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ABSTRACT

We introduce Information Condensing Active Learning (ICAL), a batch mode
model agnostic Active Learning (AL) method targeted at Deep Bayesian Active
Learning that focuses on acquiring labels for points which have as much informa-
tion as possible about the still unacquired points. ICAL uses the Hilbert Schmidt
Independence Criterion (HSIC) to measure the strength of the dependency between
a candidate batch of points and the unlabeled set. We develop key optimizations
that allow us to scale our method to large unlabeled sets. We show significant
improvements in terms of model accuracy and negative log likelihood (NLL) on
several image datasets compared to state of the art batch mode AL methods for
deep learning.

1 Introduction

Machine learning models are widely used for a vast array of real world problems. They have been
applied successfully in a variety of areas including biology (Ching et al., 2018), chemistry (Sanchez-
Lengeling and Aspuru-Guzik, 2018), physics (Guest et al., 2018), and materials engineering (Aspuru-
Guzik and Persson, 2018). Key to the success of modern machine learning methods is access to
high quality data for training the model. However such data can be expensive to collect for many
problems. Active learning (Settles, 2009) is a popular methodology to intelligently select the fewest
new data points to be labeled while not sacrificing model accuracy. The usual active learning setting
is pool-based active learning where one has access to a large unlabeled dataset DU and uses active
learning to iteratively select new points from DU to label. Our goal in this paper is to develop an
active learning acquisition function to select points that maximize the eventual test accuracy which is
also one of the most popular criteria used to evaluate an active learning acquisition function.

In active learning, an acquisition function is used to select which new points to label. A large
number of acquisition functions have been developed over the years, mostly for classification (Settles,
2009). Acquisition functions use model predictions or point locations (in input feature or learned
representation space) to decide which points would be most helpful to label to improve model
accuracy. We then query for the labels of those points and add them to the training set. While the past
focus for acquisition functions has been the acquisition of one point at a time, each round of label
acquisition and retraining of the ML model, particularly in the case of deep neural networks, can be
expensive. Furthermore in several applications like biology, it can be much faster to do acquisition of
a fixed number of points in parallel versus sequentially. There have been several papers, particularly
in the past few years, that try to avoid this issue by acquiring points in batch. As our goal is to apply
AL in the context of modern ML models and data, we focus in this paper on batch-mode AL.

Acquisition functions can be broadly thought of as belonging to two categories. The ones from the
first category directly focus on minimizing the error rate post-acquisition. A natural choice of such
an acquisition function might be to acquire labels for points with the highest uncertainty or points
closest to the decision boundary (Uncertainty sampling can be directly linked to minimizing error
rate in the context of active learning Mussmann and Liang (2018)). In the other category, the goal
is to get as close as possible to the true underlying model. Thus here, acquisition functions select
points which give the most amount of knowledge regarding a model’s parameters where knowledge
is defined as the statistical dependency between the parameters of the model and the predictions for
the selected points. Mutual information (MI) is the usual choice for the dependency, though other
choices are possible. For well-specified model spaces, e.g. in physics, such a strategy can identify
the correct model. In machine learning, however, models are usually mis-specified, and thus the
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metric of evaluation even for model-identification acquisition functions is how successful they are at
reducing test error. Given this reality, we follow the viewpoint of trying to minimize the error rate of
the model post-acquisition.

Our strategy is to select points that we expect would provide substantial information about the labels
of the rest of the unlabeled set, thus reducing model uncertainty. We propose acquiring a batch of
points B such that the model’s predictions on B have as high a statistical dependency as possible with
the model’s predictions on the entire unlabeled set DU . Thus we want a batch B that condenses the
most amount of information about the model’s predictions on DU . We call our method Information
Condensing Active Learning (ICAL).

A key desideratum for our acquisition function is to be model agnostic. This is partly because the
model distribution can be very heterogeneous. For example, ensembles which are often used as a
model distribution can consist of just decision trees in a random forest or different architectures for a
neural network. This means we cannot assume any closed form for the model’s predictive distribution,
and have to resort to Monte Carlo sampling of the predictions from the model to estimate the
dependency between the model’s predictions on the query batch and the unlabeled set. MI, however,
is known to be hard to approximate using just samples (Song and Ermon, 2019). Thus to scale the
method to larger batch sizes, we use the Hilbert-Schmidt Independence Criterion (HSIC), one of
the most powerful extant statistical dependency measures for high dimensional settings. Another
advantage of HSIC is that it is differentiable, which as we will discuss later, can allow applications of
the acquisition function to areas where MI would be difficult to make work.

To summarize, we introduce Information Condensing Active Learning (ICAL) which maximizes the
amount of information being gained with respect to the model’s predictions on the unlabeled set of
points. ICAL is a batch mode acquisition function that is model agnostic and can be applied to both
classification and regression tasks. We then develop an algorithm that can scale ICAL to large batch
sizes when using HSIC as the dependency measure between random variables. As our method only
needs samples from the posterior predictive distribution which can be obtained for both regression
and classification tasks, it is applicable to both.

2 Related work

A review of work on acquisition functions for active learning prior to the recent focus on deep learning
is given by Settles (2009). The BALD (Bayesian Active Learning by Disagreement) (Houlsby et al.,
2011) acquisition function chooses a query point which has the highest mutual information about the
model parameters. This turns out to be the point on which individual models sampled from the model
distribution are confident about in their prediction but the overall predictive distribution for that point
has high entropy. In other words this is the point on which the models are individually confident but
disagree on the most.

In Guo and Schuurmans (2008) which builds on Guo and Greiner (2007), they formulate the problem
as an integer program where they select a batch such that the post acquisition model is highly
confident on the training set and has low uncertainty on the unlabeled set. While the latter aspect
is related to what we do, they need to retrain their model for every candidate batch they search
over in the course of trying to find the optimal batch. As the total number of possible batches is
exponential in the size of the unlabeled set, this can get too computationally expensive for neural
networks limiting the applicability of this approach. Thus as far as we know, Guo and Schuurmans
(2008) has only been applied to logistic regression. BMDR (Wang and Ye, 2015) queries points
that are as close to the classifier decision boundary as possible while still being representative of the
overall sample distribution. The representativeness is measured using the maximum mean discrepancy
(MMD) (Gretton et al., 2012) of the input features between the query batch and the set of all points,
with a lower MMD indicating a more representative query batch. However this approach is limited
to classification problems, as it is based on a decision boundary. BMAL (Hoi et al., 2006) selects a
batch such that the Fisher information matrices for the total unlabeled set and the selected batch are
as close as possible. The Fisher information matrix is however quadratic in the number of parameters
and thus infeasible to compute for modern deep neural networks. FASS (Filtered Active Subset
Selection) (Wei et al., 2015) picks the most uncertain points and then selects a subset of those points
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that are as similar as possible to the whole candidate batch which favors points that can represent the
diversity of the initial set of most uncertain points.

Recently active learning methods have been extended to the deep learning setting. Gal et al. (2017)
adapts BALD (Houlsby et al., 2011) to the deep learning setting by using Monte Carlo Dropout (Gal
and Ghahramani, 2016) to do inference for their Bayesian Neural Network. They extend BALD
to the batch setting for neural networks with BatchBALD (Kirsch et al., 2019). In Pinsler et al.
(2019), they adapt the Bayesian Coreset (Campbell and Broderick, 2018) approach for active learning,
though their approach requires a batch size that changes for every acquisition. As the neural
network decision boundary is intractable, DeepFool (Ducoffe and Precioso, 2018) uses the concept
of adversarial examples (Goodfellow et al., 2014) to find points close to the decision boundary.
However this approach is again limited to classification tasks. FF-Comp (Geifman and El-Yaniv,
2017), DAL (Gissin and Shalev-Shwartz, 2019), Sener and Savarese (2017), and BADGE (Ash
et al., 2019) operate on the learned representation, as that is the only way the methods incorporate
feedback from the training labels into the active learning acquisition function, and they are thus not
model-agnostic, as they are not extendable to any model distribution where it is difficult to have a
notion of a common representation – as in a random forests or ensembles, etc. where the learned
representation is a distribution and not a single point. This is also the case with the model distribution
– MC-dropout – we use in this paper.

There is also extensive prior work on exploiting Gaussian Processes (GPs) for Active Learn-
ing (Houlsby et al., 2011; Krause et al., 2008). However GPs are hard to scale especially for
modern image datasets.

3 Background

Statistical background The entropy of a distribution is defined as HpY q “ ´
ř

xPX px logppxq,
where px is the probability of the x. Mutual information (MI) between two random variables is
defined as IrX;Y s “

ř

xPX
ř

yPY ppx, yq logp ppx,yq
ppxqppyq q, where ppx, yq is the joint probability of x, y.

Note that IrX;Y s “ HpY q´HpY |Xq “ HpXq´HpX|Y q. By posterior predictive distribution yx
we mean

ş

θ
ppy|x, θqppθ|Dqdθ where y is the prediction, x the input point, θ the model parameters,

and D the training data. M is the distribution of models (parametrized by θ) we wish to choose
from via active learning. As mentioned before, we use MC-dropout for our model distribution by
sampling random dropout masks and use the same set of dropout masks across points to generate
joint predictions.

Hilbert-Schmidt Independence Criterion (HSIC) Suppose we have two (possibly multivariate)
distributions X ,Y and we want to measure the dependence between them. A well known way
to measure it is using distance covariance which intuitively, measures the covariance between the
distances of pairs of samples from the joint distribution PXY and the product of marginal distributions
P pXq, P pY q (Székely et al., 2007). HSIC can simply be thought of as distance covariance except
in a kernel space (Sejdinovic et al., 2013b). A (sample) kernel matrix kX is a matrix whose ijth
element is kpxi, xjq where k is the kernel function and xi, xj are the i, jth samples from X . Further
details are in the Appendix.

Acquisition Function Let the batch to acquire be denoted by B with B “ |B|. Given a model
distribution M, training data Dtrain, unlabeled data DU , input space X , set of labels Y and an
acquisition function αpx,Mq, we decide which batch of points to query next via:

B˚ “ arg max
B

αpB,Mq

4 Motivation

As mentioned previously, our goal is to acquire points that will give us as much information as
possible about the still-unlabeled points, thereby increasing the confidence of the model’s predictions.
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As we will demonstrate shortly, there are situations where modern active learning methods do not
select the points that optimally decrease the uncertainty of prediction on the unlabeled data. More
formally, the examples below show that the choice of x P U that optimizes oft-used acquisition
functions may not be optimal for decreasing the entropy of predictions (

ř

x1PU,x1‰xHpyx1q) over the
remaining points post-acquisition. If we wish to optimize test-set accuracy, this can be problematic:
for well-calibrated models, we should expect worse average entropy (uncertainty) to roughly corre-
spond to an increase in the number of errors. This is similar to cross entropy loss being a good proxy
for 0-1 loss. Below we illustrate our points with two examples and from results on EMNIST.

Example 1 Suppose we have an image dataset which is highly imbalanced with 90% cars, 9%
planes, and 1% ships. Then a small increase in accuracy for the car category would lead to a much
larger reduction in the overall error rate versus a large increase in accuracy for the ships category.
However, given the dominance of the cars category in the loss, the uncertainty of prediction on the
ships category is likely to be much higher. Thus the max-entropy criterion is more likely to choose
points from the pool set that turn out to be ships.

Example 2 Similar to the previous example, here we demonstrate that picking the point with the
most amount of information with respect to the model parameters is not optimal for decreasing the
prediction uncertainty on the still unlabeled data. The main idea behind this example is that if you
have points which form a non-trivial fraction of the dataset and have a lot of correlation between
their predictive distributions, then while any of the points may not give a lot of information about
which underlying model is the best one, getting the labels for one of the points will greatly reduce the
predictive uncertainty for the labels for the other points given the predictive distribution correlation.
As these points are a non-trivial fraction of the dataset, reducing the predictive uncertainty on them
will have a big impact on the error rate. The example in the Appendix formalizes this intuition.

Figure 1: Mean posterior entropy of the predictions after each acquisition on EMNIST.

These observations motivate our formulation of the Information Condensing Active Learning (ICAL)
acquisition function that selects the set of points whose acquisition would maximize the information
gained about the predictive distribution on the unlabeled set. As posterior prediction entropy should
be minimized by maximizing Mutual Information (MI) between predictions for unlabeled points and
prediction for selected points, ideally ICAL would use MI or related criteria to select points.

EMNIST results In Figure 1, we show the average posterior entropy of the model’s predictions for
our method compared to BatchBALD, BayesCoreset, and Random acquisition. As can be seen from
the figure, ICAL reduces the average posterior entropy much more effectively compared to the other
two. Details of this experiment are in Section 6.2.

5 Information Condensing Active Learning (ICAL)

In this section we present our acquisition function. As before, let Dtrain be the training points, DU
the unlabeled points, yx the random variable denoting the prediction for x by the model trained on
Dtrain, and d the dependency measure being used. Then
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αICALptx1, . . . , xBu, dq “
1

|DU |
ÿ

x1PDU

dpyx1 , tyx1
, . . . , yxB

uq

that is, we try to find the batch that has highest average dependency with respect to the unlabeled
points’ marginal predictive distribution.

Scaling αICAL estimation

As we mentioned in the introduction, we can use MI as the dependency measure d but it is tricky to
estimate MI using just samples from the distribution, particularly high-dimensional or continuous
variables. Furthermore, MI estimators are usually not differentiable. Thus if we wanted to apply ICAL
to domains where the pool set is continuous and infinite (for example, if we wanted to query gene
expression perturbations for a cell), we would run into obstacles. This motivates our choice of HSIC
as the dependency measure. In addition to being differentiable, HSIC has better empirical sample
complexity for measuring dependency as opposed to estimators for MI. Indeed, popular MI estimators
have been found to have variance with respect to ground truth MI that increases exponentially with
the MI value Song and Ermon (2019). HSIC has also been successfully used in the related context
of feature selection via dependency maximization in the past Da Veiga (2015); Song et al. (2012).
Furthermore, HSIC is the Maximum Mean Discrepancy (MMD) between the joint distribution and
the production of marginals. MMD is known to be ď 1

2 KL-divergence Ramdas et al. (2015) and thus
HSIC ď 1

2 MI. Thus we use HSIC as the dependency measure for the rest of the paper.

Naively implementing αICALpB, HSICq would require Op|DU |m2B ¨Cq steps per candidate batch
being evaluated where C is the number of classes, m is the number of samples taken from ppy1:Bq
(Opm2Bq to estimate HSIC which we need to do |DU | times).

However, recall thatHSIC is a function of solely the kernel matrices kx corresponding to the random
variables (Appendix) – in this case yx, x P DU . Now one can define the matrix k˚ “ 1

|DU |

ř

xPDU
kx.

We can then prove the following propositions (proofs are in the Appendix).

Proposition 1 k˚ is a valid kernel matrix.

Proposition 2
ř

x1PDU

{HSICpkx
1

, kxPBq “ {HSICp
ř

xPDU
kx, kxPBq

where kxPB “ kx1 , . . . , kxB , xi P B and {HSIC denotes the sample for HSIC. Using this
reformulation, we only have to compute k˚ “ 1

|DU |

ř

xPDU
kx once per acquisition round. This

lowers the computation cost to Op|DU |m2 ¨ C `m2B ¨ Cq. Estimating HSIC would still require
m to increase very rapidly with B (proportional to the dimension of the joint distribution). To get
around this but still maintain batch diversity, we try two strategies.

For regular ICAL, we average the kernel matrices of points in the candidate batch. We then subsample
r points from DU every time a point is added to the batch and only compare the dependency with
those. This effectively introduces noise in the HSIC estimation. We find in practice, that this is
sufficient to acquire a diverse batch, as evidenced by Figure 3. This seems to be the case even for very
large batches, and has the added benefit of further lowering the computational cost for evaluating a
candidate batch to Oprm2 ¨ C ` 2 ¨m2 ¨ Cq. We use r “ 200 for all our experiments.

We develop another strategy we call ICAL-pointwise which computes the marginal increase in
dependence as a result of adding a point to the batch. If a point is highly correlated with elements of
the current batch, the marginal increase would be negligible, making the point much less likely to
be selected. The two variants perform very similarly despite ICAL-pointwise’s slight advantage in
the early acquisitions. ICAL-pointwise however requires much less time for equivalent performance
which we discuss briefly in Section 5.2 and more fully in the Appendix. For ease of presentation, we
use ICAL in the Results section and defer the full description and evaluation of ICAL-pointwise to
the Appendix.
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Figure 2: Performance on MNIST and repeated-MNIST. Accuracy and NLL after each acquisition.

As there are an exponential number of candidate batches, an exhaustive search to find the optimal
batch is infeasible. For ICAL we use a greedy forward selection strategy to build the batch and find
that it performs well empirically. As the arg max over all of DU has to be computed every time a new
point is being selected for the batch, and we have to perform this operation for each point that is added
to the batch, this gives a computation cost ofOppr2m2`|DU |m2B`m2Bq¨Cq “ Op|DU |m2B ¨Cq.
It is possible that global nonlinear optimization of the batch ICAL criterion would work even better
than greedy optimization already does with respect to state of the art methods. Efficient techniques
for doing this optimization are not obvious and beyond the scope of this work. Even if we used
gradient based techniques to construct the batch, gradient based optimization for nonlinear problems
usually only leads to local and not global optima. We note however that greedy forward selection is
a popular technique that has been successfully used in a large variety of contexts (Da Veiga, 2015;
Blanchet et al., 2008). Optimizations to scale ICAL even further as well as the full Algorithm are
detailed in the Appendix.

6 Results

We demonstrate the effectiveness of ICAL using standard image datasets including MNIST (LeCun
et al., 1998), Repeated MNIST (Kirsch et al., 2019), Extended MNIST (EMNIST) (Cohen et al.,
2017), fashion-MNIST, and CIFAR-10 (Krizhevsky et al., 2009). We compare ICAL with three state
of the art methods for batched active learning acquisition – BatchBALD, FASS, and BayesCoreset.
We also compare against BALD and Max Entropy (MaxEnt) which are not explicitly designed
for batched selection, as well as against a Random acquisition baseline. Details of the acquisition
functions are in the Appendix. ICAL consistently outperforms BatchBALD, FASS, and BayesCoreset
on accuracy and negative log likelihood (NLL).

Throughout our experiments, for each dataset we hold out a fixed test set for evaluating model
performance after training and a fixed validation set for training purposes. We retrain the model
from the beginning after each acquisition to avoid correlation of subsequently trained models, and
we use early stopping after 3 (6 for ResNet18) consecutive epochs of validation accuracy drop.
Following (Gal et al., 2017), we use Neural Networks with MC dropout (Gal and Ghahramani,
2016) as a variational approximation for Bayesian Neural Networks. We simply use a mixture of
rational quadratic kernels for HSIC, which has been used successfully with kernel based statistical
dependency measures in the past, with mixture length scales of t0.2, 0.5, 1, 2, 5u as in (Bińkowski
et al., 2018). All models are optimized with the Adam optimizer (Kingma and Ba, 2014) using
learning rate of 0.001 and betas (0.9,0.999). The small batch size experiments are repeated 6 times
with different seeds and a different initial training set for each run, with balanced label distribution
across all classes. The same set of seeds is used for different methods on the same task. 8 different
seeds are used for large batch size experiments using CIFAR datasets.

6.1 MNIST and Repeated MNIST

We first examine ICAL’s performance on MNIST, which is a standard image dataset for handwritten
digits. We further test out the scenario where duplicated data points exist (repeated MNIST) as
proposed in (Kirsch et al., 2019). Each data point in MNIST is replicated three times in repeated-
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MNIST, and isotropic Gaussian noise with std=0.1 is added after normalizing the image. We use
a CNN consists of two convolutional layers with 32 and 64 5x5 convolution filters, each followed
by MC dropout, max-pooling and ReLU. One fully connected layer with 128 hidden units and MC
dropout is used after convolutional layers and the output soft-max layer has dimension of 10. All
dropout uses probability of 0.5, and the architecture achieved over 99% accuracy on full MNIST. We
use a validation set of size 1024 for MNIST and 3072 for repeated-MNIST, and a balanced test set of
size 10,000 for both datasets. All models are trained for up to 30 epochs for MNIST and up to 40
epochs for repeated-MNIST. We sample an initial training set of size 20 (2 per class) and conduct 30
acquisitions of batch size 10 on both datasets, and we use 50 MC dropout samples to estimate the
posterior.

The test accuracy and negative log-likelihood (NLL) are shown in Figure 2. ICAL significantly
improves the NLL and outperforms all other baselines on accuracy, with higher margins on the
earlier acquisition rounds. The performance is consistent across all runs (the variance is smaller
than other baselines), and is robust even in the repeated-MNIST setup, where all the other greedy
methods show worsen performance. We check the frequency that replicas of a single sample were
included in acquired batch and as shown in Appendix Figure 8, our method (as well as BatchBALD,
BayesCoreset and random) acquired no redundant sample whereas FASS and max entropy acquired
up to 3 copies of some samples.

Figure 3: Histogram of the labels of all acquired points using different active learning methods on
EMNIST (47 classes). ICAL acquires more diverse and balanced batches while all other methods
have overly/under-represented classes.

6.2 EMNIST

We then extend the task to a more sophisticated dataset named Extended-MNIST, which consists of
47 classes of 28x28 images of both digits and letters. We used the balanced EMNIST where each
class has 2400 training examples. We use a validation set of 16384 and test set of size 18800 (400 per
class), and train for up to 40 epochs. We use a CNN consisting of three convolutional layers with 32,
64, and 128 3x3 convolution filters, each followed by MC dropout, 2x2 max-pooling and ReLU. A
fully connected layer with 512 hidden units and MC dropout is used after convolutional layers. We
use an initial train set of 47 (1 per class) and make 60 acquisitions of batch size 5. 50 MC dropout
samples are used to estimate the posterior.

The results are in Figure 4. We do substantially better in terms of both accuracy and NLL compared
to all other methods. A clue as to why our method outperforms on EMNIST can be found in
Figure 3. ICAL is able to acquire more diversed and balanced batches while all other methods have
overly/under-represented classes (note that BatchBALD, Random and MaxEnt each totally miss
examples from one of classes). This indicates that our method is much more robust in terms of
performance even when the number of classes increases, whereas other alternatives degenerate.

6.3 Fashion-MNIST

We also examine ICAL’s performance on fashion-MNIST which consists of 10 classes of 28x28
Zalando’s article images. We use a validation set of 3072 and test set of size 10000 (1000 per class),
and train for up to 40 epochs. The network architecture is the same as the one used in MNIST task.
We use an initial train set of 20 (2 per class) and make 30 acquisitions of batch size 10. 100 MC
dropout samples are used to estimate the posterior. As shown in Figure 4, we again do significantly
better in terms of both accuracy and NLL compared to all other methods. Note that almost all
baselines were inferior to random baseline except ICAL, showing the robustness of our method.
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Figure 4: Performance on EMNIST and fashion-MNIST, ICAL significantly improves the accuracy
and NLL.

6.4 CIFAR

Finally we test our method on the CIFAR-10 and CIFAR-100 datasets Krizhevsky et al. (2009) in
a large batch size setting. CIFAR-10 consists of 10 classes with 6000 images per class whereas
CIFAR-100 has 100 classes with 600 images per class. We use a validation set of size 1024, and a
balanced test set of size 10,000 for both datasets. For CIFAR-10, we start with an initial training set
of 10000 examples (1000 per class) while for CIFAR-100, we start with 20000 examples (200 per
class). We do 10 acquisitions on CIFAR-10 and 7 acquisitions on CIFAR-100 with batch size of 3000.
We use a ResNet18 with additional 2 fully connected layers with MC dropouts, and train for up to 60
epochs with learning rate 0.1 (allow early stopping). We run with 8 different seeds. The results are in
Figure 5. Note that we are unable to compare against BatchBALD for either CIFAR dataset as it runs
out of memory.

For CIFAR-10, ICAL dominates all other methods for all acquisitions except two – when the acquired
dataset size is 19000 and when it is 28000. ICAL also has the highest area under curve (auc) for
accuracy compared to all other methods; with p-value ď 0.007 except for BALD and Max Entropy
for which we have better auc with p-value 0.24, 0.15 respectively. ICAL also achieves the highest
accuracy at the end of all 10 acquisitions. With CIFAR-100, on all acquisitions ICAL outperforms a
majority of the methods. Furthermore, ICAL again finishes with the highest accuracy by a significant
margin at the end of the acquisition rounds and it again have the highest auc compared to all other
methods. Detailed comparison results are in the Appendix Table 2.

Figure 5: Performance on CIFAR-10 and CIFAR-100 with batch size=3000 using 8 seeds

7 Conclusion

We develop a novel batch mode active learning acquisition function ICAL that is model agnostic and
applicable to both classification and regression tasks (as it relies on only samples from the posterior
predictive distribution). We develop key optimizations that enable us to scale our method to large
acquisition batch and unlabeled set sizes. We show that we are robustly able to outperform state of
the art methods for batch mode active learning on a variety of image classification tasks in a deep
neural network setting.
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Appendix

Motivating example 2

Suppose we have a model distribution with 10 possible models ω1, . . . , ω10 with equal prior probabil-
ity of being the true model (ppwiq “ 0.1 for @i). Let the datapoints be x1, . . . , xL with their labels
taking 4 possible values. We define pkij “ ppyi “ j|xi, ωkq as the probability of the jth class for the
ith datapoint given by the kth model. Let

pk1j “ 1; j “ k, 1 ď k ď 3

pk14 “ 1; 4 ď k ď 10

pki1 “ 1, p10i2 “ 1; 1 ď k ď 9, 2 ď i ď L

ω1 ω2 ω3 ω4 ω5 ω6 ω7 ω8 ω9 ω10

x1 1 2 3 4 4 4 4 4 4 4
x2 . . . xL 1 1 1 1 1 1 1 1 1 2

Table 1: Labels that the different points xi take with probability 1 under different models. The
columns are the different models ωk, and the rows are the different points.

Given that we have no other information about the models, we update the posterior probabilities for
the models as follows – if a model ωk outputs label l for a point x but after acquisition, the label for
x is not l, then we know that is not the correct model and thus its posterior probability is 0 (so it is
eliminated). Otherwise we have no way of distinguishing between the remaining models so they all
have equal posterior probability. Then for x1 the mutual information is

Iry1, ω|x1,Dtrains
“ Hry1|x1s ´ Eppω|DtrainqrHry1|x1, ωss “ 0.94

For x2 . . . xL, Iry2´L, ω|x2...L,Dtrains “ 0.325. However selecting x1 would decrease the expected
posterior entropy Hry2´L|x2...L, x1, y1,Dtrains from 0.325 to only 0.287. Acquiring any of x2...L
instead of x1, however, would decrease that entropy to 0, which would cause a much larger decrease
in the expected posterior entropy averaged over x1...L if L is large enough. The detailed calculations
are in the later subsection.

While x2...L may not contribute much to the entropy of the joint predictive distribution or to the MI
with respect to the model parameters compared to x1, collectively they will be weighted L´ 1 times
more than x1 when looking at the accuracy. We should thus expect a well-calibrated model to have
a higher uncertainty, and thus make a lot more errors on x2...L, if x1 is acquired versus if any of
x2...L are acquired. For instance, in the above example, as L increases, the expected error rate would
approach « 0.7 ˆ p1{7 ˆ 6{7q ˆ 2 “ 0.17 (0.7 as 0.3 of the times the value of x1 would also fix
what the true model is reducing error rate on all x to 0) if x1 is acquired as the errors for x2...L are
correlated, whereas the rate would approach 0 were any of x2...L to be acquired.

Derivation for Example 2

For x1, the mutual information between the predicted label y1 and model parameters is:

Iry1, ω|x1,Dtrains
“ Hry1|x1s ´ Eppω|DtrainqrHry1|x1, ωss

“ Hr
10
ÿ

k“1

ppy1|x1, ωkqppωkqs ´
10
ÿ

k“1

ppωkqHrppy1|x1, ωkqs

“ ´p3ˆ p
1

10
ˆ logp

1

10
qq `

7

10
ˆ logp

7

10
qq
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´ 10ˆ
1

10
ˆ p´p1ˆ logp1q ` 0ˆ logp0qqq

“ 0.940

For x2...L,

Iry2´L, ω|x2...L,Dtrains

“ ´p
9

10
ˆ logp

9

10
q `

1

10
ˆ logp

1

10
qq

´ 10ˆ
1

10
p´p1ˆ logp1q ` 0ˆ logp0qqq

“ 0.325

After acquiring x1, assuming the true label for x1 is 1, then we update the posterior over the model
parameter such that p1pw1q|y1“1 “ 1 and p1pwkq|y1“1 “ 0 for 1 ă k ď 10. Then the expected
averaged posterior entropy for x1...L is:

1

L´ 1

L
ÿ

i“2

Hryi|xis|y1“1

“
1

L´ 1

L
ÿ

i“2

Hr
10
ÿ

k“1

ppyi|xi, ωkqp
1pωkq|y1“1s

“
1

L´ 1
ˆ pL´ 1q ˆ p´p1ˆ logp1q ` 0ˆ logp0qqq

“ 0

Similarly, we could compute the case where the true label for x1 is 2-4:

1

L´ 1

L
ÿ

i“2

Hryi|xis|y1“2 “ 0

1

L´ 1

L
ÿ

i“2

Hryi|xis|y1“3 “ 0

1

L´ 1

L
ÿ

i“2

Hryi|xis|y1“4

“
1

L´ 1
ˆ pL´ 1q ˆ p´p

6

7
logp

6

7
q `

1

7
logp

1

7
qqq

“ 0.41

The expectation of the averaged posterior entropy with respect to predicted label for y1 (since we
don’t know the true label) is:

Hry2´L, ω|x2...L, x1, y1Dtrains

“ Ey1„ppy1|Dtrainqr
1

L´ 1

L
ÿ

i“2

Hryi|xis|y1s

“
1

10
ˆ 0`

1

10
ˆ 0`

1

10
ˆ 0`

7

10
ˆ 0.41

“ 0.287

Baseline acquisition function details

Max entropy selects the points that maximize the predictive entropy

αpx,Mq “ Hpy|x,Dtrainq

“ ´
ÿ

c

ppy “ c|x,Dtrainq logpppy “ c|x,Dtrainqq
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BatchBALD BatchBALD (Kirsch et al., 2019) tries to find a batch of points that has the highest
mutual information with respect to the model parameters. BALD is the non-batched version of
BatchBALD. Formally

αBatchBALDptx1, . . . , xBu, ppωqq

“ Hpy1, . . . , yBq ´ EppωqrHpy1, . . . , yB |ωqs

Filtered active submodular selection (FASS) FASS (Wei et al., 2015) samples the β ˆ B most
uncertain points B1 and then subselect B points that are as representative of B1 as possible. For the
measure of uncertainty, FASS uses entropy Hpy|x,Dtrainq. To measure the representativeness of B
to B1, FASS tries to choose B to maximize the following function

fpBq “
ÿ

yPY

ÿ

iPV y

max
sPBXV y

wpi, sq

Here V y Ď B1 is the set of points in B1 with predicted label, y and wpi, sq “ d´ ||xi ´ xs||
2
2 is the

similarity function between points indexed by i, s where xi, xs P X and d is the maximum distance
between two points. The idea here is that if a point in B already exists that is close to some point
x1 P B1, then fpBq will favor adding points to the batch that are close to points other than x1, thus
increasing the batch diversity. Note that FASS is equivalent to Max Entropy if β “ 1.

Bayesian Coresets In Pinsler et al. (2019), they try to build a batch such that the log posterior after
acquiring that batch best approximates the complete data log posterior (i.e. the log posterior after
acquiring the entire pool set). Their approach closely follows the general Bayesian Coreset (Campbell
and Broderick, 2018) approach which constructs a weighted subset of data that approximates the
full dataset. Crucially (Pinsler et al., 2019) assume that the posterior predictive distribution Yp
of a point p is independent of that of the corresponding distribution Yp1 of another point p1 – an
assumption we do not make. We show in the next section why avoiding such an assumption lets us
more effectively minimize the error with respect to the test distribution versus just optimizing for
maxmizing information gain for the model posterior. As (Pinsler et al., 2019) require a variable batch
size whereas all other methods (including ours) use a fixed batch size, for fairness of comparison, if
the batch for this approach is smaller than the batch size being used, we fill the rest of the batch with
random points. In practice, we only observe this being necessary for CIFAR.

Random The points are selected uniformly at random from the unlabeled pool. Thus αpx,Mq is
the uniform distribution.

Further statistical background

A divergence Λ between two distributions is a measure of the discrepancy or difference between
two distributions P,Q. A key property of a divergence is that it is 0 if and only if P,Q are the same
distribution. In this paper, we will be using the KL divergence and the MMD, which are respectively
defined as

DKLpP ||Qq “ ´
ÿ

xPX
P pxq logp

Qpxq

P pxq
q

MMD2
kpP,Qq “ EkpX,X 1q ` kpY, Y 1q ´ 2kpX,Y q

where k is a kernel in the Reproducing Kernel Hilbert Space (RKHS) H and µk is the mean embedding
of the distribution into H as per the kernel k. We can then use the notion of divergence to define the
dependency d between a set of random variables X1:n as follows

dpX1:nq “ ΛpP1:n,biPiq
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where P1:n is the joint distribution of X1:n, Pi the marginal of Xi with bPi being the product of
marginals. For DKL the dependency is exactly MI as defined above. For MMD the dependency is
the Hilbert-Schmidt Independence Criterion (HSIC).

Hilbert-Schmidt Independence Criterion (HSIC)

Formally, if X,Y are drawn from the joint distribution PXY , then their HSIC is defined as –

HSICpPXY , k, lq “ Ex,x1,y,y1rkpx, x1qlpy, y1qs

` Ex,x1rkpx, x1qsEy,y1rlpy, y1qs

´ 2Ex,yrEx1rkpx, x1qsEy1rkpy, y1qss

where px, yq and px1, y1q are independent pairs drawn from PXY . Note that HSICpPXY q “ 0 if
and only if PXY “ PXPY , that is, if X,Y are independent, for chracteristic kernels k and l.

For the case where we are measuring the joint dependence between d variables, we can use the
HSIC statistic (Sejdinovic et al., 2013a; Pfister et al., 2018). The computational complexity of
HSIC is bounded by the time taken to compute the kernel matrix which is Opm2dq where m is the
number of samples and d the number of random variables. We use {HSIC to denote the empirical
estimator of the HSIC statistic.

Proof of Proposition 1

k˚ is positive semidefinite (psd) and symmetric as the sum of psd symmetric matrices is also psd
symmetric.

Proof of Proposition 2

We show here that

{dHSICpk1, k3, . . . , kdq ` {dHSICpk2, k3, . . . , kdq

“ {dHSICpk1 ` k2, k3, . . . , kdq

but the extension to the arbitrary sums is straightforward. Here {dHSIC is the estimator for dHSIC
which is the d-variable version of HSIC. It is defined as

dHSIC “
1

n2

n
ÿ

a“1

n
ÿ

b“1

Πd
j“1k

jpXj
ia
, Xj

ib
q`

1

n2d
Πd
j“1

n
ÿ

a“1

n
ÿ

b“1

kjpXj
ia
, Xj

ib
q´

2

nd`1

n
ÿ

a“1

Πd
j“1

n
ÿ

b“1

kjpXj
ia
, Xj

ib
q

where kj is the kernel of the jth random variable and Xj
i is the ith observation for the jth random

variable. The estimator {dHSIC is defined as (Sejdinovic et al., 2013a)

{dHSIC “
1

n2

n
ÿ

a“1

n
ÿ

b“1

Πd
j“1k

jpxjia , x
j
ib
q`

1

n2d
Πd
j“1

n
ÿ

a“1

n
ÿ

b“1

kjpxjia , x
j
ib
q´

2

nd`1

n
ÿ

a“1

Πd
j“1

n
ÿ

b“1

kjpxjia , x
j
ib
q

As dHSIC reduces to HSIC when d “ 2, the proof for HSIC also follows. Using the definition
of {dHSIC above,
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{dHSICpk1, k3, . . . , kdq ` {dHSICpk2, k3, . . . , kdq “

1

n2

n
ÿ

a“1

n
ÿ

b“1

k1px1ia , x
1
ib
q

d
ź

j“3

kjpxjia , x
j
ib
q

`
1

n2d

n
ÿ

a“1

p

n
ÿ

b“1

k1px1ia , x
1
ib
qq

d
ź

j“3

n
ÿ

b“1

kjpxjia , x
j
ib
q

´
2

nd`1
p

n
ÿ

a“1

n
ÿ

b“1

k1px1ia , x
1
ib
qq

d
ź

j“3

n
ÿ

a“1

n
ÿ

b“1

kjpxjia , x
j
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q

`
1

n2

n
ÿ

a“1

n
ÿ

b“1

k2px2ia , x
2
ib
q

d
ź

j“3
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j
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q

`
1

n2d

n
ÿ

a“1

p
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ÿ

b“1

k2px2ia , x
2
ib
qq

d
ź
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n
ÿ
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q

´
2
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p
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ÿ

a“1

n
ÿ

b“1
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qq

d
ź

j“3

n
ÿ
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j
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q
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” 1
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ÿ
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q
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ź
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ÿ
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“ {dHSICpk1 ` k2, k3, . . . , kdq
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7.1 Further scaling to large batch sizes

To scale to large batch sizes, instead of adding points to the batch to be acquired one at a time, we
can add points in minibatches of size L. While this comes at the cost of possible diversity in the
batch, we find that the tradeoff is acceptable for the datasets we experimented with. This gives a final
computation cost of Op |DU |m

2B¨C
L q where C is the number of classes. By contrast the corresponding

runtime for BatchBALD is OpDU | ¨B ¨C ¨m ¨m1q where m1 is the number of sampled configurations
of y1:n´1. For all experiments with ICAL, we were able to use L “ 1 without any scaling difficulties.
For ICAL-pointwise, we used L “ B

15 only for CIFAR-10 and CIFAR-100. As alluded to previously,
ICAL-pointwise can accommodate much larger L compared to ICAL before its performance degrades,
allowing for much greater scaling. We evaluate this aspect of ICAL-pointwise in the Appendix.

The final algorithm is given in Algorithm 1.

7.2 Algorithm

Algorithm 1 Information Condensing Active Learning (ICAL) (M, T,Dtrain,DU , B,K, r, L)

Train M on Dtrain
repeat
B “ tu
while |B| ă B do
Y U “ the predictive distribution for x P DU according to M
R “ Set of r randomly selected points from DU
x1 “ argmaxx αICALpB Y txu, HSICq with the optimizations as specified in Section 5.1
and 5.2
B “ B Y tx1u

end while
Dtrain “ Dtrain Y B
Retrain M on Dtrain

until T iterations reached
Return M

ICAL-pointwise

To evaluate the marginal dependency increase if a candidate point x is added to batch B, we sample
a set R from the pool set DU and compute the pairwise dHSIC of both B and B1 “ B Y txu
with respect to each point in R. Let the resulting vectors (each of length |R|) with the dHSIC
scores be dB and dB1 . Then the marginal dependency increase statistic Mx for point p is Mx “
1
|R|

ř

i maxppdiB1{diBq, 1q where i is the ith element of the vector. When then modify the αICAL as
follows - α1ICALpBYtxuq “ αICALpBYtxuq ¨ pMx´1q and use the point with the highest value of
α1ICAL as the point to acquire. Note that as we want to get as accurate an estimate of Mx as possible,
we ideally want to choose as large a set R as possible. In general, we also want to choose |R| to be
greater than the number of classes. This makes ICAL-pointwise more memory intensive compared to
ICAL. We also tried another criterion for batch selection based on the minimal-redundancy-maximal-
relevance Peng et al. (2005) but that had significantly worse performance compared to ICAL and
ICAL-pointwise.

In Figure 6, we analyze the performance of ICAL versus ICAL-pointwise when their parameters
are set such that computational cost is about the same. As can be seen they are broadly similar with
ICAL-pointwise having a slight advantage in earlier acquisitions and ICAL being slightly better in
later ones.

We also analyze the relative performance as the mini-batch size L changes in Figure 7. In the Figure,
iter “ B

L is the number of iterations taken to build the entire acquisition batch (note that the actual
acquisition happens after the entire batch has been built). ICAL-pointwise requires more computation
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Figure 6: Relative performance of ICAL and ICAL-pointwise on smaller datasets (EM-
NIST,FashionMNIST,MNIST and CIFAR10) with parameters set to equivalent computation cost

time than ICAL in small L setup, however if time is the major constraint, ICAL-pointwise is to be
preferred as its performance degrades more slowly as L, the size of the minibatch, increases. As the
performance usually peaks at L “ 1, if one is trying to get the best performance or if memory is a
constraint, then ICAL is to be preferred.

Figure 7: Relative performance of ICAL and ICAL-pointwise on CIFAR100 with different mini-batch size L.
iter “ B

L
is the number of iterations taken to build the entire acquisition batch of size B (note that the actual

acquisition happens after the entire batch has been built)
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Diversity of acquired samples in repeated-MNIST

To check if ICAL’s acquisition batches are diversed enough, we plot the number of times different
number of copies of a same sample has been acquired by each method. As shown in figure 8,
our method (as well as BatchBALD, BayesCoreset and Random) successfully avoided acquiring
redundant copies of the same sample, whereas FASS and Max Entropy acquired up to 3 copies of the
same replica in most acquisitions. This proves that the batched active learning strategies are better in
diversity.

Figure 8: Frequencies where different numbers of copies (1-3) of a same sample has been acquired
by each method.

Further CIFAR-10 and CIFAR-100 results

CIFAR-10 CIFAR-100

ICAL outperformance
p-value

AUC of
accuracy curve

ICAL outperformance
p-value

AUC of
accuracy curve

Random 6.0e ´ 05 0.742 ˘ 0.004 0.444 0.338 ˘ 0.007
BALD 0.248 0.751 ˘ 0.004 0.124 0.335 ˘ 0.003
FASS 8.7e ´ 06 0.742 ˘ 0.003 0.053 0.333 ˘ 0.005

BayesCoreset 0.007 0.748 ˘ 0.003 0.003 0.327 ˘ 0.007
MaxEnt 0.158 0.751 ˘ 0.003 8.5e ´ 05 0.321 ˘ 0.007

ICAL (ours) N/A 0.753 ˘ 0.003 N/A 0.338 ˘ 0.005

Table 2: Area under curve of the accuracy curve for the different methods on CIFAR-10/CIFAR-100
and p-values of the ICAL out-performance significance when compared to each of the methods.
Highest AUC values of each task are highlighted in bold.

Further CIFAR results are in Table 2. For CIFAR-100, Random has a high p-value but that is mainly
because it performs a bit better in the beginning vs. all other methods but its performance quickly
degrades and it is far below ICAL in the final iteration.

Runtime and memory considerations

BatchBALD runs out of memory on CIFAR-10 and CIFAR-100 and thus we are unable to compare
against it for those two datasets. For the MNIST-variant datasets, ICAL takes about a minute for
building the batch to acquire (batch sizes of 5 and 10). For CIFAR-10 (batch size 3000), with L “ 1,
the runtime is about 20 minutes but it scales linearly with 1{L (Figure 10). Thus it is only 5 minutes
for L “ 30 ( iter “ 100) which is already sufficient to give comparable performance to L “ 1
(Figure 9). For CIFAR-100 (batch size 3000), the performance does degrade with high L but as we
mentioned previously, ICAL-pointwise holds up a lot better in terms of performance with high L
(Figure 7) and thus if time is a strong consideration, that variant should be used instead.
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Figure 9: CIFAR10 performance with different L. iter “ B
L

is the number of iterations taken to build the entire
acquisition batch of size B (note that the actual acquisition happens after the entire batch has been built)

Figure 10: Runtime of ICAL on CIFAR10 with different minibatch size L.
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