ut)︸ ︷︷ ︸

=:RAτT (u)

+

T∑
t=1

`t(wt)− `t
(
w

(τ)
t

)

= RAτT (u) +

T∑
t=1

`t

(∑
τ̃∈S

pt(τ̃)`t(w
(τ̃)
t )

)
− `t

(
w

(τ)
t

)
and by convexity of `t and Jensen’s inequality:

≤ RAτT (u) +

T∑
t=1

[∑
τ̃∈S

pt(τ̃)`t

(
w

(τ̃)
t

)]
− `t

(
w

(τ)
t

)

= RAτT (u) +

T∑
t=1

∑
τ̃∈S

`t

(
w

(τ̃)
t

)
[pt(τ̃)− 1 {τ = τ̃}]

(a)
= RAτT (u)

+

T∑
t=1

∑
τ̃∈S

[
`t

(
w

(τ̃)
t

)
− `t(w̃t)

]
[pt(τ̃)− p∗τ (τ̃)]

+

T∑
t=1

∑
τ̃∈S

`t(w̃t)(pt(τ̃)− p∗τ (τ̃))

(b)
= RAτT (u) +

T∑
t=1

∑
τ̃∈S

[
`t

(
w

(τ̃)
t

)
− `t(w̃t)

]
[pt(τ̃)− p∗τ (τ̃)]

(c)
= RAτT (u) +

T∑
t=1

〈˜̀
t, pt − p∗τ

〉
︸ ︷︷ ︸

=:RMeta
T (p∗τ )

= RAτT (u) +RMeta
T (p∗τ ), (9)
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where w̃t is an arbitrary reference point with ‖w̃t‖ ≤ Dmin (and hence is in the domain of all of the expertsAτ ), (a) defines
p∗τ (τ̃) = 1 if τ̃ = τ and 0 otherwise, (b) observes that

∑
τ̃∈S `t(w̃t)(pt(τ̃)− p∗τ (τ̃)) = `t(w̃t)

∑
τ̃∈S pt(τ̃)− p∗τ (τ̃) = 0,

and (c) defines ˜̀t ∈ R|S| with ˜̀t,τ = `t(w
(τ)
t )− `t(w̃t).

Now for any τ = (η,D) ∈ S with D ≥ maxt ‖ut‖, we have via Lemma C.1 that

RAτT (u) ≤ ‖uT ‖
2

+ 2DPT
2η

+Kη

T∑
t=1

Lt

[
`t(ut)− `t(w(τ)

t )
]

+ 2η

T∑
t=1

∥∥∥g(τ)
t

∥∥∥2

. (10)

To bound RMeta
T (p∗τ ), observe that for any τ̃ = (η̃, D̃), we have

˜̀
t,τ̃ = `t(w

(τ̃)
t )− `t(w̃t) ≤

∥∥∥∇`t(w(τ̃)
t )
∥∥∥ ∥∥∥w(τ̃)

t − w̃t
∥∥∥

≤
(
Gmax + LmaxD̃

)
2D̃,

and so with µτ̃ = 1

2D̃(Gmax+D̃/η̃)
and η̃ ≤ 1

KLmax
≤ 1

Lmax
we have

µτ̃ `t,τ̃ ≤
1

2D̃
(
Gmax + D̃/η̃

)2D̃
(
Gmax + LmaxD̃

)
≤ 1(

Gmax + LmaxD̃
) (Gmax + LmaxD̃

)
= 1,

so these choices meet the assumptions of Theorem A.3 and we have:

RMeta
T (p∗τ ) ≤

∑
τ̃∈S

p∗τ (τ̃)

[
k [log (p∗τ (τ̃)/p1τ̃ ) + 1]

µτ̃
+ µτ̃

T∑
t=1

˜̀2
tτ̃

]
+ 2k

∑
τ̃∈S

p1τ̃

µτ̃

for k ≥ 9/2. Recalling that p∗τ (τ̃) = 1 when τ̃ = τ and 0 otherwise and that τ = (D, η), the first sum is bound as

k [log (p∗τ (τ)/p1τ ) + 1]

µτ
+ µτ

T∑
t=1

˜̀2
tτ = 2kD

(
Gmax +

D

η

)
[log (1/p1τ ) + 1] +

η

2D (Gmaxη +D)

T∑
t=1

˜̀2
t,τ

≤ 2kD

(
Gmax +

D

η

)
[log (1/p1τ ) + 1] +

η

2D2

T∑
t=1

∥∥∥∇`t(w(τ)
t )
∥∥∥2

4D2

= 2kD

(
Gmax +

D

η

)
[log (1/p1τ ) + 1] + 2η

T∑
t=1

∥∥∥g(τ)
t

∥∥∥2

,

and so with p1,τ =
µ2
τ∑

τ̃∈S µ
2
τ̃

, we have

RMeta
T (p∗τ ) ≤ 2kD

(
Gmax +

D

η

)[
log

(∑
τ̃∈S µ

2
τ̃

µ2
τ

)
+ 1

]
+ 2η

T∑
t=1

∥∥∥g(τ)
t

∥∥∥2

+ 2k
∑
τ̃∈S

µτ̃∑
τ̃∈S µ

2
τ̃

.
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Combining this with Equations (9) and (10) yields the stated result:

RT (u) ≤ ‖uT ‖
2

+ 2DPT
2η

+Kη

T∑
t=1

Lt

[
`t(ut)− `t(w(τ)

t )
]

+ 4η

T∑
t=1

∥∥∥g(τ)
t

∥∥∥2

+ 2kD

(
Gmax +

D

η

)[
log

(∑
τ̃∈S µ

2
τ̃

µτ

)
+ 1

]
+ 2k

∑
τ̃∈S µτ̃∑
τ̃∈S µ

2
τ̃

= 2kCS + 2kDGmaxΛT (τ) +
‖uT ‖2 + 2DPT + 4kD2ΛT (τ)

2η

+Kη

T∑
t=1

Lt

[
`t(ut)− `t(w(τ)

t )
]

+ 4η

T∑
t=1

∥∥∥g(τ)
t

∥∥∥2

where the last line defines the shorthand notations

CS
def
=

∑
τ̃∈S µτ̃∑
τ̃∈S µ

2
τ̃

and ΛT (τ)
def
= log

(∑
τ̃∈S µ

2
τ̃

µ2
τ

)
+ 1.

Next, we provide bounds on the terms terms CS and ΛT in terms of the hyperparameter ranges [ηmin, ηmax] and
[Dmin, Dmax] that the meta-algorithm tunes the hyperparameters over.

Lemma C.3. Let 0 < ηmin ≤ ηmax, 0 < Dmin ≤ Dmax, and define the hyperparameter set S = Sη × SD for
Sη =

{
ηi =

[
ηmin2i ∧ ηmax

]
: i ≥ 0

}
and SD =

{
Dj =

[
Dmin2j ∧Dmax

]
: j ≥ 0

}
. For each τ = (η,D) ∈ S, let

µτ = 1
2D(Gmax+D/η) . Then

CS
def
=

∑
τ∈S µτ∑
τ∈S µ

2
τ

≤ 2
√
TDmin

(
Gmax +

Dmin

ηmax

)

and for any τ ∈ S,

ΛT (τ)
def
= log

(∑
τ̃∈S µ

2
τ̃

µ2
τ

)
+ 1 ≤ log

(
24η2

maxD
4

η2
minD

4
min

∧ 6 |Sη|D2

D2
min

)
+ 1

Proof. For the first statement, we have

CS =

∑
τ̃∈S µτ̃∑
τ̃∈S µ

2
τ̃

≤

√
T∑

τ̃∈S µ
2
τ̃

≤
√

T

µ2
(ηmax,Dmin)

=

√
T (2Dmin)2 (Gmax +Dmin/ηmax)

2

= 2
√
TDmin

(
Gmax +

Dmin

ηmax

)
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where the first inequality applies Cauchy-Schwarz inequality. Moreover, for any τ = (η,D) ∈ S we have

∑
τ̃∈S µ

2
τ̃

µ2
τ

=
1

µ2
(η,D)

 ∑
(ηi,Dj)∈S

1

(2Dj)2 [Gmax +Dj/ηi]
2


≤ 1

4µ2
(η,D)

∑
(ηi,Dj)∈S

η2
i

D4
j

=
1

4µ2
(η,D)

∑
(ηi,Dj)∈S

22iη2
min

D4
min24j

=
η2

min

4µ2
(η,D)D

4
min

dlog2(ηmax/ηmin)e∑
i=0

dlog2(Dmax/Dmin)e∑
j=0

22i

24j

≤ η2
min

4µ2
(η,D)D

4
min

22dlog2(ηmax/ηmin)e+2 − 1

3

1

1− 1
16

≤ η2
min

4µ2
(η,D)D

4
min

2log2(η2
max/η

2
min)+4 − 1

3

16

15

≤ η2
min

4µ2
(η,D)D

4
min

16
η2

max

η2
min

16

45

≤ 6η2
max

4µ2
(η,D)D

4
min

=
3η2

max

2µ2
(η,D)D

4
min

At the same time, we can also bound this term as

∑
τ̃∈S µ

2
τ̃

µ2
τ

=
1

µ2
(η,D)

 ∑
(ηi,Dj)∈S

1

(2Dj)2 [Gmax +Dj/ηi]
2


≤ 1

4µ2
(η,D)

∑
(ηi,Dj)∈S

1

D2
jG

2
max

≤ |Sη|
4µ2

(η,D)G
2
max

dlog2(Dmax/Dmin)e∑
j=0

1

D2
min22j

≤ |Sη|
4µ2

(η,D)G
2
maxD

2
min

1

1− 1
4

≤ 4 |Sη|
4 · 3µ2

(η,D)G
2
maxD

2
min

=
|Sη|

3µ2
(η,D)G

2
maxD

2
min

Hence,

ΛT (η,D) = log

(∑
τ̃ µτ̃
µ2
τ

)
+ 1

≤ log

([
3η2

max

2D2
min

∧ |Sη|
3G2

max

]
1

µ2
(η,D)D

2
min

)
+ 1

= log

([
3η2

max

2D2
min

∧ |Sη|
3G2

max

]
(2D)2 [Gmax +D/η]

2

D2
min

)
+ 1.
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Now if Gmax ≤ D/η, we have

ΛT (η,D) ≤ log

(
3 · 4 · η2

maxD
2 [Gmax +D/η]

2

2D4
min

)
+ 1

≤ log

(
6η2

maxD
2 · (2D/η)2

D4
min

)
+ 1

≤ log

(
24η2

maxD
4

η2
minD

4
min

)
+ 1

and otherwise

ΛT (η,D) ≤ log

(
4 |Sη|D2 [Gmax +D/η]

2

3G2
maxD

2
min

)
+ 1

≤ log

(
6 |Sη|D2G2

max

G2
maxD

2
min

)
+ 1

= log

(
6 |Sη|D2

D2
min

)
+ 1.

Thus, we can bound

ΛT (η,D) ≤ log

(
24η2

maxD
4

η2
minD

4
min

∧ 6 |Sη|D2

D2
min

)
+ 1

Lemma C.4 provides a simple but tedius calculation which we will use a few times in the proof of Theorem 4.1.

Lemma C.4. Let `t be (Gt, Lt)-quadratically bounded, c1, c2 ≥ 0, u,w ∈ W , and gt ∈ ∂`t(w). Assume ‖w‖ ≤ D and
‖u‖ ≤ D. Then

c1Lt [`t(u)− `t(w)] + c2 ‖gt‖2 ≤ 3(c1 + c2)
(
G2
t + L2

tD
2
)

Proof. Since `t is (Gt, Lt)-quadratically bounded, and gt ∈ ∂`t(w) where ‖w‖ ≤ D we have

‖gt‖2 ≤ (Gt + Lt ‖w‖)2 ≤ 2G2
t + 2L2

t ‖w‖
2 ≤ 2G2

t + 2L2
tD

2.

Moreover, letting ∇`t(u) ∈ ∂`t(u) and ‖u‖ ≤ D we have

Lt (`t(u)− `t(w)) ≤ Lt ‖∇`t(u)‖ ‖u− w‖
≤ 2DLt ‖∇`t(u)‖
≤ 2DLt (Gt + LtD)

= 2DLtGt + 2L2
tD

2

≤ G2
t + L2

tD
2 + 2L2

tD
2

= G2
t + 3L2

tD
2.

Thus,

c1Lt (`t(u)− `t(w)) + c2 ‖gt‖2 ≤ (c1 + 2c2)G2
t + (3c1 + 2c2)L2

tD
2

≤ 3(c1 + c2)
(
G2
t + L2

tD
2
)
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Lastly, we provide two lemmas which let us assume that there is a τ = (η,D) ∈ S for which 1
2D ≤M = maxt ‖ut‖ ≤ D

by showing that the regret is trivially well-controlled whenever M is “too big” (Lemma C.5) or “too small” (Lemma C.6).
Lemma C.5. For all t let `t be a (Gt, Lt)-quadratically bounded convex function for Gt ∈ [0, Gmax] and Lt ∈ [0, Lmax].
Let ε > 0, Dmax = ε2T , and let u = (u1, . . . , uT ) be an arbitrary sequence in W such that M := maxt ‖ut‖ ≥ Dmax.
Then for any w1, . . . , wT with ‖wt‖ ≤ Dmax,

T∑
t=1

`t(wt)− `t(ut) ≤ 2
(
GmaxM + LmaxM

2
)

log2

(
M

ε

)
.

Proof. Let gt ∈ ∂`t(wt) and observe that

T∑
t=1

`t(wt)− `t(ut) ≤
T∑
t=1

‖gt‖ ‖wt − ut‖

≤
T∑
t=1

‖gt‖ (Dmax + ‖ut‖)

≤ 2M

T∑
t=1

‖gt‖

≤ 2M (Gmax + LmaxDmax)T

≤ 2M (Gmax + LmaxM)T

≤ 2
(
GmaxM + LmaxM

2
)

log2

(
M

ε

)
,

where the last line uses M ≥ ε2T =⇒ T ≤ log2

(
M
ε

)
.

Lemma C.6. For all t let `t be a (Gt, Lt)-quadratically bounded convex function for Gt ∈ [0, Gmax] and Lt ∈ [0, Lmax].
Let ε > 0, Dmin = ε

T , ηmax = 1
KLmax

, and ηmin = ε
K(Gmax+εLmax)T . Let wt ∈ W be the outputs of the algorithm

characterized in Lemma C.2 with η = ηmin and D = Dmin, and let u = (u1, . . . , uT ) be an arbitrary sequence in W with
M = maxt ‖ut‖ ≤ Dmin. Then

RT (u) ≤ (Gmax + εLmax) [K(M + PT ) + εCT ]

where CT ≤ O
(

log(log( Gmax
εLmax

))
T

)
.

Proof. For M ≤ Dmin, we can apply Lemma C.2 with τ = (ηmin, Dmin) to get

RT (u) ≤ 2kCS + 2kDminGmaxΛT (τ) +
‖uT ‖2 + 2DminPT + 4kD2

minΛT (τ)

2ηmin

+Kηmin

T∑
t=1

Lt

[
`t(ut)− `t(w(τ)

t )
]

+ 4ηmin

T∑
t=1

∥∥∥g(τ)
t

∥∥∥2

,

where µτ̃ = 1

2D̃(Gmax+D̃/η̃)
for any τ̃ = (η̃, D̃) ∈ S, k ≥ 9/2, and

CS
def
=

∑
τ̃∈S µτ̃∑
τ̃∈S µ

2
τ̃

, ΛT (τ) = ΛT (ηmin, Dmin)
def
= log

( ∑
τ̃∈S µ

2
τ̃

µ(ηmin,Dmin)2

)
+ 1.

Observe that with M = maxt ‖ut‖ ≤ Dmin and Dmin

ηmin
= K(Gmax + εLmax), we have

‖uT ‖2 + 2DminPT + 4kD2
minΛT (τ)

2ηmin
≤ Dmin

ηmin

1

2
(‖uT ‖+ 2PT + 4kDminΛT (τ))

=
1

2
K(Gmax + εLmax)

(
‖uT ‖+ 2PT + 4k

εΛT (τ)

T

)
.
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Moreover, by Lemma C.4 we have

T∑
t=1

KηminLt

[
`t(ut)− `t(w(τ)

t )
]

+ 4ηmin

∥∥∥g(τ)
t

∥∥∥2

≤ ηmin

T∑
t=1

3(K + 4)
(
G2
t + L2

tD
2
min

)
≤ 3(K + 4)

ε
(
G2

max + L2
maxD

2
min

)
K(Gmax + εLmax)

≤ 3(K + 4)

K

(
εGmax +

ε2Lmax

T 2

)

Plugging in the previous two displays back into the full regret bound yields

RT (u) ≤ 2kCS + 2kεGmax
ΛT (τ)

T
+

1

2
K(Gmax + εLmax)

(
‖uT ‖+ 2PT + 4k

εΛT (τ)

T

)
+

3(K + 4)

K

[
εGmax +

Lmaxε
2

T 2

]
≤ 2kCS + εGmax

[
3(K + 4)

K
+

(K + 1)2kΛT (τ)

T

]
+ ε2Lmax

[
3(K + 4)

KT 2
+

2kKΛT (τ)

T

]
+K(Gmax + εLmax) [M + PT ] .

Finally, Lemma C.3 bounds

2kCS ≤ 2k · 2
√
TDmin

(
Gmax +

Dmin

ηmax

)
≤ 4k

√
T
ε

T

[
Gmax +

KεLmax

T

]
≤

4k
(
εGmax +Kε2Lmax/T

)
√
T

and

ΛT (ηmin, Dmin) ≤ log (6 |Sη|) + 1 ≤ log (|Sη|) + 3

≤ log

(⌈
log2

(
TGmax

εLmax

)⌉
+ 1

)
+ 3

≤ log

(
log2

(
TGmax

εLmax

)
+ 2

)
+ 3

Plugging these back in above:

RT (u) ≤ εGmax(K + 4)

[
3

K
+

k√
T

+
2kΛT (ηmin, Dmin)

T

]
+ ε2Lmax(K + 4)

[
3

KT 2
+

4k

T 3/2
+

2kΛT (ηmin, Dmin)

T

]
+K(Gmax + εLmax) [M + PT ]

≤ CT
(
εGmax + ε2Lmax

)
+K(Gmax + εLmax) [M + PT ]

= (Gmax + εLmax) [K(M + PT ) + εCT ]
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where

CT ≤ (K + 4)

 3

K
+

4k√
T

+
2k
(

log
(

log2

(
TGmax

εLmax

)
+ 2
)

+ 3
)

T


≤ O

 log
(

log
(
Gmax

εLmax

))
T



C.1. Proof of Theorem 4.1
Theorem 4.1. For all t let `t : W → R be a (Gt, Lt)-quadratically bounded convex function with Gt ∈ [0, Gmax] and
Lt ∈ [0, Lmax]. Let ε > 0, K ≥ 8, βt = 1 − exp (−1/T ) for all t, and for any i, j ≥ 0 let Dj = ε

T

[
2j ∧ 2T

]
and

ηi =
[

ε2i

K(Gmax+εLmax)T ∧
1

KLmax

]
, and let S = {(ηi, Dj) : i, j ≥ 0}. For each τ = (η,D) ∈ S let µτ = 1

2D(Gmax+D/η) ,

and set p1(τ) =
µ2
τ∑

τ̃∈S µ
2
τ̃

. Then for any u = (u1, . . . , uT ) in W , Algorithm 3 guarantees

RT (u) ≤ O

([
Gmax + (M + ε)Lmax

][
(M + ε)Λ∗T + PT

]
+

√√√√(M2Λ∗T +MPT )

T∑
t=1

G2
t + L2

tM
2,

)
.

where PT =
∑T
t=2 ‖ut − ut−1‖, M = maxt ‖ut‖, and Λ∗T ≤ O

(
log
(
MT log(T )

ε

)
+ log

(
log
(
Gmax

εLmax

)))
. Moreover,

when the losses are Lt-smooth, the bound automatically improves to

RT (u) ≤ O

([
Gmax + (M + ε)Lmax

][
(M + ε)Λ∗T + PT

]

+

√√√√(M2Λ∗T +MPT )

[
T∑
t=1

Lt [`t(ut)− `∗t ] ∧
T∑
t=1

G2
t + L2

tM
2

])
.

Proof. First observe that we can assume that there is a τ = (η,D) ∈ S for which D ≥ maxt ‖ut‖ = M , since otherwise
using Lemma C.5 with ε = ε

T the regret is bounded as

RT (u) ≤ 2M (Gmax +MLmax) log

(
MT

ε

)
. (11)

Likewise, if M ≤ Dmin then by Lemma C.6 we have

RT (u) ≤ (Gmax + Lmaxε) [K(M + PT ) + εCT ] , (12)

where CT ≤ O
(

log(log( Gmax
εLmax

))
T

)
. Otherwise, we have M ∈ [Dmin, Dmax], in which case there is a Dj = ε2j

T for which

Dj ≥M ≥ Dj−1 = 1
2Dj , so for any τ = (η,Dj) ∈ S we can apply Lemma C.2 to get

RT (u) ≤ 2kCS + 2kDjGmaxΛT (τ) +
‖uT ‖2 + 2DjPT + 4kD2

jΛT (τ)

2η

+Kη

T∑
t=1

Lt

[
`t(ut)− `t(w(τ)

t )
]

+ 4η

T∑
t=1

∥∥∥g(τ)
t

∥∥∥2

,
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where g(τ)
t ∈ ∂`t(w(τ)

t ), PT =
∑T
t=2 ‖ut − ut−1‖, and

CS =

∑
τ̃∈S µτ̃∑
τ̃∈S µτ̃

ΛT (η,Dj) = log

(∑
τ̃∈S µ

2
τ̃

µ2
(η,Dj)

)
+ 1

= log

(
D2
j

[
Gmax +

Dj

η

]2 ∑
τ̃∈S

µ2
τ̃

)
+ 1

≤ log

(
(2M)2

[
Gmax +

2M

ηmin

]2 ∑
τ̃∈S

µ2
τ̃

)
+ 1

= ΛT (ηmin, 2M).

Thus, bounding Dj ≤ 2M and denoting ΩT :=
∑T
t=1KLt

[
`t(ut)− `t(w(τ)

t )
]

+ 4
∥∥∥g(τ)
t

∥∥∥2

, we have:

RT (u) ≤ 2kCS + 4kMGmaxΛT (ηmin, 2M) +
M2 (1 + 16kΛT (ηmin, 2M)) + 4MPT

2η

η

T∑
t=1

[
KLt

[
`t(ut)− `t(w(τ)

t )
]

+ 4
∥∥∥g(τ)
t

∥∥∥2
]

︸ ︷︷ ︸
=:ΩT

. (13)

Next, we show that there is an η for which the above expression is well-controlled.

Observe that choosing η optimally in Equation (13) would yield

η∗ =

√
M2(1 + 16kΛT (ηmin, 2M)) + 4MPT

2ΩT
.

If η∗ ≥ ηmax, then choosing η = ηmax yields

RT (u) ≤ 2kCS + 4kMGmaxΛT (ηmin, 2M) +
M2 (1 + 16kΛT (ηmin, 2M)) + 4MPT

2ηmax
+ η∗ΩT

= 2kCS + 4kMGmaxΛT (ηmin, 2M) +
KLmax

2

[
M2(1 + 16kΛT (ηmin, 2M)) + 4MPT

]
+

√
1

2
[M2 (1 + 16kΛT (ηmin, 2M)) + 4MPT ] ΩT . (14)

Similarly, if η∗ ≤ ηmin, then choosing η = ηmin yields

RT (u) ≤ 2kCS + 4kMGmaxΛT (ηmin, 2M) +
M2 (1 + 16kΛT (ηmin, 2M)) + 4MPT

2η∗
+ ηminΩT

= 2kCS + 4kMGmaxΛT (ηmin, 2M) +

√
1

2
[M2 (1 + 16kΛT (ηmin, 2M)) + 4MPT ] ΩT

+
εΩT

K (Gmax + εLmax)T
.

Observe that by Lemma C.4, we have

ΩT =

T∑
t=1

KLt

[
`t(ut)− `t(w(τ)

t )
]

+ 4
∥∥∥g(τ)
t

∥∥∥2

≤
T∑
t=1

3(K + 4)
(
G2

max + L2
maxD

2
j

)
≤ 3(K + 4)

(
G2

max + 4M2L2
max

)
T.
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Thus

εΩT
K (Gmax + εLmax)T

≤
ε · 3(K + 4)

(
G2

max + 4M2L2
max

)
T

K (Gmax + εLmax)T

≤ 3(K + 4)

K

(
εGmax + 4M2Lmax

)
≤ (K + 4)

(
εGmax + 4M2Lmax

)
for K ≥ 3. so overall when η∗ ≤ ηmin the regret can be bounded as

RT (u) ≤ 2kCS + 4kMGmaxΛT (ηmin, 2M) +

√
1

2
[M2 (1 + 16kΛT (ηmin, 2M)) + 4MPT ] ΩT

+ (K + 4)εGmax + 4(K + 4)M2Lmax. (15)

Finally, if η∗ ∈ [ηmin, ηmax], then there is an ηi = 2iε
K(Gmax+εLmax)T such that ηi ≤ η∗ ≤ ηi+1 = 2ηi, so choosing η = ηi

Equation (13) is bounded by

RT (u) ≤ 2kCS + 4kMGmaxΛT (ηmin, 2M) +
M2 (1 + 16kΛT (ηmin, 2M)) + 4MPT

η∗
+ η∗ΩT

≤ 2kCS + 4kMGmaxΛT (ηmin, 2M) + 3

√
1

2
[M2 (1 + 16kΛT (ηmin, 2M)) + 4MPT ] ΩT . (16)

Now combining Equations (11), (12) and (14) to (16), we have

RT (u) ≤ 2M (Gmax +MLmax) log

(
MT

ε

)
+ (Gmax + Lmaxε) [K(M + PT ) + εCT ]

+ 2kCS + 4kMGmaxΛT (ηmin, 2M)

+ 3

√
1

2
[M2 (1 + 16kΛT (ηmin, 2M)) + 4MPT ] ΩT

+ (K + 4)εGmax + 4(K + 4)M2Lmax

+
KLmax

2

[
M2(1 + 16kΛT (ηmin, 2M)) + 4MPT

]
.

From Lemma C.3 we have

CS ≤ 2
√
TDmin

(
Gmax +

Dmin

ηmax

)
≤

2K
(
εGmax + ε2Lmax

)
√
T

ΛT (ηmin, 2M)

≤ log

(
6 |S| (2M)2

D2
min

)
+ 1

≤ log

24M2T 2
(⌈

log2

(
TGmax

εLmax

)⌉
+ 1
)

ε2

+ 1

≤ 2 log

(
5MT

ε

)
+ log

(
log2

(
TGmax

εLmax

)
+ 2

)
+ 1

Hence, hiding constants we may write

RT (u) ≤ O

(
Gmax((M + ε)Λ∗T + PT ) + Lmax

[
(M + ε)2Λ∗T + (M + ε)PT

]
+
√

(M2Λ∗T +MPT )ΩT ,

)
.
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where Λ∗T ≤ O
(

log
(
MT
ε

)
+ log

(
log
(
TGmax

εLmax

)))
≤ O

(
log
(
MT log(T )

ε

)
+ log

(
log
(
Gmax

εLmax

)))
. Finally, the proof

is completed by observing that if the `t are Lt-smooth, then using the self-bounding property we have
∥∥∥g(τ)
t

∥∥∥2

≤

2Lt

(
`t(w

(τ)
t )− `∗t

)
for `∗t = minw∈W `t(w), and thus

ΩT =

T∑
t=1

KLt

[
`t(ut)− `t(w(τ)

t )
]

+ 4

T∑
t=1

∥∥∥g(τ)
t

∥∥∥2

≤
T∑
t=1

KLt

[
`t(ut)− `t(w(τ)

t )
]

+ 8

T∑
t=1

Lt

[
`t(w

(τ)
t )− `∗t

]
≤

T∑
t=1

KLt [`t(ut)− `∗t ]

where the second-to-last line chooses K ≥ 8, and simultaneously we have using Lemma C.4 that

ΩT ≤ 3(K + 4)

T∑
t=1

[
G2
t + L2

tD
2
j

]
≤ 3(K + 4)

T∑
t=1

[
G2
t + 4L2

tM
2
]
,

and so we have ΩT ≤ O
(∑T

t=1 Lt [`t(ut)− `∗t ] ∧
∑T
t=1G

2
t + L2

tM
2
)

.

C.2. Proof of Theorem 4.3

Theorem 4.3. For all t let `t : W → R be (Gt, Lt)-quadratically bounded and Lt-smooth convex function with
Gt ∈ [0, Gmax] and Lt ∈ [0, Lmax]. Let ε > 0, K ≥ 8, and for any i, j ≥ 0 let Dj = ε√

T

[
2j ∧ 2T

]
and

ηi = 1
KLmax

√
T

[
2i ∧
√
T
]
, and let S = {(ηi, Dj) : i, j ≥ 0}. Then for any u = (u1, . . . , uT ) in W , Algorithm 3

guarantees

RT (u) ≤ O

(
Gmax(M + ε)Λ∗T + Lmax(M + ε)2Λ∗T + Lmax(M + ε)PT

+

√√√√ T∑
t=1

[`t(ut)− `∗t ]
2

+

√√√√(M2Λ∗T +MPT )

T∑
t=1

Lt [`t(ut)− `∗t ]

)
,

where M = maxt ‖ut‖, PT =
∑T
t=2 ‖ut − ut−1‖, and Λ∗T ≤ O

(
log

(
M
√
T log(

√
T)

ε

))
.

Proof. By Lemma C.5, we can assume that there is a τ = (η,D) ∈ S for which D ≥ maxt ‖ut‖ = M , since otherwise the
regret is bounded as

RT (u) ≤ 2M (Gmax +MLmax) log

(
M
√
T

ε

)
. (17)

Hence, we can assume there is a (η,D) ∈ S which has M ≤ D. For any such (η,D) ∈ S , we can apply Lemma C.2 to get

RT (u) ≤ 2kCS + 2kDGmaxΛT (τ) +
‖uT ‖2 + 2DPT + 4kD2ΛT (τ)

2η

+Kη

T∑
t=1

Lt

[
`t(ut)− `t(w(τ)

t )
]

+ 4η

T∑
t=1

∥∥∥g(τ)
t

∥∥∥2

,
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where g(τ)
t ∈ ∂`t(w(τ)

t ), PT =
∑T
t=2 ‖ut − ut−1‖ and

CS
def
=

∑
τ̃∈S µτ̃∑
τ̃∈S µ

2
τ̃

, ΛT (τ)
def
= log

(∑
τ̃∈S µ

2
τ̃

µ2
τ

)
+ 1,

where for any τ̃ = (D̃, η̃) ∈ S we define µ(η̃,D̃) = 1

2D̃(Gmax+D̃/η̃)
. Using the self-bounding property of smooth functions,

for any g(τ)
t ∈ ∂`t(w(τ)

t ) we have
∥∥∥g(τ)
t

∥∥∥2

≤ 2Lt

[
`t(w

(τ)
t )− `∗t

]
for `∗t = arg minw∈W `t(w), so the last line is bound as

Kη

T∑
t=1

Lt

[
`t(ut)− `t(w(τ)

t )
]

+ 8η

T∑
t=1

Lt

[
`t(w

(τ)
t )− `∗t

]
≤ Kη

T∑
t=1

Lt [`t(ut)− `∗t ]

for K ≥ 8. Hence,

RT (u) ≤ 2kCS + 2kDGmaxΛT (τ) +
‖uT ‖2 + 2DPT + 4kD2ΛT (τ)

2η

+Kη

T∑
t=1

Lt [`t(ut)− `∗t ] (18)

Now suppose that M ≤ Dmin, then choosing τ = τmin = (ηmin, Dmin) we would have

RT (u) ≤ 2kCS + 2kDminGmaxΛT (τmin) +
‖uT ‖2 + 2DminPT + 4kD2

minΛT (τmin)

2ηmin

+Kηmin

T∑
t=1

Lt [`t(ut)− `∗t ]

≤ 2kCS + 2kDminGmaxΛT (τmin) +
Dmin

ηmin

1

2
(M + 2PT + 4kDminΛT (τmin))

+
1√

TLmax

T∑
t=1

Lt [`t(ut)− `∗t ]

≤ 2kCS + 2kGmax
εΛT (τmin)√

T
+KεLmax

(
M + PT + 2k

εΛT (τmin)√
T

)

+

√√√√ T∑
t=1

[`t(ut)− `∗t ]
2 (19)

where the last line applies Cauchy-Schwarz inequality, observes that Dmin/ηmin = KεLmax, and recalls Dmin = ε√
T

.

Finally, assume that M ∈ [Dmin, Dmax], then there is a Dj = ε2j√
T

for which Dj ≥ M ≥ Dj−1 = 1
2Dj . Then, choosing

τ = (η,Dj), Equation (18) yields

RT (u) ≤ 2kCS + 4kMGmaxΛT (ηmin, 2M) +
M2 + 4MPT + 16kM2ΛT (ηmin, 2M)

2η

+Kη

T∑
t=1

Lt [`t(ut)− `∗t ] (20)
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where we’ve observed that

Λ(η,Dj) = log

(∑
τ̃∈S µ

2
τ̃

µ(η,Dj)

)
+ 1

= log

(∑
τ̃∈S

µ2
τ̃D

2
j [Gmax +Dj/η]

2

)
+ 1

≤ log

(∑
τ̃∈S

µ2
τ̃ (2M)2 [Gmax + 2M/η]

2

)
+ 1

= ΛT (η, 2M)

so it remains to show that there is an η that favorably balances the last two terms of Equation (20).

Observe that the optimal choice for η would be

η∗ =

√
M2(1 + 16kΛT (ηmin, 2M)) + 4MPT

2K
∑T
t=1 Lt [`t(ut)− `∗t ]

.

If η∗ ≤ ηmin then choosing η = ηmin we have

RT (u) ≤ 2kCS + 4kMGmaxΛT (ηmin, 2M) +
M2(1 + 16kΛT (ηmin, 2M) + 4MPT

2η∗
+Kηmin

T∑
t=1

Lt [`t(ut)− `∗t ]

≤ 2kCS + 4kMGmaxΛT (ηmin, 2M) +

√
K

2
(M2(1 + 16kΛT (ηmin, 2M)) + 4MPT ) ΩT

+

√√√√ T∑
t=1

[`t(ut)− `∗t ]
2
, (21)

where the last line defines the short-hand notation ΩT =
∑T
t=1 Lt [`t(ut)− `∗t ] and uses Cauchy-Schwarz inequality to

bound Kηmin

∑T
t=1 Lt [`t(ut)− `∗t ] ≤

√∑T
t=1 [`t(ut)− `∗t ]

2. Likewise, if η∗ ≥ ηmax then by choosing η = ηmax we
have via Equation (20) that

RT (u) ≤ 2kCS + 4kMGmaxΛT (ηmin, 2M) +
M2 + 4MPT + 16kM2ΛT (ηmin, 2M)

2ηmax

+Kη∗
T∑
t=1

Lt [`t(ut)− `∗t ]

= 2kCS + 4kMGmaxΛT (ηmin, 2M) +KLmax

(
M2(1 + 8kΛT (ηmin, 2M)) + 2MPT

)
+

√
K

2
(M2(1 + 16kΛT (ηmin, 2M)) + 4MPT ) ΩT (22)

Finally, if η∗ ∈ [ηmin, ηmax] then there is an ηi = 2i

εLmax

√
T

for which ηi ≤ η∗ ≤ ηi+1 = 2ηi, so Equation (20) is gives us

RT (u) ≤ 2kCS + 4kMGmaxΛT (ηmin, 2M) + 3

√
K

2
(M2(1 + 16kΛT (ηmin, 2M)) + 4MPT ) ΩT (23)
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Finally, combining Equations (17), (19) and (21) to (23), we have

RT (u) ≤ 2kCS + 4kGmax

[
MΛT (ηmin, 2M) +

εΛT (τmin)√
T

]
+ 2M (Gmax +MLmax) log

(
M
√
T

ε

)

+KεLmax

(
M + PT + 2k

εΛT (τmin)√
T

)
+KLmax

(
M2(1 + 8kΛT (ηmin, 2M)) + 2MPT

)
+

√√√√ T∑
t=1

[`t(ut)− `∗t ]
2

+ 3

√
K

2
(M2(1 + 16kΛT (ηmin, 2M)) + 4MPT ) ΩT

Lastly, note that by Lemma C.3, we have

CS ≤ 2
√
TDmin

(
Gmax +

Dmin

ηmax

)
= 2εGmax +

2Kε2Lmax√
T

ΛT (τ) ≤ log

(
24η2

maxD
4

η2
minD

4
min

∧ 6 |Sη|D2

D2
min

)
+ 1

≤ log

(
6 |Sη|D2

D2
min

)
+ 1

so ΛT (ηmin, Dmin) ≤ log
(

6 log2

(
dlog2(

√
T )e+ 1

))
≤ O

(
log(log(

√
T ))
)

and ΛT (ηmin, 2M) ≤

log

(
24TM2 log2(dlog2(

√
T )e+1)

ε2

)
≤ O

(
log
(
M
√
T log

(√
T
)
/ε
))

. Overall, we have

RT (u) ≤ O

(
Gmax(M + ε)Λ∗T

+ Lmax(M + ε)2Λ∗T + Lmax(M + ε)PT

+

√√√√ T∑
t=1

[`t(ut)− `∗t ]
2

+
√

(M2Λ∗T +MPT ) ΩT

)

where Λ∗T ≤ O
(

log

(
M
√
T log(

√
T)

ε

)
+ log

(
log
(√

T
)))

≤ O
(

log

(
M
√
T log(

√
T)

ε

))
.

C.3. Proof of Theorem 4.2

We focus on the case where G/L ≤ M , since otherwise when G/L ≥ M the loss function `t(w) = ( 1
2G + 1

2LM)ξtw
for ξt ∈ {−1, 1} satisfies |`′t(w)| = 1

2 (G + LM) ≤ G for any w ∈ W , so `t is G-Lipschitz. Hence, existing lower
bounds tell us that there exists a sequence ξt ∈ [−1, 1] such that RT (u) ≥ Ω

(
G
√
MPTT

)
≥ Ω

(
1
2 (G+LM)

√
MPTT

)
=

Ω
(

1
2G
√
MPTT + 1

2LM
3/2
√
PTT

)
where M = maxt ‖ut‖ and PT =

∑T
t=2 ‖ut − ut−1‖ (Zhang et al., 2018).
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Theorem 4.2. For any M > 0 there is a sequence of (G,L)-quadratically bounded functions with G
L ≤M such that for

any γ ∈ [0, 1
2 ],

RT (u) ≥ G

4
M1−γ [PTT ]

γ
+
L

8
M2−γ [PTT ]

γ
.

where PT =
∑T
t=2 ‖ut − ut−1‖ and M ≥ maxt ‖ut‖.

Proof. On each round t, we can always find a ut such that ut ⊥ wt. Let ‖ut‖ := σ ≤ M for some σ to be decided. Let
G > 0, L ≥ 0 such that G/L ≤ σ, let ξt = ut

‖ut‖ , and on each round set

`t(w) = −1

2
G 〈ξt, w〉+

L

4
(σ − 〈ξt, w〉)2.

Observe that these losses are (G̃, L̃) quadratically bounded with G̃ = 1
2G + 1

2σL and L̃ = L, and G̃/L̃ ≤ σ ≤ M as
required. Since wt ⊥ ξt and 〈ξt, ut〉 = ‖ut‖ = σ, we have

RT (u) =

T∑
t=1

`t(wt)− `t(ut) ≥
1

2
GσT +

L

4
Tσ2.

Note also that the path-length of this comparator sequence is bounded as

PT =

T∑
t=2

‖ut − ut−1‖ ≤ 2σT.

Now for µ ∈ [0, 1/2] set σ = MT−µ, then the path-length is bounded as

PT ≤ 2MT 1−µ

and the regret is bounded below by

1

2
GMT 1−µ +

L

4
T 1−2µM2.

Now set γ = 1−2µ
2−µ ∈ [0, 1

2 ] and consider the second term:

L

4
T 1−2µM2 =

L

4
(MT 1−µ)γ(MT 1−µ)1−γT−µM

≥ L

4 · 2γ
(PT )γ(MT 1−µ)1−γT−µM

=
L

8
M2−γP γT T

(1−µ)(1−γ)−µ

=
L

8
M2−γ [PTT ]

γ

where the last line observes γ = 1−2µ
2−µ ∈ [0, 1

2 ], so that (1− µ)(1− γ)− µ = γ. Similarly,

1

2
GMT 1−µ =

1

2
G(MT 1−µ)γ(MT 1−µ)1−γ ≥ 1

2 · 2γ
GM1−γ(PT )γT (1−µ)(1−γ)

≥ 1

4
GM1−γ(PTT )γ .

so

RT (u) ≥ G

4
M1−γ [PTT ]

γ
+
L

8
M2−γ [PTT ]

γ
.
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D. Supporting Lemmas
We collect here various miscellaneous supporting lemmas that we use throughout paper. The following lemma is standard
but shown here for completeness.
Lemma D.1. Let a1, . . . , aT be arbitrary non-negative numbers in R. Then√√√√ T∑

t=1

at ≤
T∑
t=1

at√∑t
s=1 as

≤ 2

√√√√ T∑
t=1

at

Proof. By concavity of x 7→
√
x, we have

√
a1:t −

√
a1:t−1 ≥

at
2
√
a1:t

,

so summing over t and observing the resulting telescoping sum yields

T∑
t=1

at√
a1:t
≤ 2

T∑
t=1

√
a1:t −

√
a1:t−1 = 2

√
a1:T .

For the lower bound, observe that
T∑
t=1

at√
a1:t
≥

T∑
t=1

at√
a1:T

=
a1:T√
a1:T

=
√
a1:T

We borrow the following lemma from Jacobsen & Cutkosky (2022).
Lemma D.2. (Jacobsen & Cutkosky, 2022, Lemma 7) Let f : R → R and let g : W → R be defined as g(x) = f(‖x‖).
Suppose that f ′(x) is concave and non-negative. If f is twice-differentiable at ‖x‖ and ‖x‖ > 0, then

∇2g(x) � f ′′(‖x‖)I

The following is a simple modification of the stability lemma used in Jacobsen & Cutkosky (2022), reported here with slight
modification to handle a leading constant.
Lemma D.3. For all t, set ψt+1(w) = Ψt+1(‖w‖) where Ψt : R≥0 → R≥0 is a convex function satisfying Ψ′t(x) ≥ 0,
Ψ′′t (x) ≥ 0, and Ψ′′′t (x) ≤ 0 for all x ≥ 0. Let c > 0 and assume that there exists an x̊t > 0 and Gt-Lipschitz convex
function ηt : R≥0 → R≥0 such that |Ψ′′′t (x)| ≤ 2η′t(x)

(c+1)2 Ψ′′t (x)2 for all x ≥ x̊t. Then for any wt+1, wt ∈W ,

δ̂t
def
= cGt ‖wt − wt+1‖ −Dψt(wt+1|wt)− ηt(‖wt+1‖)G2

t ≤
(c+ 1)2G2

t

2Ψ′′t (̊xt)

Proof. The proof follows using similar arguments to Jacobsen & Cutkosky (2022) with a few minor adjustments to correct
for the leading term c.

First, consider the case that the origin is contained in the line segment connecting wt and wt+1. Then, there exists sequences
ŵ1
t , ŵ

2
t . . . and ŵ1

t+1, ŵ
2
t+1 . . . such that limn→∞ ŵnt = wt, limn→∞ ŵnt+1 = wt+1 and 0 is not contained in the line

segment connecting ŵnt and ŵnt+1 for all n. Since ψ is twice differentiable everywhere except the origin, if we define
δ̂nt = Gt

∥∥ŵnt − ŵnt+1

∥∥ − Dψt(ŵ
n
t+1|ŵnt ) − ηt(‖ŵnt+1‖)G2

t , then limn→∞ δ̂nt = δ̂t. Thus, it suffices to prove the result
for the case that the origin is not contained in the line segment connecting wt and wt+1. The rest of the proof considers
exclusively this case.

For brevity denote δ̂t
def
= Gt ‖wt − wt+1‖ −Dψt(wt+1|wt)− ηt(‖wt+1‖) ‖gt‖2. Since the origin is not in the line segment

connecting wt and wt+1, ψt is twice differentiable on this line segment. Thus, By Taylor’s theorem, there is a w̃ on the line
connecting wt and wt+1 such that

Dψt(wt+1|wt) =
1

2
‖wt − wt+1‖2∇2ψt(w̃) ≥

1

2
‖wt − wt+1‖2 Ψ′′t (‖w̃‖)
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where the last line observes ψt(w) = Ψt(‖w‖) and uses the regularity assumptions Ψ′′′t (x) ≤ 0, and Ψ′t(x) ≥ 0 for x ≥ 0
to apply Lemma D.2. Hence,

δ̂t = cGt ‖wt − wt+1‖ −Dψt(wt+1|wt)− ηt(‖wt+1‖)G2
t

≤ cGt ‖wt − wt+1‖ −
1

2
‖wt − wt+1‖2 Ψ′′t (‖w̃‖)− ηt(‖wt+1‖)G2

t

(a)

≤ cGt ‖wt − wt+1‖ −
1

2
‖wt − wt+1‖2 Ψ′′t (‖w̃‖)− ηt(‖w̃‖)G2

t + η′t(‖w̃‖)G2
t ‖wt+1 − w̃‖

(b)

≤ (c+ 1)Gt ‖wt − wt+1‖ −
1

2
‖wt − wt+1‖2 Ψ′′t (‖w̃‖)− ηt(‖w̃‖)G2

t

(c)

≤ (c+ 1)2G2
t

2Ψ′′t (‖w̃‖)
− ηt(‖w̃‖)G2

t

where (a) uses convexity of ηt(x), (b) uses the Lipschitz assumption η′t(‖w̃‖) ≤ 1/Gt and the fact that ‖w̃ − wt‖ ≤
‖wt+1 − wt‖ for any w̃ on the line connecting wt and wt+1, and (c) uses Fenchel-Young inequality. If ‖w̃‖ ≤ x̊t, then we
have

(c+ 1)2G2
t

2Ψ′′t (‖w̃‖)
− ηt(‖w̃‖)G2

t ≤
(c+ 1)2G2

t

2Ψ′′t (̊xt)
,

which follows from the fact that Ψ′′′t (x) ≤ 0 implies Ψ′′t (x) is non-increasing in x, and hence Ψ′′t (‖w̃‖) ≥ Ψ′′t (̊xt).

Otherwise, if ‖w̃‖ ≥ x̊t, we have by assumption that |Ψ
′′′
t (x)|

Ψ′′t (x)2 =
−Ψ′′′t (x)
Ψ′′t (x)2 = d

dx
1

Ψ′′t (x) ≤
2η′t(x)
(c+1)2 for any x ≥ x̊t, so

integrating from x̊t to ‖w̃‖ we have

1

Ψ′′t (‖w̃‖)
− 1

Ψ′′t (̊xt)
≤ 2

(c+ 1)2

∫ ‖w̃‖
x̊t

η′t(x)dx,

so:

1

Ψ′′t (‖w̃‖)
≤ 1

Ψ′′t (̊xt)
+

2

(c+ 1)2

∫ ‖w̃‖
x̊t

η′t(x)dx

≤ 1

Ψ′′t (̊xt)
+

2

(c+ 1)2

∫ ‖w̃‖
0

η′t(x)dx

=
1

Ψ′′t (̊xt)
+

2ηt(‖w̃‖)
(c+ 1)2

,

and hence,

(c+ 1)2G2
t

2Ψ′′t (‖w̃‖)
− ηt(‖w̃‖)G2

t ≤
(c+ 1)2G2

t

2Ψ′′t (̊xt)
+

(c+ 1)2G2
t

2

2

(c+ 1)2
ηt(‖w̃‖)− ηt(‖w̃‖)G2

t

=
(c+ 1)2G2

t

2Ψ′′t (̊xt)
+ ηt(‖w̃‖)G2

t − ηt(‖w̃‖)G2
t

=
(c+ 1)2G2

t

2Ψ′′t (̊xt)
,

so in either case we have

δ̂t = Gt ‖wt − wt+1‖ −Dψt(wt+1|wt)− ηt(‖wt+1‖)G2
t

≤ (c+ 1)2G2
t

2Ψ′′t (̊xt)
.
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