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ABSTRACT

World models enable learning policies via latent imagination, offering benefits
such as history compression and sample efficiency. The primary challenge in ap-
plying world models to multi-agent tasks is that modeling multi-agent dynamics in
latent space requires integrating information from different agents, often creating
spurious correlations between their latent states. Existing methods either recon-
struct the observation for each agent or employ communication to maintain corre-
lation during execution, failing to learn disentangled latent states that are crucial
for effective decentralized control. To address this, we present the Disentangled
Multi-Agent World Model (DMAWM). It facilitates learning decentralized poli-
cies in the latent space through a novel architecture comprising independent agent
modules and a shared environment module. During real-environment execution,
agent modules independently process local information to form a factorized latent
representation. The environment module is then trained to mirror the factorized
structure generated by the agent modules, effectively disentangling individual la-
tent states from the interaction dynamics. Consequently, imaginary rollouts gener-
ated by the environment module more faithfully simulate decentralized execution
dynamics, facilitating the transfer of policies from imagination to decentralized
execution. Empirically, DMAWM outperforms existing model-based and model-
free approaches in convergence speed and final performance, with additional vi-
sualization demonstrating its efficacy in capturing agent interactions.

1 INTRODUCTION

Model-based reinforcement learning (MBRL) has emerged as a highly effective approach in the
single-agent domain. It has enabled superhuman performance in complex tasks such as Atari and
board games without prior knowledge of the rules (Schrittwieser et al., 2020), and has allowed agents
to master challenging objectives like collecting diamonds in Minecraft from scratch (Hafner et al.,
2025). The cornerstone of these successes lies in learning models of the environments, often referred
to as world models (Ha & Schmidhuber, 2018). The world model summarizes the agent’s history of
observations and actions into a compact latent state representation. This representation is predictive
of future outcomes, like subsequent observations or rewards, enabling agents to efficiently plan or
learn policies through simulated experience (imagination) within the learned world model.

However, extending world models to multi-agent reinforcement learning (MARL) is challenging.
A primary difficulty lies in that modeling multi-agent dynamics in latent space requires integrating
information from different agents, leading to spurious correlations that are impossible to maintain
during decentralized execution. This hinders the learning of disentangled latent states crucial for
effective decentralized control. Existing model-based MARL methods have attempted to address
these challenges with varying degrees of success. Some generate trajectories directly in the original
observation space (Zhang et al., 2021; Xu et al., 2022; Zhang et al., 2024), often struggling with
high-dimensional observations and neglecting the benefits of history-dependent latent states. Others
employ communication to maintain the correlation during execution (Egorov & Shpilman, 2022; Wu
et al., 2023; Toledo, 2024). However, they often compromise the requirement for fully decentralized
execution and fail to learn the disentangled latent states crucial for decentralized policies.

To address this, we introduce Disentangled Multi-Agent World Model (DMAWM), a novel frame-
work to learn decentralized policies effectively within a latent space. It has a distinctive architecture
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with independent agent modules and a shared environment module. During real-world execution, the
agent modules independently process local observations to form a factorized latent representation
across all agents. Crucially, the environment module is then trained to mirror the factorized struc-
ture generated by the agent modules, which effectively disentangles the individual latent states of
each agent. This disentanglement ensures that the imaginary rollouts generated by the environment
module faithfully simulate decentralized execution dynamics. Consequently, policies learned by
imagination within the model can be transferred to the real environment in a decentralized manner.

We evaluate DMAWM on three challenging MARL benchmarks, including SMAC (Samvelyan
et al., 2019), SMACv2 (Ellis et al., 2023), and vision-based Melting Pot (Egorov & Shpilman,
2022). DMAWM outperforms existing model-based and model-free MARL baselines in conver-
gence speed and final performance, demonstrating its effectiveness in learning multi-agent dynam-
ics to facilitate effective decentralized policy learning. We also conduct visualization analysis to
demonstrate DMAWM’s efficacy in capturing agent interactions in the latent space.

2 RELATED WORK

World models for control World models learn the underlying dynamics from raw observations
for data-efficient control. Generative world models are optimized to reconstruct the observation
to capture the dynamics: SimPLe (Kaiser et al., 2020) trains a video predictor as an environment
model, and the Dreamer family (Hafner et al., 2020; 2021; 2025) leverages recurrent state-space
models (RSSMs) (Hafner et al., 2019) to plan in latent space. Implicit world models avoid decod-
ing observations and instead couple learned dynamics with decision procedures—MuZero (Schrit-
twieser et al., 2020) and EfficientZero (Ye et al., 2021) integrate MCTS, while TD-MPC and TD-
MPC2 (Hansen et al., 2022; 2024) pair implicit models with MPC for continuous control. Recent
advances focus on stronger backbone models, bringing transformers and diffusion into dynamics
learning: IRIS (Micheli et al., 2023) and TWM (Robine et al., 2023) apply transformers to model the
whole trajectory in an end-to-end manner, while UniSim (Yang et al., 2024) and DIAMOND (Alonso
et al., 2024) employs diffusion models to enhance the capability of capturing the visual details.

Our work is built on the latent generative world model due to its efficiency, but targets multi-agent
settings by explicitly factorizing dynamics into agent and environment modules, enabling structured
imagination of interactions and supporting decentralized execution.

Model-based MARL Model-based MARL must handle partial observability of the environment
and non-stationarity from concurrently adapting policies. Early approaches assume global observ-
ability (Krupnik et al., 2020; Zhang et al., 2021) or sufficiency of joint observations (Willemsen
et al., 2021), sidestepping history dependencies. Later works pose learning multi-agent dynam-
ics as sequence modeling task using recurrent networks (Xu et al., 2022) or transformers (Zhang
et al., 2024; Liu et al., 2024), facilitating long-horizon imagination but often struggling with high-
dimensional observations. Inspired by Dreamer, latent world models have been adapted to MARL;
however, many methods rely on broadcasting the latent states to other agents to keep latent states
consistent across imagination and execution: MAMBA (Egorov & Shpilman, 2022) maintains lo-
cal world models with communication; MAG (Wu et al., 2023) further mitigates multi-step errors
in world modeling; CoDreamer (Toledo, 2024) utilizes GNN-based communication for both latent
state update and action selection. MABL (Venugopal et al., 2024) proposes a bi-level architecture to
reduce communication requirements, but its global state transition model may not scale effectively
as the number of agents increases.

Unlike previous methods that reconstruct observations or broadcast latent states, our work forces
the latent states during imagination to reflect the factorized structure as in the real environment.
This design leads to fully decentralized execution while enabling the world model to model the
interactions between agents without the need for learning a global state transition model.

3 PRELIMINARY

Learning latent dynamics Recurrent state-space models (RSSMs) (Hafner et al., 2019; 2020)
learn action-conditioned generative dynamics that can roll out trajectories of observations and
rewards given actions. An RSSM (parameterized by ϕ) comprises: (1) a representation model
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qϕ(It | It−1, at−1, ot)
1 that infers the posterior latent state from the previous latent state It−1,

the previous action at−1, and the current observation ot; (2) a transition model pϕ(Ît | It−1, at−1)
that predicts the next latent state from the previous state and action; and (3) decoders pϕ(ôt | It)
and pϕ(r̂t | It) that reconstruct the observation and reward from the latent state. These components
are jointly trained to maximize the evidence lower bound (ELBO) on observed trajectories. This
objective encourages high likelihood for the observed trajectories, while enforcing the consistency
between the representation model and the transition model to capture the environment dynamics.
During policy training, imagined trajectories are generated by first initializing I1 from a subse-
quence of an observed trajectory sampled from the replay buffer, and then recursively predicting
latent states Ît+1 ∼ pϕ(· | It, at) with action sampled from a learned policy at ∼ πθ(· | It).
DreamerV2 (Hafner et al., 2021) further decomposes the latent state It = (ht, zt) into a determinis-
tic component ht and a stochastic component zt. Given an observation ot, the agent first updates the
deterministic state via the recurrent model ht = fϕ(It−1, at−1), and then infers the stochastic state
with the representation model zt ∼ qϕ(· | ht, ot). During imagination, it reuses the recurrent model
to update the deterministic state ht = fϕ(It−1, at−1), but samples the stochastic component from a
separate model ẑt ∼ pϕ(· | ht) without access to observations.

Dec-POMDPs We consider cooperative, partially observable tasks formalized as decentralized
partially observable Markov decision processes (Dec-POMDPs) (Oliehoek & Amato, 2016). In a
Dec-POMDP with n agents, each agent i acts based on local information. At each discrete timestep
t, while the environment is in state st, agent i receives a local observation oit ∼ p(· | st), which is
appended to its local history τ it = (oi1:t, a

i
1:t−1). Based on this history, the agent selects an action

ait ∼ πi(· | τ it ), forming a joint action a1:nt = (a1t , . . . , a
n
t ). Executing a1:nt in state st transitions the

environment to st+1 and yields a shared reward rt+1 according to p(st+1, rt+1 | st, a1:nt ). Without
loss of generality, we can extend this shared reward to agent-specific rewards r1:nt = (r1t , . . . , r

n
t ),

where for cooperative tasks, all agents share the same reward: r1t = . . . = rnt = rt. The goal is
to learn decentralized policies π1:n = (π1, . . . , πn) that maximize the expected discounted return
Eπ1:n,p[

∑∞
t=1 γ

t−1rt+1], where γ ∈ (0, 1) is the discount factor.

4 METHOD

We present DMAWM, a framework for learning decentralized policies in latent space. We first
introduce its overall design, which features independent agent modules and a shared environment
module (Section 4.1). Next, we describe how it enables effective learning of multi-agent dynamics
while preserving the factorized structure (Section 4.2). Finally, we explain how the disentangled
latent states facilitate training decentralized policies through imagined trajectories (Section 4.3).

4.1 FRAMEWORK

DMAWM features a distinctive architecture comprising independent agent modules and a shared
environment module, as shown in Figure 1. This design enables effective learning of disentangled
latent states while capturing agent interactions. The agent modules independently process local
observations to form factorized latent representations, while the environment module models agent
interactions during imagination, generating imaginary trajectories for policy learning.

Agent module Each agent module (parameterized by ψ) operates independently, maintaining its
own internal state Iit = (hit, z

i
t) that consists of a deterministic component hit and a stochastic

component zit. Upon receiving a local observation oit, the agent updates its state through two
components: the recurrent model updates the deterministic part hit = fψ(I

i
t−1, a

i
t−1), while the

representation model infers the stochastic part zit ∼ qψ(· | hit, oit), forming a factorized posterior
qψ(z

1:n
t | h1:nt , o1:nt ) =

∏n
i=1 qψ(z

i
t | hit, oit), as the individual stochastic state is only conditioned on

local information. Action selection is based solely on the agent’s internal state, i.e., ait ∼ πθ(· | Iit),
ensuring decentralized decision-making.

1We use the notation It to emphasize it represents the internal state of an agent, which corresponds to st in
the original RSSM paper (Hafner et al., 2019).
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Figure 1: Illustration of agent interactions. The gray area represents the agent module where the
latent states are updated; the blue area represents the real environment which manages the state tran-
sition and observation generation; the green area represents the environment module which replaces
the real environment during imagination and couples agents via their latent states.

Environment module The environment module (parameterized by ϕ) plays a crucial role in gen-
erating imaginary trajectories for policy learning. During imagination, it replaces the real envi-
ronment by coupling the agents’ internal states to simulate environment dynamics and inter-agent
interactions. Given the previous joint latent state I1:nt−1 and actions a1:nt−1, the recurrent models of
agent modules independently compute their deterministic components hit = fψ(I

i
t−1, a

i
t−1). The

key innovation is a transformer-based interaction predictor which models inter-agent interactions
by sampling the joint prior pϕ(ẑ1:nt | h1:nt ) for all agents. Intuitively, the interaction predictor
should capture the necessary dependencies between agents to model the evolution of the latent
states in decentralized execution. To achieve this, we align this joint prior to the factorized pos-
terior

∏n
i=1 qψ(z

i
t | hit, oit) via the dynamics loss and representation loss (introduced in Section 4.2).

In addition, the environment module includes decoders that reconstruct trajectory components from
the latent states, providing supervision signals for representation learning and policy training.

The agent module and the environment module consist of:

Agent module

{
Recurrent model: hit = fψ(h

i
t−1, z

i
t−1, a

i
t−1)

Representation model: zit ∼ qψ(· | hit, oit)
, (1)

Environment module



Interaction predictor: ẑ1:nt ∼ pϕ(· | h1:nt )

Observation decoder: ôit ∼ pϕ(· | hit, zit)
Reward decoder: r̂1:nt ∼ pϕ(· | h1:nt )

Continuation decoder: ĉ1:nt ∼ pϕ(· | h1:nt )

Available actions decoder: m̂1:n
t ∼ pϕ(· | h1:nt )

, (2)

where for each agent i, we use the binary vector m̂i
t to denote the available actions, and the binary

scalar ĉit to denote the continuation flag with ĉit = 1 if the episode continues at t.

4.2 LEARNING DISENTANGLED MULTI-AGENT WORLD MODEL

The learning objective of our multi-agent latent dynamics model is designed to maintain the fac-
torized structure while effectively capturing agent interactions. Similar to Dreamer (Hafner et al.,

4
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2020), the training process iterates between collecting real environment data, learning the latent
dynamics model, and training policies through imagination.

To train the multi-agent world model, we optimize the following objective:

L(ϕ, ψ) = βdynLdyn(ϕ, ψ)︸ ︷︷ ︸
dynamics loss

+ βrepLrep(ψ)︸ ︷︷ ︸
representation loss

+βdecLdec(ϕ, ψ)︸ ︷︷ ︸
decoder loss

, (3)

where βdyn, βrep, and βdec are the weights for each loss term. The dynamics loss and representation
loss align the prior and posterior distribution of the latent states, while the decoder loss encourages
the model to reconstruct the real trajectories. Together, the above objective maximizes the variational
lower bound of the likelihood of the real trajectories. The detailed derivation is in Appendix A.2.

Dynamics loss and representation loss The dynamics and representation losses enforce disentan-
glement of latent states while still capturing their interactions during imagination. By disentangle-
ment, we mean that posterior latent states are conditionally independent given agents’ observations,
i.e., qψ(z1:nt | h1:nt , o1:nt ) =

∏n
i=1 qψ(z

i
t | hit, oit). Thus, the interaction between agents is modeled

only through the observations. Since no observation is available during imagination, the interaction
predictor takes the joint deterministic state as input to model the interaction between agents instead.
By aligning the joint prior with the factorized posterior, we compel the interaction predictor to gen-
erate a statistically consistent joint state, even in the absence of observations. We train the prior and
the posterior via the following losses:

Ldyn(ϕ, ψ) =

T∑
t=1

DKL

(
n∏
i=1

sg(qψ(· | hit, oit)) || pϕ(· | h1:nt )

)
, (4)

Lrep(ψ) =

T∑
t=1

DKL

(
n∏
i=1

qψ(· | hit, oit) || sg(pϕ(· | h1:nt ))

)
, (5)

where sg(·) denotes the stop-gradient operator and T is the trajectory length. The dynamics loss
Ldyn trains the interaction predictor to match the factorized posterior, while the representation loss
Lrep regularizes the posterior toward the joint prior. Using different weights for the two losses
allows us to use higher weight for optimizing the prior. Ldyn optimizes both ϕ and ψ as h1:nt is
differentiable with respect to ψ.

Decoder loss The decoders are trained to reconstruct the real trajectories, enabling the model
to learn an informative representation of the environment and the structure of the underlying
Dec-POMDP. The observation decoder reconstructs observations by taking both deterministic and
stochastic states as input. Decoding the rewards, continuation flags, and available actions often
require additional information beyond the local history, for example, an episode terminates when
either all agents or all enemies are eliminated. To address this, we first combine all agents’ deter-
ministic states through a shared self-attention block, then decode the rewards, continuation flags,
and available actions using separate heads. The decoder loss comprises:

Ldec(ϕ, ψ) = −
T∑
t=1

(
n∑
i=1

log pϕ(o
i
t | hit, zit) + log pϕ(r

1:n
t | h1:nt )

+ log pϕ(c
1:n
t | h1:nt ) + log pϕ(m

1:n
t | h1:nt )

)
,

(6)

where {o1:nt , r1:nt , c1:nt ,m1:n
t }Tt=1 are the ground-truth trajectory components. Ldec optimizes both

ϕ and ψ as h1:nt is differentiable with respect to ψ. The loss in equation 3 is optimized end-to-end
with backpropagation through time (BPTT), with the gradient of discrete latent states estimated by
the straight-through estimator (Bengio et al., 2013).

Absorbing state In multi-agent tasks, agents can become absent due to death or leaving the
scene (Samvelyan et al., 2019; Li et al., 2022). Drawing inspiration from prior work (Schrittwieser
et al., 2020; Egorov & Shpilman, 2022), we address this by incorporating an absorbing state into
our latent dynamics model to represent agent absence. When an agent is absent, it immediately

5
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transitions to the absorbing state and remains there indefinitely, where the agent constantly observes
a fixed null observation and executes a fixed non-operation action. When an episode is terminated in
the environment, we let all agents remain in the absorbing state in the latent space but the received
rewards are zero. To facilitate the model’s learning of this behavior, we (1) relabel the observations,
available actions, and continuation flags of absent agents within an episode, and (2) append null
observations, available actions, zero rewards, and zero continuation flags to the end of the trajectory.
This approach enables the latent dynamics model to effectively learn and represent agent absence.

4.3 LEARNING DECENTRALIZED POLICIES IN LATENT SPACE

The disentangled latent states learned by our model enable effective training of decentralized policies
through imagination. The multi-agent dynamics of DMAWM effectively forms a factored n-agent
Dec-MDP (Bernstein et al., 2002) where the joint latent state I1:nt = (hit, z

i
t)
n
i=1 uniquely determines

the underlying state (see Appendix A.1).

Generating multi-agent trajectories in imagination The imaginary rollouts begin by encoding
a subsequence of a ground-truth trajectory τ1:nH = (o1:n1:H , a

1:n
1:H−1) using the agent module, where H

is the length of the subsequence. The resulting joint latent state (h1:n1 , z1:n1 ) is used as the initial state
for imagination. Then for each agent i, the actor model selects the action ait ∼ πθ(· | hit, zit) and the
recurrent model updates the deterministic state hit. After that, the interaction predictor samples the
joint stochastic state z1:nt ∼ pϕ(· | h1:nt ) for all agents. This process is repeated for L imagination
steps, resulting in an imaginary trajectory. After an imagination rollout, the other components of the
trajectory are generated by the decoders for training, including the reward r̂it, continuation flag ĉit,
and available actions m̂i

t.

Actor-critic loss We train the actor and critic similar to MAPPO (Yu et al., 2022) but entirely
using the imaginary trajectories. To accurately estimate the value, the centralized critic v1:nξ (h1:nt )
utilizes a transformer to contextualize the joint deterministic state and estimates the value for each
agent. We also bootstrap the value at the next step and calculate the advantage via the generalized
advantage estimator (GAE) (Schulman et al., 2021) to balance the bias and variance:

Ait = δit + λγĉit+1A
i
t+1, δit = r̂t + γĉit+1v

i
ξ(h

1:n
t+1)− viξ(h

1:n
t ), (7)

where λ balances the bias and variance for advantage estimation, and ĉit+1 is the continuation flag
at the next step. We compute advantages and value estimates for all agents along the trajectory. The
actor and critic losses are

Lactor(θ) = −
L∑
t=1

n∑
i=1

min(rit(θ)A
i
t, clip(rit(θ), 1− ϵ, 1 + ϵ)Ait)− βentH(πθ(· | hit, zit)), (8)

Lcritic(ξ) =

L∑
t=1

n∑
i=1

(sg(viξ(h
1:n
t ) +Ait)− viξ(h

1:n
t ))2, (9)

where rit(θ) =
πθ(a

i
t|h

i
t,z

i
t)

πθold (ait|hi
t,z

i
t)

is the ratio of the current policy to the previous policy, the clipping

operation constrains the ratio to lie within [1− ϵ, 1+ ϵ], H(πθ(· | hit, zit)) is the policy entropy, βent
is the entropy coefficient, and viξ(h

1:n
t ) +Ait is the value target for agent i at time t.

5 EXPERIMENTS

In this section, we conduct experiments to demonstrate the effectiveness of DMAWM on three
MARL benchmarks, comparing it against both model-based and model-free baselines. To analyze its
interaction modeling capability, we visualize the generated imaginary trajectories. We also conduct
a wall-clock-time comparison to evaluate the runtime efficiency of DMAWM in Appendix A.7.

5.1 EXPERIMENTAL SETUP

Benchmarks We evaluate our method on three MARL benchmarks that pose complementary chal-
lenges: SMAC (Samvelyan et al., 2019) features complex dynamics and diverse coordination pat-
terns; SMACv2 (Ellis et al., 2023), an updated version of SMAC, introduces greater randomness in

6
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Figure 2: Training curves comparing DMAWM with model-based and model-free baselines on three
MARL benchmarks: SMAC, SMACv2, and Melting Pot. Results are averaged over 5 independent
runs, with shaded areas representing the standard deviation. All algorithms are trained for 400K
environment steps. Dashed lines show performance of MAPPO after 10 times more environment
steps than model-based algorithms.

the starting positions and unit types; Melting Pot (Leibo et al., 2021) uses visual observations and
requires behavior switching according to the context. We train all algorithms for 400K environment
steps on each benchmark. A detailed description of the benchmarks is provided in Appendix A.5.

Baselines We compare our method against both model-based and model-free baselines. The
model-based approaches include the communication-free MBVD (Xu et al., 2022) which re-
constructs observations to train a value decomposition method; and the communication-based
MAMBA (Egorov & Shpilman, 2022), a current SOTA method based on DreamerV2. The model-
free baselines include QMIX (Rashid et al., 2018), MAPPO (Yu et al., 2022), and MAT (Wen et al.,
2022). For QMIX, we utilize the tuned implementation from (Hu et al., 2021), which has demon-
strated competitive performance across various benchmarks.

Implementation details We perform one training step of both the world model and the policies
every 32 environment steps, beginning after an initial 5000-step warm-up. During training, the
learned model generates imaginary trajectories of 16 steps with 1024 parallel rollouts. For Melting
Pot, which uses visual observations, inputs are downsampled from 88 × 88 to 44 × 44 pixels to
reduce GPU memory usage. Visual observations are encoded with a CNN and decoded with a
transposed CNN (Dumoulin & Visin, 2016). To improve sample efficiency, we share parameters of
the agent modules and policies across all agents. To ensure fairness for comparison, all algorithms
use the same set of hyperparameters across benchmarks. Additional implementation details and
hyperparameters are provided in Appendix A.3 and Appendix A.4, respectively.

5.2 PERFORMANCE COMPARISON

Table 1 and Figure 2 summarize the performance comparison. DMAWM demonstrates strong per-
formance across all benchmarks. Across benchmarks, DMAWM is consistently sample-efficient,
matching or surpassing the performance of the strong baselines.

On SMAC, DMAWM learns substantially faster and attains the highest win rates compared to base-
lines, especially on the 2c vs 64zg and corridor maps. Notably, the 25m map features significantly
more agents than the others, which poses great challenges to model-based methods. Nevertheless,
DMAWM has shown great scalability compared to the other model-based baselines. In the more
stochastic SMACv2 environment, both DMAWM and MAMBA outperform other baselines, with
DMAWM achieving slightly better final performance. For the vision-based scenarios from Melting
Pot, DMAWM obtains the highest returns without specific tuning, highlighting its effectiveness in
modeling agent interactions even in the visual domain. Its efficacy in modeling these interactions is
further shown via latent state visualizations in Section 5.4.
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Table 1: Performance comparison across SMAC, SMACv2, and Melting Pot benchmarks. We com-
pared our approach against both model-based and model-free baselines. Evaluation metrics are win
rate (%) for SMAC and SMACv2, and episode return for Melting Pot. All results are reported as the
average over 5 independent runs, accompanied by their standard deviations.

Benchmarks Maps Model-free Model-based

QMIX MAPPO MAT MAMBA MBVD DMAWM (Ours)

SMAC

2c vs 64zg 31.8 (26.1) 19.8 (7.7) 30.9 (14.3) 22.8 (25.0) 14.8 (18.3) 52.1 (9.4)

3s5z 28.9 (8.8) 7.2 (7.4) 2.7 (3.5) 53.2 (12.3) 59.2 (16.1) 45.1 (15.2)

25m 16.6 (7.2) 19.1 (7.1) 21.6 (12.2) 24.5 (12.7) 21.2 (11.1) 71.1 (9.3)

corridor 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 18.6 (17.7) 0.0 (0.0) 45.2 (39.2)

MMM2 2.3 (2.3) 2.7 (1.7) 0.0 (0.0) 21.2 (8.1) 0.2 (0.7) 37.6 (10.8)

SMACv2
protoss 5 vs 5 19.0 (4.0) 16.9 (9.2) 5.9 (3.8) 51.4 (8.3) 14.9 (6.3) 64.8 (4.9)

zerg 5 vs 5 11.3 (5.9) 7.9 (3.6) 9.0 (3.8) 32.4 (4.0) 12.7 (6.5) 38.7 (4.9)

terran 5 vs 5 25.6 (8.4) 15.0 (4.9) 9.8 (4.7) 50.9 (5.3) 24.1 (7.7) 62.3 (6.2)

Melting Pot Coop Mining 2.8 (2.4) 6.6 (2.7) 4.9 (1.0) 2.6 (2.1) 5.7 (2.6) 244.2 (150.6)

Commons Harvest: Open 61.5 (13.4) 170.6 (105.2) 127.6 (23.5) 175.9 (69.4) 105.0 (30.1) 401.7 (16.6)
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Figure 3: Ablation study on SMACv2. (a) We remove each of the core components to study the
individual contributions, and the results are averaged across the 3 SMACv2 maps. (b) We study the
impact of the imagination horizon on the performance of DMAWM. Each map is trained for 400K
environment steps with 3 independent runs. The results underscore the importance of DMAWM’s
core components and demonstrate its robustness to the choice of imagination horizon.

5.3 ABLATION STUDY

To assess the individual contributions of DMAWM’s core components—the transformer-based
critic, interaction predictor, and absorbing state—we conduct ablation studies on them. To ablate
the transformer-based critic, we replace it with an MLP that estimates the value based on the latent
states of an agent. We call this ablation DMAWM-TC. The second ablation, DMAWM-IP, replaces
the interaction predictor with an MLP, wherein each agent independently predicts its own latent
state and other trajectory components. The third ablation, DMAWM-AS, removes the absorbing
state mechanism. In this setup, agent absence is predicted using a binary value for each agent, and
absent agents are no longer considered in future trajectory predictions. As shown in Figure 3a, all
ablations perform worse than the full DMAWM, underscoring the importance of these components.

On figure 3b, we also study the impact of the imagination horizon on the performance of DMAWM,
and we find that the performance of DMAWM is robust to the imagination horizon.

5.4 VISUALIZATION OF THE LATENT SPACE

To qualitatively evaluate the multi-agent latent dynamics model’s ability to capture agent interac-
tions, we generate an imaginary trajectory and compare it with the ground-truth trajectory, as shown
in Figure 4. The figure displays the decoded observations of two out of the four agents within the
same trajectory. We use the representation model to encode the initial 6 frames and generate the
subsequent 24 frames with the interaction predictor and the observation decoder.

From the visualization, we can see that the positions of agents and the structure of the wall in the
imagination align well with the real environment. While the ore distribution in imagination (iron

8
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Figure 4: Long-horizon trajectory prediction by our multi-agent latent dynamics model in the Coop
Mining environment. Conditioned on an initial 6-frame context from a hold-out trajectory and cor-
responding actions, the model employs the interaction predictor to generate 24 subsequent frames
in the latent space. We selectively show the decoded observations for two out of the four agents, to
demonstrate the model’s ability to capture multi-agent interactions coherently over long horizons.

ore is marked in gray and gold ore is marked in yellow) aligns more closely with the ground-truth
trajectory at early stage, they diverge at later timesteps. This is expected since the models must infer
ore locations in unobserved areas. What we find interesting is that the relative positions of the two
agents in imagination remain consistent with each other in their ego-centric observations throughout
all timesteps. Notably, at t = 18, agent 2’s action (mining beam) is accurately reflected in agent 1’s
decoded observation, highlighting the model’s efficacy in capturing agent interactions.

6 CONCLUSION AND FUTURE WORK

In this work, we addressed the critical challenge of learning effective decentralized policies for
multi-agent tasks using world models. We introduced the Disentangled Multi-Agent World Model
(DMAWM), a framework that learns decentralized policies in the latent space with a novel archi-
tecture featuring independent agent modules and a shared environment module. This architecture
enables it to learn a factorized latent representation that explicitly captures agent interactions while
effectively disentangling individual agent latent states. This disentanglement is crucial for training
decentralized policies via imagined trajectories. Our experiments on challenging MARL bench-
marks, with both vector and visual observations, demonstrated that DMAWM significantly outper-
forms existing model-based and model-free baselines in sample efficiency and final performance.

While this paper mainly focuses on cooperative tasks, extending DMAWM to mixed-motive scenar-
ios is a promising direction, as the core mechanisms are not inherently tied to cooperative tasks. We
also find that the multi-agent world model tends to overfit to the trajectories generated by the trained
policies. Investigating methods to enhance the world model’s quality by promoting policy diversity
during training could lead to more robust and generalizable world models capable of generating
more realistic trajectories that reflect the real environment.
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REPRODUCIBILITY STATEMENT

We provide detailed information to reproduce our results. The DMAWM architecture, training ob-
jectives, and training procedure are described in Section 4.1, Section 4.2, and Section 4.3. Experi-
mental setups, and benchmarks are presented in Section 5.1, with other implementation details can
be found in Appendix A.3. An introduction of the benchmarks we use is provided in Appendix A.5.
The full hyperparameter table can be found in Appendix A.4. Appendix A.2 contains the complete
derivation of the training objective.

We also submit anonymized source code as supplementary material, which includes the scripts to
reproduce the results in the main experiments.
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A APPENDIX

A.1 CONNECTIONS BETWEEN MULTI-AGENT LATENT DYNAMICS AND TRADITIONAL
MULTI-AGENT FORMULATIONS

In this section, we build the connections between the multi-agent latent dynamics and traditional
multi-agent formulations, hopefully the techniques developed for these specific domains can be
applied to our framework.

The multi-agent latent dynamics model can be seen as an action-conditioned generative model of
the joint observation sequence that can be factorized as:

p(o1:n1:T , I
1:n
1:T | a1:n1:T−1) = p(I1:n1:T | a1:n1:T−1)p(o

1:n
1:T | I1:n1:T )

=

T∏
t=1

p(I1:nt | I1:nt−1, a
1:n
t−1)p(o

1:n
t | I1:nt )

=

T∏
t=1

p(I1:nt | I1:nt−1, a
1:n
t−1)

n∏
i=1

p(oit | Iit),

(10)

where p(I1:nt | I1:nt−1, a
1:n
t−1) is the transition probability and p(oit | Iit) is the observation probability.

To formulate the interaction derived from the above multi-agent latent dynamics model, we can
define the state as the collection of the individual latent states of all agents st = (I1t , . . . , I

n
t ) as the

sequence (I1:nt )Tt=1 is Markovian on each of its components. The transition probability is governed
by the multi-agent latent dynamics model p(st | st−1, a

1:n
t−1) = p(I1:nt | I1:nt−1, a

1:n
t−1). Each agent

could observe its component of the joint latent state oit = Iit , leading to the fact that the joint
observation is equivalent to the state, i.e., o1:nt = I1:nt = st. This interaction formulation is captured
by an agent-wise factored Dec-MDP (Goldman & Zilberstein, 2004), where the state is uniquely
determined by the joint observation of all agents.

A.2 DERIVATION OF THE ELBO

Here we derive the evidence lower bound (ELBO) for the joint observation sequence o1:n1:T given the
action sequence a1:n1:T−1. The derivation for the other trajectory components are similar.

The posterior is the representation model that updates recursively:

q(I1:n1:T | a1:n1:T−1, o
1:n
1:T ) =

T∏
t=1

q(I1:nt | I1:nt−1, a
1:n
t−1, o

1:n
t ). (11)

We also need the marginal posterior to derive the ELBO:∑
I1:nt̸=l

q(I1:n1:T | a1:n1:T−1, o
1:n
1:T ) =

∑
I1:n1:l−1

∑
I1:nl+1:T

q(I1:n1:T | a1:n1:T−1, o
1:n
1:T )

=
∑
I1:n1:l−1

∑
I1:nl+1:T

T∏
t=1

q(I1:nt | I1:nt−1, a
1:n
t−1, o

1:n
t ) Apply Eq. 11

=
∑
I1:n1:l−1

∑
I1:nl+1:T

l∏
t=1

q(I1:nt | I1:nt−1, a
1:n
t−1, o

1:n
t )

T∏
t=l+1

q(I1:nt | I1:nt−1, a
1:n
t−1, o

1:n
t )

=
∑
I1:n1:l−1

l∏
t=1

q(I1:nt | I1:nt−1, a
1:n
t−1, o

1:n
t )︸ ︷︷ ︸

=q(I1:n1:l |a1:n1:l−1,o
1:n
1:l ) by Eq. 11

∑
I1:nl+1:T

T∏
t=l+1

q(I1:nt | I1:nt−1, a
1:n
t−1, o

1:n
t )

︸ ︷︷ ︸
=1

=
∑
I1:n1:l−1

q(I1:n1:l | a1:n1:l−1, o
1:n
1:l ) = q(I1:nl | a1:n1:l−1, o

1:n
1:l ).

(12)
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The ELBO is derived as follows:
ln p(o1:n1:T | a1:n1:T−1)

= ln
∑
I1:n1:T

p(o1:n1:T , I
1:n
1:T | a1:n1:T−1)

= ln
∑
I1:n1:T

p(I1:n1:T | a1:n1:T−1)p(o
1:n
1:T | I1:n1:T ) Apply Eq. 10

= ln
∑
I1:n1:T

q(I1:n1:T | a1:n1:T−1, o
1:n
1:T )

p(I1:n1:T | a1:n1:T−1)

q(I1:n1:T | a1:n1:T−1, o
1:n
1:T )

p(o1:n1:T | I1:n1:T )

= lnEq(I1:n1:T |a1:n1:T−1,o
1:n
1:T )

[
p(I1:n1:T | a1:n1:T−1)

q(I1:n1:T | a1:n1:T−1, o
1:n
1:T )

p(o1:n1:T | I1:n1:T )

]
≥ Eq(I1:n1:T |a1:n1:T−1,o

1:n
1:T )

[
ln

p(I1:n1:T | a1:n1:T−1)

q(I1:n1:T | a1:n1:T−1, o
1:n
1:T )

p(o1:n1:T | I1:n1:T )

]
Jensen’s inequality

= Eq(I1:n1:T |a1:n1:T−1,o
1:n
1:T )

[
T∑
t=1

ln p(o1:nt | I1:nt )−
T∑
t=1

ln
q(I1:nt | I1:nt−1, a

1:n
t−1, o

1:n
t )

p(I1:nt | I1:nt−1, a
1:n
t−1)

]

=

T∑
t=1

Eq(I1:n1:T |a1:n1:T−1,o
1:n
1:T )

[
ln p(o1:nt | I1:nt )

]
−

T∑
t=1

Eq(I1:n1:T |a1:n1:T−1,o
1:n
1:T )

[
ln
q(I1:nt | I1:nt−1, a

1:n
t−1, o

1:n
t )

p(I1:nt | I1:nt−1, a
1:n
t−1)

]

=

T∑
t=1

Eq(I1:n1:t |o1:n1:t ,a
1:n
1:t−1)︸ ︷︷ ︸

marginalized by Eq. 12

[
ln p(o1:nt | I1:nt )

]

−
T∑
t=1

Eq(I1:nt−1|o1:n1:t−1,a
1:n
1:t−2)︸ ︷︷ ︸

marginalized by Eq. 12

[
DKL

(
q(· | I1:nt−1, a

1:n
t−1, o

1:n
t ) || p(· | I1:nt−1, a

1:n
t−1)

)]

=

T∑
t=1

Eq(I1:nt |o1:n1:t ,a
1:n
1:t−1)

[
n∑
i=1

ln p(oit | Iit)

]

−
T∑
t=1

Eq(I1:nt−1|o1:n1:t−1,a
1:n
1:t−2)

[
DKL

(
n∏
i=1

q(· | Iit−1, a
i
t−1, o

i
t) || p(· | I1:nt−1, a

1:n
t−1)

)]
.

A.3 OTHER IMPLEMENTATION DETAILS

The interaction predictor is implemented using a Transformer network (Vaswani et al., 2017).
It is tasked with predicting the discrete latent state, conditioned on the joint deterministic state
pϕ(z

1:n
t | h1:nt ). Each discrete latent state is represented by 32 one-hot vectors, each with 32 classes.

The prediction process begins by encoding the joint deterministic state h1:nt using a Transformer en-
coder, which yields (h̄1t , . . . , h̄

n
t ) = TransformerEncoder(h1t , . . . , h

n
t ). Subsequently, a Multi-Layer

Perceptron (MLP) maps each resulting embedding h̄it to a 1024-dimensional vector. This vector is
then reshaped to facilitate the sampling of the discrete latent state.

The reward decoder pϕ(r̂1:nt | h1:nt ), continuation decoder pϕ(ĉ1:nt | h1:nt ), and available actions
decoder pϕ(m̂1:n

t | h1:nt ) are implemented with a shared Transformer network. First, the shared
Transformer encoder blocks processes the joint deterministic state h1:nt , producing (h̃1t , . . . , h̃

n
t ) =

TransformerEncoder(h1t , . . . , h
n
t ). Then, each decoder employs a separate MLP head to produce its

respective output. For the centralized critic, we use a separate Transformer encoder to encode the
joint deterministic state h1:nt , then map the embedding to a value estimate for each agent.

We also adopt tricks from Dreamerv3, such as the symexp twohot loss for the reward decoder
and critic, and free bits for the dynamics loss and representation loss. The reward decoder and
critic use the symexp twohot loss as Dreamerv3 (Hafner et al., 2025). To be specific, the out-
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puts of reward decoder and critic can be represented as the weighted average of exponentially
spaced bins, e.g., r̂it = Softmax(MLP(hit, z

i
t))

⊤B where B = symexp(−20, . . . ,+20) and
symexp(x) = sign(x)(exp(|x|−1)). The reward decoder and critic are trained to match the two-hot
target using cross-entropy loss.

A.4 HYPERPARAMETERS

A.4.1 HYPERPARAMETERS FOR DMAWM

The empirical results of our DMAWM implementation is based on the hyperparameters in Table 2.

Table 2: Hyperparameters for the DMAWM algorithm.

Hyperparameter Value

Reinforcement Learning
Optimizer Adam
Entropy coefficient 0.01
PPO epochs 5
Clip param 0.2
Actor learning rate 3× 10−5

Critic learning rate 3× 10−5

Discount factor 0.99
GAE lambda 0.95

World Model
Max grad norm 100
Model learning rate 1× 10−4

Model batch size 16
Sequence length 64
Rollout horizon 16
Buffer size 2.5× 105

KL balancing entropy weight 0.2
KL balancing cross entropy weight 0.8
Discrete latent dimensions 32
Discrete latent classes 32
Transformer layers 3
Transformer heads 8
Decoder hidden size 1024
Decoder layers 2

A.4.2 HYPERPARAMETERS FOR BASELINES

The experimental results on MAPPO (Yu et al., 2022) is based on the official implementation2 with
the following hyperparameters in Table 3.

The experimental results on MAT (Yu et al., 2022) is based on the implementation3 with the follow-
ing hyperparameters in Table 4.

The experimental results on QMIX (Rashid et al., 2018) is based on the optimized implementation
of PyMARL24 with the following hyperparameters in Table 5.

The experimental results on MAMBA (Egorov & Shpilman, 2022) is based on the official imple-
mentation5 with the following hyperparameters in Table 6.

2https://github.com/marlbenchmark/on-policy
3https://github.com/marlbenchmark/on-policy
4https://github.com/hijkzzz/pymarl2
5https://github.com/jbr-ai-labs/mamba
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Table 3: Hyperparameters for the MAPPO algorithm.

Hyperparameter Value

Use RNN True
Optimizer Adam
Episode length 400
Entropy coefficient 0.01
Discount factor 0.99
GAE lambda 0.95
Critic learning rate 5× 10−4

Actor learning rate 5× 10−4

PPO epochs 5
Clip param 0.2
Parallel workers 8
Max grad norm 10

Table 4: Hyperparameters for the MAT algorithm.

Hyperparameter Value

Use RNN True
Optimizer Adam
Episode length 400
Entropy coefficient 0.01
Discount factor 0.99
GAE lambda 0.95
Critic learning rate 5× 10−4

Actor learning rate 5× 10−4

PPO epochs 5
Clip param 0.2
Parallel workers 8
Max grad norm 10
Transformer layers 1
Transformer heads 1

Table 5: Hyperparameters for the QMIX algorithm.

Hyperparameter Value

Use RNN True
Optimizer Adam
Learning rate 0.001
Discount factor 0.99
Target update interval (episodes) 200
Max grad norm 10
Batch size 128
Buffer size (episodes) 5000
Epsilon 1.00 → 0.05
TD lambda 0.6
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Table 6: Hyperparameters for the MAMBA algorithm.

Hyperparameter Value

Reinforcement Learning
Optimizer Adam
Entropy coefficient 0.001
Number of updates 4
PPO epochs 5
Clip param 0.2
Actor learning rate 5× 10−4

Critic learning rate 5× 10−4

Discount factor 0.99
GAE lambda 0.95

World Model
Model learning rate 2× 10−4

Model epochs 60
Model batch size 40
Sequence length 20
Rollout horizon 15
Buffer size 2.5× 105

KL balancing entropy weight 0.2
KL balancing cross entropy weight 0.8
Max grad norm 100
Trajectories between updates 1

The experimental results on MBVD (Xu et al., 2022) is based on the official implementation sub-
mitted to OpenReview6 with the following hyperparameters in Table 7.

Table 7: Hyperparameters for the MBVD algorithm.

Hyperparameter Value

Reinforcement Learning
Optimizer RMSProp
Learning rate 5× 10−4

Discount factor 0.99
Target update interval (episodes) 200
Max grad norm 10
Batch size 32
Buffer size (episodes) 5000
Epsilon 1.00 → 0.05

World Model
Rollout horizon 3
KL balancing entropy weight 0.3
KL balancing cross entropy weight 0.7
Trajectories between updates 1

A.5 ENVIRONMENT DESCRIPTIONS

A.5.1 SMAC

StarCraft Multi-Agent Challenge (SMAC) (Samvelyan et al., 2019) is a popular benchmark for
MARL research based on the real-time strategy game StarCraft II. It offers a collection of micro

6https://openreview.net/forum?id=flBYpZkW6ST
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battle scenarios in StarCraft II, where a team of ally units must collaborate to defeat the opposing
team controlled by rule-based bots. In these scenarios, each agent is responsible for controlling one
ally unit and has access to information such as the distance, relative location, health, shield, and type
of both ally and enemy units within their field of vision. For our purposes, we consider each unit as
an entity, with ally units categorized as agent entities and enemies as non-agent entities.

(a) 5m vs 6m (b) 3s5z vs 3s6z

Figure 5: SMAC

A.5.2 SMACV2

SMACv2 (Ellis et al., 2023) extends SMAC by introducing increased complexity and randomness.
It randomizes the starting positions and unit types of agents with varying sight and attack ranges,
presenting MARL algorithms with greater levels of stochasticity and diversity. Similar to the ap-
proach taken in SMAC, we consider each unit as an individual entity, ally units as agent entities, and
enemies as non-agent entities.

Figure 6: SMACv2

A.5.3 MELTING POT

Melting Pot (Leibo et al., 2021) provides a suite of multi-agent tasks and an evaluation protocol for
assessing the social intelligence of agents. These tasks are vision-based, where the observations are
ego-centric 2D visual observations of the environment.

Coop Mining (Figure 7a), a cooperative scenario where agents coordinate to collect resources, is an
instance of the cooperative task in Melting Pot. The environment features two resource types: iron
ore and gold ore. Iron ore can be gathered by a single agent, but gold ore necessitates the use of
beams by two agents within a time window of 3 timesteps. Collecting iron ore yields a reward of 1
for the agent, while successfully gathering gold ore grants a reward of 8 to each participating agent.
Each episode lasts 1000 timesteps.

Common Harvest (Figure 7b), in which agents consume renewable common resources, is a tragedy-
of-the-commons scenario. Apples are initially scattered throughout the environment, and consuming
one yields a reward of 1. At each timestep, apples respawn with a probability that is positively
correlated with the number of apples within a neighborhood of radius 2. Consequently, an isolated
patch (one with no other apples within distance 2) can be permanently depleted if all apples in
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that patch are consumed. Agents must therefore exercise restraint when consuming apples within a
patch. Each episode lasts 1000 timesteps.

(a) Coop Mining (b) Common Harvest

Figure 7: Melting Pot

To save GPU memory, we resize the observation from 88× 88 to 44× 44. We show an example of
the original and resized observations in Figure 8 below.

(a) Original observation (b) Resized observation

Figure 8: Observation Resizing

A.6 COMPUTATIONAL RESOURCES

Most experiments were conducted with NVIDIA RTX 3090 GPUs. The time for an experiment is
highly dependent on the number of agents and total timesteps. For example, the 2s vs 1sc map of
the SMAC benchmark, which has 2 agents and the total timesteps is 400K, takes around 12 hours to
train.
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Figure 9: Wall-clock-time comparison between DMAWM and MAPPO on the SMACv2 benchmark.
For DMAWM, we set the imagination horizon to 4. Results are averaged over 3 independent runs.

A.7 WALL-CLOCK-TIME COMPARISON

To evaluate the runtime efficiency of DMAWM, we compare the wall-clock-time of DMAWM
against MAPPO on the SMACv2 benchmark. For DMAWM, we set the imagination horizon to
4. Both algorithms are trained under the same computational resources. As shown in Figure 9,
DMAWM achieves comparable training speed as MAPPO while using much less environment steps
to reach the same performance. This result is particularly interesting to us, as it effectively closes
the runtime gap between model-based and model-free algorithms.
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