
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

LEARNING DISENTANGLED MULTI-AGENT
WORLD MODEL FOR DECENTRALIZED CONTROL

Anonymous authors
Paper under double-blind review

ABSTRACT

World models enable learning policies via latent imagination, offering benefits
such as history compression and sample efficiency. The primary challenge in ap-
plying world models to multi-agent tasks is that modeling multi-agent dynamics in
latent space requires integrating information from different agents, often creating
spurious correlations between their latent states. Existing methods either recon-
struct the observation for each agent or employ communication to maintain corre-
lation during execution, failing to learn disentangled latent states that are crucial
for effective decentralized control. To address this, we present the Disentangled
Multi-Agent World Model (DMAWM). It facilitates learning decentralized poli-
cies in the latent space through a novel architecture comprising independent agent
modules and a shared environment module. During real-environment execution,
agent modules independently process local information to form a factorized latent
representation. The environment module is then trained to mirror the factorized
structure generated by the agent modules, effectively disentangling individual la-
tent states from the interaction dynamics. Consequently, imaginary rollouts gener-
ated by the environment module more faithfully simulate decentralized execution
dynamics, facilitating the transfer of policies from imagination to decentralized
execution. Empirically, DMAWM outperforms existing model-based and model-
free approaches in convergence speed and final performance, with additional vi-
sualization demonstrating its efficacy in capturing agent interactions.

1 INTRODUCTION

Model-based reinforcement learning (MBRL) has emerged as a highly effective approach in the
single-agent domain. It has enabled superhuman performance in complex tasks such as Atari and
board games without prior knowledge of the rules (Schrittwieser et al., 2020), and has allowed agents
to master challenging objectives like collecting diamonds in Minecraft from scratch (Hafner et al.,
2025). The cornerstone of these successes lies in learning models of the environments, often referred
to as world models (Ha & Schmidhuber, 2018). The world model summarizes the agent’s history of
observations and actions into a compact latent state representation. This representation is predictive
of future outcomes, like subsequent observations or rewards, enabling agents to efficiently plan or
learn policies through simulated experience (imagination) within the learned world model.

However, extending world models to multi-agent reinforcement learning (MARL) is challenging.
A primary difficulty lies in that modeling multi-agent dynamics in latent space requires integrating
information from different agents, leading to spurious correlations that are impossible to maintain
during decentralized execution. This hinders the learning of disentangled latent states crucial for
effective decentralized control. Existing model-based MARL methods have attempted to address
these challenges with varying degrees of success. Some generate trajectories directly in the original
observation space (Zhang et al., 2021; Xu et al., 2022; Zhang et al., 2024), often struggling with
high-dimensional observations and neglecting the benefits of history-dependent latent states. Others
employ communication to maintain the correlation during execution (Egorov & Shpilman, 2022; Wu
et al., 2023; Toledo, 2024). However, they often compromise the requirement for fully decentralized
execution and fail to learn the disentangled latent states crucial for decentralized policies.

To address this, we introduce Disentangled Multi-Agent World Model (DMAWM), a novel frame-
work to learn decentralized policies effectively within a latent space. It has a distinctive architecture

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

with independent agent modules and a shared environment module. During real-world execution, the
agent modules independently process local observations to form a factorized latent representation
across all agents. Crucially, the environment module is then trained to mirror the factorized struc-
ture generated by the agent modules, which effectively disentangles the individual latent states of
each agent. This disentanglement ensures that the imaginary rollouts generated by the environment
module faithfully simulate decentralized execution dynamics. Consequently, policies learned by
imagination within the model can be transferred to the real environment in a decentralized manner.

We evaluate DMAWM on three challenging MARL benchmarks, including SMAC (Samvelyan
et al., 2019), SMACv2 (Ellis et al., 2023), and vision-based Melting Pot (Egorov & Shpilman,
2022). DMAWM outperforms existing model-based and model-free MARL baselines in conver-
gence speed and final performance, demonstrating its effectiveness in learning multi-agent dynam-
ics to facilitate effective decentralized policy learning. We also conduct visualization analysis to
demonstrate DMAWM’s efficacy in capturing agent interactions in the latent space.

2 RELATED WORK

World models for control World models learn the underlying dynamics from raw observations
for data-efficient control. Generative world models are optimized to reconstruct the observation
to capture the dynamics: SimPLe (Kaiser et al., 2020) trains a video predictor as an environment
model, and the Dreamer family (Hafner et al., 2020; 2021; 2025) leverages recurrent state-space
models (RSSMs) (Hafner et al., 2019) to plan in latent space. Implicit world models avoid decod-
ing observations and instead couple learned dynamics with decision procedures—MuZero (Schrit-
twieser et al., 2020) and EfficientZero (Ye et al., 2021) integrate MCTS, while TD-MPC and TD-
MPC2 (Hansen et al., 2022; 2024) pair implicit models with MPC for continuous control. Recent
advances focus on stronger backbone models, bringing transformers and diffusion into dynamics
learning: IRIS (Micheli et al., 2023) and TWM (Robine et al., 2023) apply transformers to model the
whole trajectory in an end-to-end manner, while UniSim (Yang et al., 2024) and DIAMOND (Alonso
et al., 2024) employs diffusion models to enhance the capability of capturing the visual details.

Our work is built on the latent generative world model due to its efficiency, but targets multi-agent
settings by explicitly factorizing dynamics into agent and environment modules, enabling structured
imagination of interactions and supporting decentralized execution.

Model-based MARL Model-based MARL must handle partial observability of the environment
and non-stationarity from concurrently adapting policies. Early approaches assume global observ-
ability (Krupnik et al., 2020; Zhang et al., 2021) or sufficiency of joint observations (Willemsen
et al., 2021), sidestepping history dependencies. Later works pose learning multi-agent dynam-
ics as sequence modeling task using recurrent networks (Xu et al., 2022) or transformers (Zhang
et al., 2024; Liu et al., 2024), facilitating long-horizon imagination but often struggling with high-
dimensional observations. Inspired by Dreamer, latent world models have been adapted to MARL;
however, many methods rely on broadcasting the latent states to other agents to keep latent states
consistent across imagination and execution: MAMBA (Egorov & Shpilman, 2022) maintains lo-
cal world models with communication; MAG (Wu et al., 2023) further mitigates multi-step errors
in world modeling; CoDreamer (Toledo, 2024) utilizes GNN-based communication for both latent
state update and action selection. MABL (Venugopal et al., 2024) proposes a bi-level architecture to
reduce communication requirements, but its global state transition model may not scale effectively
as the number of agents increases.

Unlike previous methods that reconstruct observations or broadcast latent states, our work forces
the latent states during imagination to reflect the factorized structure as in the real environment.
This design leads to fully decentralized execution while enabling the world model to model the
interactions between agents without the need for learning a global state transition model.

3 PRELIMINARY

Learning latent dynamics Recurrent state-space models (RSSMs) (Hafner et al., 2019; 2020)
learn action-conditioned generative dynamics that can roll out trajectories of observations and
rewards given actions. An RSSM (parameterized by ϕ) comprises: (1) a representation model

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

qϕ(It | It−1, at−1, ot)
1 that infers the posterior latent state from the previous latent state It−1,

the previous action at−1, and the current observation ot; (2) a transition model pϕ(Ît | It−1, at−1)
that predicts the next latent state from the previous state and action; and (3) decoders pϕ(ôt | It)
and pϕ(r̂t | It) that reconstruct the observation and reward from the latent state. These components
are jointly trained to maximize the evidence lower bound (ELBO) on observed trajectories. This
objective encourages high likelihood for the observed trajectories, while enforcing the consistency
between the representation model and the transition model to capture the environment dynamics.
During policy training, imagined trajectories are generated by first initializing I1 from a subse-
quence of an observed trajectory sampled from the replay buffer, and then recursively predicting
latent states Ît+1 ∼ pϕ(· | It, at) with action sampled from a learned policy at ∼ πθ(· | It).
DreamerV2 (Hafner et al., 2021) further decomposes the latent state It = (ht, zt) into a determinis-
tic component ht and a stochastic component zt. Given an observation ot, the agent first updates the
deterministic state via the recurrent model ht = fϕ(It−1, at−1), and then infers the stochastic state
with the representation model zt ∼ qϕ(· | ht, ot). During imagination, it reuses the recurrent model
to update the deterministic state ht = fϕ(It−1, at−1), but samples the stochastic component from a
separate model ẑt ∼ pϕ(· | ht) without access to observations.

Dec-POMDPs We consider cooperative, partially observable tasks formalized as decentralized
partially observable Markov decision processes (Dec-POMDPs) (Oliehoek & Amato, 2016). In a
Dec-POMDP with n agents, each agent i acts based on local information. At each discrete timestep
t, while the environment is in state st, agent i receives a local observation oit ∼ p(· | st), which is
appended to its local history τ it = (oi1:t, a

i
1:t−1). Based on this history, the agent selects an action

ait ∼ πi(· | τ it), forming a joint action a1:nt = (a1t , . . . , a
n
t). Executing a1:nt in state st transitions the

environment to st+1 and yields a shared reward rt+1 according to p(st+1, rt+1 | st, a1:nt). Without
loss of generality, we can extend this shared reward to agent-specific rewards r1:nt = (r1t , . . . , r

n
t),

where for cooperative tasks, all agents share the same reward: r1t = . . . = rnt = rt. The goal is
to learn decentralized policies π1:n = (π1, . . . , πn) that maximize the expected discounted return
Eπ1:n,p[

∑∞
t=1 γ

t−1rt+1], where γ ∈ (0, 1) is the discount factor.

4 METHOD

We present DMAWM, a framework for learning decentralized policies in latent space. We first
introduce its overall design, which features independent agent modules and a shared environment
module (Section 4.1). Next, we describe how it enables effective learning of multi-agent dynamics
while preserving the factorized structure (Section 4.2). Finally, we explain how the disentangled
latent states facilitate training decentralized policies through imagined trajectories (Section 4.3).

4.1 FRAMEWORK

DMAWM features a distinctive architecture comprising independent agent modules and a shared
environment module, as shown in Figure 1. This design enables effective learning of disentangled
latent states while capturing agent interactions. The agent modules independently process local
observations to form factorized latent representations, while the environment module models agent
interactions during imagination, generating imaginary trajectories for policy learning.

Agent module Each agent module (parameterized by ψ) operates independently, maintaining its
own internal state Iit = (hit, z

i
t) that consists of a deterministic component hit and a stochastic

component zit. Upon receiving a local observation oit, the agent updates its state through two
components: the recurrent model updates the deterministic part hit = fψ(I

i
t−1, a

i
t−1), while the

representation model infers the stochastic part zit ∼ qψ(· | hit, oit), forming a factorized posterior
qψ(z

1:n
t | h1:nt , o1:nt) =

∏n
i=1 qψ(z

i
t | hit, oit), as the individual stochastic state is only conditioned on

local information. Action selection is based solely on the agent’s internal state, i.e., ait ∼ πθ(· | Iit),
ensuring decentralized decision-making.

1We use the notation It to emphasize it represents the internal state of an agent, which corresponds to st in
the original RSSM paper (Hafner et al., 2019).

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

ℎ!"#$

𝑧!"#$

ℎ!$

𝑧!$

𝑜!$

𝐼!"#$ 𝐼!$

𝑜!"#$

ℎ!$

𝑧̂!$

ℎ!#:&

"𝐼!"#$ "𝐼!$

ℎ!"##:&

𝑖 = 1: 𝑛

𝑖 = 1: 𝑛

𝑠!"# 𝑠!

𝑧̂!"##:& 𝑧̂!#:&

ℎ!"#$

𝑧̂!"#$

𝑎!"#$

dependency

internal state

action

(a) Interaction with real environment (b) Interaction with a shared environment module

real
environment

environment
module

agent
module

environment
data

𝑎!"#$

copy

Figure 1: Illustration of agent interactions. The gray area represents the agent module where the
latent states are updated; the blue area represents the real environment which manages the state tran-
sition and observation generation; the green area represents the environment module which replaces
the real environment during imagination and couples agents via their latent states.

Environment module The environment module (parameterized by ϕ) plays a crucial role in gen-
erating imaginary trajectories for policy learning. During imagination, it replaces the real envi-
ronment by coupling the agents’ internal states to simulate environment dynamics and inter-agent
interactions. Given the previous joint latent state I1:nt−1 and actions a1:nt−1, the recurrent models of
agent modules independently compute their deterministic components hit = fψ(I

i
t−1, a

i
t−1). The

key innovation is a transformer-based interaction predictor which models inter-agent interactions
by sampling the joint prior pϕ(ẑ1:nt | h1:nt) for all agents. Intuitively, the interaction predictor
should capture the necessary dependencies between agents to model the evolution of the latent
states in decentralized execution. To achieve this, we align this joint prior to the factorized pos-
terior

∏n
i=1 qψ(z

i
t | hit, oit) via the dynamics loss and representation loss (introduced in Section 4.2).

In addition, the environment module includes decoders that reconstruct trajectory components from
the latent states, providing supervision signals for representation learning and policy training.

The agent module and the environment module consist of:

Agent module

{
Recurrent model: hit = fψ(h

i
t−1, z

i
t−1, a

i
t−1)

Representation model: zit ∼ qψ(· | hit, oit)
, (1)

Environment module



Interaction predictor: ẑ1:nt ∼ pϕ(· | h1:nt)

Observation decoder: ôit ∼ pϕ(· | hit, zit)
Reward decoder: r̂1:nt ∼ pϕ(· | h1:nt)

Continuation decoder: ĉ1:nt ∼ pϕ(· | h1:nt)

Available actions decoder: m̂1:n
t ∼ pϕ(· | h1:nt)

, (2)

where for each agent i, we use the binary vector m̂i
t to denote the available actions, and the binary

scalar ĉit to denote the continuation flag with ĉit = 1 if the episode continues at t.

4.2 LEARNING DISENTANGLED MULTI-AGENT WORLD MODEL

The learning objective of our multi-agent latent dynamics model is designed to maintain the fac-
torized structure while effectively capturing agent interactions. Similar to Dreamer (Hafner et al.,

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

2020), the training process iterates between collecting real environment data, learning the latent
dynamics model, and training policies through imagination.

To train the multi-agent world model, we optimize the following objective:

L(ϕ, ψ) = βdynLdyn(ϕ, ψ)︸ ︷︷ ︸
dynamics loss

+ βrepLrep(ψ)︸ ︷︷ ︸
representation loss

+βdecLdec(ϕ, ψ)︸ ︷︷ ︸
decoder loss

, (3)

where βdyn, βrep, and βdec are the weights for each loss term. The dynamics loss and representation
loss align the prior and posterior distribution of the latent states, while the decoder loss encourages
the model to reconstruct the real trajectories. Together, the above objective maximizes the variational
lower bound of the likelihood of the real trajectories. The detailed derivation is in Appendix A.2.

Dynamics loss and representation loss The dynamics and representation losses enforce disentan-
glement of latent states while still capturing their interactions during imagination. By disentangle-
ment, we mean that posterior latent states are conditionally independent given agents’ observations,
i.e., qψ(z1:nt | h1:nt , o1:nt) =

∏n
i=1 qψ(z

i
t | hit, oit). Thus, the interaction between agents is modeled

only through the observations. Since no observation is available during imagination, the interaction
predictor takes the joint deterministic state as input to model the interaction between agents instead.
By aligning the joint prior with the factorized posterior, we compel the interaction predictor to gen-
erate a statistically consistent joint state, even in the absence of observations. We train the prior and
the posterior via the following losses:

Ldyn(ϕ, ψ) =

T∑
t=1

DKL

(
n∏
i=1

sg(qψ(· | hit, oit)) || pϕ(· | h1:nt)

)
, (4)

Lrep(ψ) =

T∑
t=1

DKL

(
n∏
i=1

qψ(· | hit, oit) || sg(pϕ(· | h1:nt))

)
, (5)

where sg(·) denotes the stop-gradient operator and T is the trajectory length. The dynamics loss
Ldyn trains the interaction predictor to match the factorized posterior, while the representation loss
Lrep regularizes the posterior toward the joint prior. Using different weights for the two losses
allows us to use higher weight for optimizing the prior. Ldyn optimizes both ϕ and ψ as h1:nt is
differentiable with respect to ψ.

Decoder loss The decoders are trained to reconstruct the real trajectories, enabling the model
to learn an informative representation of the environment and the structure of the underlying
Dec-POMDP. The observation decoder reconstructs observations by taking both deterministic and
stochastic states as input. Decoding the rewards, continuation flags, and available actions often
require additional information beyond the local history, for example, an episode terminates when
either all agents or all enemies are eliminated. To address this, we first combine all agents’ deter-
ministic states through a shared self-attention block, then decode the rewards, continuation flags,
and available actions using separate heads. The decoder loss comprises:

Ldec(ϕ, ψ) = −
T∑
t=1

(
n∑
i=1

log pϕ(o
i
t | hit, zit) + log pϕ(r

1:n
t | h1:nt)

+ log pϕ(c
1:n
t | h1:nt) + log pϕ(m

1:n
t | h1:nt)

)
,

(6)

where {o1:nt , r1:nt , c1:nt ,m1:n
t }Tt=1 are the ground-truth trajectory components. Ldec optimizes both

ϕ and ψ as h1:nt is differentiable with respect to ψ. The loss in equation 3 is optimized end-to-end
with backpropagation through time (BPTT), with the gradient of discrete latent states estimated by
the straight-through estimator (Bengio et al., 2013).

Absorbing state In multi-agent tasks, agents can become absent due to death or leaving the
scene (Samvelyan et al., 2019; Li et al., 2022). Drawing inspiration from prior work (Schrittwieser
et al., 2020; Egorov & Shpilman, 2022), we address this by incorporating an absorbing state into
our latent dynamics model to represent agent absence. When an agent is absent, it immediately

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

transitions to the absorbing state and remains there indefinitely, where the agent constantly observes
a fixed null observation and executes a fixed non-operation action. When an episode is terminated in
the environment, we let all agents remain in the absorbing state in the latent space but the received
rewards are zero. To facilitate the model’s learning of this behavior, we (1) relabel the observations,
available actions, and continuation flags of absent agents within an episode, and (2) append null
observations, available actions, zero rewards, and zero continuation flags to the end of the trajectory.
This approach enables the latent dynamics model to effectively learn and represent agent absence.

4.3 LEARNING DECENTRALIZED POLICIES IN LATENT SPACE

The disentangled latent states learned by our model enable effective training of decentralized policies
through imagination. The multi-agent dynamics of DMAWM effectively forms a factored n-agent
Dec-MDP (Bernstein et al., 2002) where the joint latent state I1:nt = (hit, z

i
t)
n
i=1 uniquely determines

the underlying state (see Appendix A.1).

Generating multi-agent trajectories in imagination The imaginary rollouts begin by encoding
a subsequence of a ground-truth trajectory τ1:nH = (o1:n1:H , a

1:n
1:H−1) using the agent module, where H

is the length of the subsequence. The resulting joint latent state (h1:n1 , z1:n1) is used as the initial state
for imagination. Then for each agent i, the actor model selects the action ait ∼ πθ(· | hit, zit) and the
recurrent model updates the deterministic state hit. After that, the interaction predictor samples the
joint stochastic state z1:nt ∼ pϕ(· | h1:nt) for all agents. This process is repeated for L imagination
steps, resulting in an imaginary trajectory. After an imagination rollout, the other components of the
trajectory are generated by the decoders for training, including the reward r̂it, continuation flag ĉit,
and available actions m̂i

t.

Actor-critic loss We train the actor and critic similar to MAPPO (Yu et al., 2022) but entirely
using the imaginary trajectories. To accurately estimate the value, the centralized critic v1:nξ (h1:nt)
utilizes a transformer to contextualize the joint deterministic state and estimates the value for each
agent. We also bootstrap the value at the next step and calculate the advantage via the generalized
advantage estimator (GAE) (Schulman et al., 2021) to balance the bias and variance:

Ait = δit + λγĉit+1A
i
t+1, δit = r̂t + γĉit+1v

i
ξ(h

1:n
t+1)− viξ(h

1:n
t), (7)

where λ balances the bias and variance for advantage estimation, and ĉit+1 is the continuation flag
at the next step. We compute advantages and value estimates for all agents along the trajectory. The
actor and critic losses are

Lactor(θ) = −
L∑
t=1

n∑
i=1

min(rit(θ)A
i
t, clip(rit(θ), 1− ϵ, 1 + ϵ)Ait)− βentH(πθ(· | hit, zit)), (8)

Lcritic(ξ) =

L∑
t=1

n∑
i=1

(sg(viξ(h
1:n
t) +Ait)− viξ(h

1:n
t))2, (9)

where rit(θ) =
πθ(a

i
t|h

i
t,z

i
t)

πθold (ait|hi
t,z

i
t)

is the ratio of the current policy to the previous policy, the clipping

operation constrains the ratio to lie within [1− ϵ, 1+ ϵ], H(πθ(· | hit, zit)) is the policy entropy, βent
is the entropy coefficient, and viξ(h

1:n
t) +Ait is the value target for agent i at time t.

5 EXPERIMENTS

In this section, we conduct experiments to demonstrate the effectiveness of DMAWM on three
MARL benchmarks, comparing it against both model-based and model-free baselines. To analyze its
interaction modeling capability, we visualize the generated imaginary trajectories. We also conduct
a wall-clock-time comparison to evaluate the runtime efficiency of DMAWM in Appendix A.7.

5.1 EXPERIMENTAL SETUP

Benchmarks We evaluate our method on three MARL benchmarks that pose complementary chal-
lenges: SMAC (Samvelyan et al., 2019) features complex dynamics and diverse coordination pat-
terns; SMACv2 (Ellis et al., 2023), an updated version of SMAC, introduces greater randomness in

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

0 1 2 3 4
Steps

0

20

40

60

80

100
W

in
 R

at
e

(%
)

1e5

2c_vs_64zg

0 1 2 3 4
Steps

0

20

40

60

80

100

W
in

 R
at

e
(%

)

1e5

3s5z

0 1 2 3 4
Steps

0

20

40

60

80

100

W
in

 R
at

e
(%

)

1e5

25m

0 1 2 3 4
Steps

0

20

40

60

80

100

W
in

 R
at

e
(%

)

1e5

corridor

0 1 2 3 4
Steps

0

20

40

60

80

100

W
in

 R
at

e
(%

)

1e5

MMM2

0 1 2 3 4
Steps

0

20

40

60

80

100

W
in

 R
at

e
(%

)

1e5

protoss_5_vs_5

0 1 2 3 4
Steps

0

20

40

60

80

100

W
in

 R
at

e
(%

)

1e5

zerg_5_vs_5

0 1 2 3 4
Steps

0

20

40

60

80

100

W
in

 R
at

e
(%

)

1e5

terran_5_vs_5

0 1 2 3 4
Steps

0

100

200

300

400

Re
wa

rd

1e5

coop_mining

0 1 2 3 4
Steps

0

100

200

300

400

Re
wa

rd

1e5

commons_harvest__open

QMIX MAPPO MAT MAMBA MBVD MAPPO (10×) DMAWM (Ours)

Figure 2: Training curves comparing DMAWM with model-based and model-free baselines on three
MARL benchmarks: SMAC, SMACv2, and Melting Pot. Results are averaged over 5 independent
runs, with shaded areas representing the standard deviation. All algorithms are trained for 400K
environment steps. Dashed lines show performance of MAPPO after 10 times more environment
steps than model-based algorithms.

the starting positions and unit types; Melting Pot (Leibo et al., 2021) uses visual observations and
requires behavior switching according to the context. We train all algorithms for 400K environment
steps on each benchmark. A detailed description of the benchmarks is provided in Appendix A.5.

Baselines We compare our method against both model-based and model-free baselines. The
model-based approaches include the communication-free MBVD (Xu et al., 2022) which re-
constructs observations to train a value decomposition method; and the communication-based
MAMBA (Egorov & Shpilman, 2022), a current SOTA method based on DreamerV2. The model-
free baselines include QMIX (Rashid et al., 2018), MAPPO (Yu et al., 2022), and MAT (Wen et al.,
2022). For QMIX, we utilize the tuned implementation from (Hu et al., 2021), which has demon-
strated competitive performance across various benchmarks.

Implementation details We perform one training step of both the world model and the policies
every 32 environment steps, beginning after an initial 5000-step warm-up. During training, the
learned model generates imaginary trajectories of 16 steps with 1024 parallel rollouts. For Melting
Pot, which uses visual observations, inputs are downsampled from 88 × 88 to 44 × 44 pixels to
reduce GPU memory usage. Visual observations are encoded with a CNN and decoded with a
transposed CNN (Dumoulin & Visin, 2016). To improve sample efficiency, we share parameters of
the agent modules and policies across all agents. To ensure fairness for comparison, all algorithms
use the same set of hyperparameters across benchmarks. Additional implementation details and
hyperparameters are provided in Appendix A.3 and Appendix A.4, respectively.

5.2 PERFORMANCE COMPARISON

Table 1 and Figure 2 summarize the performance comparison. DMAWM demonstrates strong per-
formance across all benchmarks. Across benchmarks, DMAWM is consistently sample-efficient,
matching or surpassing the performance of the strong baselines.

On SMAC, DMAWM learns substantially faster and attains the highest win rates compared to base-
lines, especially on the 2c vs 64zg and corridor maps. Notably, the 25m map features significantly
more agents than the others, which poses great challenges to model-based methods. Nevertheless,
DMAWM has shown great scalability compared to the other model-based baselines. In the more
stochastic SMACv2 environment, both DMAWM and MAMBA outperform other baselines, with
DMAWM achieving slightly better final performance. For the vision-based scenarios from Melting
Pot, DMAWM obtains the highest returns without specific tuning, highlighting its effectiveness in
modeling agent interactions even in the visual domain. Its efficacy in modeling these interactions is
further shown via latent state visualizations in Section 5.4.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 1: Performance comparison across SMAC, SMACv2, and Melting Pot benchmarks. We com-
pared our approach against both model-based and model-free baselines. Evaluation metrics are win
rate (%) for SMAC and SMACv2, and episode return for Melting Pot. All results are reported as the
average over 5 independent runs, accompanied by their standard deviations.

Benchmarks Maps Model-free Model-based

QMIX MAPPO MAT MAMBA MBVD DMAWM (Ours)

SMAC

2c vs 64zg 31.8 (26.1) 19.8 (7.7) 30.9 (14.3) 22.8 (25.0) 14.8 (18.3) 52.1 (9.4)

3s5z 28.9 (8.8) 7.2 (7.4) 2.7 (3.5) 53.2 (12.3) 59.2 (16.1) 45.1 (15.2)

25m 16.6 (7.2) 19.1 (7.1) 21.6 (12.2) 24.5 (12.7) 21.2 (11.1) 71.1 (9.3)

corridor 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 18.6 (17.7) 0.0 (0.0) 45.2 (39.2)

MMM2 2.3 (2.3) 2.7 (1.7) 0.0 (0.0) 21.2 (8.1) 0.2 (0.7) 37.6 (10.8)

SMACv2
protoss 5 vs 5 19.0 (4.0) 16.9 (9.2) 5.9 (3.8) 51.4 (8.3) 14.9 (6.3) 64.8 (4.9)

zerg 5 vs 5 11.3 (5.9) 7.9 (3.6) 9.0 (3.8) 32.4 (4.0) 12.7 (6.5) 38.7 (4.9)

terran 5 vs 5 25.6 (8.4) 15.0 (4.9) 9.8 (4.7) 50.9 (5.3) 24.1 (7.7) 62.3 (6.2)

Melting Pot Coop Mining 2.8 (2.4) 6.6 (2.7) 4.9 (1.0) 2.6 (2.1) 5.7 (2.6) 244.2 (150.6)

Commons Harvest: Open 61.5 (13.4) 170.6 (105.2) 127.6 (23.5) 175.9 (69.4) 105.0 (30.1) 401.7 (16.6)

0 1 2 3 4
Steps

0

20

40

60

80

100

W
in

 R
at

e
(%

)

1e5

DMAWM
DMAWM-TC
DMAWM-IP
DMAWM-AS

(a) Ablation on core components

4 8 12 16 20
Imagination Horizon

0

20

40

60

80

100

W
in

 R
at

e
(%

)

protoss_5_vs_5
zerg_5_vs_5
terran_5_vs_5

(b) Ablation on imagination horizon

Figure 3: Ablation study on SMACv2. (a) We remove each of the core components to study the
individual contributions, and the results are averaged across the 3 SMACv2 maps. (b) We study the
impact of the imagination horizon on the performance of DMAWM. Each map is trained for 400K
environment steps with 3 independent runs. The results underscore the importance of DMAWM’s
core components and demonstrate its robustness to the choice of imagination horizon.

5.3 ABLATION STUDY

To assess the individual contributions of DMAWM’s core components—the transformer-based
critic, interaction predictor, and absorbing state—we conduct ablation studies on them. To ablate
the transformer-based critic, we replace it with an MLP that estimates the value based on the latent
states of an agent. We call this ablation DMAWM-TC. The second ablation, DMAWM-IP, replaces
the interaction predictor with an MLP, wherein each agent independently predicts its own latent
state and other trajectory components. The third ablation, DMAWM-AS, removes the absorbing
state mechanism. In this setup, agent absence is predicted using a binary value for each agent, and
absent agents are no longer considered in future trajectory predictions. As shown in Figure 3a, all
ablations perform worse than the full DMAWM, underscoring the importance of these components.

On figure 3b, we also study the impact of the imagination horizon on the performance of DMAWM,
and we find that the performance of DMAWM is robust to the imagination horizon.

5.4 VISUALIZATION OF THE LATENT SPACE

To qualitatively evaluate the multi-agent latent dynamics model’s ability to capture agent interac-
tions, we generate an imaginary trajectory and compare it with the ground-truth trajectory, as shown
in Figure 4. The figure displays the decoded observations of two out of the four agents within the
same trajectory. We use the representation model to encode the initial 6 frames and generate the
subsequent 24 frames with the interaction predictor and the observation decoder.

From the visualization, we can see that the positions of agents and the structure of the wall in the
imagination align well with the real environment. While the ore distribution in imagination (iron

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Re
al

t=1 t=6 t=12 t=18 t=24 t=30

Im
ag
in
at
io
n

Re
al

Im
ag
in
at
io
n

Ag
en

t 2
Ag

en
t 1

Contexual input Open-loop prediction

Figure 4: Long-horizon trajectory prediction by our multi-agent latent dynamics model in the Coop
Mining environment. Conditioned on an initial 6-frame context from a hold-out trajectory and cor-
responding actions, the model employs the interaction predictor to generate 24 subsequent frames
in the latent space. We selectively show the decoded observations for two out of the four agents, to
demonstrate the model’s ability to capture multi-agent interactions coherently over long horizons.

ore is marked in gray and gold ore is marked in yellow) aligns more closely with the ground-truth
trajectory at early stage, they diverge at later timesteps. This is expected since the models must infer
ore locations in unobserved areas. What we find interesting is that the relative positions of the two
agents in imagination remain consistent with each other in their ego-centric observations throughout
all timesteps. Notably, at t = 18, agent 2’s action (mining beam) is accurately reflected in agent 1’s
decoded observation, highlighting the model’s efficacy in capturing agent interactions.

6 CONCLUSION AND FUTURE WORK

In this work, we addressed the critical challenge of learning effective decentralized policies for
multi-agent tasks using world models. We introduced the Disentangled Multi-Agent World Model
(DMAWM), a framework that learns decentralized policies in the latent space with a novel archi-
tecture featuring independent agent modules and a shared environment module. This architecture
enables it to learn a factorized latent representation that explicitly captures agent interactions while
effectively disentangling individual agent latent states. This disentanglement is crucial for training
decentralized policies via imagined trajectories. Our experiments on challenging MARL bench-
marks, with both vector and visual observations, demonstrated that DMAWM significantly outper-
forms existing model-based and model-free baselines in sample efficiency and final performance.

While this paper mainly focuses on cooperative tasks, extending DMAWM to mixed-motive scenar-
ios is a promising direction, as the core mechanisms are not inherently tied to cooperative tasks. We
also find that the multi-agent world model tends to overfit to the trajectories generated by the trained
policies. Investigating methods to enhance the world model’s quality by promoting policy diversity
during training could lead to more robust and generalizable world models capable of generating
more realistic trajectories that reflect the real environment.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

We provide detailed information to reproduce our results. The DMAWM architecture, training ob-
jectives, and training procedure are described in Section 4.1, Section 4.2, and Section 4.3. Experi-
mental setups, and benchmarks are presented in Section 5.1, with other implementation details can
be found in Appendix A.3. An introduction of the benchmarks we use is provided in Appendix A.5.
The full hyperparameter table can be found in Appendix A.4. Appendix A.2 contains the complete
derivation of the training objective.

We also submit anonymized source code as supplementary material, which includes the scripts to
reproduce the results in the main experiments.

REFERENCES

Eloi Alonso, Adam Jelley, Vincent Micheli, Anssi Kanervisto, Amos J Storkey, Tim Pearce, and
François Fleuret. Diffusion for world modeling: Visual details matter in Atari. In Advances in
Neural Information Processing Systems, pp. 58757–58791, 2024.

Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Estimating or propagating gradients
through stochastic neurons for conditional computation. arXiv preprint arXiv:1308.3432, 2013.

Daniel S Bernstein, Robert Givan, Neil Immerman, and Shlomo Zilberstein. The complexity of
decentralized control of markov decision processes. Mathematics of Operations Research, 27:
819–840, 2002.

Vincent Dumoulin and Francesco Visin. A guide to convolution arithmetic for deep learning. arXiv
preprint arXiv:1603.07285, 2016.

Vladimir Egorov and Alexei Shpilman. Scalable multi-agent model-based reinforcement learning.
In International Conference on Autonomous Agents and Multiagent Systems, pp. 381–390, 2022.

Benjamin Ellis, Jonathan Cook, Skander Moalla, Mikayel Samvelyan, Mingfei Sun, Anuj Mahajan,
Jakob Nicolaus Foerster, and Shimon Whiteson. SMACv2: An improved benchmark for coop-
erative multi-agent reinforcement learning. In Neural Information Processing Systems Datasets
and Benchmarks Track, 2023.

Claudia V Goldman and Shlomo Zilberstein. Decentralized control of cooperative systems: Cat-
egorization and complexity analysis. Journal of Artificial Intelligence Research, 22:143–174,
2004.

David Ha and Jürgen Schmidhuber. World models. arXiv preprint arXiv:1803.10122, 2018.

Danijar Hafner, Timothy Lillicrap, Ian Fischer, Ruben Villegas, David Ha, Honglak Lee, and James
Davidson. Learning latent dynamics for planning from pixels. In International Conference on
Machine Learning, pp. 2555–2565, 2019.

Danijar Hafner, Timothy Lillicrap, Jimmy Ba, and Mohammad Norouzi. Dream to control: Learning
behaviors by latent imagination. In International Conference on Learning Representations, 2020.

Danijar Hafner, Timothy P Lillicrap, Mohammad Norouzi, and Jimmy Ba. Mastering Atari with
discrete world models. In International Conference on Learning Representations, 2021.

Danijar Hafner, Jurgis Pasukonis, Jimmy Ba, and Timothy Lillicrap. Mastering diverse control tasks
through world models. Nature, 640:647–653, 2025.

Nicklas Hansen, Hao Su, and Xiaolong Wang. TD-MPC2: Scalable, robust world models for con-
tinuous control. In International Conference on Learning Representations, 2024.

Nicklas A Hansen, Hao Su, and Xiaolong Wang. Temporal difference learning for model predictive
control. In International Conference on Machine Learning, pp. 8387–8406, 2022.

Jian Hu, Siyang Jiang, Seth Austin Harding, Haibin Wu, and Shih wei Liao. Rethinking the imple-
mentation tricks and monotonicity constraint in cooperative multi-agent reinforcement learning.
arXiv preprint arXiv:2102.03479, 2021.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Lukasz Kaiser, Mohammad Babaeizadeh, Piotr Milos, Blazej Osinski, Roy H Campbell, Konrad
Czechowski, Dumitru Erhan, Chelsea Finn, Piotr Kozakowski, Sergey Levine, Afroz Mohiuddin,
Ryan Sepassi, George Tucker, and Henryk Michalewski. Model-based reinforcement learning for
Atari. In International Conference on Learning Representations, 2020.

Orr Krupnik, Igor Mordatch, and Aviv Tamar. Multi-agent reinforcement learning with multi-step
generative models. In Conference on Robot Learning, pp. 776–790, 2020.

Joel Z Leibo, Edgar A Dueñez-Guzman, Alexander Vezhnevets, John P Agapiou, Peter Sunehag,
Raphael Koster, Jayd Matyas, Charlie Beattie, Igor Mordatch, and Thore Graepel. Scalable eval-
uation of multi-agent reinforcement learning with melting pot. In International Conference on
Machine Learning, pp. 6187–6199, 2021.

Quanyi Li, Zhenghao Peng, Lan Feng, Qihang Zhang, Zhenghai Xue, and Bolei Zhou. Metadrive:
Composing diverse driving scenarios for generalizable reinforcement learning. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 45(3):3461–3475, 2022.

Zeyang Liu, Xinrui Yang, Shiguang Sun, Long Qian, Lipeng Wan, Xingyu Chen, and Xuguang Lan.
Grounded answers for multi-agent decision-making problem through generative world model. In
Advances in Neural Information Processing Systems, pp. 46622–46652, 2024.

Vincent Micheli, Eloi Alonso, and François Fleuret. Transformers are sample-efficient world mod-
els. In International Conference on Learning Representations, 2023.

Frans A Oliehoek and Christopher Amato. A concise introduction to decentralized POMDPs.
Springer, 2016.

Tabish Rashid, Mikayel Samvelyan, Christian Schroeder, Gregory Farquhar, Jakob Foerster, and
Shimon Whiteson. QMIX: Monotonic value function factorisation for deep multi-agent rein-
forcement learning. In International Conference on Machine Learning, pp. 4295–4304, 2018.

Jan Robine, Marc Höftmann, Tobias Uelwer, and Stefan Harmeling. Transformer-based world mod-
els are happy with 100k interactions. In International Conference on Learning Representations,
2023.

Mikayel Samvelyan, Tabish Rashid, Christian Schroeder De Witt, Gregory Farquhar, Nantas
Nardelli, Tim GJ Rudner, Chia-Man Hung, Philip HS Torr, Jakob Foerster, and Shimon Whiteson.
The StarCraft multi-agent challenge. arXiv preprint arXiv:1902.04043, 2019.

Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent Sifre, Simon
Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Graepel, Timothy Lillicrap, and
David Silver. Mastering Atari, Go, Chess and Shogi by planning with a learned model. Nature,
588:604–609, 2020.

John Schulman, Philipp Moritz, Sergey Levine, Michael I. Jordan, and Pieter Abbeel. High-
dimensional continuous control using generalized advantage estimation. In International Con-
ference on Learning Representations, 2021.

Edan Toledo. Codreamer: Communication-based decentralised world models. In Coordination and
Cooperation for Multi-Agent Reinforcement Learning Methods Workshop, 2024.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Infor-
mation Processing Systems, pp. 5998–6008, 2017.

Aravind Venugopal, Stephanie Milani, Fei Fang, and Balaraman Ravindran. MABL: Bi-level latent-
variable world model for sample-efficient multi-agent reinforcement learning. In International
Conference on Autonomous Agents and Multiagent Systems, pp. 1865–1873, 2024.

Muning Wen, Jakub Kuba, Runji Lin, Weinan Zhang, Ying Wen, Jun Wang, and Yaodong Yang.
Multi-agent reinforcement learning is a sequence modeling problem. In Advances in Neural
Information Processing Systems, pp. 16509–16521, 2022.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Daniël Willemsen, Mario Coppola, and Guido CHE de Croon. MAMBPO: Sample-efficient multi-
robot reinforcement learning using learned world models. In 2021 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems, pp. 5635–5640, 2021.

Zifan Wu, Chao Yu, Chen Chen, Jianye Hao, and Hankz Hankui Zhuo. Models as agents: Optimiz-
ing multi-step predictions of interactive local models in model-based multi-agent reinforcement
learning. In AAAI Conference on Artificial Intelligence, pp. 10435–10443, 2023.

Zhiwei Xu, Bin Zhang, Yuan Zhan, Yunpeng Baiia, and Guoliang Fan. Mingling foresight with
imagination: Model-based cooperative multi-agent reinforcement learning. In Advances in Neural
Information Processing Systems, pp. 11327–11340, 2022.

Sherry Yang, Yilun Du, Seyed Kamyar Seyed Ghasemipour, Jonathan Tompson, Leslie Pack Kael-
bling, Dale Schuurmans, and Pieter Abbeel. Learning interactive real-world simulators. In Inter-
national Conference on Learning Representations, 2024.

Weirui Ye, Shaohuai Liu, Thanard Kurutach, Pieter Abbeel, and Yang Gao. Mastering Atari games
with limited data. In Advances in Neural Information Processing Systems, pp. 25476–25488,
2021.

Chao Yu, Akash Velu, Eugene Vinitsky, Jiaxuan Gao, Yu Wang, Alexandre Bayen, and Yi Wu.
The surprising effectiveness of PPO in cooperative multi-agent games. In Neural Information
Processing Systems Datasets and Benchmarks Track, 2022.

Weinan Zhang, Xihuai Wang, Jian Shen, and Ming Zhou. Model-based multi-agent policy opti-
mization with adaptive opponent-wise rollouts. In International Joint Conference on Artificial
Intelligence, pp. 3384–3391, 2021.

Yang Zhang, Chenjia Bai, Bin Zhao, Junchi Yan, Xiu Li, and Xuelong Li. Decentralized transform-
ers with centralized aggregation are sample-efficient multi-agent world models. arXiv preprint
arXiv:2406.15836, 2024.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 CONNECTIONS BETWEEN MULTI-AGENT LATENT DYNAMICS AND TRADITIONAL
MULTI-AGENT FORMULATIONS

In this section, we build the connections between the multi-agent latent dynamics and traditional
multi-agent formulations, hopefully the techniques developed for these specific domains can be
applied to our framework.

The multi-agent latent dynamics model can be seen as an action-conditioned generative model of
the joint observation sequence that can be factorized as:

p(o1:n1:T , I
1:n
1:T | a1:n1:T−1) = p(I1:n1:T | a1:n1:T−1)p(o

1:n
1:T | I1:n1:T)

=

T∏
t=1

p(I1:nt | I1:nt−1, a
1:n
t−1)p(o

1:n
t | I1:nt)

=

T∏
t=1

p(I1:nt | I1:nt−1, a
1:n
t−1)

n∏
i=1

p(oit | Iit),

(10)

where p(I1:nt | I1:nt−1, a
1:n
t−1) is the transition probability and p(oit | Iit) is the observation probability.

To formulate the interaction derived from the above multi-agent latent dynamics model, we can
define the state as the collection of the individual latent states of all agents st = (I1t , . . . , I

n
t) as the

sequence (I1:nt)Tt=1 is Markovian on each of its components. The transition probability is governed
by the multi-agent latent dynamics model p(st | st−1, a

1:n
t−1) = p(I1:nt | I1:nt−1, a

1:n
t−1). Each agent

could observe its component of the joint latent state oit = Iit , leading to the fact that the joint
observation is equivalent to the state, i.e., o1:nt = I1:nt = st. This interaction formulation is captured
by an agent-wise factored Dec-MDP (Goldman & Zilberstein, 2004), where the state is uniquely
determined by the joint observation of all agents.

A.2 DERIVATION OF THE ELBO

Here we derive the evidence lower bound (ELBO) for the joint observation sequence o1:n1:T given the
action sequence a1:n1:T−1. The derivation for the other trajectory components are similar.

The posterior is the representation model that updates recursively:

q(I1:n1:T | a1:n1:T−1, o
1:n
1:T) =

T∏
t=1

q(I1:nt | I1:nt−1, a
1:n
t−1, o

1:n
t). (11)

We also need the marginal posterior to derive the ELBO:∑
I1:nt̸=l

q(I1:n1:T | a1:n1:T−1, o
1:n
1:T) =

∑
I1:n1:l−1

∑
I1:nl+1:T

q(I1:n1:T | a1:n1:T−1, o
1:n
1:T)

=
∑
I1:n1:l−1

∑
I1:nl+1:T

T∏
t=1

q(I1:nt | I1:nt−1, a
1:n
t−1, o

1:n
t) Apply Eq. 11

=
∑
I1:n1:l−1

∑
I1:nl+1:T

l∏
t=1

q(I1:nt | I1:nt−1, a
1:n
t−1, o

1:n
t)

T∏
t=l+1

q(I1:nt | I1:nt−1, a
1:n
t−1, o

1:n
t)

=
∑
I1:n1:l−1

l∏
t=1

q(I1:nt | I1:nt−1, a
1:n
t−1, o

1:n
t)︸ ︷︷ ︸

=q(I1:n1:l |a1:n1:l−1,o
1:n
1:l) by Eq. 11

∑
I1:nl+1:T

T∏
t=l+1

q(I1:nt | I1:nt−1, a
1:n
t−1, o

1:n
t)

︸ ︷︷ ︸
=1

=
∑
I1:n1:l−1

q(I1:n1:l | a1:n1:l−1, o
1:n
1:l) = q(I1:nl | a1:n1:l−1, o

1:n
1:l).

(12)

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

The ELBO is derived as follows:
ln p(o1:n1:T | a1:n1:T−1)

= ln
∑
I1:n1:T

p(o1:n1:T , I
1:n
1:T | a1:n1:T−1)

= ln
∑
I1:n1:T

p(I1:n1:T | a1:n1:T−1)p(o
1:n
1:T | I1:n1:T) Apply Eq. 10

= ln
∑
I1:n1:T

q(I1:n1:T | a1:n1:T−1, o
1:n
1:T)

p(I1:n1:T | a1:n1:T−1)

q(I1:n1:T | a1:n1:T−1, o
1:n
1:T)

p(o1:n1:T | I1:n1:T)

= lnEq(I1:n1:T |a1:n1:T−1,o
1:n
1:T)

[
p(I1:n1:T | a1:n1:T−1)

q(I1:n1:T | a1:n1:T−1, o
1:n
1:T)

p(o1:n1:T | I1:n1:T)

]
≥ Eq(I1:n1:T |a1:n1:T−1,o

1:n
1:T)

[
ln

p(I1:n1:T | a1:n1:T−1)

q(I1:n1:T | a1:n1:T−1, o
1:n
1:T)

p(o1:n1:T | I1:n1:T)

]
Jensen’s inequality

= Eq(I1:n1:T |a1:n1:T−1,o
1:n
1:T)

[
T∑
t=1

ln p(o1:nt | I1:nt)−
T∑
t=1

ln
q(I1:nt | I1:nt−1, a

1:n
t−1, o

1:n
t)

p(I1:nt | I1:nt−1, a
1:n
t−1)

]

=

T∑
t=1

Eq(I1:n1:T |a1:n1:T−1,o
1:n
1:T)

[
ln p(o1:nt | I1:nt)

]
−

T∑
t=1

Eq(I1:n1:T |a1:n1:T−1,o
1:n
1:T)

[
ln
q(I1:nt | I1:nt−1, a

1:n
t−1, o

1:n
t)

p(I1:nt | I1:nt−1, a
1:n
t−1)

]

=

T∑
t=1

Eq(I1:n1:t |o1:n1:t ,a
1:n
1:t−1)︸ ︷︷ ︸

marginalized by Eq. 12

[
ln p(o1:nt | I1:nt)

]

−
T∑
t=1

Eq(I1:nt−1|o1:n1:t−1,a
1:n
1:t−2)︸ ︷︷ ︸

marginalized by Eq. 12

[
DKL

(
q(· | I1:nt−1, a

1:n
t−1, o

1:n
t) || p(· | I1:nt−1, a

1:n
t−1)

)]

=

T∑
t=1

Eq(I1:nt |o1:n1:t ,a
1:n
1:t−1)

[
n∑
i=1

ln p(oit | Iit)

]

−
T∑
t=1

Eq(I1:nt−1|o1:n1:t−1,a
1:n
1:t−2)

[
DKL

(
n∏
i=1

q(· | Iit−1, a
i
t−1, o

i
t) || p(· | I1:nt−1, a

1:n
t−1)

)]
.

A.3 OTHER IMPLEMENTATION DETAILS

The interaction predictor is implemented using a Transformer network (Vaswani et al., 2017).
It is tasked with predicting the discrete latent state, conditioned on the joint deterministic state
pϕ(z

1:n
t | h1:nt). Each discrete latent state is represented by 32 one-hot vectors, each with 32 classes.

The prediction process begins by encoding the joint deterministic state h1:nt using a Transformer en-
coder, which yields (h̄1t , . . . , h̄

n
t) = TransformerEncoder(h1t , . . . , h

n
t). Subsequently, a Multi-Layer

Perceptron (MLP) maps each resulting embedding h̄it to a 1024-dimensional vector. This vector is
then reshaped to facilitate the sampling of the discrete latent state.

The reward decoder pϕ(r̂1:nt | h1:nt), continuation decoder pϕ(ĉ1:nt | h1:nt), and available actions
decoder pϕ(m̂1:n

t | h1:nt) are implemented with a shared Transformer network. First, the shared
Transformer encoder blocks processes the joint deterministic state h1:nt , producing (h̃1t , . . . , h̃

n
t) =

TransformerEncoder(h1t , . . . , h
n
t). Then, each decoder employs a separate MLP head to produce its

respective output. For the centralized critic, we use a separate Transformer encoder to encode the
joint deterministic state h1:nt , then map the embedding to a value estimate for each agent.

We also adopt tricks from Dreamerv3, such as the symexp twohot loss for the reward decoder
and critic, and free bits for the dynamics loss and representation loss. The reward decoder and
critic use the symexp twohot loss as Dreamerv3 (Hafner et al., 2025). To be specific, the out-

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

puts of reward decoder and critic can be represented as the weighted average of exponentially
spaced bins, e.g., r̂it = Softmax(MLP(hit, z

i
t))

⊤B where B = symexp(−20, . . . ,+20) and
symexp(x) = sign(x)(exp(|x|−1)). The reward decoder and critic are trained to match the two-hot
target using cross-entropy loss.

A.4 HYPERPARAMETERS

A.4.1 HYPERPARAMETERS FOR DMAWM

The empirical results of our DMAWM implementation is based on the hyperparameters in Table 2.

Table 2: Hyperparameters for the DMAWM algorithm.

Hyperparameter Value

Reinforcement Learning
Optimizer Adam
Entropy coefficient 0.01
PPO epochs 5
Clip param 0.2
Actor learning rate 3× 10−5

Critic learning rate 3× 10−5

Discount factor 0.99
GAE lambda 0.95

World Model
Max grad norm 100
Model learning rate 1× 10−4

Model batch size 16
Sequence length 64
Rollout horizon 16
Buffer size 2.5× 105

KL balancing entropy weight 0.2
KL balancing cross entropy weight 0.8
Discrete latent dimensions 32
Discrete latent classes 32
Transformer layers 3
Transformer heads 8
Decoder hidden size 1024
Decoder layers 2

A.4.2 HYPERPARAMETERS FOR BASELINES

The experimental results on MAPPO (Yu et al., 2022) is based on the official implementation2 with
the following hyperparameters in Table 3.

The experimental results on MAT (Yu et al., 2022) is based on the implementation3 with the follow-
ing hyperparameters in Table 4.

The experimental results on QMIX (Rashid et al., 2018) is based on the optimized implementation
of PyMARL24 with the following hyperparameters in Table 5.

The experimental results on MAMBA (Egorov & Shpilman, 2022) is based on the official imple-
mentation5 with the following hyperparameters in Table 6.

2https://github.com/marlbenchmark/on-policy
3https://github.com/marlbenchmark/on-policy
4https://github.com/hijkzzz/pymarl2
5https://github.com/jbr-ai-labs/mamba

15

https://github.com/marlbenchmark/on-policy
https://github.com/marlbenchmark/on-policy
https://github.com/hijkzzz/pymarl2
https://github.com/jbr-ai-labs/mamba

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Table 3: Hyperparameters for the MAPPO algorithm.

Hyperparameter Value

Use RNN True
Optimizer Adam
Episode length 400
Entropy coefficient 0.01
Discount factor 0.99
GAE lambda 0.95
Critic learning rate 5× 10−4

Actor learning rate 5× 10−4

PPO epochs 5
Clip param 0.2
Parallel workers 8
Max grad norm 10

Table 4: Hyperparameters for the MAT algorithm.

Hyperparameter Value

Use RNN True
Optimizer Adam
Episode length 400
Entropy coefficient 0.01
Discount factor 0.99
GAE lambda 0.95
Critic learning rate 5× 10−4

Actor learning rate 5× 10−4

PPO epochs 5
Clip param 0.2
Parallel workers 8
Max grad norm 10
Transformer layers 1
Transformer heads 1

Table 5: Hyperparameters for the QMIX algorithm.

Hyperparameter Value

Use RNN True
Optimizer Adam
Learning rate 0.001
Discount factor 0.99
Target update interval (episodes) 200
Max grad norm 10
Batch size 128
Buffer size (episodes) 5000
Epsilon 1.00 → 0.05
TD lambda 0.6

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table 6: Hyperparameters for the MAMBA algorithm.

Hyperparameter Value

Reinforcement Learning
Optimizer Adam
Entropy coefficient 0.001
Number of updates 4
PPO epochs 5
Clip param 0.2
Actor learning rate 5× 10−4

Critic learning rate 5× 10−4

Discount factor 0.99
GAE lambda 0.95

World Model
Model learning rate 2× 10−4

Model epochs 60
Model batch size 40
Sequence length 20
Rollout horizon 15
Buffer size 2.5× 105

KL balancing entropy weight 0.2
KL balancing cross entropy weight 0.8
Max grad norm 100
Trajectories between updates 1

The experimental results on MBVD (Xu et al., 2022) is based on the official implementation sub-
mitted to OpenReview6 with the following hyperparameters in Table 7.

Table 7: Hyperparameters for the MBVD algorithm.

Hyperparameter Value

Reinforcement Learning
Optimizer RMSProp
Learning rate 5× 10−4

Discount factor 0.99
Target update interval (episodes) 200
Max grad norm 10
Batch size 32
Buffer size (episodes) 5000
Epsilon 1.00 → 0.05

World Model
Rollout horizon 3
KL balancing entropy weight 0.3
KL balancing cross entropy weight 0.7
Trajectories between updates 1

A.5 ENVIRONMENT DESCRIPTIONS

A.5.1 SMAC

StarCraft Multi-Agent Challenge (SMAC) (Samvelyan et al., 2019) is a popular benchmark for
MARL research based on the real-time strategy game StarCraft II. It offers a collection of micro

6https://openreview.net/forum?id=flBYpZkW6ST

17

https://openreview.net/forum?id=flBYpZkW6ST

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

battle scenarios in StarCraft II, where a team of ally units must collaborate to defeat the opposing
team controlled by rule-based bots. In these scenarios, each agent is responsible for controlling one
ally unit and has access to information such as the distance, relative location, health, shield, and type
of both ally and enemy units within their field of vision. For our purposes, we consider each unit as
an entity, with ally units categorized as agent entities and enemies as non-agent entities.

(a) 5m vs 6m (b) 3s5z vs 3s6z

Figure 5: SMAC

A.5.2 SMACV2

SMACv2 (Ellis et al., 2023) extends SMAC by introducing increased complexity and randomness.
It randomizes the starting positions and unit types of agents with varying sight and attack ranges,
presenting MARL algorithms with greater levels of stochasticity and diversity. Similar to the ap-
proach taken in SMAC, we consider each unit as an individual entity, ally units as agent entities, and
enemies as non-agent entities.

Figure 6: SMACv2

A.5.3 MELTING POT

Melting Pot (Leibo et al., 2021) provides a suite of multi-agent tasks and an evaluation protocol for
assessing the social intelligence of agents. These tasks are vision-based, where the observations are
ego-centric 2D visual observations of the environment.

Coop Mining (Figure 7a), a cooperative scenario where agents coordinate to collect resources, is an
instance of the cooperative task in Melting Pot. The environment features two resource types: iron
ore and gold ore. Iron ore can be gathered by a single agent, but gold ore necessitates the use of
beams by two agents within a time window of 3 timesteps. Collecting iron ore yields a reward of 1
for the agent, while successfully gathering gold ore grants a reward of 8 to each participating agent.
Each episode lasts 1000 timesteps.

Common Harvest (Figure 7b), in which agents consume renewable common resources, is a tragedy-
of-the-commons scenario. Apples are initially scattered throughout the environment, and consuming
one yields a reward of 1. At each timestep, apples respawn with a probability that is positively
correlated with the number of apples within a neighborhood of radius 2. Consequently, an isolated
patch (one with no other apples within distance 2) can be permanently depleted if all apples in

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

that patch are consumed. Agents must therefore exercise restraint when consuming apples within a
patch. Each episode lasts 1000 timesteps.

(a) Coop Mining (b) Common Harvest

Figure 7: Melting Pot

To save GPU memory, we resize the observation from 88× 88 to 44× 44. We show an example of
the original and resized observations in Figure 8 below.

(a) Original observation (b) Resized observation

Figure 8: Observation Resizing

A.6 COMPUTATIONAL RESOURCES

Most experiments were conducted with NVIDIA RTX 3090 GPUs. The time for an experiment is
highly dependent on the number of agents and total timesteps. For example, the 2s vs 1sc map of
the SMAC benchmark, which has 2 agents and the total timesteps is 400K, takes around 12 hours to
train.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

0 2 4 6 8 10
Wall-clock-time (h)

0

20

40

60

80

100
W

in
 R

at
e

(%
)

protoss_5_vs_5

0 2 4 6 8 10
Wall-clock-time (h)

0

20

40

60

80

100

W
in

 R
at

e
(%

)

zerg_5_vs_5

0 2 4 6 8 10
Wall-clock-time (h)

0

20

40

60

80

100

W
in

 R
at

e
(%

)

terran_5_vs_5
MAPPO DMAWM

Figure 9: Wall-clock-time comparison between DMAWM and MAPPO on the SMACv2 benchmark.
For DMAWM, we set the imagination horizon to 4. Results are averaged over 3 independent runs.

A.7 WALL-CLOCK-TIME COMPARISON

To evaluate the runtime efficiency of DMAWM, we compare the wall-clock-time of DMAWM
against MAPPO on the SMACv2 benchmark. For DMAWM, we set the imagination horizon to
4. Both algorithms are trained under the same computational resources. As shown in Figure 9,
DMAWM achieves comparable training speed as MAPPO while using much less environment steps
to reach the same performance. This result is particularly interesting to us, as it effectively closes
the runtime gap between model-based and model-free algorithms.

20

	Introduction
	Related Work
	Preliminary
	Method
	Framework
	Learning disentangled multi-agent world model
	Learning decentralized policies in latent space

	Experiments
	Experimental setup
	Performance comparison
	Ablation study
	Visualization of the latent space

	Conclusion and Future Work
	Appendix
	Connections between Multi-Agent Latent Dynamics and traditional multi-agent formulations
	Derivation of the ELBO
	Other implementation details
	Hyperparameters
	Hyperparameters for DMAWM
	Hyperparameters for baselines

	Environment descriptions
	SMAC
	SMACv2
	Melting Pot

	Computational resources
	Wall-clock-time comparison

