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Abstract

We propose a cooperative training framework for deep neural network architectures
that enables the runtime network depths to change to satisfy dynamic computing
resource requirements. In our framework, the number of layers participating in
computation can be chosen dynamically to meet performance-cost trade-offs at
inference runtime. Our method trains two Teammate nets and a Leader net, and two
sets of Teammate sub-networks with various depths through knowledge distillation.
The Teammate nets derive sub-networks and transfer knowledge to them, and to
each other, while the Leader net guides Teammate nets to ensure accuracy. The
approach trains the framework atomically at once instead of individually training
various sizes of models; in a sense, the various-sized networks are all trained at
once, in a “package deal.” The proposed framework is not tied to any specific
architecture but can incorporate any existing models/architectures, therefore it can
maintain stable results and is insensitive to the size of a dataset’s feature map.
Compared with other related approaches, it provides comparable accuracy to its
full network while various sizes of models are available.

1 Introduction

As deep neural network architectures continue to grow in size and complexity, it is increasingly costly
to store and execute them. The trend is especially challenging in resource-constrained environments,
such as embedded platforms or edge devices, where having a succinct model is a precondition for
meeting time and space constraints. Hence, to enable systems to function in dynamically changing
running environments and platforms under diverse resource allowances, we propose a novel training
framework for adaptive real-time inferences. Note that, for the purpose of this work, the resource
cost matters only in inference but not in training.

To achieve efficient models, several authors took the approach of re-designing the neural network
architecture to have fewer depths or widths, or to have more computation-efficient kernels [[15}
5,112,131, [11]]. Another approach involved removing/deactivating insignificant neurons, as shown
in [29, 40l 25]. Yet another alternative is knowledge distillation [8] which trains a smaller-size
network by learning the distribution explicitly or implicitly from an original full-size network of
high accuracy. As opposed to such static approaches, which individually customize a model for each
specific task/platform or a certain inference path in advance, some other efforts provided various
options to accommodate different platforms by scaling widths and depths as shown in [7} 4} [35]].
Although the aforementioned approaches can trade off performance and resource with different model
sizes, they must pre-define the requirements of computing resources in advance. Moreover, those
architectures must be trained multiple times, specifically for each individual model size.

Unlike the existing work, our approach is able to provide an agile prediction at any inference cost on
the fly; also, it is not tied to any specific architecture but can adopt any refined models. We propose a
novel pipeline of knowledge distillation, namely, Cooperative training framework, which employs a
cohort of three cooperating networks, two Teammate nets and Leader net. Teammate networks offer
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Figure 1: Overview of different knowledge distillations. (d) is enlarged in Fig. 2(b)l

the soft labels to each other, and each of them derives sub-networks and transfers knowledge to the
sub-networks. The Leader network is an auxiliary network learning from true labels and guiding
Teammate nets to ensure accuracy. In particular, our approach trains the framework atomically at once
instead of individually training various sizes of models; it does not simply train with labels and losses
but also learns from numerous smaller networks at the same time. So, in a sense, the various-sized
networks are all trained at once, in a “package deal,” maintaining accuracy that is competitive with
the original model.

2 Related Work

2.1 Static Approach to Compact Networks

To obtain a compact neural network, one approach is to re-design its architecture with fewer depths
or widths, or with more computation-efficient kernels. Some manual network designs, such as
SqueezeNet series [[13) 15] and MobileNet series [12} 31, [11]], have been applied to explore more
efficient model architectures. Another way to reduce redundancy from existing models is to estimate
the importance of neurons in a neural network and remove unimportant neurons. Some works
explored how to estimate the importance, such as [29, [10], or deactivate unimportant neurons of
a large network with sparse regularization [40] or greedy algorithm [25)]. Another approach is
knowledge distillation [8] which transfers the distribution of large networks to the light networks
explicitly.

2.2 Scalable Architectures

As to scalable structures, prior works such as VGG series [32, 2], EfficientNet series [35} [34]],
MobileNet series [[12, 31} [11] and others [30, [13] have proposed some architectures with scalable
depth or width to meet the accuracy and static resource constraints. For instance, MobileNet series
proposed three versions of MobileNet and adjusted the channel size of the main calculation cost part.
One more example is ResNet [[7] which adjusts the depth of the network by adjusting the number of
repetitive convolution blocks at different stages divided by the down-sampling layers.

2.3 Adaptive Neural Networks

The whole idea of adaptive neural networks is to train a network to fit in a given environment and
platform with various computing resources available to meet the dynamic constraints of real-world
applications. An intuitive approach to training smaller networks of various sizes from a full-sized
model is attaching intermediate (early) output branches on the forward pass, and training all the
branches together as presented in [36] or [43]]. [36]] trained networks with multiple early exits. In
[43], early exits imitate the main output’s distribution to achieve better performance. However, such
frameworks provide only a few choices, and the models’ capacity or thresholds on the confidence
need to be fixed in advance. More recent ideas are to re-design the structure of networks and optimize
the training. [[16] developed an adaptive deep neural network architecture that gradually adds layers
to provide flexible options available concerning different timing constraints. [[14] designed a stepped
structure, MSD-Net, to produce time-adaptive classification results. [38] proposed RANet that
offers an exiting branch at each stage and gradually adds more layers. In other studies, the width
of networks is explored. [42} [22] tried training adaptive width networks by knowledge distillation.
[41] proposed US-Net for selecting any channel width of convolution networks trained with self-
distillation. Similarly, [9]] trained a Dynamic BERT with dynamic depths and widths. Based on
US-Net, [39] proposed MutualNet and pointed out that multi-scale inputs can help an adaptive model



be trained better. [[20] proposed a CGM module making a decision on pruning a layer by considering
the outputs of preceding layers and required scales. Li et al. [21]] built DS-Net, including an online
network and target sub-network, with a dynamic gating to choose a proper channel pruning rate.

2.4 Knowledge Distillation

The lottery ticket hypothesis [3] suggests that the existing refined neural networks have the potential
to retain comparable accuracy even after removing or deactivating some nodes. One well-known
way to achieve this is knowledge distillation. The original approach to knowledge distillation is to
train a smaller-size neural network against a full-size neural network’s outputs so that the small-size
network can perform competitively. Moreover, [43] introduced a knowledge distillation method to
train parameter-shared networks by creating multiple branches for different costs of inference. [42]
applied a similar training policy at the channel level and switchable batch normalization to solve
the problem of different means and variances of the aggregated feature led by ever-changing input
channel size in preceding layers. [41] extended this adaptability from only several fixed ratios to any
channel pruning rate according to the sandwich rule (see Sec.[d.3). [44] let two models from the same
architecture learn each other’s distribution of outputs to enhance the performance of both models. [28]]
introduced a teaching assistant network (an intermediate-size homogeneous network) between the
teacher and student network to help the student network achieve more stable and better performance.
[6] proposed an ensemble mutual learning and explored how to produce a good ensemble output.

3 Background

3.1 Knowledge Distillation

In a typical knowledge distillation [8] as in Fig.[I(a)| there is a teacher and a student network. A
teacher net is trained first, and then its outputs and accurate labels “teach” (i.e., train) a student net.
The training process for the student network is described as,

['s = (]- - )\)[«ce + )\['kl (1)

where L. is a cross-entropy loss, Ly; is Kullback-Leibler divergence loss [[18]], and ) is to balance
two losses. Before being fed into a softmax activation function of the teacher and student net, let each
last input be a; and as, respectively. Then, the output of teacher net is y; = softmax(a;/7), where T,
as the temperature, is to adjust the smoothness of probability distribution, and that of student net is
ys = softmax(as/7). Thus, Ly; is represented as,

L = 7'2KLDz'v(ys7 Yt) 2)

where K LDiv(-,-) is Kullback-Leibler divergence loss function and 7 is typically greater than or
equal to 1. L. is formulated as,
L"ce - CE(yS7 yt'rue) (3)

where CE(-, -) is a cross entropy loss function and ... is a true label from supervised dataset.

3.2 Mutual Knowledge Distillation

With an observation that logits of one model can help another model improve its performance, mutual
knowledge distillation (deep mutual learning) was proposed by [44]]. As depicted in Fig. two
models can learn from each other using formula (I)), and significant improvement has been shown in
each model’s performance.

3.3 Self-Distillation

In self-distillation (inplace distillation), the teacher net becomes the student net itself, in which a
student net is a subset of the full net (Fig.[I(c)]) There is no pre-trained reference net since there is
only a single net to be trained. According to (42,141} 43, 139,121]], a common loss calculation is,

[’sl - CE(yfulh ytrue) + A Z TQKLDiv(ysub,h yf’u.ll) (4)
=1
where 1, is the output from a full network, 3 ; is the output from ¢-th sub-network, n is the
total number of sub-networks designed manually prior to training, and A is a hyper-parameter to
balance the two types of losses.
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(a) Deriving sub-networks. (b) The entire Cooperative training framework.

Figure 2: Overview of our approach.

4 Multi-Model Cooperative Learning

4.1 Deriving Sub-networks

Deep neural networks usually contain multiple stages composed of layers (blocks.) In general, a
network’s depth is a factor impacting performance and resource cost trade-offs. Hence we derive
various-sized sub-nets composed of a subset of layers from the original net as in Fig. Then, the
knowledge of the original net is transferred to the sub-nets, i.e., self-learning. A deeper sub-net can be
constructed by adding more layers on top of a shallower sub-net. The number of layers employed in
a sub-net calculates a scaling factor: e.g., if a sub-net is formed by a quarter of layers in the original,
the scaling factor of the sub-net is 0.25. The largest sub-net is always the same size as the original
net (i.e., scaling factor = 1.0.) Depending on the number of stages and layers, the possible number
of intermediate nets, granularity of scaling factor, etc. can vary. With given input image, x, scaling
factor, s, and the corresponding output, yop: (-, -), the pass-through of our Cost-adaptive network is
formulated as,
u ST‘(j) P
Yapi (7, 8) = OUT(O O FUI(IN(@))) (5)
Jj=1 i=

where the large O represents repeated function compositions, OUT(+) is the function of the final
layer, and IN(-) is the function of the first layer. Also,  is the number of stages in the network, r()

is the number of repetitive blocks at the j-th stage, and F'U+?)(-) is the i-th block at the j-th stage.

4.2 Flexible Depth Control: Masking Approach

To activate/deactivate each layer of a network for a flexible size, a binary mask is used. A common
masking method in training is the Gumbel-Max trick [27]]. In inference, the execution of an insignifi-
cant layer is deactivated by the mask on the fly. The binary gating mask B(*) is 1 if the i*” layer is
activated, otherwise 0. However, there are two challenges obstructing the employment of masking.
One is that the masking schemes presented in the previous work [23 137]] may make the network
sparser, but may not reduce non-parallel computations. The other challenge is that a binary mask
cannot directly back-propagate since it is not differentiable. For the first challenge, we design a global
mask to determine which layers would be better skipped. Given a residual neural network, if the
structural differences are ignored, the i-th layer’s forward propagation can be described as follows:

y (@)= F @) +x ©)
where F()(.) represents the i-th layer calculating the feature map, () (-). Once the mask is applied,
the i-th layer’s forward propagation in training is represented as,

@ rain(@) = F9(2) 0 BY + 2 (7

Ym—train

where ® denotes a broadcast multiplication. For an evaluation stage, the execution of the layers can
be determined by the masking value B as shown in (8):

@ = {Fm(w) +a, ifBY =1

) 8
Ym—eval z, if B(z) =0 ( )



That is, in an evaluation stage, the mask becomes a signal telling whether a layer is executed or not.
The global mask, B, over all layers can be formulated as follows:

B = arg Topk(log(mi) + g:) )

where g; is noise sampled from Gumbel distribution and 7; is a probability calculated by the mask.
The mask values with the top-k scores are set to 1, and the others to 0. However, the mask is not
differentiable yet, so the softmax is applied to create the following differentiable approximation,

@ exp((log(mi(p)) +gi(p)/7)
PP = S e ((loa(m () + 9, ())/7) 10

where g;(-) denotes the noise sampled from a standard Gumbel distribution, to randomize the
sampling process. 7 can be dynamically changed to control the smoothness of the outputs’ distribution.
It ranges from 0 to 1 (excluding 0.) When close to 0, the mask’s output is approximately regarded
as a binary value. n is the number of total layers. In our evaluation, we set 7 = 2/3 as presented
in [26l 23]]. ¢ can match arg max precisely so that it can make a mask gradually change its value
from the continuous value to a value close to a binary during training. However, it cannot match the
arg Topk in the same way since ¢ is almost one hot value when 7 approaches 0. Hence, we apply the
Gumbel-Softmax re-parameterization trick to achieve a back-propagation with binary values as,

B = stopgrad(arg Topk(qﬁ(i)) —-d)+ ¢ an

where the stopgrad(-) is a stop-gradient operation. As a result, by (L)), the mask is both binary and
differentiable.

4.3 Scaling Factor Sensitive Loss SFSL

We empirically recognized that accuracies of sub-nets are bounded by the shallowest and deepest net:
a similar trend, but in width-controlled (channel-wise) sub-nets, is also addressed by Yu and Huang
[41] which is called the sandwich rule. On top of that, we have observed that the layers composing
the shallower net have a higher impact on the overall performance since the layers are “commonly”
contained in all the other (sub-)nets. With this observation, we introduce a loss function, Scaling
Factor Sensitive Loss (SFSL), to explicitly add more weights to the layers of shallower sub-nets.

For loss functions in knowledge distillation, one important source is Kullback-Leibler divergence
loss between student, y, and teacher, y, as in (). Another is cross-entropy loss between teacher, y;,
and true label, 44,..¢, Or between student, ¥, and true label, 9¢,¢, as in (3). As the model contains
multiple ensembles, all losses are aggregated as in (). More importantly, we weigh a shallower
network by dividing the loss by its scaling factor which returns a larger value. The loss function of a

sub-network, L.,ps, 1S as follows:

n 2
.

»Csus: —KLD1i sub,is u 12
b ; . 10(Ysub,i> Yfull) (12)
where s is a scaling factor of depth (i.e., size) of a sub-network over the full network. Then, the total

’

loss function of the entire network, £, is,

n 2
/ T )
L = CEWsuil, Ytrue) + Msubs = CE(Yfuit, Ytrue) + A E o KLDiv(Ysub,i, Yfull) (13)

i=1

The evaluation result is also aligned with our preconception that the proposed loss function can help
shallower sub-networks achieve better accuracy than just uniformly accumulating the total loss.

4.4 Cooperative Training Framework

We introduce Self-, Interactive, and Guided learning, forming Cooperative training framework,
enabled by two Teammate networks and their subnetworks and a Leader network.

Self-Learning In Self-learning, the sub-networks distill the knowledge from a full net. Based on
(@), the full net is trained by cross-entropy loss and other sub-nets are trained by Kullback-Leibler
divergence loss using soft labels produced by the full net. SFSL is applied with 7 = 1 and A = 1.
The loss function of self-learning is as follows:

1 .
£a,ptisl = CE(yapt(m7 10)7 ytrue) + Z ;KLDZ'U(yapt(x7 5i)7 yapt (1‘7 10)) (14)
;€S *
where S is a collection of scaling factors of the all sub-networks except for s; = 1.0.



Interactive Learning With only self-learning, there is no source to produce soft labels the full
network can learn, possibly leading to imbalanced performances between the sub-networks. For
the issue, we employ two Teammate networks offering soft labels for each other. A teammate net,
as a full network, is tagged along with a cohort of self-learned sub-nets as shown in Fig. It
is called interactive learning since the two are learning from each other. The two Teammate nets
may or may not be from the same architecture. Let y/qp¢ o and g4y, be the outputs produced by the
two Teammate nets. The same scaling factor is chosen to generate their sub-nets. Then, the loss of
interactive learning for the target network can be represented as:

[fapticl,a = Z KLDiU(yapt,a(m7 5i)7 yapt,b(my Sz)) (15)
Si ES/
where S’ is a set of scaling factors including s; = 1.0. As one Teammate network takes a turn to learn

from the other, we just swap the “teacher” and the “student” for the arguments of Kullback-Leibler
divergence loss calculation in (T3)) as,

Eapt_cl,b = Z KLDiU(yapt,b('r7 Si), yapt,a(x7 81)) (16)
s; €8’
On top of that, since two networks that learn from each other can also improve each other’s
performance as shown [44]], the combined loss is calculated as follows:

[fapticl = £apt7cl,a + ‘Capticl,b (17)

Guided Learning Even with self-learning and interactive learning, we observed that a balance
of losses may still not be preserved. Hence, we introduce Leader Network which only learns the
knowledge from the true labels. As a result, a full-size sub-net in the cohort of a Teammate net can
learn the distribution from this highly accurate net as follows:

[faptiol = CE(yleadeT, yt'rue) + Z KLDiU(yapt,i (Iv 10)7 yleader) (18)
i€{a,b}

where yjcqqer denotes the output by the Leader net, and ¢ denotes which Teammate net is used for
calculation.

Total loss Finally, all three losses are combined together. The total loss is formulated as follows:

Laptitotal - Z £faptisl,i + ‘Capticl + ﬁaptiol (19)
i€{a,b}

where L) .5 is Teammate network i’s self-learning loss. Note that we stop the gradients of the
outputs produced by networks when we use them as labels.

5 Experiments

5.1 Experimental Setting
5.1.1 Datasets

CIFAR-100 [17]: the images are zero-padded in 4 directions, and 32 x 32 crops are randomly
sampled or their horizontal flips normalized with the per-channel mean and standard deviation. Due to
the smaller image size than ImageNet, the first downsampling in ResNet is replaced by a convolution
with 3 x 3 kernel and a stride of 2 before the global average pooling.

Tiny ImageNet [19]: Tiny ImageNet is derived from ImageNet [1]]. Since labels of testing images
are not publicly available, the validation images are used for evaluation. To make the number of input
channels the same among all samples, the gray-scale images are converted into RGB images. For
training, we horizontally flip the images randomly for data augmentation while keeping the original
format of validation images.

5.1.2 Network architectures for comparisons

Baseline we use a ResNet152 [[7] trained only with cross-entropy loss as a baseline. For compar-
isons, the number of layers in each stage is adjusted to the same proportion as the sub-network that
we generate.
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Figure 3: Performance and costs of different methods on CIFAR100 (top row) and Tiny ImageNet
(bottom row.) (Only the full size of Baseline is shown in the charts since the subnets’ accuracies
are incomparable to the others.)

BranchyNet BranchyNet [30] creates muti-branch networks by adding additional exits. While
ResNet110 was adapted in the original, we adapted and fine-tuned ResNet152 by adding one more
stage. We implemented 3 branches for each stage. Each 1st, 2nd, and 3rd branch includes 3, 2, and 1
convolutional blocks, respectively. A global average pooling layer and a fully-connected layer follow
the convolutional blocks in each branch. BranchyNet takes a weighted sum of the cross-entropy
losses over all exits. Since precise settings for weights are not presented in the original paper, we set
the weights as {0.4,0.6, 0.8, 1.0} from the first exit to the final.

BYOT ‘Be your own teacher’ method [43] is also designed to achieve a multi-cost inference by
employing additional exits in the early stages. Its loss function and training method make it different
from BranchyNet. In addition to training each exit, BYOT also applies the knowledge distillation in
part and Euclidean distance to train the exits with the knowledge of the final exit to better train the
outputs of the exits.

5.1.3 Hyper-parameters

For learning rates and epochs: we train a model for 200 epochs using learning rates of {1 x 1071, 1 x
1072,1 x 1073, 1 x 10~%} - the 75th, 130th and 180th epochs are changing points of learning rates.
The learning rate of the first epoch is set to 1 x 10~2 to warm up the network. For optimizer, the
optimizer we adapt is SGD. We set the momentum to 0.9 and weights decay to 5 x 10~*. We report
results with the model at the final training epoch.

5.1.4 Platforms and running environments

The models are trained on the GPU cluster server running on Ubuntu with various GPU resources
including NVIDIA RTX A6000, NVIDIA RTX 6000, NVIDIA RTX 5000, NVIDIA GeForce GTX
1080 Ti, and NVIDIA GeForce GTX 750 Ti. For evaluation, we run models on python 3.7 on
Windows 11, and use NVIDIA GeForce RTX 2060 to measure performance metrics. For measuring
the number of parameters and FLOPs, we use the python package THOP to count them. The
inference time is evaluated with the mini-batch size of 1 input which is the same as the data size in
the datasets on NVIDIA GeForce RTX 2060. We run 100 times to warm up the GPU before we start
any evaluation, and compute the inference time using the average of 1,000 times’ results. All models
are implemented and trained in Pytorch.



Table 1: Networks’ performance on CIFAR-100 and TinyImageNet. (‘Exe.’” stands for execution,
‘Param.” stands for parameters, ‘Inf.’ stands for inference time, and ‘Acc.’ stands for accuracy.)

CIFAR-100 TinyImageNet
Network Exe. Portion #Param. #FLOPs Inf.(ms) Acc.(%) #Param. #FLOPs Inf. (ms) Acc.(%)
0.2x 20.78M 1.00G 9.55 7.65  20.98M 4.02G 11.70 6.07
. 0.4x 28.88M 1.58G 15.09 10.63  29.08M 6.31G 18.09 9.50
Baseline 0.6x 37.26M 222G 19.84 26.04  37.46M 8.88G 24.30 15.01
0.8% 45.43M 2.81G 23.62 47.84  45.63M 11.24G 30.06 32.57
1.0x 58.34M 3.54G 27.84 7771  58.55M 14.18G 35.29 60.98
15¢ exit 243.36K 223.18M 2.33 6275 24336K 892.65M 2.67 42.05
BranchyNet 274 exit 12IM  488.95M 441 73.76 1.21M 1.96G 5.07 48.25
37 exit 5.29M 1.04G 8.51 79.71 5.29M 4.16G 10.05 57.46
4 exit 58.34M 3.74G 28.88 80.51  58.55M 14.95G 36.81 60.35
15t exit 18.39M  644.25M 5.20 71.85 18.39M 2.58G 6.60 24.62
BYOT 2nd exit 26.45M 1.42G 11.89 80.02  26.45M 5.68G 13.49 52.05
37 exit 69.90M 4.11G 35.62 81.95  69.90M 16.45G 42.60 64.57
4th exit 85.07M 4.38G 34.95 81.95 85.07M 17.51G 47.35 64.01
0.2x 20.78M 1.00G 9.88 73.80  20.98M 4.02G 11.39 51.86
COOP 0.4x 28.88M 1.58G 14.99 76.89  29.08M 6.31G 18.02 56.22
0.6x 37.26M 2.22G 20.55 78.11 37.46M 8.88G 24.53 56.56
0.8% 45.43M 2.81G 24.80 7747  45.63M 11.24G 29.29 54.65
1.0x 58.34M 3.54G 28.12 7581  58.55M 14.18G 35.04 52.19

5.2 Experiments on CIFAR-100

In this section, we present the experimental results on CIFAR-100. Both BranchyNet and BYOT have
four exits including the original exit. We display accuracy according to # FLOPs, # parameters and
inference time in Fig. [3](top row) and Table I left half. Some result points show that BranchyNet
and BYOT perform better than our approach, COOP, in terms of accuracy. That is because these two
methods yield hierarchies of features for classifier, which is empirically shown by a series of works
such as FCN [24] - that is, multi-scale feature maps’ fusion is beneficial to the whole network’s
performance. Another factor, which is supported by GoogLeNet [33], is that early exits can improve
model training to some extent. However, for inference, multi-scale outputs may show unpredictable
and unstable performance drops depending on the feature maps’ sizes. We will discuss this later in
Sec. Our approach, COOP, achieves accuracy close to Baseline. Although its performance does
not outperform BranchyNet and BYOT at all measurement points, there are three strengths of COOP:
1) It provides more flexible options for computing capacity, ii) the size of the output feature map is
consistent with the size of the original network so that our method is an architecture-free (general)
method, and iii) it provides a predictable and smoother decrease in accuracy as the model’s depth
decreases.

5.3 Experiments on Tiny Imagenet

In this section, we present the experimental results on Tiny ImageNet in Fig. [3] (bottom row) and
Table[T|right half. Since the size of feature maps is larger than that in CIFAR-100, we can examine
the impact of feature maps’ size by comparing the results on the two different datasets. One thing
to note in the right half Table is that BYOT shows significantly poorer performance on 15 and 2"¢
exits compared with the results on CIFAR-100. This is because the feature map in Tiny ImageNet is
64 x 64, which is four times as large as that in CIFAR-100. Hence, the much smaller feature map
size greatly degrades the performance of BYOT. On the other hand, COOP and BranchyNet show a
more stable trend, since all branches are independent in the training phase. However, BranchyNet’s
loss function contains hyper-parameters that need to be set manually and fine-tuned, and the exits and
loss functions have to be carefully designed case by case. In contrast, COOP is more convenient since
it does not need to be “re-designed” when other existing refined networks are applied. Moreover,
although the accuracy of the model may not be the best in all cases, it shows the highest accuracy
in most of the middle range of scaling factors. In light of the motivation of the work which would
utilize compact and efficient models, the trend shows the kind of utility we are seeking.Overall, COOP
generally shows less degraded performance when the depth of the model decreases.

5.4 Ablation Study

We explore and show the impacts of the components contributing to the network’s performance with
CIFAR-100.
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Figure 4: Ablation experiments

5.4.1 Impact of Multi-Model Training

For multi-model training, we employed 4 sub-networks to train. Scaling factors of the sub-nets are
sampled in two ways:

» STATIC: static values are set, [1.0,0.7,0.4,0.2].
* RANDOM: other than the deepest (1.0 ) and shallowest net (0.2 ), two scaling factors are randomly
sampled from [0.3, 0.9] with a step of 0.1 in every training epoch.

The approaches’ comparison result with

Baseline is shown in Fig. Considering )

Baseline is merely trained by cross-entropy ~Lable 2: Performance comparison (accuracy) of
loss, the result shows that the multi-model different methods for adaptive inference.

training strategies can significantly help sub- Ace(%)

networks’ performance in most cases. In ad- ~_Netwok Member  02x  0.4x  06x 08x 1.0x

dition, RANDOM outperforms STATIC, which SFSL - 7089 7585 7633 7552 7359

demonstrates how the random depths sampling ~ _TEamwr Teammate 7240 7546 76.51 7689 7652
: : : Leader n/a n/a n/a n/a  79.04

provides stable performance in any size of the coop To e e 7380 7689 7841 7147 7581

model by training various sub-networks. Ac-
cordingly, in the following results in the section,
we employ random sampling for scaling factors. Fig. [A(b)|shows the results of training with SFSL on
top of RANDOM, which we call SFSL. It clearly shows that SFSL enhances the overall performance. It
is noticeable that even the smaller sub-networks show very much enhanced performance by SFSL,
which explains the impact of weighting smaller networks’ loss more in the overall loss.

Impact of Teammate and Leader networks We show the impact of Teammate and Leader nets
with the following approaches,

* TEAMMT: on top of SFSL, one more Teammate network and a cohort of its subnetworks are added -
two Teammate nets in total. This corresponds to Interactive Learning introduced in Sec.

* COQOP: the proposed, Cooperative learning framework, that is, Leader net is added on top of
TEAMMT.

The results are in Table [2] and Fig. A general trend is that adding Teammate nets enhances
performance (SFSL vs. TEAMMT), and adding Leader net also does (TEAMMT vs. COOP.) In particular,
Interactive learning (TEAMMT) helps the network achieve better performance in all scaling factors.
Cooperative learning (COOP) even boosts the performance further in a wide range of factors.

6 Conclusion

In this paper, we demonstrate that our approach (Cooperative training framework) dynamically
resizes networks to meet resource constraints while offering more size options, applying seamlessly
to various neural network architectures with minimal additional inference cost. Our approach
efficiently trains multiple different-sized subnetworks simultaneously, as evidenced by experiments
where even smaller-sized networks perform comparably to the full-sized network.
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