
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

STEVE: ADAPTIVE OPTIMIZATION IN A KRONECKER-
FACTORED EIGENBASIS

Anonymous authors
Paper under double-blind review

ABSTRACT

Adaptive optimization algorithms such as Adam see widespread use in Deep
Learning. However, these methods rely on diagonal approximations of the pre-
conditioner, losing much information about the curvature of the loss surface and
potentially leading to prolonged training times. We introduce STEVE (Stochas-
tic Eigenbasis-adaptive Variance Estimation), a novel optimization algorithm that
estimates lower order moments in the Kronecker-Factored Eigenbasis (KFE).
By combining the advantages of Adam over other adaptive methods with the
curvature-aware transformations of methods like KFAC and EKFAC, STEVE
leverages second-order information while remaining computationally efficient.
Our experiments demonstrate that EVE achieves faster convergence both in step-
count and in wall-clock time compared to Adam, EKFAC, and KFAC for a variety
of deep neural network architectures.

1 INTRODUCTION

Deep neural networks have shown state-of-the-art performance across a variety of tasks, including
computer vision, natural language processing, and speech recognition. Despite their success, train-
ing modern models with large parameter counts often requires extensive computational resources
and prolonged training times on high-end specialized hardware. This challenge has spurred sig-
nificant interest in developing more efficient optimization algorithms so as to reduce training time
without sacrificing performance.

Stochastic Gradient Descent (SGD) and its variants are the traditional choice of optimization algo-
rithm for training deep neural networks and remain a dominant choice for many model architectures.
SGD optimizes the model parameters θ by computing the gradient of empirical risk (calculated over
a mini-batch of training examples) and moving the model parameters by a small step in that direc-
tion. Formally, the t-th step is θt+1 = θt− η∇θR(θt) where θt represents the model parameters at
the tth step, η is a positive learning rate, and∇θR(θt) is the gradient of the empirical riskR(θ).
Despite its simplicity and scalability, SGD struggles with the non-convex and ill-conditioned curva-
ture common to deep neural network loss surfaces. As a typical example, the loss surface may have
directions with very different curvatures, and thus the impact of the update in one direction may be
much larger than in other directions. This imbalance can raise the number of steps until convergence
considerably leading to longer training times.

To correct for these limitations, there have been attempts to design optimization algorithms for deep
neural networks which employ second-order information such as the curvature. The general form
of these methods is to use an update of the form θt+1 = θt − ηP−1∇θR(θt) where P , referred to
as the preconditioner, is some matrix that captures local curvature or similar information about the
loss surface such as the Hessian used in Newton-Raphson, the Fisher Information Matrix as used
in Natural Gradient Descent (Amari, 1998), Generalized Gauss Newton Matrices, or closely related
matrices.

The problem with this form of update is that modern deep neural networks have millions or billions
of parameters. Thus, while these methods require fewer updates to train, this advantage is overshad-
owed by the enormous cost of storing and inverting a fully maintained preconditioner which scale
quadratically and cubically respectively with the number of parameters. To overcome these issues it
becomes necessary to approximate the preconditioner in a way that allows for faster inversion.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

By far the most common approximation is to take the preconditioner to be diagonal. This reduces
inversion to pure element-wise computations and also greatly reduces storage cost. Several popular
optimization algorithms use this strategy in some form.

1. Adagrad (Duchi et al., 2011) keeps a simple moving average of the elementwise squares
of the gradients and elementwise scales the gradients by the inverse square root of this
average. In essence, this approach is using a diagonal approximation of the square root of
the empirical Fisher

2. RMSProp (Tieleman & Hinton, 2012) uses a similar strategy but uses an exponential mov-
ing average of squared gradients.

3. Adam (Kingma & Ba, 2015) introduces bias correction on the exponential moving average
and use a different moving average for the gradients themselves.

While these methods have been shown to be more effective in a variety of tasks (Savarese et al.,
2021), they only capture curvature information along parameter axes and ignore interactions be-
tween different parameters. Consequently, these methods lose much of the second-order information
and do not fully correct for poor curvature in the loss surface.

More sophisticated methods avoid diagonal approximations and instead approximate the precondi-
tioner in ways that account for parameter correlations as encoded in the non-diagonal entries of the
preconditioner. These approaches vary, although common themes include low rank updates to the
preconditioner (Ollivier, 2015; 2017; Mu et al., 2022), using block approximations of the precondi-
tioner or of its inverse (Martens & Grosse, 2015; Desjardins et al., 2015; Fujimoto & Ohira, 2018;
Soori et al., 2022), quasi-Newton methods to estimate either the entire preconditioner or its block
approximations (Liu & Nocedal, 1989; Goldfarb et al., 2020) and Bayesian inverse-free approaches
(Lin et al., 2023; 2024).

Perhaps the most common non-diagonal concept for use in second-order optimization algorithms
for deep learning is Kronecker-Factored Approximate Curvature (KFAC). Originally developed for
fully-connected layers in Martens & Grosse (2015), KFAC approximates the preconditioning matrix
as block diagonal with blocks for each layer and then further approximates each block as a Kro-
necker product of two smaller matrices. Since inversion commutes with the Kronecker product, this
allows for a faster computation of the inverse for each update. This approach has been expanded to
convolutional layers in Grosse & Martens (2016) and to weight-sharing layers in Eschenhagen et al.
(2023).

Of particular interest is a further refinement of KFAC, Eigenvalue-corrected Kronecker Factored
Approximate Curvature (EKFAC) George et al. (2018), which more accurately captures the curva-
ture in different directions by correcting the eigenvalues in KFAC. This is done by diagonalizing
the Kronecker factors of the preconditioner blocks and replacing the diagonal with variances in the
Kronecker-Factored Eigenbasis (KFE). Due to the expensive nature of the computing KFE, EK-
FAC amortizes this computation by updating it infrequently while still being able to compute cheap
updates to the diagonal variances every iteration. Despite its advantages, EKFAC, even when aug-
mented with momentum, still underperforms Adam in convergence speed for some tasks.

Motivated by the strength of Adam within the scope of diagonal approximations and the curvature-
aware properties of EKFAC, we propose STEVE (Stochastic Eigenbasis-adaptive Variance Estima-
tion) which combines the moment estimation of Adam with the curvature corrections of EKFAC.
Similar to EKFAC, STEVE transforms the gradients into the KFE but instead of keeping a simple
average of second moments STEVE keeps bias-corrected exponential moving averages of the first
and second moment in the same way as is done in Adam.

2 BACKGROUND AND NOTATION

We consider the supervised learning setup with a training set Dtrain consisting of input-output exam-
ples (x,y) and neural network parametrized by θ ∈ Rnθ which computes a function fθ(x). Our
task is to find a value of θ which minimizes empirical riskR(θ) = E(x,y)∈Dtrain [L(y, fθ(x))] where
L is some loss function that measures the accuracy of the predictions. Usually, our loss function (e.g.
with cross-entropy loss or with MSE loss) can be expressed as negative log probability of a simple

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

predictive distribution Ry|z , with density r(y|z), parametrized by our neural networks output z:
L(y, z) = − log r(y|z). In this context, letting Py|x(θ) = Ry|fθ(x) be the conditional distribution
defined by our neural network with density function p(y|x,θ) = r(y|fθ(x)) we view minimization
of empirical risk as maximum likelihood learning of Py|x.

We consider algorithms which use stochastic gradients ∇θ = ∇θR(y, fθ(x)) =
(

∂R(y,fθ(x)
∂θ

)T

or averages of them over a mini-batch B ⊂ Dtrain as computed via backpropagation. Stochastic
Gradient Descent updates θt+1 = θt − η∇θ where η is a small positive learning rate. Second order
methods use a preconditioner A and update as θt+1 = θt − ηA−1∇θ. Natural Gradient Descent
(Amari, 1998) takes A to be the Fisher Information Matrix which, in the case of negative log prob-
ability losses, can be expressed as F = Ex∼Dtrain,y∼p(y|x,θ)[∇θ∇T

θ] where y is sampled from the
conditional probability defined by the model. The use of the Fisher as a preconditioner is motivated
in Information Geometry as giving the direction of steepest descent in the space of realizable dis-
tributions where the metric locally approximates the square root of the KL divergence (Amari &
Nagaoka, 2007; Martens, 2020). We use a common approximation of the Fisher which replaces the
samples with the labels y from the training set and so we instead have A = Ex,y∼Dtrain [∇θ∇T

θ].
The degree to which the Empirical Fisher accurately approximates the Fisher is not clear (Kunst-
ner et al., 2019), but this implementation lowers cost, simplifies implementation and has performed
well in practice. Additionally, viewing training from the Langevin Dynamics perspective of gradi-
ent flow, preconditioning by the Empirical Fisher gives a stationary Gibbs distribution which is of
importance in the realm of statistical mechanics where Langevin Dynamics originates(McAllester,
2023).

Due to its immense size of nθ × nθ, inverting and storing A directly is impractical and so we must
make a series of approximations. The simplest approximation is to ignore cross-parameter terms
entirely and take A to be diagonal. While crude, this comes at an immense advantage in the compu-
tational cost of each step. Many optimization algorithms have used variations of this approximation.
While these methods seemingly only differ slightly, the impact of these modifications can be sub-
stantial. Perhaps the most common such method for use in Deep Neural Networks is Adam (Kingma
& Ba, 2015) which keeps track of a bias-corrected exponential moving average of the first moment
m and second moment v and updates as follows:

mt+1 = β1mt + (1− β1)∇θ(θt) vt+1 = β2vt + (1− β2)∇θ(θt)⊙

m̂t+1 =
mt+1

1− βt+1
1

v̂t+1 =
vt+1

1− βt+1
2

θt+1 = θt − η
m̂t+1√
v̂t+1 + ϵ

where squaring, square-rooting, vector-multiplication of ϵ are done element-wise, β1, β2 are hyper-
parameters for weighing the exponential moving averages, m̂ and v̂ give the bias corrected first and
second moments, and ϵ is a damping parameter used for numerical stability of inverting the second
moment.

Turning now to more elaborate approximations of the preconditioner, most methods exploit the
layered structure of Neural Networks and ignore cross-layer terms. Mathematically, if we have L
layers this means taking A to be block diagonal:

A ≈
L⊕

l=1

A(l)

with each block A(l) accounting for the parameters in the lth layer. In particular if θ(l) are the
parameters for the lth layer, we have A(l) = E[∇θ(l)∇T

θ(l)] (and the expectation is taking according
to the corresponding distribution for either Fisher or Empirical Fisher).

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Unfortunately, large layers can still have enough parameters that these blocks can still be too large
to invert and store. One solution to this problem, proposed in Martens & Grosse (2015), is to
approximate A(l) ≈ B(l) ⊗C(l) where ⊗ is the Kronecker Product defined as follows:

V ⊗U =

 V1,1U V1,2U . . .
V2,1U V2,2U . . .

...
...

. . .

The Kronecker product has many nice algebraic properties which cheapen the cost of updates when
used to approximate the preconditioner. For invertible B,C, we have (B ⊗C)−1 = B−1 ⊗C−1.
Thus, if the Kronecker factors have size a, b this reduces cost of inversion from O((a + b)3) =
O(a3+3a2b+3ab2+b3) to O(a3+b3) and the cost of storage from O((a+b)2) = O(a2+2ab+b2)
to O(a2+b2). Similarly, letting vec be the operation which flattens a matrix into a column vector by
stacking all of its columns together, we have B⊗Cvec(D) = CT vec(D)B reduces the complexity
of multiplying preconditioning matrix by gradient.

Specifically, consider a fully connected layer l with input h and pre-activation output

a = Wh̄

where we write the input in homogenous coordinates h̄ = [h, 1]T . Then, if g = ∇aR is the
backpropagated gradient, we have that

∇W = gh̄T

and thus
∇θl = vec(∇W) = h̄⊗ g

Since A(l) = E[∇θ(l)∇T
θ(l)], substituting we get the following expression for the Fisher Block

A(l) = E[(h̄⊗ g)(h̄⊗ g)T] = E[(h̄h̄T)⊗ (ggT)]

We then approximate: E[(h̄h̄T)⊗ (ggT)] ≈ E[h̄h̄T]⊗ E[ggT] which give us our B(l) and C(l).

A very similar principle has been used to extend the KFAC approximation to convolutional layers in
Grosse & Martens (2016) and to weight sharing layers in (Eschenhagen et al., 2023).

An instructive perspective on the diagonal approximation of the preconditioner is to view the pre-
conditioner as a diagonal rescaling of the parameter axis as viewed in the parameter basis. Natural
Gradient Descent which uses the Fisher A as a preconditioner can also be viewed as a diagonal
rescaling. If we diagonalize the positive semi-definite A as A = USUT , the update becomes
θt+1 = θt − US−1UT∇θL which is to say converting the gradient A’s Eigenbasis, doing a diago-
nal rescaling by the eigenvalues of the Fisher, and then switching back to the parameter basis. This
perspective poses a challenge to the KFAC approximation as the critically important eigenvalues of
the Fisher Blocks are not preserved by the approximation.

EKFAC (George et al., 2018) addresses this issue by correcting the eigenvalues of the KFAC approx-
imation. They do this by diagonalizing A(l) = B(l)⊗C(l) = (UB⊗UC)(SB⊗SC)(UB⊗UC)T

and then replacing (SB ⊗ SC) with diag(E[(UB ⊗ UC)T∇θR2]) which is the matrix with diag-
onal equal to the vector of second moments in Kronecker-Factored Eigenbasis (KFE) defined by
applying the transformation (UB ⊗ UC)T . This replacement yields a provably closer approxima-
tion to the Fisher (as measured by the Froebenius Norm) and the optimal diagonal scaling in the
KFE. Additionally, this approximation lends itself well to amortizing the expensive curvature esti-
mation as the KFE does not have to updated with every step while the diagonal matrix of eigenvalues
can cheaply be updated every step. Unfortunately, even when augemented with running averages
EKFAC struggles to compete with Adam in practice.

3 PROPOSED METHOD

Our proposed method, STEVE, builds upon the insights from EKFAC and the success of Adam
in the realm of diagonal adaptive optimizers. Viewing EKFAC from the perspective of diagonal

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

rescaling, it effectively rescales the gradients by the second moments computed in the KFE. This
observation suggests that we can apply other diagonal adaptive optimization methods in the KFE.

In particular, we propose leveraging the advancements of Adam within the KFE framework. STEVE
operates similarly to EKFAC in that it periodically computes the KFE for each Fisher block. How-
ever, instead of using only the second moments, STEVE maintains bias-corrected exponential mov-
ing averages of both the first and second moments of the gradients in the KFE, estimated in the same
manner as in Adam. By combining the benefits of the Kronecker-factored approximation with the
adaptive moment estimation of Adam, STEVE aims to achieve faster convergence.

Algorithm 1 STEVE

Require: n: Recompute KFE every n minibatches
Require: η: Learning rate
Require: β1: Momentum parameter for first moment
Require: β2: Momentum parameter for second moment
Require: ϵ: Damping parameter

1: procedure STEVE(Train)
2: while convergence is not reached, iteration i do
3: Sample minibatch B from Train
4: Forward pass to obtain h̄ and backprop to obtain g
5: for all layer l do
6: c← i mod n
7: if c = 0 then
8: COMPUTE-KFE(B, l)
9: end if

10: COMPUTE-SCALINGS(B, l)
11: UPDATE-PARAMETERS(B, l)
12: end for
13: end while
14: end procedure
15: procedure COMPUTE-KFE(B, l)
16: U

(l)
B ,S

(l)
B ← eigendecomposition

(
EB[h

(l)h(l)T]
)

17: U
(l)
C ,S

(l)
C ← eigendecomposition

(
ET [g

(l)g(l)T]
)

18: m,v ← 0
19: end procedure
20: procedure COMPUTE-SCALINGS(B, l)

21: m← β1m+ (1− β1)EB

[(
U

(l)
B ⊗U

(l)
C

)T

∇(l)
θ

]
22: v ← β2v + (1− β2)EB

[((
U

(l)
B ⊗U

(l)
C

)T

∇(l)
θ

)2
]

23: end procedure
24: procedure UPDATE-PARAMETERS(B, l)
25: m̂ = m√

1−βc
1

26: v̂ = v√
1−βc

2

27: ∇̃ ← m̂√
v̂ + ϵ

28: ∇F ←
(
U

(l)
B ⊗U

(l)
C

)
∇̃

29: θ(l) ← θ(l) − η∇F

30: end procedure

4 EMPIRICAL RESULTS

In this section, we present empirical evaluations of STEVE across a variety of datasets and model
architectures. All experiments were conducted on a single NVIDIA A100 through Google Colab us-

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

ing PyTorch (Paszke et al., 2017). We compare against against Adam, EKFAC, and KFAC showing
favorable comparisons for STEVE in terms of both Epoch Count and Wall-Clock Time. For classi-
fication tasks, we train the model on a constant learning rate until the model reaches a test accuracy
past a pre-determined cutoff consistent with what the model usually reaches after approximately
100 epochs on Adam. We rely on the implementation of KFAC for convolutional layers (Grosse &
Martens, 2016) and the implementation of KFAC-reduce for Attention layers (Eschenhagen et al.,
2023). All optimizers except Adam are implemented as preconditioners on top of SGD.

4.1 RESNET-50 ON CIFAR-10

To evaluate the effectiveness of STEVE, we first conducted experiments on the CIFAR-10 dataset
using a ResNet-50 architecture. We compared STEVE with Adam, EKFAC, and KFAC, training
each model until it reached a test accuracy of 92.5%. All optimizers used a constant learning rate
of 0.001. EKFAC and KFAC employed running averages to estimate curvature, updating their cur-
vature estimates every 500 steps; STEVE followed the same schedule. For Adam and STEVE, we
set the hyperparameters to β1 = 0.9, β2 = 0.999, and ϵ = 10−8, while EKFAC and KFAC used
α = 0.9. Each model was allowed to train for a maximum of 100 epochs. Data preprocessing
included random cropping and horizontal flipping for the training data, and normalization for both
training and test sets.

Figure 1 displays the performance of the different optimizers over wall-clock time and epochs. No-
tably, STEVE achieved the target accuracy significantly faster than the other methods. Specifically,
STEVE demonstrated a 40% reduction in wall-clock time and a 60% reduction in the number
of epochs compared to Adam. The other methods did not converge at this learning rate.

(a) Wall-Clock Time (b) Epoch

Figure 1: CIFAR-10 ResNet-50. (a) Test loss vs wall-clock time. (b) Training loss vs Epoch.

4.2 RESNET-50 ON TINY IMAGENET

We further assess the performance of STEVE on the more challenging Tiny ImageNet dataset, again
utilizing a ResNet-50 architecture. We compared STEVE against Adam, EKFAC, and KFAC, train-
ing until the models reached a test accuracy of 44%. A learning rate of 0.0001 was used across
all optimizers. Similar to the previous experiment, EKFAC and KFAC used running averages for
curvature estimation, updating every 600 steps, with STEVE following the same schedule. Hyper-
parameters for Adam and STEVE were set to β1 = 0.9, β2 = 0.999, and ϵ = 10−8, while EKFAC
and KFAC used α = 0.9. Training was capped at 100 epochs. The data preprocessing pipeline
included random cropping and horizontal flipping for the training data, along with normalization for
both training and test sets.

As illustrated in Figure 2, STEVE outperformed the other optimizers by a substantial margin. It
achieved the target accuracy with a 60% reduction in wall-clock time and an 85% reduction in
the number of epochs compared to Adam. Once again, EKFAC and KFAC failed to converge
within the allocated epochs, underscoring the effectiveness of STEVE in handling more complex
datasets.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

(a) Wall-Clock Time (b) Epoch

Figure 2: Tiny ImageNet ResNet-50. (a) Test loss vs wall-clock time. (b) Training loss vs Epoch.
STEVE shows a gain of approximately 60% in wall-clock time and 85% in number of epochs as
compared to Adam and the rest of the optimization algorithms do not converge within the allocated
epochs.

4.3 VIT-S/16 ON CIFAR-100

Finally, we evaluated STEVE on the CIFAR-100 dataset using a Vision Transformer (ViT-S/16)
architecture, comparing it against Adam. Note that following the implementation of KFAC for
MultiHead Attention layers in Eschenhagen et al. (2023), we reimplement the MultiHead Attention
layer using nn.Linear layers for Q,K, V . The models were trained until reaching a test accuracy
of 46%. All optimizers used a learning rate of 0.00005. STEVE updated its curvature estimates
every 50 steps. Hyperparameters for both Adam and STEVE were set to β1 = 0.9, β2 = 0.999,
and ϵ = 10−8. Training was limited to 100 epochs. Data preprocessing involved resizing images
to accommodate the patch size of 16, random cropping, random horizontal flipping for the training
data, and normalization for both training and test sets.

Figure 3 presents the performance comparison between STEVE and Adam. STEVE achieved the
target accuracy with a 30% reduction in wall-clock time and a 60% reduction in the number of
epochs compared to Adam. These results highlight STEVE’s capability to accelerate training even
for transformer-based architectures.

(a) Wall-Clock Time (b) Epoch

Figure 3: CIFAR-100 ViT-S/16. (a) Test loss vs wall-clock time. (b) Training loss vs Epoch.
STEVE shows a gain of approximately 30% in wall-clock time and 60% in number of epochs as
compared to Adam and the rest of the optimization algorithms do not converge within the allocated
epochs.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

5 CONCLUSION AND FUTURE WORK

In this paper, we introduced STEVE, a novel optimization algorithm that synergizes the moment es-
timation of Adam with the curvature-aware preconditioning of EKFAC. By transforming gradients
into a Kronecker-Factored Eigenbasis (KFE) of the Fisher and maintaining bias-corrected exponen-
tial moving averages of the first and second moments, STEVE leverages second-order information
while retaining computational efficiency. Our empirical evaluations across various datasets and ar-
chitectures demonstrate that STEVE significantly accelerates training, achieving substantial reduc-
tions in both wall-clock time and number of epochs compared to existing optimization algorithms
such as Adam, EKFAC, and KFAC.

Despite promising results, there are avenus for future exploration and improvement. One direction
to take is to improve the KFE by attempting to use other common preconditioners instead of the
Empirical Fisher such as the true Fisher Information Matrix. Other directions to take the work are
to investigate the potential of the improvements that have been made over Adam in the KFE such as
proper weight decay or Nesterov momentum.

REPRODUCIBILITY STATEMENT

We are committed to the reproducibility of our results and have taken the necessary steps to ensure
this. In the supplementary materials, we provide comprehensive code for all preconditioners used in
our benchmarks, including implementations of the proposed STEVE optimizer and other optimizers
used for benchmarking. The codebase includes the models we trained, detailed data preprocessing
steps, and a sample training loop, enabling others to replicate our experiments fully. The Empiri-
cal Results section outlines all hyperparameters and training conditions necessary for reproduction.
Additionally, our implementation of the optimizer closely follows the pseudocode presented in the
Proposed Method section, ensuring transparency and ease of understanding for replication purposes.

REFERENCES

Shun-ichi Amari. Natural gradient works efficiently in learning. Neural Computation, 1998.

Shun-Ichi Amari and Hiroshi Nagaoka. Methods of Information Geometry. Translations of mathe-
matical monographs. American Mathematical Society, 2007.

Guillaume Desjardins, Karen Simonyan, Razvan Pascanu, and Koray Kavukcuoglu. Natural neural
networks. In NeurIPS, 2015.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and
stochastic optimization. Journal of Machine Learning Research, 12(Jul):2121–2159, 2011.

Runa Eschenhagen, Alexander Immer, Richard E. Turner, Frank Schneider, and Philipp Hennig.
Kronecker-factored approximate curvature for modern neural network architectures. In NeurIPS,
2023.

Yuki Fujimoto and Toru Ohira. A neural network model with bidirectional whitening. In ICAISC,
2018.

Thomas George, César Laurent, Xavier Bouthillier, Nicolas Ballas, and Pascal Vincent. Fast ap-
proximate natural gradient descent in a kronecker-factored eigenbasis. In NeurIPS, 2018.

Donald Goldfarb, Yi Ren, and Achraf Bahamou. Practical quasi-newton methods for training deep
neural networks. In NeurIPS, 2020.

Roger Grosse and James Martens. A kronecker-factored approximate fisher matrix for convolution
layers. In ICML, 2016.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In ICLR, 2015.

Frederik Kunstner, Lukas Balles, and Philipp Hennig. Limitations of the empirical fisher approxi-
mation for natural gradient descent. In NeurIPS, 2019.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Wu Lin, Valentin Duruisseaux, Melvin Leok, Frank Nielsen, Mohammad Emtiyaz Khan, and Mark
Schmidt. Simplifying momentum-based positive-definite submanifold optimization with applica-
tions to deep learning. In ICML, 2023.

Wu Lin, Felix Dangel, Runa Eschenhagen, Kirill Neklyudov, Agustinus Kristiadi, Richard E. Turner,
and Alireza Makhzani. Structured inverse-free natural gradient descent: Memory-efficient &
numerically-stable KFAC. In ICML, 2024.

Dong C. Liu and Jorge Nocedal. On the limited memory bfgs method for large scale optimization.
Mathematical Programming, 45:503–528, 1989.

James Martens. New insights and perspectives on the natural gradient method. Journal of Machine
Learning Research, 21(146):1–76, 2020.

James Martens and Roger Grosse. Optimizing neural networks with kronecker-factored approximate
curvature. In ICML, 2015.

David McAllester. Sgd ii: Gradient flow, langevin dynamics and the sgd sde. https:
//mcallester.github.io/ttic-31230/06SGD/Langevin.pdf, 2023. Lecture 7,
TTIC 31230 - Fall 2023.

Baorun Mu, Saeed Soori, Bugra Can, Mert Gürbüzbalaban, and Maryam Mehri Dehnavi. Hylo: a
hybrid low-rank natural gradient descent method. In SC, 2022.

Yann Ollivier. Riemannian metrics for neural networks I: feedforward networks. Information and
Inference: A Journal of the IMA, 4(2):108–153, 2015.

Yann Ollivier. True asymptotic natural gradient optimization, 2017. URL https://arxiv.
org/abs/1712.08449.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
pytorch. In NeurIPS 2017 Workshop on Autodiff, 2017.

Pedro Savarese, David McAllester, Sudarshan Babu, and Michael Maire. Domain-independent dom-
inance of adaptive methods. In CVPR, 2021.

Saeed Soori, Bugra Can, Baourun Mu, Mert Gürbüzbalaban, and Maryam Mehri Dehnavi. Tengrad:
Time-efficient natural gradient descent with exact fisher-block inversion, 2022. URL https:
//arxiv.org/abs/2106.03947.

Tijmen Tieleman and Geoffrey Hinton. Lecture 6.5-rmsprop: Divide the gradient by a running
average of its recent magnitude. COURSERA: Neural networks for machine learning, 4(2):26–
31, 2012.

9

https://mcallester.github.io/ttic-31230/06SGD/Langevin.pdf
https://mcallester.github.io/ttic-31230/06SGD/Langevin.pdf
https://arxiv.org/abs/1712.08449
https://arxiv.org/abs/1712.08449
https://arxiv.org/abs/2106.03947
https://arxiv.org/abs/2106.03947

	Introduction
	Background and Notation
	Proposed Method
	Empirical Results
	ResNet-50 on CIFAR-10
	ResNet-50 on Tiny ImageNet
	ViT-S/16 on CIFAR-100

	Conclusion and Future Work

