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Abstract

We obtain a personal signature of a person’s learning progress in a self-neuromodulation
task, guided by functional MRI (fMRI). The signature is based on predicting the activity of
the Amygdala in a second neurofeedback session, given a similar fMRI-derived brain state
in the first session. The prediction is made by a deep neural network, which is trained on
the entire training cohort of patients. This signal, which is indicative of a person’s progress
in performing the task of Amygdala modulation, is aggregated across multiple prototypical
brain states and then classified by a linear classifier to various personal and clinical indica-
tions. The predictive power of the obtained signature is stronger than previous approaches
for obtaining a personal signature from fMRI neurofeedback and provides an indication
that a person’s learning pattern may be used as a diagnostic tool. Our code has been made
available, 1 and data would be shared, subject to ethical approvals.

1. Introduction

An individual’s ability to learn to perform a specific task in a specific context is influenced
by their transient task demand and context-specific mental capacity (Crump et al., 2008),
as well as their motivation (Utman, 1997), all of which vary considerably between individu-
als (Ackerman, 1988). We hypothesize that the learning pattern is highly indicative of both
personal information, such as age and previous experience in performing similar tasks, and
personality and clinical traits, such as emotion expressivity, anxiety levels, and even specific
psychiatric indications.

Neurofeedback (NF), a closed-loop self-neuromodulation learning procedure, provides
a convenient environment for testing our hypothesis. This is because the learning task is
well-defined, yet individualized, is presented in a controlled and repeatable manner, and
the level of success is measured on a continuous scale of designated neural changes. NF is a
reinforcement learning procedure guided by feedback presented depending on self-acquired
association between mental and neural states. Mental states that happened to be asso-
ciated with on-line modulation in the neural target (e.g. lower or higher activity) are
rewarded, and eventually result in a desired modification of the brain signal (i.e. learning
success) (Sitaram et al., 2017; Taschereau-Dumouchel et al., 2022). We hypothesize that

1. Our code is available via https://github.com/rotemcz/fmri_nf
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the established association between internally-generated mental process and neural signal
modulation closely signifies personal brain-mind relation and could therefore serve as an
informative marker for personality and/or psychopathology.

fMRI-based neurofeedback enables precise modulation of specific brain regions in real
time, leading to sustained neural and behavioral changes. However, the utilization of this
method in clinical practice is limited due to its high cost and limited availability, which
also hinder further research into the sustained benefit (Sulzer et al., 2013; Lubianiker et al.,
2019). In the NF task we consider, one learns to reduce the activity of the Amygdala, while
observing a signal that is directly correlated with it. We consider the activity of the rest of
the brain as the context or states in which the learning task takes place, and discretize this
space by performing clustering.

A personal signature is constructed by measuring the progress of performing the NF
task in each of these clusters. Progress is obtained by comparing the Amygdala activity
at a first training session with that observed at the second session for the most similar
brain state. Specifically, we consider the difference between the second activity and the one
predicted by a neural network that is conditioned on the brain state in the first.

The individual representation obtained by aggregating these differences across the brain-
state clusters is shown to be highly predictive of multiple psychiatric traits and conditions
in three datasets: (i) individuals suffering from PTSD, (ii) individuals diagnosed with Fi-
bromyalgia, and (iii) a control dataset of healthy individuals. This predictive power is
demonstrated with linear classifiers, in order to demonstrate that the personal information
is encoded in an explicit way and to reduce the risk of overfitting by repeating the test with
multiple hyperparameters (Asano et al., 2019).

2. Related work

fMRI is widely used in the study of psychiatric disorders (Calhoun et al., 2014; Oksuz et al.,
2019). Recent applications of deep learning methods mostly focus on fully-supervised binary
classification of psychopathology-diagnosed versus healthy subjects in resting state (Dvornek
et al., 2017; Yan et al., 2019), i.e., when not performing a task. Contributions that perform
such diagnosis while performing a task, e.g., (Bleich-Cohen et al., 2014; Jacob et al., 2019;
Hendler et al., 2018; Raz et al., 2016; Lerner et al., 2018), focus on comparing entire seg-
ments that correspond to phases of the task, and have shown improved ability to predict
subjects’ traits, w.r.t to resting-state fMRI (Gal et al., 2022). Our analysis is based on
aggregating statistics across individual time points along the acquired fMRI.

The work closest related to ours applies self-supervised learning to the same fMRI NF
data in order to diagnose participants suffering from various psychopathologies and healthy
controls (Osin et al., 2020). There are major differences in the approaches. First, while
our method is based on a meaningful signature (it accumulates meaningful statistics)
that indicates learning patterns, their work is based on an implicit embedding obtained
by training a deep neural network. Second, while we focus on modeling the success in
performing the task over a training period, their method is based on the self-supervised
task of next frame prediction, which involves both the preparation (“passive”) and training
(“active”) periods (they require more data). Third, while our method compares progress
between two active NF sessions, their method is based on mapping a passive session, in
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which the participant does not try to self-modulate, and the subsequent active NF session.
The methods are, therefore, completely different. Finally, in a direct empirical evaluation,
our method is shown to outperform (Osin et al., 2020) by a sizable gap across all datasets
and prediction tasks, as further elaborated in Sec. 5.

As mentioned, the success in learning is related to the internal motivation to learn. This
is dependent on the brain state, and our method learns a signature that is directly linked
to the internal value function. In this sense, our method solves an inverse reinforcement
learning (learn a value function from an agent behavior) problem (Arora and Doshi, 2018).

3. Data

Real-time blood-oxygen-level-dependent (BOLD) signal was measured from the right Amyg-
dala region during an interactive neurofeedback session performed inside the fMRI. The data
fed into the model went through preprocessing steps using the CONN toolbox. The full pre-
processing steps are detailed in App. C. In specific parts of the task, subjects were instructed
to control the speed of an avatar riding a skateboard using only mental strategies (active
phase), while in other parts, subjects passively watched the avatar on the screen (passive
phase). During the active phase, local changes in the signal were translated into changing
speed, displayed to the subjects via a speedometer and updated every three seconds.

The neurofeedback datasets used in this experiment were part of larger intervention ex-
periments applying multiple training sessions outside the fMRI by using an EEG statistical
model of the right Amygdala. The subjects went through pre/post fMRI scans with the
model region as target in order to test for changes in the ability to self-regulate this area
(Fruchtman-Steinbok et al., 2021; Keynan et al., 2019).

fMRI data Each subject performed several cycles of the paradigm in a single session,
lasting up to one hour, in a similar fashion to common studies in the field (Paret et al.,
2019). Following each active phase, a bar indicating the average speed during the current
cycle was presented for six seconds. Each subject performed M = 2 cycles of Passive/Active
phases, where each passive phase lasted one minute. Each active phase lasted one minute
(for healthy controls and PTSD patients) or two minutes (Fibromyalgia patients). Following
previous findings, instructions given to the subjects were not specific to the Amygdala, to
allow efficient adoption of individual strategies (Marxen et al., 2016).

The active sessions were comprised of T temporal samples of the BOLD signal, each a
3D volumed box with dimensions H[voxels]×W[voxels]×D[voxels]. We distinguish BOLD
signals of the Amygdala signals from signals of other brain regions, each with a different
spatial resolution, HA ×WA ×DA, and HR ×WR ×DR, respectively. Partitioning was
done using a pre-calculated binary Region-of-Interest matrix.

ROI for Rest-of-Brain covers the entire gray matter of the right hemisphere, excluding
the right amygdala. This mask was generated with an SPM based segmentation of the
MNI brain template. This region was used for providing the feedback during the real-time
fMRI experiments. See App. C for more details about the construction of the Rest-of-
Brain ROI matrix. A visualisation of the selected brain regions, is shown in Fig. 5. The
matrix contains a positive value for voxels that are part of the Amygdala, and a negative
value for all others. Our data is, therefore, comprised of per-subject tuples of tensors:
(RT×HA×WA×DA ,RT×HR×WR×DR).
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Figure 1: The training steps: (i) Clustering the frames from the first session, based on the
regions outside the Amygdala; (ii) Matching each frame from the previous step to the most
similar frame from the second session; (iii) Learning to predict the Amygdala activity in the
matched frame of the second session, based on the information from the matching frame
in the first session and the brain activity outside the Amygdala in the second session; (iv)
constructing a signature based on the prevalence of each cluster and the error of prediction
for the frames of each cluster; and (v) a linear classifier on top of the obtained signature.

In our setting, M = 2, T = 18. We use three datasets in our experiments: (i) PTSD-
51 subjects, (ii) Fibromyalgia- 24 subjects, and (iii) Healthy Control- 87 subjects.
The Amygdala parameters and rest-of-brain parameters are identical for all three datasets:
HA = 6, WA = 5, DA = 6 and HR = 91, WR = 109, DR = 91, respectively. Further
information on the data acquisition scheme is provided in Appendix C.

Clinical data Clinical information about each subject s, denoted as ys ∈ Rl was avail-
able in addition to the fMRI sequences, consisting of the following information: (1) Toronto
Alexithymia Scale (TAS-20), which is a self-report questionnaire measuring difficulties
in expressing and identifying emotions (Bagby et al., 1994), (2) State-Trait Anxiety In-
ventory (STAI), which is measured using a validated 20-item inventory (Spielberger and
Gorsuch, 1983), and (3) Clinician Administered PTSD Scale (CAPS-5) 1, which is
the outcome of a clinical assessment by a trained psychologist based on this widely-used
scale for PTSD diagnosis (Weathers et al., 2013). For the healthy controls, the following
demographic information was also available: (1) Age and (2) Past experience in neuro-
feedback tasks, presented as a binary label (i.e, experienced / inexperienced subject).

4. Method

Our network receives processed fMRI samples as inputs, and uses them to predict subjects’
demographic and psychiatric criteria. We consider two types of fMRI signals: Amygdala,
and rest-of-brain, and train our networks in five steps, as depicted in Fig. 1: (i) identification
of prototypical brain states, C, by applying a k-means clustering scheme to the fMRI signals;
(ii) consider the rest of the brain regions, and identify for each fMRI frame from the first
session the most similar frame from the second session; (iii) given a subject’s complete

4



Predictive F-MRI Learning Patterns

brain state (Amygdala and greater-brain) at each time-step from the first session, we train
a neural network, f , to predict the subject’s Amygdala state in the matched closest frame
from the second session;(iv) create a subject signature by aggregating the prediction error
of f in each of the k prototypes; (v) train a linear regression network, ρ, to predict subjects’
criteria, based on the obtained signature.

Data structure For every subject s ∈ S, the dataset contains a series of M = 2

active sessions, each with T = 18 samples, denoted as Is =
{
Ims [t]

}T,M

t=1,m=1
. We treat each

sample as a pair: (i) an Amygdala sample, Am
s [t], which is cropped out of Ims [t] using a

fixed ROI matrix, as explained in Sec. 3, and (ii) a sample of other brain parts, Rm
s [t]. For

computational reasons, we use box-shaped data and constructed Rm
s [t] by extracting the

maximal box from Ims [t], such that all of its voxels are not part of the Amygdala.

K-means (step i) We learn a set of k cluster centroids, C = {µ1, . . . , µk}, based on rest-of-
brain training samples from the first session, minimizing the within-cluster-sum-of-squares:
argmin

C

∑
s,t

min
µ∈C

||R1
s[t] − µ||2. Note that clustering as well as cluster assignment are carried

out independently of the Amygdala samples, and only once for the entire training set.

Each cluster represents a different prototypical brain state and the number of clusters
is selected such that for most training subjects, no cluster is underutilized. See Sec. 5.

Amygdala state prediction (steps ii and iii) For every subject s and every time
step t ≤ T in the first session, we identify ut, the time step during the second session in
which the most similar sample was taken: ut = argmin

t′≤T
||R1

s[t]−R2
s[t

′]||2.

The obtained pairs {(t, ut)} indicate tuples of similar samples {(I1s [t], I2s [ut])}, which we
use to train a neural-network, f , aimed to predict A2

s[ut] (see implementation details in
App.A): Â2

s[ut] = f
(
I1s [t], R

2
s[ut]

)
= f

(
R1

s[t], A
1
s[t], R

2
s[ut]

)
. f is trained independently of

the centroids, minimizing the MSE loss
∑
s∈S

∑
t≤T

||f
(
I1s [t], R

2
s[ut]

)
−A2

s[ut]||2.

Building a signature matrix (step iv) and predicting personal traits (step v)
With the group of centroids, C, and the Amygdala-state predictor, f , we construct a sig-
nature matrix, Es ∈ R|C|×2, for every subject s. Each row of this signature corresponds
to a specific brain state prototype, and the columns correspond to the number of samples
in a cluster and the mean prediction error for that cluster. For every subject s ∈ S and
cluster Ci ∈ C, we define Cs

i as the set of the subject’s samples associated with the cluster:
Cs
i = {t|i = argmin

j
∥R1

s[t]− µj∥}.

We then calculate the average prediction loss of f with respect to each (s, Ci) pair: L̄f (s, Ci) =
1

|Cs
i |
·
∑

t∈Cs
i
||f(R1

s[t], R
2
s[ut], A

1
s[t])−A2

s[ut]||2, where |Cs
i | indicates the number of visits of

subject s in cluster i. The signature matrix Es has rows of the form Es[i] =
[
|Cs

i |, L̄f (s, Ci)
]
.

Es is then fed into ρ, a linear regression network with an objective to predict ys. Since
Es is a matrix, we use a flattened version of it, denoted as es ∈ R2·|C|. We then predict
ŷs = ρ(es) = G⊤es + b, where G is a matrix and b is a vector. G, b are learned using the
least squared loss over the training set.

Using a low-capacity linear classifier is meant to reduce the effect of overfitting in this
step, which is the only one with access to the target prediction labels. The neural network
f is trained on a considerably larger dataset, with samples of a much higher dimension (as
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(a) k = 4 (b) k = 5 (c) k = 6 (d) k = 7

Figure 2: Sorted n̄i per cluster on healthy controls for k = 4, 5, 6, 7. The error bars depict
the standard deviation between the training subjects of a typical cross validation split.

every fMRI frame from every subject is a sample). Additionally, its task is a self-supervised
one, and is therefore less prone to overfitting to the target labels.

The inference pipeline Given an unseen subject r, we assign each fMRI frame, t, in
the first session, to a cluster by finding the prototypes in C closest to R1

r [t]. We also match
a frame ut from the second session to each frame t by minimizing ||R1

r [t] − R2
r [ut]||2. A

signature er is then constructed. Finally, the linear predictor ρ is applied to this signature.
Implementation details are provided in App. A.

5. Experiments

Each experiment was repeated five times on random splits. We report the mean and SD.
The data is partitioned using a cross-validation scheme between train, validation and test
sets, each composed of different subjects, with a 60-20-20 split. The same partition holds
for all training stages in each dataset. For each dataset (i.e, Healthy, PTSD, Fibromyalgia),
we trained a separate network.

Building the representation In order to assure that all k chosen brain-state-prototypes

are visited by all subjects, we evaluate the ratio n̄i =
∑

s∈S |Cs
i |

T ·|S| of brain states assigned to
each of the clusters, when applying k-means on the training data.

We chose the largest k for which the variance between all
{
n̄i

}k

i=1
is relatively small.

As shown in Fig. 2, for k ∈ {4, 5}, all clusters are relatively evenly populated. However,
for k ∈ {6, 7}, one or two clusters are seldom visited (”cluster starvation”). The results
in the figure depict one k-means partitioning performed on healthy control subjects, but
are typical of all three datasets, and for many random seeds. We, therefore, choose k = 5.
In order to show that the clusters we got hold meaningful information, we performed two
experiments:(a) train an LSTM based network, which receives as input the temporal signal
of transitions between clusters, which proved to have predictive power w.r.t subjects’ traits
(results are shown in Tab. 1); and (b) train a similar LSTM network to predict the next
cluster brain state, given past visited clusters. The network accurately predicted the cluster
for 41% of the frames, compared to guessing the mean cluster which yields accuracy of 21%.

Amygdala state prediction We trained the network f until its validation loss con-
verged for each of the three datasets - healthy, PTSD and Fibromyalgia. The MSE error
obtained is presented in App.A. The network is quite successful in performing its prediction
task, compared to the simple baseline of predicting the network’s input, A1

s[t].

Predicting a subject’s psychiatric and demographic criteria We test whether our
learned representation, trained only with fMRI images, has the ability to predict a series
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of psychiatric and demographic criteria not directly related to the neurofeedback task. We
used our method to predict (i) STAI and (ii) TAS-20 for PTSD, Fibromyalgia and control
subjects, (iii) CAPS-5 for PTSD subjects. Demographic information, (iv) age, and (v) past
neuroFeedback experience were predicted for the control subjects.

Our linear regression scheme, applied to the learned signature vectors, is compared to the
following baselines, which all receive the fMRI sequence as input, denoted as x: (1) Mean
prediction simply predicts a constant value, (2) Conditional LSTM- The Amygdala
sections of the passive and active temporal signals are fed, as is, to a neural network, which
learns a personal representation for each subject (intuitively; the relation between respective
active and passive samples represents a subject’s ability to regulate their Amygdala). This
learned representation is later used to predict the subject’s criteria (Osin et al., 2020). In
contrast to our method, the learned representation of the conditional-LSTM also employs
the passive “watch” data, which our method ignores.

Another baseline predicts the target label without building a signature: (3) CNN- A
convolutional network with architecture identical to our f network, except for two modifi-
cations: (a) the input signal to this network is the entire second sample, I2s [ut] (instead of
R2

s[ut]). This way, the network has access to the same signals our proposed method has;
and (b) the decoder is replaced with a fully connected layer, which predicts the label.

We also perform comparison with an alternative framework that ignores the fMRI signals
and considers only the clinical data: (4) clinical prediction- an SVM regression with the
RBF kernel performed on every trait, according to the other traits (leave-one-trait-out,
where the data contains all psychiatric traits and the two demographic traits).

To perform an ablation study, we also compared the performance of regression networks
trained only with a mixture of partial data from Es and fMRI signals: (5) Raw difference-
A similar signature matrix, with the L̄f value replaced by the average norm of differences
between amygdala signals for every pair {(t, ut)}. Rows of the resulting matrix are: Ẽs[i] =[
|Cs

i |, 1
|Cs

i |
·
∑
t∈Cs

i

||A1
s[t]−A2

s[ut]||2
]
; and (6, 7) partial Es- A network trained using only one

of the signature matrix columns (i.e, either |Cs
i | or L̄f ).

(8) ClusterLSTM- an LSTM based network, which receives as input the sequence of
cluster memberships per frame, and predicts the subject’s traits according to it.

To show that the neurofeedback learning that occurs across sessions is what is important,
rather than the expected state of amygdala based on ”Rest-of-Brain” state, we implemented
(9) No Feedback- which predicts the Amygdala state given “Rest-of-Brain” state for the
sample, without pairing samples from different sessions. The clustering step is performed
without considering the Amygdala, in order to reserve this region for the prediction task.
A dedicated ablation compares this to the alternative of using the entire fMRI frame:
(10) Alternative clustering- In step (i), the clustering objective is changed, such that
it depends on the subjects’ complete brain state: argmin

C

∑
s,t

min
µ∈C

||I1s [t] − µ||2. Lastly, to

demonstrate the importance of using the Amygdala itself, we run baseline (11) Alternative
ROI- a framework identical to ours, but with neural area of focus shifted from the Amygdala
to the primary motor cortex, an area of dimensions H = W = D = 8, which is presumed
not to take part in the performance of the NF task.

The full results are shown in Tab. 1 for performing regression on age, TAS, STAI and
CAPS-5. Despite the dataset size, our results are statistically significant (see App. B for
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Healthy Fibromyalgia PTSD
Age↓ TAS↓ STAI↓ TAS↓ STAI↓ TAS↓ STAI↓ CAPS-5↓

Mean 13.7 121.7 79.3 98.6 78.5 153.0 159.5 119.3
C.LSTM 10.1 81.6 67.4 44.0 73.1 99.2 132.7 85.4
CNN 17.2 110.3 81.6 65.2 90.1 105.0 166.3 98.4
SVM 13.0 100.0 78.2 74.3 77.9 148.3 150.0 117.4
Ours, old-ROI 9.2 74.8 61.2 31.2 72.0 88.0 124.5 79.3
Ours, new-ROI 9.3 79.0 55.2 35.3 62.3 89.1 97.0 84.3

Ablation Ẽs 13.2 98.4 73.2 77.8 77.4 102.2 194.8 136.0
Ablation Lf 10.3 91.6 70.0 84.4 81.9 119.6 141.0 119.2
Ablation |Ci| 11.0 84.2 68.1 113.6 109.4 137.5 137.8 151.5
ClusterLSTM 12.1 96.8 68.8 75.7 90.0 118.1 155.0 108.0
No Feedback 13.7 125.0 75.0 90.0 77.7 165.3 167.6 139.0
Alt. clusters 12.3 114.0 72.5 70.2 80.3 98.3 174.0 103.6
Alt. ROI 13.5 125.5 79.0 96.3 84.5 135.6 135.8 128.7

Table 1: Traits prediction comparison (MSE). Old-ROI is
presented only for comparison with the previous version.

Figure 3: Past Experience ROC

more data), and the p value of the corrected re-sampled t-test between our method and the
baseline methods is always lower than 0.01. As can be seen, the baseline of (Osin et al.,
2020) greatly outperforms the mean prediction and both the CNN classifier and the one
based on the clinical data. However, it is evident that across all three datasets our method
outperforms this method, as well as all ablations, by a very significant margin in predicting
the correct values for both demographic and psychiatric traits. The analysis of the relative
error is given in App.A.

Fig. 3 presents classification results for past-experience information, which is only avail-
able for the healthy control subjects. Here, too, our method outperforms the baselines and
ablation methods. Specifically, it obtains an AUC of 0.83±0.03, while the method presented
by (Osin et al., 2020) obtains an AUC of 0.75± 0.03.

The ablation experiments provide insights regarding the importance of the various com-
ponents. First, modeling based on an irrelevant brain region, instead of the Amygdala, leads
to results that are sometimes worse than a mean prediction. Similarly, predicting using raw
differences in the Amygdala activity (without performing prediction), is not effective. It is
also important to remove the Amygdala from the clustering procedure, keeping this region
and outside regions separate. The variant based on the prediction error alone seems to be
more informative than that based only on cluster frequency. However, only together do
they outperform the strong baseline of (Osin et al., 2020).

6. Conclusion

NF data offers unique access to individual learning patterns. By aggregating the deviation
between actual and predicted learning success across clusters of brain activities, we obtain
a signature that is highly predictive of the history of a person, as well as of their clinical test
scores and psychiatric diagnosis. The presented method provides a sizable improvement in
performance over previous work.

Perhaps even more importantly, the obtained signature is based on explicit measure-
ments that link brain states to the difference between actual and expected learning success,
while previous work was based on an implicit embedding that is a by-product of training a
network to predict a loosely related task of predicting transient signal dynamics.
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Figure 4: Architecture of f , our Amygdala prediction Neural Network

Table 2: The MSE error of network f in comparison to two simple baselines

Method Healthy Fibromyalgia PTSD

Mean Prediction 0.1151± 3 · 10−3 0.0780± 1 · 10−3 0.0770± 1 · 10−3

Predicting A1
s[t] 0.1087± 2 · 10−3 0.0833± 4 · 10−3 0.0781± 3 · 10−3

f(I1s [t], R
2
s[ut]) 0.0735± 2 · 10−3 0.0561± 2 · 10−3 0.0550± 1 · 10−3

Appendix A. Implementation details and additional results

The architecture details of network f The network architecture of f is illustrated
in Fig. 4, and comprised of an encoder and a decoder. The encoder receives the prepro-
cessed fMRI signals; Rest-of-brain signals,

(
R1

s[t], R
2
s[ut]

)
, and Amygdala signals, A1

s[t], are
processed separately. First, the rest-of-brain signals are going through an average pooling
layer, with a kernel of size 2X2X2. Next, both signals are processed using two independent
3D-convolutional layers (separated by a ReLU layer), followed by an MLP layer. The out-
puts of the MLPs are then concatenated and fed into another MLP layer, with an output
of size 18.

The decoder part of f contains two deconvolutional layers, separated by a ReLU layer.
The decoder outputs the network’s prediction map of the subjects’ Amygdala during the
paired time-step, Â2

s[ut].

The prediction model f is implemented in PyTorch, contains 184K parameters, and runs
in real-time on an NVIDIA Tesla P100 GPU: a forward pass takes 18 ms on average.

Training details The clusters association and sample matching (step i + ii in Fig.1), are
performed before training the networks f, ρ. Results are stored in the dataset, such that each
record in it contains: (1) first session signals, (R1

s[t], A
1
s[t]); (2) matched second session rest-

of-brain signal, R2
s[ut]; and (3) the cluster to which the sample was associated. The hyper-

parameters (learning rate, batch size, etc.) of both networks f and ρ were selected according
to a grid search using the cross validation scores on the validation set. For training, we
used an Adam optimizer, with initial learning rates of 0.001 and 0.01, and a batch sizes of
16 and 1, respectively. We trained the network f , until convergence of its validation loss
for each of the three datasets - healthy, PTSD and Fibromyalgia. The MSE error reached
is presented in Tab. 2. As can be seen, the network is quite successful in performing its
prediction task in comparison to the simple baselines of predicting the activations in the
network’s input A1

s[t] and predicting the mean activation of each Amygdala’s voxels.
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Table 3: Relative error for age, TAS, STAI, and CAPS-5. Shown are mean ± Standard
Deviation over five random train/test splits.

Healthy Fibromyalgia PTSD
Age↓ TAS↓ STAI↓ TAS↓ STAI↓ TAS↓ STAI↓ CAPS-5↓

Mean pred 0.168± 0.04 0.250± 0.05 0.296± 0.08 0.230± 0.06 0.180± 0.04 0.247± 0.06 0.268± 0.07 0.474± 0.13
(Osin et al., 2020) 0.144± 0.04 0.205± 0.04 0.273± 0.09 0.154± 0.05 0.174± 0.03 0.198± 0.04 0.244± 0.06 0.400± 0.12
CNN 0.188± 0.05 0.238± 0.08 0.301± 0.08 0.187± 0.07 0.193± 0.06 0.204± 0.06 0.274± 0.12 0.430± 0.15
Clinical SVM 0.163± 0.06 0.227± 0.07 0.294± 0.07 0.200± 0.06 0.181± 0.05 0.243± 0.07 0.260± 0.07 0.460± 0.16
Ours- old ROI 0.137± 0.04 0.196± 0.06 0.260± 0.08 0.129± 0.06 0.170± 0.04 0.187± 0.05 0.237± 0.06 0.385± 0.14
Ours- new ROI 0.140± 0.03 0.192± 0.06 0.251± 0.07 0.120± 0.04 0.172± 0.05 0.184± 0.05 0.206± 0.04 0.390± 0.11

Ablation Ẽs 0.165± 0.04 0.225± 0.08 0.285± 0.09 0.204± 0.06 0.179± 0.06 0.201± 0.09 0.297± 0.05 0.507± 0.12
Ablation Lf 0.145± 0.06 0.217± 0.04 0.278± 0.10 0.213± 0.08 0.184± 0.07 0.218± 0.06 0.251± 0.07 0.475± 0.16
Ablation |Ci| 0.150± 0.07 0.208± 0.06 0.274± 0.11 0.247± 0.09 0.213± 0.09 0.234± 0.08 0.249± 0.09 0.532± 0.11
ClusterLSTM 0.151± 0.03 0.225± 0.07 0.254± 0.10 0.194± 0.07 0.190± 0.05 0.203± 0.07 0.272± 0.09 0.411± 0.10
No feedback 0.168± 0.05 0.253± 0.07 0.288± 0.08 0.220± 0.07 0.179± 0.07 0.256± 0.08 0.275± 0.08 0.512 ±0.13
Alt. clustering 0.159± 0.04 0.242± 0.05 0.282± 0.09 0.194± 0.06 0.182± 0.05 0.197± 0.06 0.280± 0.08 0.436± 0.15
Alt. ROI 0.167± 0.03 0.254± 0.06 0.296± 0.10 0.227± 0.07 0.187± 0.05 0.232± 0.08 0.247± 0.09 0.491± 0.09

Table 4: Regression results (MSE) for age, TAS, STAI, and CAPS-5. Shown are mean ±
Standard Deviation over five random train/test splits.

Healthy Fibromyalgia PTSD
Age↓ TAS↓ STAI↓ TAS↓ STAI↓ TAS↓ STAI↓ CAPS-5↓

Mean pred 13.7± 1 121.7± 6 79.3± 6 98.6± 7 78.5± 5 153.0± 11 159.5± 13 119.3± 10
(Osin et al., 2020) 10.1± 1 81.6± 7 67.4± 6 44.0± 5 73.1± 3 99.2± 5 132.7± 8 85.4± 8
CNN 17.2± 1 110.3± 12 81.6± 7 65.2± 10 90.1± 9 105.0± 11 166.3± 33 98.4± 16
Clinical SVM 13.0± 2 100.0± 12 78.2± 8 74.3± 7 77.9± 11 148.3± 12 150.0± 11 117.4± 14
Ours, old-ROI 9.2± 1 74.8± 7 61.2± 6 31.2± 6 72.0± 4 88.0± 7 124.5± 9 79.3± 12
Ours, new-ROI 9.3± 1 79.0± 3 55.2± 7 35.3± 8 62.3± 7 89.1± 11 97.0± 10 84.3± 10

Ablation Ẽs 13.2± 1 98.4± 15 73.2± 9 77.8± 7 77.4± 11 102.2± 20 194.8± 6 136.0± 14
Ablation Lf 10.3± 1 91.6± 4 70.0± 9 84.4± 13 81.9± 14 119.6± 11 141.0± 9 119.2± 19
Ablation |Ci| 11.0± 2 84.2± 9 68.1± 9 113.6± 32 109.4± 20 137.5± 18 137.8± 20 151.5± 19
ClusterLSTM 12.1± 1 96.8± 6 68.8± 8 75.7± 9 90.0± 6 118.1± 12 155.0± 14 108.0± 11
No Feedback 13.7± 2 125.0± 9 75.0± 8 90.0± 8 77.7± 7 165.3± 16 167.6± 18 139.0± 11
Alt. clustering 12.3± 1 114± 5 72.5± 9 70.2± 8 80.3± 8 98.3± 12 174.0± 20 103.6± 12
Alt. ROI 13.5± 1 125.5± 7 79.0± 10 96.3± 9 84.5± 8 135.6± 16 135.8± 19 128.7± 5

Appendix B. Relative Error and Standard Deviation

Table 3 contains the relative error (mean and Standard Deviation) of our main experiments.
Table 4 is similar only it contains the MSE. it reports the same stats as does Tab. 1 in the
main paper, with addition of the Standard Deviation.

Appendix C. fMRI data acquisition and pre-processing

The structural and functional scans were obtained with a 3.0T Siemens MRI system (MAG-
NETOM Prisma) using a 20-channel head coil. A T1-weighted three-dimensional (3D) sagit-
tal MPRAGE pulse sequence (repetition time/echo time=1,860/2.74 ms, flip angle=8◦, pixel
size=1×1 mm, field of view=256×256mm) was used to increase the resolution of the struc-
tural images. The functional scans were performed in an interleaved top-to-bottom order,
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(a) (b)

Figure 5: (a) Rest of brain mask; and (b) a 90◦ flipped version of it

using a T2*-weighted gradient echo planar imaging pulse sequence (repetition time/echo
time=3,000/35ms, flip angle=90◦, pixel size=1.56mm, field of view=200 × 200mm, slice
thickness=3 mm, 44 slices per volume).

The CONN MATLAB toolbox (Whitfield-Gabrieli and Nieto-Castanon, 2012) was used
to realign the functional volumes, motion correction using rigid-body transformations in
six axes, normalization to MNI space and spatial smoothing with an isotropic 6-mm full
width at half-maximum Gaussian kernel. Subsequently de-noising and de-trending regres-
sion algorithms were applied, followed by bandpass filtering in the range of 0.008-0.09 Hz.
The frequencies in the bandpass filter reflect the goal of modeling the individual through-
out the session, while removing the effects of the fast paced events that occur during the
neurofeedback session. This filtering follows previous work (Osin et al., 2020). While it
may remove important information from the signal, we adopt it as is for a fair comparison.
The Amygdala voxels were defined as the functional cluster centered at coordinates (x=21,
y=-2, z=-24).

Amygdala and Rest-of-Brain ROI calculation The Amygdala region of interest was
defined in SPM as a 6mm sphere located at MNI coordinates [21, -1, -22]. This region was
used for providing the feedback during the real-time fMRI experiments.

See Fig. 5 for a visualisation of the regions included in the Rest-of-Brain signal.
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Table 5: The prototypical clusters, sorted by the mean prediction error for the frames that
belong to each cluster.

MSE Regions

(a) 0.0653 Primary Sensorimotor, Primary Visual Cortex
(b) 0.0691 Posterior Cingulate Cortex, Medial Prefrontal Cortex (Default mode network)
(c) 0.0697 Insular Cortex, Supplementary motor area, Cingulate Cortex, Visual Cortex (Salience Network)
(d) 0.0745 Superior Parietal Cortex, Frontal Eye Fields (Dorsal attention network)
(e) 0.0776 High visual areas (Ventral and Dorsal Stream)

Appendix D. Analysis of the obtained clusters

In order to understand the prototypical brain states that are obtained through the clustering
process, we have visualized the cluster centroids which represent the prototypical brain
states found during the NF task for the Healthy subgroup. The resulting maps, depicted
in Fig. 6, show the main activated nodes in each state.

The fact that the clusters are distinct in their spatial arrangement is supportive of the
relevance of using clustering for this purpose. Sorting the clusters according to the mean
predicting error can hint on the brain states that are more supportive of learning the NF
task, see Tab. 5.
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(a) (b)

(c) (d)

(e)

Figure 6: Five prototypical clusters obtained on the healthy individuals dataset. (a) Sen-
sorimotor Network and Visual Cortex. (b) Main nodes of the Default Mode network (c)
Main nodes of the Salience Network. (d) Dorsal attention network. (e) High visual areas
(Ventral and Dorsal Stream).
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