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ABSTRACT

Visual prompted object detection enables interactive and flexible definition of target
categories, thereby facilitating open-vocabulary detection. Since visual prompts
are derived directly from image features, they often outperform text prompts in
recognizing rare categories. Nevertheless, research on visual prompted detection
has been largely overlooked, and it is typically treated as a byproduct of training
text prompted detectors, which hinders its development. To fully unlock the poten-
tial of visual-prompted detection, we investigate the reasons why its performance
is suboptimal and reveal that the underlying issue lies in the absence of global
discriminability in visual prompts. Motivated by these observations, we propose
DETR-ViP, a robust object detection framework that yields class-distinguishable
visual prompts. On top of basic image-text contrastive learning, DETR-ViP incor-
porates global prompt integration and visual-textual prompt relation distillation to
learn more discriminative prompt representations. In addition, DETR-ViP employs
a selective fusion strategy that ensures stable and robust detection. Extensive exper-
iments on COCO, LVIS, ODinW, and Roboflow100 demonstrate that DETR-ViP
achieves substantially higher performance in visual prompt detection compared
to other state-of-the-art counterparts. A series of ablation studies and analyses
further validate the effectiveness of the proposed improvements and shed light on
the underlying reasons for the enhanced detection capability of visual promptsﬂ

1 INTRODUCTION

Compared with traditional closed-set object detection(|Girshick! (2015); Redmon et al.|(2016);|Zhang
et al| (2022a)), open-set object detection breaks through the limitation of predefined categories,
thereby demonstrating greater potential in real-world applications. Prompt-based object detection has
further inspired the development of open-set detection by enabling flexible identification of target
objects. Several prominent approaches(|Ghiasi et al.|(2022); |Gu et al.| (2021)); Kamath et al.| (2021);
Li et al.| (2022b); [Liu et al.| (2024); Minderer et al.| (2022)); Zhou et al.|(2022)) support text-prompted
open-set detection by distilling knowledge from vision-language models such as CLIP( |Radford
et al.| (2021)) or from language models like BERT(|Devlin et al.| (2019)) through aligning visual
representations with textual descriptions. The training paradigm of text-prompted model centers
on aligning visual and textual feature spaces, with zero-shot generalization largely attributed to
large-scale, generic image-text pairs. However, in specialized domains, relying solely on textual
descriptions of target categories or attributes often proves insufficient for reliable detection.

Some methods( Jiang et al. (2023); Kirillov et al.| (2023)); Zou et al.| (2023)); Ravi et al.| (2024);
Li et al.| (2024)) employ visual prompts to define target objects of interest, further enhancing the
interactivity and adaptability of object detection models. Recently, several methods( Jiang et al.
(2024); |[Cheng et al.[(2024)) have begun to explore object detection frameworks that support both
textual and visual prompts, achieving promising progress. Jiang et al.|(2024) empirically find that,
compared with text prompts, visual prompts are more effective in recognizing rare categories. This is
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Figure 1: Analysis of visual prompts. (a) t-SNE visualization of VIS-GDINO prompts sampled
from 10 COCO categories. (b) Similarity distribution between VIS-GDINO prompts of the same

category and across different categories. (c) Trends of Intra-Inter Similarity Ratio (IISR) and mAP.
expected because visual prompts, being sampled from the visual domain, are naturally compatible

with image features, thus possessing stronger generalization ability than text prompts, which require
cross-modal (text-to-vision) alignment. Nevertheless, visual prompts still underperform text prompts
overall, which limits their practical applicability.

To systematically investigate the reasons behind this suboptimal performance and enhance detection
capability, we build a baseline model incorporating visual prompts on top of Grounding DINO, termed
VIS-GDINO, and conduct a detailed analysis. VIS-GDINO achieves mAP scores of 21.1 and 17.2 on
COCO and LVIS, respectively, which are lower than those of Grounding DINO with text prompts.
For each category, we sample 128 images to extract visual prompts, and perform a t-SNE analysis on
all visual prompts, as shown in Figure[T[a). It can be observed that the visual prompts of VIS-GDINO
lack clear semantic boundaries, which may contribute to frequent misclassifications when using
visual prompts for categorization. To illustrate this more clearly, we compute the pairwise cosine
similarities among all visual prompts and plot the distributions of similarities for same-category
and different-category prompts as histograms, shown in Figure[T[b). Same-category and different-
category prompts share a relatively wide similarity range, which underscores the disorganization of
the prompt embedding space. Taken together with these observations, we attribute the suboptimal
performance of visual prompts to two factors: (1) visual prompts from different instances of the
same category exhibit large variance; and (2) visual prompts from different categories are heavily
entangled in the global embedding space, making them difficult to distinguish. In summary, visual
prompts suffer from a lack of sufficient semantic discriminability.

Building upon the above insight, we improve VIS-GDINO into a detection model with more robust and
discriminative visual prompts, termed DETR-ViP, by simultaneously reducing the intra-class variance
and enlarging the inter-class distance of visual prompts. DETR-ViP introduces a global prompt
integration strategy that simulates cross-image prompt detection during training while augmenting
negative samples, thereby encouraging image features to encode more distinctive global semantics.
In addition, we design a visual-text prompt relation distillation loss. This loss transfers the semantic
priors from the similarity matrix of textual prompts to the visual prompts, encouraging them to capture
semantic proximity. Finally, we propose a selective fusion strategy. The fusion of each visual prompt
is conditioned on the model’s judgment of whether the corresponding category instance exists in the
target image, resulting in more stable and robust detection. To quantitatively evaluate the quality of
visual prompts by measuring intra-class variance and inter-class separability, we further introduce the
Intra-Inter Similarity Ratio (IISR). A larger IISR indicates stronger semantic consistency of visual
prompts. As shown in Figure [I{c), both IISR and mAP on COCO consistently improve with the
proposed modifications, validating that the performance gains stem from the optimization of visual
prompt distributions.

We conduct comprehensive evaluations on COCO(|Lin et al.| (2014)), LVIS(|Gupta et al.| (2019))),
ODinW(|Li et al.| (2022a)), and Roboflow 100( |Ciaglia et al.|(2022))). Under comparable backbone
settings, DETR-ViP consistently outperforms T-Rex2. Specifically, DETR-ViP-T outperforms T-
Rex2-T by +4.4 mAP on COCO, and achieves +3.7 mAP over T-Rex2-T and +6.9 mAP over
YOLOE-v8-L on LVIS. In terms of AP, and AP,., our model surpasses T-Rex2 by +9.4 and +5.2, and
exceeds YOLOE-v8-L by +8.7 and +1.9, respectively. On ODinW and Roboflow 100, which contain
category distributions substantially different from the training datasets, DETR-ViP-T surpasses
T-Rex2-L by 3.4 and 5.1 mAP, respectively. DETR-ViP-L further improves upon DETR-ViP-T,
surpassing T-Rex2-L by 3.7 and 1.5 mAP on COCO and LVIS, respectively. Beyond fair comparisons
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with existing methods, we also conducted extensive ablation studies to validate the effectiveness
of each modification from VIS-GDINO to DETR-ViP. Moreover, both the IISR metric and t-SNE
visualizations of visual prompts provide intuitive evidence that these improvements progressively
optimize the structure of the prompt embedding space.

2 RELATED WORK

Prompt-based object detection provides a promising pathway toward open-vocabulary detection.
Text-prompted approaches(|Gu et al.| (2021); |Kamath et al.| (2021)); L1 et al.|(2022b); Liu et al.| (2024));
Minderer et al.|(2022);[Zang et al.| (2022); Zhang et al.| (2023); Zhong et al.| (2022))) have achieved
remarkable progress, exhibiting strong zero-shot and few-shot recognition capabilities. These methods
mainly align visual features with text embeddings, often leveraging pretrained language models such
as CLIP(|Radford et al.| (2021)) or BERT(|Devlin et al.| (2019)). Representative advances include
GLIP(|L1 et al.| (2022b)), which unifies detection and phrase grounding through large-scale image—text
pretraining; DetCLIP(|Yao et al.|(2022)), which introduces richly descriptive concepts; Grounding
DINO( Liu et al.| (2024))), which enhances early cross-modal fusion; and RegionCLIP(|{Zhong et al.
(2022)), which transfers regional knowledge via pseudo boxes to improve generalization.

However, in many scenarios language alone is insufficient to precisely describe target objects,
motivating research on visual-prompted detection for greater flexibility and contextual awareness.
Early methods( Minderer et al.| (2022); | Xu et al.| (2023); |[Zang et al.| (2022); Jiang et al.| (2023))
adopted full reference images as prompts, while later works( Kirillov et al.|(2023); |[Ravi et al.|(2024);
L1 et al.|(2024)) explored more compact formats such as keypoints or bounding boxes. DINOv(|L1
et al.| (2024)) treats visual prompts as contextual exemplars for open-vocabulary detection, and
T-Rex(|Jiang et al.| (2023))) applies deformable attention to extract region-level features from point- or
box-based prompts. Recent methods combine visual and textual prompts: T-Rex2(|Jiang et al.|(2024)))
incorporates vision—language contrastive learning, and YOLOE( |Cheng et al.| (2024)) introduces
RepRTA and SAVPE for unified prompt handling. Despite these advances, the performance of
visual-prompted detection still lags behind that of text-prompted counterparts.

3 METHOD

3.1 PRELIMINARY

A closed-set detector computes the score of each proposal for predefined categories by training a
linear layer, whereas an prompt-based open-set detector derives the score by measuring the similarity
between the proposal features O and the prompt embeddings P, as formulated in Equation (T).

Score = c(OW T +b) PN Score = o(OPT +1b),

Closed-set Prompt-based M

Here, W denotes the weights of the linear layer, b is a learnable bias, and o represents the sigmoid
function. In this work, we adopt the prompt-based method shown in Equation (I) (right), where
neither O nor P is subjected to Lo normalization.

Given an image-text pair (I, T), Grounding-DINO( [Liu et al|(2024)) extracts multi-scale visual
features X; € REXC using a visual backbone (e.g., Swin Transformer( [Liu et al.| (2021))), and
obtains textual prompt embeddings Pr € RY+*C through a text backbone (e.g., BERT(|Devlin et al.
(2019))). Subsequently, X and Pr are fused and enhanced within the encoder, whose layers consist
of a deformable attention module (for enhancing X ), a self-attention module (for enhancing Pr), and
a bidirectional attention module (for fusing X and Pr), as shown in Equation (2). Similar modules
are also present in the decoder. Given K user-specified normalized boxes b; = (x;,y;, w;, h;),j €
{1,2, ..., K}, T-Rex(Jiang et al.| (2023)) first extracts multi-scale features X using a visual backbone
and encoder. Each box is transformed into a positional embedding via a sine-cosine encoding and
projected to a uniform dimension to obtain box embeddings B. A learnable content embedding C'is
replicated K times and concatenated with B, together with a global box B’ = {0.5,0.5,1,1} and a
class token C’ for aggregating visual prompt features. The resulting embeddings are linearly mapped
to form the visual prompt queries (), which are then fed into a multi-scale deformable cross-attention
module to extract visual prompts Py, from X ;. The overall process is summarized in Equation (3).
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Figure 2: The overview of DETR-ViP. DETR-ViP builds on Grounding DINO by incorporating
a visual prompt encoder for visual-prompted detection. It improves prompt semantics via global
prompt Integration and visual-textual prompt relation distillation, and refines the fusion module to
stabilize image-prompt interactions, thereby enhancing detection robustness.

X1 = MSDeformSelfAttn(X;) B = Linear(PE(by, ba, ..., bx))
Pr = SelfAtin(Pr) @ Q = Linear(CAT([C;C"],[B; B'])) . (3)
X1, Pr = BiAttin(X7, Pr) Py = MSDeformAttn(Q, B, X7)

They both adopt the same detection loss as DINO [Zhang et al.| (2022a), which consists of a classifi-
cation loss L and a regression loss composed of an L1 loss £; and a GIoU loss Lgou, as well as
a denoising loss Lg,. T-Rex2 further employs an image-text contrastive loss Lajign. We also adopt
these losses, which we denote as Lyase:

Ebase = )\clsﬁcls + )\lﬁl + )\GIOU‘CGIOU + )\dnﬁdn + )\AlignﬁAlign, (4)

Here, A\, denotes the weighting coefficients for each loss term.

3.2 DETR-VIP

We develop the baseline VIS-GDINO from Grounding DINO by inserting the visual prompt encoder,
as defined in Equation (3), between the backbone and the encoder, and removing the fusion modules
in the encoder and decoder as represented in Equation (2). On top of this architecture, we introduce
the global prompt integration, visual-textual prompt relation distillation loss, and selective fusion
strategy to enhance visual prompt detection, thereby upgrading VIS-GDINO to DETR-ViP, as shown
in Figure 2]

Global Prompt Integration. DETR-like models typically optimize confidence scores using Focal
Loss ([Lin et al[(2017)) to endow the model with classification capability. In prompt-based detection,
given a proposal ¢, suppose it is matched to the category represented by the prompt pT, while p~
denotes the prompts from other categories. The classification loss contributed by this proposal is
formulated as follows:

—a{(l —q-p")logq-p" +) (g-p7) log(l —¢ 'p’)]- Q)

positive item

negative items

The positive term attracts proposal features toward positive prompt embeddings, while the negative
term repels them, akin to contrastive learning. Prior work (|Chen et al.| (2020); |He et al.| (2020)) shows
that abundant negatives are essential for learning globally optimal representations. However, training
samples in each iteration typically contain only a small number of categories, and under the “current
image prompt, current image detect” strategy in T-Rex2 — where prompts are sampled exclusively
from the GT boxes of the current training image — the classification problem degenerates into a very
small N-way classification task. As a result, the limited category diversity directly constrains the
model’s global discriminability.

For textual prompts, this can be easily achieved by padding them with additional category phrases
to a fixed length. The extension of visual prompts is more challenging, as the extraction of visual
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prompts relies on the images they originate from. Sampling an additional batch of images during
training to extract negative examples would significantly reduce training efficiency. Therefore, we
adopt a strategy that aggregates prompts from all samples and integrates them into a unified classifier.
Specifically, we collect all visual prompts from the images within the same batch and group them
by category. For each category, we compute the mean of all its prompts to obtain a class prototype.
The prototypes of all categories are then concatenated and shared across all images in the current
batch, serving as the weights of the classifier. Unlike the “current image prompt, current image detect”
strategy, this strategy not only increases the number of negative examples for visual prompts, thereby
stabilizing training, but also implicitly simulates cross-image prompting. This is because the visual
prompts for a given category are aggregated not only from the current sample but also from positive
examples in other samples. This simple strategy substantially improves the performance of detection
based on visual prompts, as evidenced by the experiments reported in Section .4}

Visual-Textual Prompt Relation Distillation. Prompt-based detection localizes and classifies
targets by selecting proposals with the strongest responses to the prompt, where the prompt functions
analogously to a classifier. The prompt embedding space is expected to exhibit intra-class compactness
and inter-class separability, with similar concepts clustering together and dissimilar ones remaining
apart. Language encoders like CLIP and BERT inherently possess these properties thanks to their
learning objectives: BERT’s masked language modeling, which clusters semantically related words,
and CLIP’s contrastive pretraining, which aligns and separates concepts across modalities. However,
since the appearance of instances can vary significantly due to individual differences, environmental
factors, and other conditions, the distribution of visual prompts tends to exhibit high variance and
blurred, ambiguous semantic boundaries. Multimodal detectors such as T-Rex2 address this issue
by aligning visual prompts with their corresponding textual prompts. If such alignment were to be
fully achieved, the visual prompt space would naturally inherit the semantic organization of the text
embedding space, thereby obtaining strong intra-class compactness and inter-class discrimination.
Nevertheless, studies (|Liang et al.|(2022);|Schrodi et al.|(2024)) have shown that images and text
cannot be perfectly aligned, which fundamentally limits the effectiveness of this indirect alignment
approach. An intuitive approach is to apply the Supervised Contrastive Loss (|Khosla et al.| (2020)) to
visual prompt embeddings:

—1 exp(pipj/T)
LSC = Tl 7N log , (6)
L ; 0] jeszw) > res exp(pipk/7)

Here, ST (i) denotes the set of prompts that belong to the same category as p;, while S denotes
the set of all prompts. However, such a hard contrastive loss treats all negative examples equally,
making it incapable of capturing the correlations between concepts. Moreover, when training on
grounding datasets, it may also suffer from the influence of false negatives. For instance, women
and person are treated as different categories during training, yet considering their corresponding
visual prompt embeddings as negatives against each other is clearly unreasonable. Considering that
language models provide a strong prior for semantic similarity, we adopt the following visual-textual
prompt relation distillation loss:

Lgisin = CrossEntropy(Softmax(C'CT), Softmax(PPT)) )

Ny, N,
Sl explaicy /) exp(pip] /7o)

- Og ’
Ny = Ypeapleici /1) 7 Xy exp(pip /7o)
Here, N, denotes the number of prompts, p and P represent the visual prompt embedding vector and

matrix, respectively, ¢ and C' denote the corresponding textual feature vector and matrix, and ¢, 7,
are the temperature parameters. Note that both ¢ and p represent L2-normalized vectors.

®)

It is worth noting that, unlike the alignment loss which enforces constraints over visual-text pairs,
the relation distillation loss leverages the relational structure among text-text pairs as a prior and
directly optimizes the topology of the visual prompt space. This approach avoids the difficulties
of cross-modal alignment and instead adjusts the interrelations among visual prompts in a more
direct manner, enabling the learned visual prompt space to exhibit strong intra-class compactness and
inter-class separability. Importantly, the two losses are compatible and complementary: the alignment
loss guides visual prompts toward stable semantic anchors defined by text embeddings, while the
relation distillation loss focuses on refining the structural relationships within the visual prompt space,
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leading to a more discriminative and semantically consistent representation. Overall, the total loss of
DETR-ViP is as follow:

Liotal = Loase + Adistit Ldistill - 9

Selective Fusion. Fusing text prompt embeddings with image features in the early stage is a
commonly adopted technique in open-vocabulary object detection. Such fusion not only allows
the prompt embeddings to capture image-specific information but also makes the regions in the
image with high responses to the prompts more semantically salient, and is generally considered an
effective means to enhance prompt-based detection performance. However, in practical applications,
the provided prompts can be highly flexible. In interactive detection, users may only wish to detect
objects of a few categories of interest within an image and thus provide only 1~2 prompts. In contrast,
in batch annotation scenarios, users may specify a large number of prompts in advance (e.g., the 80
categories in COCO), while for a given image some of these categories may have no corresponding
instances. Under such circumstances, it becomes necessary to consider whether fusing prompt
embeddings of irrelevant categories could have negative effects.

To investigate this, we incorporate the fusion strategy of Grounding DINO into DETR-ViP, as
formulated in Equation (2)) The prompt-to-image fusion is defined in Equation (I0), with image-to-
prompt fusion obtained by swapping X; and Py .

QK™

Q:WQX],KZWKP\/,VZWVP\/,XIO:SOftmaX( \/g

where W (O € {Q, K, V'}) denote the query, key, and value projection matrices, respectively. X ¢
represents the fused image features. We use the model equipped with this fusion strategy to perform
detection with either a single prompt or all prompts, and visualize the corresponding results. The
visualization results are shown in Figure [3] When all 80 COCO prompts are given, the model detects
correctly, but performance collapses with only the *person’ prompt, as the global prompt integration
causes the model to overfit to many-prompt scenarios.

WV, (10)

This phenomenon exposes the fragility of full fusion strategies. A robust fusion mechanism should
yield stable detection regardless of the number of prompts. To this end, we propose a selective
fusion strategy that first determines whether a category exists in the image, and fuses only the
relevant prompts while suppressing the others. Concretely, we introduce a gating vector G into
the fusion layer’s attention weights. The gate g. for a category c is intended to satisfy: g. — 0
when c is present in the image, and g. — —oo when c is absent. To estimate category presence, an
auxiliary classification branch computes the similarity matrix S € RY7*NP between image features
X1 € RErXD and prompt embeddings Py € RV?*P | The maximum similarity MAX(S,0) € RV?
for each prompt is taken as its confidence score, followed by a threshold activation function §(-),
which outputs 0 if the input exceeds 6 and —oo otherwise. The specific details of the selective fusion
strategy are as follows:

QKT + G
Vd

By applying the selective fusion strategy in both training and evaluation, the model filters out prompts
with insufficient responses to the current image, leading to a more stable and robust fusion process.

X¢ = Softmax( VWV, G = §(MAX(S,dim = 0),6),S = o(Sim(X7, Py) +b). (11)

4 EXPERIMENT

4.1 IMPLEMENTATION DETAILS

We provide two versions of our model based on Swin Transformer backbones: Tiny and Large. Both
variants stack six Transformer encoder layers as the visual encoder, three deformable cross-attention
layers as the visual prompt encoder, and six deformable cross-attention layers as the box decoder. We
adopt AdamW(|Loshchilov & Hutter|(2017)) as the optimizer, with a learning rate of 1 x 107> for the
backbone and 1 x 10~* for the other modules. In Equations and @), Adlss A1, AGIoU, Aalign, and
Adistint are set to 1.0, 5.0, 2.0, 1.0, and 10.0, respectively. In Equation , 7 and T, are set to 0.07 and
0.1. DETR-VIiP is trained on both detection and grounding datasets, including Objects365 (V1)(|Shao
et al.|(2019)) and GoldG(|[Kamath et al.|(2021)) (comprising GQA(Hudson & Manning| (2019)) and
Flickr30k(|Plummer et al.|(2015))), with images from COCO( Lin et al.[(2014)) excluded.
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(a) Detect with *person’ prompt (b) Detect with all prompts

Figure 3: Illustration of Unstable Fusion. (a) With only the ’person’ prompt, detection fails. (b) With
all 80 COCO category prompts, detection succeeds.

4.2 EVALUATION PROTOCOL AND METRICS

Following T-Rex2( (2024)), we evaluate our method in the zero-shot setting on COCO(

et al] (2014)), LVIS(|Gupta et al. (2019)), ODinW( (20224)), and Roboflow 100([Ciaglia et al.
2022)), without training on any of these benchmarks. For fair comparison with T-Rex2(Jiang et al.

2024)) and YOLOE(|Cheng et al.[(2024)), evaluation is conducted under the Visual-G protocol. For
fair comparison with T-Rex2 (Jiang et al.| (2024)) and YOLOE (|Cheng et al.|(2024)), evaluation is
conducted under two protocols: Visual-G and Visual-I. Under the Visual-G protocol, methods adopt
a generic visual prompt workflow: for each benchmark, N images per class are sampled from the
training set, each containing at least one instance of the target class. All GT boxes of that class are
used to extract the prompt embeddings, and their average serves as the visual prompt for evaluation.
In contrast, under the Visual-I protocol, for a test image containing M categories, only one GT box is
randomly selected for each category to extract the corresponding visual prompt. We report standard
AP on COCO; Fixed AP(@), APy, AP, and APr on LVIS, corresponding to frequent,
common, and rare categories; and average AP across 35 ODinW and 100 Roboflow datasets.

To capture the semantic properties of visual prompts, we introduce IISR (Intra-Inter Similarity
Ratio) to quantify intra-class similarity and inter-class separability (Equation (I2))). The numerator
averages pairwise similarities within each category, while the denominator measures similarities
among category-level mean vectors.

Ne |C]
1 1 1
IISR = — E _ E Sim(pi,pj)/— E Sim(ﬁc,ﬁt) (12)
€] ceC Ne(Ne —1) ij=1;i>j [Cl(cl=1) ct=1ie>t

Here, C denotes the set of categories, Sim(+, -) refers to the cosine similarity, V. indicates the number
of prompts in category c, and p., p; represent the mean vectors of all prompts in categories c, t.

4.3 ZERO-SHOT OBJECT DETECTION

Visual-G. We evaluate the zero-shot generic detection capabilities of DETR-ViP on COCO, LVIS,
ODinW, and Roboflow 100, and report the results in Tablem The results of T-Rex2 series and YOLOE
series are quoted from their paper(Jiang et al.| (2024); [Cheng et al|(2024)). Experimental results
show that DETR-ViP substantially outperforms YOLOE under the same training data. On LVIS,
DETR-ViP-T surpasses YOLOE-v8-L by 6.9 AP, with gains of 1.9, 8.7, and 6.3 on AP,., AP,, and
APy, respectively. With the same backbone, DETR-ViP also matches or exceeds T-Rex2 despite
using far less data. For example, with Swin-T, DETR-ViP improves over T-Rex2 by 4.4 AP on COCO
and by 3.7 AP on LVIS, with larger gains on AP,. (+5.2) and APc (+9.4). These improvements are
most pronounced on common and rare categories, likely due to more efficient optimization of visual
prompts, while advantages on frequent classes are smaller. Results on ODinW and Roboflow 100,
which exhibit larger domain shifts, further confirm this trend: DETR-ViP-T outperforms T-Rex2-L by
3.4 APavg on ODinW and 5.1 on Roboflow100. DETR-ViP-L further improves over DETR-ViP-T,
surpassing T-Rex2-L by 3.7 AP on COCO and 1.5 AP on LVIS. These results highlight the advantages
of DETR-ViP compared with other visual prompt detection models.




Published as a conference paper at ICLR 2026

Table 1: Zero-shot generic detection evaluation on COCO, LVIS, ODinW, and Roboflow100. For
training data, 0365, OI, HT, and CH indicate Object365(|Shao et al.|(2019)), Openlmages(|Krasin
et al.[(2017)), HierText(|Long et al.| (2022)), and CrowdHuman( Shao et al.| (2018))), respectively.
GoldG(|Kamath et al.|(2021))) includes GQA(|Hudson & Manning|(2019)) and Flickr30k(|Plummer
et al.|(2015))). Best results with Swin-T are underlined, and those with Swin-L are boldfaced.

Model Training | COCO LVIS ODinW | Roboflow100
Data | AP | AP AP, AP, AP; | APuy |  APuy,
0365
TRex2T | 0| 388 374 299 339 418 | 236 174
TRex2L | GLCH I ues | 476 454 460 495 | 278 185
SA-1B
YOLOE-v8-S -~ 262 213 277 257 - i
YOLOE-v8-M - 310 270 317 31| - .
YOLOE-v8-L | 0365 | - |342 332 346 341| - .
YOLOE-1I-S | GoldG | - |263 225 271 264 | - .
YOLOE-v11-M - 314 271 319 317 - .
YOLOE-v11-L - 337 290 346 38| - .
DETR-ViP-T | 0365 | 432 |4L1 351 433 404 | 312 236
DETR-ViP-L | GoldG | 502 |49.1 463 50.5 484 | 345 24.7

Table 2: Zero-shot interactive detection evaluation on COCO and LVIS.

Model COCO LVIS ODinW  Roboflow100
AP AP APy AP. AP, APy APgyq
T-Rex2-Swin-T 56.6 59.3 546 635 644 37.7 30.6
T-Rex2-Swin-L 58.5 62.5 579 66.1 70.1 39.7 30.2
DETR-ViP-T 65.4 66.1 575 735 784 46.8 40.1
DETR-ViP-L 71.1 719 642 782 83.6 51.2 443

Visual-I. We evaluate the zero-shot interactive detection capability of DETR-ViP, and the results
are presented in Table 2. Since YOLOE (Cheng et al.[(2024)) does not report results under this setting,
we compare only with T-Rex2 (Jiang et al.|(2024)). Under the Visual-I protocol, categories that do not
appear in the current image are excluded, which effectively provides prior knowledge about the image
content and makes the task substantially easier than Visual-G detection. As shown in the results,
the AP on COCO, LVIS, ODinW, and Roboflow100 are consistently higher under Visual-I than
Visual-G. Moreover, DETR-ViP also surpasses T-Rex2 across the board under the Visual-I protocol.
We attribute this to the presence of more negative examples during training, enabling DETR-ViP to
learn a large N-way classification task, thereby strengthening its classification ability.

4.4 ABLATION EXPERIMENTS

DETR-ViP extends Grounding DINO( |Liu et al.| (2024))) by first introducing VIS-GDINO, a de-
tector supporting visual prompts. Unlike Grounding DINO, VIS-GDINO removes fusion modules
(Equation (2)) and inserts a visual prompt encoder (Equation (3)) between the backbone and encoder,
enabling conditional detection based on user-provided reference boxes. We then progressively extend
VIS-GDINO into DETR-ViP and validate each modification through ablation studies (Table [3).
Furthermore, we sample 128 images for each category from the COCO training set and perform
t-SNE visualization along with similarity analysis on the generated prompts, as shown in Figure {4}

VIS-GDINO & Image-Text Align. For the baseline VIS-GDINO, performance is limited, achieving
only 21.1 mAP on COCO and 17.2 mAP on LVIS, as sampling a few prompts from the current
image for classification training fails to learn a discriminative global distribution of visual prompt
embeddings. Introducing the image-text contrastive loss substantially improves results to 29.2 mAP
on COCO (+8.1) and 23.4 mAP on LVIS (+6.2), by distilling rich semantic priors from text features
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Table 3: Roadmap to DETR-ViP. The left-aligned ’+’ indicates cumulative improvement, while the
indented °+’ marks a standalone improvement not accumulated into the subsequent variants.

COCO-val LVIS-minival
Model

AP ISR AP APy AP. AP, IISR
VIS-GDINO-T 21.1 08797 172 220 13.0 11.6 0.8954

+Text-Image Alignment 29.2 09743 234 278 195 184 0.9872
+Global Prompt Integration 35.6 1.0734 33.0 328 334 31.8 1.0550
+Text-Region Distillation 415 14954 395 39.0 415 334 1.2248

+Encoder Fusion 413 1.5001 39.1 384 413 331 1.2174
+Encoder Selective Fusion 422 1.4963 406 40.3 424 342 1.2165
+Decoder Fusion 40.8 14976 255 228 29.0 235 1.2172

+Decoder Selective Fusion 43.2  1.5010 41.1 404 433 351 1.2212

O person O bicycle O car Omotorcycle O airplane
O truck O bench O backpack O handbag O chair

40

20

0

-20

-40

o = N w &

i et it
0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 10

0.0 0.2 ' 0.4 0.6 0.8 1.0 0.0 0.2 ' X X .. . X
Similarity Range Similarity Range Similarity Range

(a) +Text-Image Alignment (b) +Global Prompt Integration (c) +Relation Distillation

Figure 4: Visual prompt analysis for different model variants. (Top) t-SNE visualization of the
visual prompts. (Bottom) Distribution of intra- and inter-class pairwise similarities.

into visual prompts. Analysis of visual prompts confirms this effect: in Figure[I[(a), VIS-GDINO’s
prompts are scattered, whereas Figure df(a, top) shows emerging cluster structures. Similarly, pairwise
similarity distributions overlap heavily between intra- and inter-class prompts for VIS-GDINO
(Figure[I[(b)), but this overlap is greatly reduced after alignment (Figure[d{a, bottom)). In addtion,
IISR increases by 0.0946 on COCO and 0.0918 on LVIS. These results indicate that the alignment
enhances the semantic consistency of visual prompts, which in turn improves detection performance.

Global Prompt Integration. With global prompt integration, the intermediate DETR-ViP achieves
35.6 AP on COCO (+6.4) and 33.0 on LVIS (+9.6). This mechanism improves training efficiency by
aggregating prompts of the same class across samples, which encourages intra-class clustering, while
integrating prompts of different classes enlarges the negative set, sharpening inter-class boundaries.
On LVIS, AP,. and AP, increase markedly (+13.4 and +13.9), as rare and common categories can now
contribute to the whole updates rather than only the current sample. As shown in Figure [@{(b), visual
prompts form clearer clusters with reduced intra-/inter-class overlap, confirming the effectiveness of
global prompt integration in structuring the embedding space.

Visual-Textual Prompt Relation Distillation. ~As shown in Figure f[c), introducing the visual-
textual prompt relation distillation not only sharpens the inter-class boundaries but also reduces the
intra-class variance of prompts. Although some categories exhibit closely clustered prompts, these
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correspond to semantically related concepts such as truck and car, bench and chair, or backpack
and handbag. This indicates that the prompt embedding space demonstrates semantic coherence,
where semantically related concepts are mapped closer together and unrelated ones farther apart. The
overlap between intra- and inter-class similarity distributions is further reduced, while the inter-class
similarity distribution becomes more skewed toward 1.0, suggesting that intra-class prompts are
nearly identical. On COCO and LVIS, IISR increased by 0.4220 and 0.1698, respectively. Benefiting
from this, the intermediate variant of DETR-ViP achieved an additional AP gain of 5.9 on COCO,
reaching 41.5, and 6.5 on LVIS, reaching 39.5. Specifically, AP,., AP., and AP, improved by 1.6,
8.1, and 6.2, respectively.

Selective Fusion. The fusion module is designed to enable interactions between prompt embeddings
and image features. Its primary role is to adapt the prompts to the characteristics of the current sample.
Therefore, after introducing various fusion modules, the IISR of the unfused prompts remains almost
unaffected. As shown in Table[3] directly adopting the encoder fusion from Grounding DINO brings
almost no gains and even reduces AP on COCO and LVIS.

Practically, this naive strategy is highly sensitive to the
number of prompts: detection works when all COCO cat-

egories are provided but fails with a single class prompt R e — ‘ 3
(Figure[3). As shown in Figure[3] experiments varying g 1
the number of prompts IV, indicate that AP increases & 30 f |
with more prompts and gradually converges, revealing & sb l
a train-test gap, since global prompt integration dur- = 0 10 20 40 30
ing training typically involves many prompts. The pro- number of fused categories
posed selective fusion module first determines whether
a category is present before interacting with its prompt, N
thereby suppressing irrelevant information and enabling S 30 : —— '
robust detection. This approach stabilizes performance 8
. . - 15

across different prompt numbers and improves AP by byl
+0.7 on COCO and +1.1 on LVIS (Table[3). Applying < oL L

E 70 1020 40 80

full fusion to the decoder harms AP, as decoder fusion
directly modifies object queries, amplifying the negative number of fused categories
effect of irrelevant categories. When selective fusion is
applied to the decoder as well, these issues are mitigated,
yielding further gains of +1.0 AP on COCO and +0.5 on
LVIS.

—eo— Full Fusion Selective Fusion

Figure 5: mAP vs num. of Prompts

5 CONCLUSION

We propose DETR-ViP, an open-vocabulary detection framework that substantially advances the
baseline of visual-prompted detection. Building upon Grounding DINO, we construct a baseline
model, VIS-GDINO, which supports visual prompts. Through this baseline, we identify that the
suboptimal performance of visual prompts stems from the lack of semantic coherence. To this end,
we introduce Global Prompt Integration and Visual-Textual Prompt Relation Distillation. Global
Prompt Integration enhances the global semantic organization of the prompt space by increasing the
number of positive and negative examples. Visual-Textual Prompt Relation Distillation transfers
the relational priors encoded in textual prompts into visual prompts, thereby endowing them with
structured semantic relationships. With these improvements, visual prompts not only reduce intra-
class variance but also acquire sharper semantic boundaries, ultimately leading to enhanced detection
performance. In addition, we refine the fusion module of Grounding DINO by introducing a Selective
Fusion strategy, which enables DETR-ViP to perform stable and robust prompt fusion regardless of
the number of user-provided prompts, thereby further improving detection performance. Extensive
experiments demonstrating that under the Visual-G protocol, DETR-ViP significantly outperforms
existing counterparts, validating its superior effectiveness. Moreover, comprehensive ablation studies
confirm the contribution of each proposed component and provide in-depth analyses on how our
method enhances the semantic organization of visual prompt distributions.

10
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A STATEMENTS

Use of Large Language Models (LLMs). During the preparation of this paper, we employed
LLM-based tools to assist with writing and polishing. Specifically, we used the following instructions:

* "Please act as a native English speaker and Al expert, and translate the following passage
into English."

* "Please help refine the following passage to make it more concise while preserving its
meaning, and ensure it adheres to the style of Al conference papers."

The LLM was used solely for language assistance. All ideas, analyses, and experimental results are
original contributions of the authors.

Ethics Statement. This work does not involve human subjects, animals, or sensitive personal data.
The study does not raise any ethical concerns regarding data collection, experimentation, or potential
societal impacts.

Reprodicibility Statement. To ensure reproducibility of our results, we commit to publicly re-
leasing the code, pre-trained model weights, and training/evaluation logs necessary to reproduce the
main findings reported in this paper. All resources will be provided with sufficient documentation to
facilitate replication and verification by the research community.

B DETAILED MOTIVATION AND LIMITATION

Motivation. The motivation behind this work is that visual prompts possess advantages not offered
by text prompts, yet their potential remains underexplored. Compared with textual prompts, visual
prompts are more effective for detecting rare categories. This conclusion has been validated in T-Rex2
(Jiang et al.|(2024)): as shown in Table[d] the AP of visual prompts on rare categories in LVIS, as
well as on ODinW and Roboflow 100, is generally higher than that of textual prompts.

Table 4: Comparison between visual and text prompts of T-Rex2 on rare categories. The results
are taken from Table 1 of T-Rex2 (|Jiang et al.|(2024)). In the LVIS column, the results on the left
and right of "/" correspond to minival and val, respectively.

Model Prompt Type LVIS(AP,) ODinW(AP,,;) Roboflow100(AP,y,)
T-Rex2-Swin-T Text 37.4/29.0 18.0 8.2
T-Rex2-Swin-T Visual-G 29.9(17.5) /32.4@3_4) 23.6(15.6) 17.4(19.2)
T-Rex2-Swin-L Text 49.2/42.7 22.0 10.5
T-Rex2-Swin-L Visual-G 454@38) /438(T11) 27.8(75'8) 1 S.S(Tg.o)

Jiang et al.|(2024)) also conducted a per-category accuracy comparison between visual and textual
prompts on LVIS, as shown in Figure 4 of its original main paper. For frequent categories, text
prompts outperform visual prompts in the majority of cases (Text:Visual = 254:151). However,
for rare categories, the reverse is more common, with visual prompts achieving higher accuracy
(Text:Visual = 84:253). This is because text prompts require aligning category "concepts" across
the text and vision domains, which depends on large-scale vision-language pre-training; in contrast,
visual prompts are directly sampled from the vision domain, and thus are inherently compatible and
similar to the target regions. These observations highlight the necessity of studying visual prompts.

Although visual prompts perform well on rare categories, their performance on more common
categories is significantly lower than that of text prompts, as shown in Table[5] We argue that this
gap does not reflect the upper bound of visual prompts, but rather that their potential has not yet
been fully explored. In this work, we aim to investigate the underlying reasons for the suboptimal
performance of visual prompts and to fully exploit their potential, thereby advancing the development
of prompt-based detection.
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Table 5: Comparison between visual and text prompts of T-Rex2 on frequent and common
categories. The results are taken from Table 1 of T-Rex2 Jiang et al.|(2024)). In the LVIS column, the
results on the left and right of "/" correspond to minival and val, respectively.

COCO LVIS
Model Prompt Type AP AP AP; AP,
T-Rex2-Swin-T Text 45.8 42.8/34.8 46.5/41.2 39.7/31.5
T-Rex2-Swin-T Visual-G 388“'70) 374<l54)/349(701) 418(l47) /411(L01) 339(l58)/303(l12)
T-Rex2-Swin-L Text 52.2 54.9/45.8 56.1/50.2 54.8/43.2

T-Rex2-Swin-L Visual-G 46.5@5_7) 47.6@7_3)/45.3@0»5) 49~5(¢6.6) / 49.5(“]_7) 46~O(¢8.8)/42~0(¢1 .2)

Limitation. While this work emphasizes the importance of visual prompts and primarily focuses
on exploring their potential, it does not imply that we overlook the value of textual prompts. We fully
recognize that textual prompts can more explicitly describe object attributes—such as color (e.g.,
“a woman in a red shirt”) or spatial position (e.g., “a car on the left side of the image””)—which are
advantages that visual prompts inherently lack. Although this paper does not address textual prompts,
we argue that combining more discriminative visual prompts with guided natural language prompts
represents a promising direction toward more general open-world detection.

C MORE RELATED WORK: CONTRASTIVE LEARNING

Contrastive losses(|{Hadsell et al.| (2006))) enable direct optimization of similarity within the represen-
tation space, eliminating the need to match inputs to fixed targets. This idea forms the foundation of
many unsupervised representation learning methods(/Wu et al.| (2018));|Oord et al.[(2018)); Hjelm et al.
(2018)); |Chen et al.| (2020); Zhuang et al.|(2019); |Tian et al.|(2020); He et al.|(2020)). InfoNCE(|Oord
et al. (2018))), one of the most widely used contrastive loss formulations, where decreasing the loss
encourages the query ¢ to be similar to its positive key k™ and dissimilar to negative keys k. |Chen
et al.| (2020) introduces a self-supervised pretraining framework that treats two augmented views of
the same image as a positive pair and different images as negative pairs, and learns representations
using InfoNCE. He et al.|(2020) emphasize the importance of large numbers of negatives and propose
a memory bank mechanism to expand the negative pool. Although these approaches achieve remark-
able progress in self-supervised visual pretraining, their inability to exploit the label information
in annotated datasets limits their effectiveness on downstream tasks. To address this, |Khosla et al.
(2020) extend batch contrastive learning to the fully supervised setting, enabling the model to fully
leverage category labels for contrastive representation learning.

Multimodal contrastive representation learning(|Zhang et al.|(2022b); Xu et al.[(2021)); Li et al.|(2021);
Jia et al.|(2021))) aims to map inputs from different modalities into a shared embedding space, giving
rise to a powerful form of weakly supervised pretraining. CLIP(|Radford et al.| (2021)), trained on 400
million image-text pairs from WebImageText, learns highly transferable visual representations and
demonstrates strong zero-shot performance across diverse downstream tasks, making it a promising
direction for open-set recognition. However, Liang et al.[(2022) first identified the existence of a
modality gap. Specifically, the image and text embeddings do not form a unified space but rather
reside in two narrow cones separated by a gap, and the contrastive loss tends to preserve this
geometric discrepancy. |Schrodi et al.|(2024) further observe that only a few embedding dimensions
predominantly account for this modality difference, and there is no clear evidence that a larger gap
correlates with improved downstream performance. Moreover, although simple post-hoc methods
can shrink the gap geometrically, they generally fail to produce meaningful performance gains.

D DETAILS OF ARCHITECTURE

D.1 BASELINE MODEL: VIS-GDINO
VIS-GDINO is a baseline model we built to support visual prompting. It can be regarded as

inserting a visual prompt encoder between the backbone and the encoder of DINO, while replacing
the classification head with the classifier shown in Equation (I)(right). Similarly, it can also be
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interpreted as inserting a visual prompt encoder between the backbone and encoder of Grounding
DINO, with the fusion modules in both the encoder and decoder removed.

As shown in Figure EI, given an input image I and K user-specified boxes {b;}X |, VIS-GDINO
first extracts image features X through the backbone network. The visual prompt encoder then
generates visual prompts Py, from X based on {b;}, leveraging a deformable attention mechanism to
effectively aggregate features within each box. The features X are further encoded by a deformable
encoder without any fusion modules to produce a set of proposals O. Scores are computed using the
contrastive classification head shown on the right side of Equation (1)) (i.e. Score = o(OP}} + b)),
and the top-k proposals are selected to initialize the decoder queries (). Within the decoder, () passes
through multiple layers composed of self-attention and deformable cross-attention modules, where
the self-attention module models interactions among object queries and the cross-attention module
extracts information from the image features. After decoding, () is multiplied with Py to compute
the scores, and the predicted boxes are obtained via the box regression head.

o
Deformable Deformable
Encoder D D D

Q Selection initialization

(top k)

O0Oe
Object Query 1 Score
Prompt | Pv
Encoder

b

Figure 6: A simplified illustration of VIS-GDINO. Compared to Grounding DINO( |Liu et al.
(2024)), VIS-GDINO inserts a visual prompt encoder between the backbone and the encoder, and
removes the fusion modules in both the encoder and the decoder.

D.2 TEXT ENCODER

Unlike Grounding DINO, we use CLIP(Radford et al.|(2021)) as the text encoder. We construct the
input to the text encoder using the template “This is an image of ...” and take the pooled output as the
text feature. To improve training efficiency, we pre-extract the text features with CLIP and store them
for later use.

D.3 FEATURE ENHANCER

The Feature Enhancer in DETR-VIiP is built upon that of Grounding DINO, but with two key
modifications: (i) the fusion module is replaced with the proposed selective fusion, and (ii) the
self-attention layer over prompt embeddings is removed. This is because, unlike Grounding DINO
which uses full sentences as text prompts and requires self-attention to extract features for each
positive phrase, DETR-ViP represents each category with a single token. Specifically, for multiple
box prompts of the same category within an image, the global token in the visual prompt encoder
aggregates their information, while for global prompts across images, the average vector is used as
the category-level prompt embedding.

D.4 GLOBAL PROMPT INTEGRATION

This Global Prompt Integration operation is illustrated by the simple code snippet below.

prompts = gather (prompts) # N_ixd —-> (N_1+N_2+...)~*d
labels = gather (labels) # N_i -> (N_1+N_2+...)
gather_prompts = []
for 1 in labels.unique () :
gather_prompts.append (prompts[labels==1].sum(0) / (label==1).sum())
prompts = stack (gather_prompts, 0)
labels = labels.unique ()

To intuitively illustrate how global prompt integration works, we provide an example: if the prompt
categories in samplel are C; = {0,2,3,5} and those in sample2 are C> = {0, 1, 4,5}, then we
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can use a classifier covering the combined category set C = {0,1,2,3,4,5} when performing
classification across all samples. This approach not only increases the number of negative examples
but also indirectly trains cross-image prompt detection, as the prompts for classes 0 and 5 from
sample 1 are also used in the classification of sample 2.

For Visual Grounding (VG) datasets, the situation is typically more complicated. On the one hand,
their annotations are generally of lower quality compared with object detection (OD) datasets such
as COCO or Object365. On the other hand, the box descriptions in VG datasets are usually short
phrases extracted from image captions, leading to highly variable formats. For example, a bounding
box for a yellow scarf may be described as "blades to help board cut through water", which mixes
action nouns with other nouns. Likewise, two boxes corresponding to two dogs may be described
as "a short and white dog" and "two dogs". For such grounding data, integrating these phrases into
prompts is challenging. If two descriptions are considered to belong to the same class only when their
texts perfectly match, a large number of false negatives would be introduced, which in turn harms
model training. To address this issue, we adopt two strategies. First, we decouple the training of
OD and VG data. In each iteration, the entire batch is either from OD datasets or from VG datasets,
thereby preventing noisy VG data from interfering with high-quality OD supervision. Second, for
VG data, we extract the head noun using extract_head_noun(phrase) and obtain the lemma using
get_lemma(phrase). Both operations are implemented with the spaCy library. In this manner, phrases
such as "a short and white dog" or "two dogs" are normalized to the lemma "dog" before determining
whether they belong to the same class. Although conceptually simple, this approach significantly
reduces the occurrence of false negatives.

D.5 CLASSIFICATION, ALIGNMENT, AND DISTILLATION LOSSES

For the classification loss, we follow T-Rex2 and Grounding DINO by computing confidence scores
via matrix multiplication between proposal features and prompt embeddings, followed by a sigmoid
activation, as defined in Equation (I)). It’s noted that both O and P are kept unnormalized, allowing
their dot-product results to span the entire real domain (—oo, +00), which ensures that the sigmoid
outputs are distributed within (0, 1). For both the alignment and distillation losses, all vectors involved
in the computation are L2-normalized

E MORE EXPERIMENTS

Downstream Transferring. We conduct a downstream transfer experiment on COCO using the
variant of DETR-ViP without the fusion module. Specifically, the class branch is replaced with
a linear layer while all other modules are frozen, and the model is trained for 12 epochs. This
setup is equivalent to fitting a classification hyperplane in the pre-learned feature space, thus serving
as a measure of semantic consistency. As shown in Table [6] progressively adding image-text
alignment, global prompt integration, and visual-textual distillation to VIS-GDINO steadily improves
downstream AP, reflecting enhanced visual representations. However, the gains are smaller than
those in Table[3] indicating that the main performance improvements arise from optimizing the visual
prompt embedding space.

Table 6: Downstream Transfer on COCO

Model AP AP;, AP;; APs AP, AP;

VIS-GDINO-SwinT 482 644 530 327 517 618
+Text-Image Alignment 485 653 533 323 520 626
+Global Prompt Prompts ~ 48.8 65.8 53,5 33.8 524 627
+Text-Region Distillation 49.2 659 543 346 526 626

Visual-Text Prompt Relateion Distillation vs. Supervised Contrastive Loss. The supervised
contrastive loss shown in Equation (6) is another option for enhancing the discriminability of visual
features. In Table[7} we compare models trained with visual-textual prompt relation distillation versus
those trained with supervised contrastive loss. It can be observed that the variant using supervised
contrastive loss achieves AP scores that are 0.6 and 0.7 lower than DETR-ViP on COCO and LVIS,

18



Published as a conference paper at ICLR 2026

respectively. We attribute this to the fact that supervised contrastive loss treats all negatives equally,
which prevents visual prompts from establishing semantic coherence. Moreover, grounding datasets
contain many synonyms and hierarchical relationships—for example, "human" and "person," or
"human" and "gentle"—whose corresponding instances are visually from the same category. Pulling
apart the embeddings of such semantically related prompts under supervised contrastive loss can
therefore harm the optimization of the embedding space.

Table 7: Comparison between Relation Distillation Loss and Supervised Contrastive Loss.

COCO-val LVIS-minival
Model
AP AP APy AP. AP,
Lpisill 43.2 41.1 404 433 35.1
Lscr 42.6 404 404 423 314

Hyperparameter. To ensure a fair comparison with other methods, we adopt the parameter settings
of existing approaches for modules that are not our core contributions. Specifically, our A5, A1, AGIoU>
and A4y, are kept consistent with DINO, while Aaj;gn follows the setting in T-Rex2. The focal loss
hyperparameters -y and « are set to 2.0 and 0.25, respectively, as commonly used in previous works. In
this subsection, we perform ablation studies on the visual-textual relation distillation loss parameters
distills T, and 7¢, as well as the selective fusion threshold 6.

First, we conduct an ablation study on \. Table a) reports the AP, AP,, AP,, and APy of DETR-ViP
trained with different )\ values on LVIS. We experiment with A = 1.0, 10.0, and 20.0, and observe
that the best performance was achieved with A = 10.0.

For 7, and 7, we conduct ablations using three values: 0.05, 0.07, and 0.1, and compare the AP on
LVIS. The results in Table[8(b) show that variations in 7, and 7, do not lead to significant performance
fluctuations. The best performance is obtained with 7, = 0.1 and 7 = 0.07. We also note that cases
where 7; < T, generally yield better results, which is reasonable. Typically, we want the teacher
distribution to be sharper, enabling the student to learn a less uniform distribution. However, if 7 is
too small, the teacher distribution approaches one-hot, which undermines the effect of soft labels and
causes the relation distillation loss to degenerate into a supervised contrastive loss.

Table 8: Ablation Study of hyperparameters

. ¢) Ablation Study of 6

(a) Ablation Study of Auun (b) Ablation Study of 7, 7, © y

T [ AP AP, AP. APy
Aasit AP AP, AP, AP; N 005 007 0.1 005 387 333 411 377
1.0 40.5 30.1 422 410 0.1 41.1 351 433 404
100 41.1 351 433 404 0.05 40.0 39.8 39.0 03 403 340 419 398
200 398 342 412 398 0.07 | 406 402 39.3 05 392 330 414 386

0.1 | 408 41.1 403

For the selective fusion strategy, we evaluate DETR-ViP under threshold values 6 €
{0.05,0.1,0.3,0.5}. Intuitively, a smaller 6 allows more visual prompts to participate in fusion.
In this case, false negatives (FN)—categories that are present in the image but whose prompts are
excluded from fusion—become less frequent. However, false positives (FP)—categories that are
absent from the image but still participate in fusion—tend to increase. When 6 becomes larger, the
opposite trend arises: FN increases while FP decreases. At § = 0.05, DETR-ViP already achieves an
AP of 38.7 on LVIS. Further analysis shows that, under § = 0.05, the number of fused prompts is
reduced by nearly 75%, which effectively suppresses interference from irrelevant categories. How-
ever, when 6 = 0.5, AP drops significantly. We attribute this degradation to the exclusion of many
in-image categories whose confidence scores are relatively low and therefore filtered out. Based
on these observations, we adopt = 0.1. This choice strikes a favorable balance: although a few
irrelevant categories may still be fused, it ensures that the vast majority of categories present in the
image remain included, avoiding critical FN cases while maintaining robustness.
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F MORE ANALYSIS

F.1 ANALYSIS OF THE FUSION MODULE

Figure [S]illustrates that the fusion strategy in Grounding DINO leads to unstable outputs when the
number of prompts NV, varies, while the proposed selective fusion strategy ensures robustness to
prompt quantity. To demonstrate that this is not an isolated case, we additionally provide mAP-N,,
curves for several other categories, as shown in Figure[7} As shown in the figure, the selective fusion
strategy also leads to some mAP fluctuations with varying numbers of prompts (e.g., for categories
airplane and dog), but the magnitude is substantially smaller than that of the standard fusion strategy.
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Figure 7: mAP vs N,

Grounding DINO is also sensitive to the number of prompts. We evaluate this using the MMDetection
implementations of Grounding DINO( [Liu et al.| (2024))) and MM Grounding DINO( |Zhao et al.
(2024)), which involve a critical chunked_size parameter (Lchunked). This parameter splits prompts
into chunks for separate processing. As shown in Table[9] the performance of both models drops
sharply when Lcyynked increases from 76 to 151, with a precise transition occurring between 80
and 95. Such instability with respect to the number of prompts not only introduces an additional
hyperparameter, but also requires multiple runs under long text prompts, thereby increasing the
testing time. With the selective fusion strategy, DETR-ViP integrates only the prompts corresponding
to categories likely to appear in the input image, regardless of the number of user-specified prompts.
This design makes it more robust and eliminates the need for chunking.

Table 9: AP w.r.t. L on LVIS for Grounding DINO and MM Grounding DINO

Lchunked 19 38 76 80 85 90 95 151 301 602 1203

Grounding DINO 29.3 290 289 297 295 179 6.80 026 055 035 0.17
MM Grounding DINO 41.2 436 413 409 410 253 934 022 057 037 0.18

F.2 VISUAL PROMPTS IN YOLOE

As shown in Figure [T(a), the visual prompt representations in VIS-GDINO exhibit blurred and
indistinct semantic boundaries. We attribute this phenomenon to the training objective used in
prompt-based detection. Without contrastive image-text alignment or other auxiliary constraints to
regularize the prompt feature space, visual prompts are optimized solely under the supervision of
the classification loss. Moreover, under the “current image prompt, current image detect” paradigm
adopted by T-Rex2 ([Jiang et al.|(2024))), visual prompts are sampled only from the GT boxes of the
current training image. As a result, the model observes only a limited and highly local set of object
instances at each iteration, preventing the prompts from being globally optimized throughout training.
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Figure 8: Visual prompt analysis for different YOLOE-JT variants. YOLOE-JT refers to the
YOLOE model obtained through joint visual-text prompt training, while YOLOE-JT-Align builds
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Figure 9: Classification loss and semantic transfer in YOLOE and DINO.

To further verify this, we use the publicly available YOLOE (|Cheng et al.[(2024)) code and align its
training paradigm with that of T-Rex2 ([Jiang et al.| (2024)), where visual-prompted detection and
text-prompted detection are alternated during training. For rapid validation, we conduct experiments
on YOLOE-v8s. For convenience, we denote the YOLOE model trained under this joint training
scheme as YOLOE-JT. YOLOE-JT achieves 13.5 AP, 19.2 AP on rare categories, 13.7 on common
categories, and 12.3 on frequent categories on LVIS-minival, respectively. The t-SNE visualization
of its visual prompts is shown in Figure [§(a). We observe that the visual prompt distribution of
YOLOE-JT appears even more scattered compared with Figure [T(a). We suspect this is because
models in the DINO family adopt multi-layer losses, i.e., constraints are applied to the output of
every decoder layer. As illustrated Figure [9[b), text prompts can directly optimize the multi-layer
decoder outputs through multiple classification losses, and in turn, these outputs can further optimize
the visual prompts. In contrast, YOLOE applies the classification loss only at the final stage of the
model as shown in Figure [0[a), which results in lower efficiency in semantic propagation.

We further introduce an image-text alignment loss and denote this variant as YOLOE-JT-align. As
shown in Figure §[b), YOLOE-JT-align produces visual prompts that form more distinct category-
specific clusters in the embedding space compared with YOLOE-JT. With this enhancement, YOLOE-
JT-align achieves 21.5 AP, 27.8 AP,., 22.2 AP,, and 19.7 APy on LVIS. These results confirm that
merely adopting joint visual-text prompt training is insufficient to obtain visual prompts with coherent
global semantic organization. The experiments with contrastive alignment further validate that
strengthening the organization of the visual prompt space is essential for improving visual-prompted
detection performance.
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F.3 VISUALIZATION

To demonstrate the effectiveness of DETR-ViP, we present extensive visualization results.

Zero-shot Inference on COCO  Figure[I0] presents visualizations of DETR-ViP on COCO under
the Visual-G protocol. For each of the 80 categories in COCO, we sampled 16 instances to extract
visual prompts, and used the average of all prompts within a category as its prompt embedding.

Figure 10: Visualizations on COCO Dataset (Visual-G).

Additionally, we provide visualizations under the Visual-I protocol in Figure [IT] where bounding
boxes with semi-transparent masks denote the provided visual prompts.

Figure 11: Visualizations on COCO Dataset (Visual-I).
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Zero-shot Inference on LVIS We showcase visualizations on the LVIS dataset under the Visual-G
and Visual-I protocols in Figures [I2]and [T3] respectively.

Figure 13: Visualizations on LVIS Dataset (Visual-I).
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