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Abstract

Retrieval-augmented generation (RAG) has become a ubiquitous approach to
improving response relevance in large language models (LLM), especially as their
pre-training data ages. However, due to the complexity of modern RAG systems and
their interplay with LLM knowledge cutoffs, a number of open questions remain
with respect to obtaining optimal performance from these systems in practical
settings. In this work, several steps towards addressing these questions are taken.
First, the impact of general knowledge cutoffs on RAG performance is quantified.
RAG remains an important factor even when parametric knowledge is updated.
Second, we consider the relative utility of fine-tuning various RAG components to
improve performance on private data. Coupling base-model fine-tuning with RAG
produces strong results, while embedding model tuning is less effective.

1 Introduction

In recent years, large language models (LLMs) have demonstrated impressive reasoning ability and
capacity as knowledge-bases (Wei et al., 2022; Safavi and Koutra, 2021). However, a reliance on
information encoded in model parameters presents challenges. The propensity of LLMs to generate
spurious or inaccurate information, known colloquially as "hallucinations" (Huang et al., 2023),
undermines their trustworthiness for many applications. This issue is compounded by the difficulty of
updating the knowledge embedded in model parameters. Such limitations have prompted researchers
to explore novel approaches to enhance the reliability and relevance of LLM-generated content.

A promising avenue of investigation involves the augmentation of LLMs with external, contextually
relevant data during the inference process. This methodology, exemplified by retrieval-augmented
generation (RAG) frameworks (Lewis et al., 2020; Ram et al., 2023), seeks to dynamically incorporate
real-time information, thereby improving the fidelity and relevance of model outputs. Modern RAG
systems are often composed of many interdependent components, each with idiosyncrasies and
hyperparameters that impact the performance of the pipeline as a whole. Improvements to one or
more of these components usually has a positive impact on performance. However, due to their
coupled nature, knowing where improvements have the highest impact is challenging but crucial in
resource constrained settings. Further, as base-model updates occur, pushing a model’s knowledge
frontier forward, it is unclear how individual system components are impacted.

In this work, we consider the utility of RAG for tasks falling beyond the knowledge horizon of open-
and closed-source models and, performance with and without RAG after the model’s parametric
knowledge has, theoretically, been updated. Models are shown to improve with such updates, but
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Figure 1: An overview of the various components considered in the experiments. In the top left is
an illustration of periodic updates to the parametric knowledge of an LLM. The bottom left exhibits
fine-tuning of a generative model with domain specific data. On the right is a simplified diagram of a
RAG system with an embedding model, θE , and a generative model, θG.

RAG remains crucial and may even benefit from such updates. As a first step towards quantifying what
types of improvements most benefit RAG pipelines operating beyond LLM knowledge horizons, base
and embedding models are fine-tuned to incorporate relevant private data. The datasets considered in
the tuning experiments are drawn from the legal domain, which differs significantly from the general
pre-training data of RAG components. Combining RAG and base-model tuning produces notable
improvements. Surprisingly, embedding model training appears to degrade performance.

2 Related Work

The general utility of RAG across a wide variety of NLP tasks has been firmly established (Izacard
and Grave, 2021; Lin et al., 2022). Beyond improving the quality and relevance of generations, RAG
pipelines allow LLMs to leverage new information beyond their pre-training phase (Gao et al., 2024).
While LLMs have shown notable capacity to leverage parametric memory to perform various tasks
(Liang et al., 2023; Touvron et al., 2023; Labruna et al., 2024), there are few studies considering the
role of parametric knowledge acquisition on RAG effectiveness. In (Ovadia et al., 2024), RAG alone
is shown to be more effective than a basic form of continued pre-training of the generating LLM
or even a combination of RAG and such fine-tuning. However, the results strictly consider small
open-source models and the style of fine-tuning may be limiting. Here, we consider both closed- and
open-source models, showing that RAG is useful in both pre- and post-knowledge cutoff scenarios
and that it can benefit from large-scale parametric knowledge updates.

RAG systems are also becoming increasingly complex (Gao et al., 2024). Moreover, a collection
of work studies improving individual components of such systems, including retrieval methods
(Robertson and Zaragoza, 2009), embedding models (Karpukhin et al., 2020; Gao et al., 2021), query
re-writing (Ma et al., 2023), and more (Blagojevic, 2023; Zhuang et al., 2023; Wang et al., 2023).
However, the relative benefits of tuning these coupled components for specific applications is not
well studied, especially when considering knowledge cutoffs. This work takes a step towards this
understanding by studying the effects of base-model and embedding model fine-tuning in this context.

Finally, some studies have shown that RAG is useful in domain adaptation (Seo et al., 2024; Siri-
wardhana et al., 2023). The representation of relevant and domain-specific text in an LLM’s context
likely helps precondition model response relevance. Whether fine-tuning of various RAG pipeline
components also provides significant improvements in domain-specific settings remains understudied.
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Table 1: Performance comparison of models with knowledge cutoffs before and after the time frame
of the documents underlying the MultiHop-RAG dataset.

Answer Correctness
Model Knowledge Cutoff Data Seen Without RAG With RAG
gpt-4-1106-preview Apr. 2023 - 0.292 0.500
gpt-4-0125-preview Dec. 2023 ✓ 0.377 0.514

3 Experimental Setup and Results

This work investigates the impact of knowledge cutoffs in both generative and embedding models on
question-answering (QA) performance within a RAG framework. Two key scenarios are explored:
the effect of pre-training knowledge cutoff and the impact of fine-tuning on domain-specific data.
The experiments utilize a RAG-based QA system, as illustrated in Figure 1. The system comprises
a generative model, θG, and an embedding model, θE . Both models are initially pre-trained on a
large public dataset Dpt. The RAG system response, ŷ, is generated as ŷ = f(θG, θE ,Dr, x). The
task-relevant dataset, Dr, is provided at run-time for retrieval and ground-truth QA pairs (x, y) are
sampled from Dr. Performance of the RAG system is examined under different knowledge cutoff
conditions by manipulating the presence of domain-specific information in the models’ training data.

To investigate the impact of pre-training knowledge cutoff, the system is evaluated when Dr ⊂ Dpt
and Dr ̸⊂ Dpt. That is, where the information needed to correctly answer questions is and is not
present in the pre-training dataset, respectively. To assess the impact of fine-tuning, the pre-trained
models, θG and θE , are adapted to a domain-specific dataset, Dft. The fine-tuned models, denoted as
θft
G and θft

E , are then evaluated on QA samples drawn from both the fine-tuning training corpus and a
held-out evaluation QA set, Deval. These experiments measure the models as knowledge-bases and in
domain-adaptation settings. Each split is provided to the RAG system at run-time for retrieval such
that Dr = D∗, in the respective experiments.

In all cases, the system is evaluated via open-ended QA where the LLM’s generative response, ŷ, is
unconstrained. While the target answer, y, exists, there are likely multiple correct ways to capture the
answer in a response. As such, the correctness of a generated answer is evaluated using the Answer
Correctness metric from RAGAs (Es et al., 2024).1 This score is computed as a weighted average
across the factual and semantic similarity scores between the generated and ground-truth answers.
For factual similarity, an LLM judge, gpt-4o-2024-08-06 (OpenAI, 2024) in this case, is prompted
to extract factual statements from both response and ground truth, which are used to determine an F1
score. Semantic similarity is determined by computing the cosine similarity across the response and
the ground truth vector embeddings extracted from the judge model.

3.1 Pre-training Results

To quantify the effects of general pre-training on parametric knowledge and RAG, the MultiHop-RAG
dataset (Tang and Yang, 2024) and two GPT-4 (OpenAI et al., 2024) checkpoints are used. The
MultiHop-RAG dataset is a synthetic QA dataset generated using 609 news articles captured between
September 2023 to December 2023. The dataset contains 2, 556 queries with evidence for each query
distributed across two to four documents, requiring a system to be capable of synthesizing information
across document boundaries. The GPT-4 checkpoints used for evaluation are gpt-4-1106-preview
and gpt-4-0125-preview with knowledge cutoffs of April 2023 and December 2023, respectively.
Note that all articles in the MultiHop-RAG dataset were written beyond the knowledge horizon of
gpt-4-1106-preview. On the other hand, the prominence and ease of access of the articles online
suggests that they are essentially public data and can be reasonably assumed to have been included
in the gpt-4-0125-preview pre-training set. OpenAI’s text-embedding-3-small is used as the
embedding model in the RAG pipeline.

In Table 1, the models are queried with and without retrieval and performance across the models’
knowledge boundary is compared. We observe that Answer Correctness improves from 0.292 to 0.377
when task-relevant data is included in the pre-training set, unsurprisingly indicating a clear benefit
from updates to parametric knowledge alone. However, incorporating RAG significantly enhances

1https://docs.ragas.io/en/stable/concepts/metrics/answer_correctness.html
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Table 2: Evaluation results for models with various configurations on the dataset formed from
the case decisions of the Ontario Superior Court of Justice. Answer Correctness is evaluated for
systems incorporating RAG, generation model tuning (FT-M), and embedding model tuning (FT-E).
Bootstrapped standard deviation is also reported alongside mean Answer Correctness.

Model FT-M RAG FT-E Correctness - Train Correctness - Test

Llama-3-8B-Instruct

- - - 0.284 (0.009) 0.291 (0.011)
- ✓ - 0.562 (0.020) 0.524 (0.020)
- ✓ ✓ 0.490 (0.019) 0.537 (0.021)
✓ - - 0.336 (0.015) 0.356 (0.014)
✓ ✓ - 0.582 (0.021) 0.580 (0.024)
✓ ✓ ✓ 0.546 (0.024) 0.552 (0.024)

Llama-3-70B-Instruct - - - 0.330 (0.013) 0.350 (0.014)
- ✓ - 0.523 (0.019) 0.556 (0.022)

gpt-4-0125-preview - - - 0.332 (0.011) 0.357 (0.014)
- ✓ - 0.468 (0.017) 0.496 (0.019)

performance in both settings, though absolute performance was similar. Correctness increases to
0.500 with RAG for the pre-cutoff model and to 0.514 for the post-cutoff model, demonstrating that
RAG effectively supplements the model’s knowledge with relevant, up-to-date information.

This similarity in performance with RAG across models with different knowledge cutoffs is particu-
larly significant for practitioners. Since pre-training of LLMs is often controlled by third-party model
providers, practitioners have limited influence over a model’s parametric knowledge and update
cycles. However, they do have control over the retrieval mechanisms and the external data sources
used in RAG systems. The findings suggest that by focusing on improving retrieval strategies and
providing relevant context, practitioners can still effectively enhance model performance without
necessarily relying on the most up-to-date models.

3.2 Fine-tuning Results

For the fine-tuning experiments, a dataset, Dft, is created using decisions from the Ontario Superior
Court of Justice from April 2024 to September 2024. This dataset, which includes legal cases
requiring a nuanced understanding of judicial language and reasoning, is guaranteed not to have been
part of pre-training for either Llama-3-8B-Instruct, Llama-3-70B-Instruct or gpt-4-0125-preview.
Unlike large-scale pre-training, where data is included as part of a large and general corpus, fine-
tuning directly adapts models to a specialized domain, such as legal texts, using a smaller and highly
specific dataset.

The training corpus, Dtrain, is formed from Dft using 500 court decisions issued between April 2024
and August 2024. The evaluation corpus, Deval, is composed of a remaining 100 cases in September
2024. Note that the two sets are temporally distinct. The generative model, θpt

G, is instruction
fine-tuned (IFT) on a wide range of QA tasks formed from the court decisions documents in Dtrain

using the technique described in (Cheng et al., 2023). When fine-tuning the embedding model, θpt
E ,

the raw text from Dtrain is chunked into contexts and relevant synthetic queries are extracted using
gpt-4o-2024-08-06. bge-large-en-v1.52 is chosen as the embedding model for all fine-tuning
experiments. Finally, for model evaluation, two sets of QA pairs are generated from Dtrain and Deval,
respectively, using the RAGAs QA generation pipeline. For more details on datasets and training
procedures, see Appendix A.

Table 2 presents the results for the fine-tuning experiments on domain-specific private data. The mean
Answer Correctness improved from 0.284 to 0.336 after generative model fine-tuning, indicating
that the model’s parametric knowledge is successfully updated. Similar to the observation from the
pre-training setting, RAG improves model performance by a large margin, achieving correctness
scores of 0.562 and 0.582 for the base and fine-tuned models. A similar pattern is observed for
the test set scores, confirming the generalizabilty of the fine-tuning. We also note that the relative
improvement of fine-tuning is undermined after incorporating RAG. Surprisingly, embedding model
fine-tuning does not lead to score improvements overall. When coupled with base-model fine-tuning

2https://huggingface.co/BAAI/bge-large-en-v1.5
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correctness scores dropped from 0.582 to 0.546 for the train set and from 0.580 to 0.552 for the test
set. A similar drop is observed for the fixed base-model for the train set, though there was a slight
improvement for the test set. This degradation may be due to over-fitting of the embedding model, in
spite of training being fairly light. Exploring more effective fine-tuning techniques for the embedding
model is planned in future work.

As a comparison, the performance of Llama-3-70B-Instruct and gpt-4-0125-preview with and
without RAG is also measured. Without RAG, moderate improvements in the correctness scores are
observed compared with Llama-3-8B-Instruct. However, this gap is closed after model fine-tuning.
With RAG, Llama-3-70B-Instruct performs slightly better on the test set but worse on the train
set compared to base Llama-3-8B-Instruct, but the fine-tuned version outperforms 70B on both
sets. Interestingly, the scores for the GPT-4 model when using RAG are actually lower than those
of Llama-3-8B-Instruct with RAG only. Overall, Llama-3-8B-Instruct appears to generate more
succinct answers, averaging 190.3 tokens per response compared with 298.1 from GPT-4. While this
phenomenon requires further investigation, a qualitative inspection of 20 samples suggests that the
Llama-3-8B-Instruct responses do indeed match the target answer more effectively on average. With
generative-model fine-tuning, the observed gap even widens slightly. For practitioners, this suggests
that the use and tuning of reasonably sized open-source models may provide equivalent or better
performance in private data settings.

4 Conclusion and Future Work

In this study, we demonstrate the utility of fine-tuning on private data and reinforce the efficacy of
RAG for both public and private data for knowledge intensive QA task. We identify that the inclusion
of retrieval data during generative model pre-training may only lead to a gain in performance when
deployed in a RAG system. We also demonstrate that smaller models deployed within a RAG system,
especially when fine-tuned, are capable of matching and exceeding the performance of much larger
models.

In order to clearly highlight the effect of RAG, we use a simple RAG pipeline in this study. However,
we see the extension of this evaluation to more advanced RAG pipelines as a natural next step.
Elements to explore include; the selection of effective chunking strategies, hybrid-retrieval strategies,
retrieval-specific evaluation and query expansion and re-writing techniques. We also plan to expand
the set of investigated models to include a diverse set of open- and closed-source models. In particular,
we are curious to further explore the impact of model size on QA task performance.
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A Dataset Construction and Fine-Tuning Settings

To form an IFT dataset from Dtrain, the technique described in (Cheng et al., 2023) convert raw
text extracted from the court decisions into a variety of reading comprehension texts as well as
input-output pairs for other common tasks such as summarization, natural-language inference, and
more. This procedure yields an IFT dataset with 630 samples consisting of approximately 1M tokens.
The fine-tuning procedure uses LoRA (Hu et al., 2022) with an alpha of 32 and dropout of 0.1. The
modules tuned with LoRA adapters in each layer are the Q and V matrices. Training proceeds for
10 epochs. An AdamW optimizer (Loshchilov and Hutter, 2018) is used with a learning rate of
2e-05, weight decay of 0.1, betas of [0.9, 0.95] and an epsilon of 1e-05. Gradients are clipped to a
norm of 1.0. A small hyper-parameter sweep is performed over three variables. The combinations
considered were {(8, 4, 4), (8, 4, 2), (16, 4, 4), (8, 2, 2)}, where the first entry is rank of the LoRA
adaptation matrices, the second is training batch size, and the third is gradient accumulation steps.
The model with the best settings (8, 2, 2) was determined based on the lowest validation loss using a
95-5 training-validation split.

To form training examples for embedding models fine-tuning, the raw text of Dtrain is partitioned with a
chunk size of 1024 and 0 overlap. The default training workflow constructed by LlamaIndex is used.3
The implementation leverages the Sentence Transformers4 library and employs the multiple negative
ranking loss (Henderson et al., 2017) for training since the dataset only consists of positive pairs. We
use a batch size of 10, only 2 epochs of training, and an AdamW optimizer with default settings. Ad-
ditional default training parameters are found in the SentenceTransformerTrainingArguments
module5 of the sentence_transformers library. No early stopping or checkpointing is used.

For evaluation, the RAGAs QA generation pipeline used to create the two collections of QA pairs
from Dtrain and Dtest relies on the Evol-Instruct method to create diverse questions (Xu et al., 2023).
The model gpt-4o-2024-08-06 is used as the generator and critic LLM during generation. There
are 99 QA pairs generated from Dtrain and 86 QA pairs created using Dtest. Note that, in both cases,
the evaluation QA pairs are distinct from the IFT training samples and the context-query pairs used
for embedding model fine-tuning.

3https://docs.llamaindex.ai/en/stable/examples/finetuning/embeddings/finetune_
embedding/

4https://sbert.net/docs/package_reference/sentence_transformer/index.html
5https://sbert.net/docs/package_reference/sentence_transformer/training_args.

html#sentencetransformertrainingarguments
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