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ABSTRACT

Distinguishable metric of similarity plays a fundamental role in unsupervised
learning, particularly in manifold learning and high-dimensional data visualiza-
tion tasks, by which differentiate between observations without labels. However,
conventional metrics like Euclidean distance after L1-normalization may fail by
losing distinguishable information when handling high-dimensional data, where
the distance between different observations gradually converges to a shrinking
interval. In this article, we discuss the influence of normalization by different
p-norms and the defect of Euclidean distance. We discover that observation dif-
ferences are better preserved when normalizing data by a higher p-norm and us-
ing geodesic distance rather than Euclidean distance as the similarity measure-
ment. We further identify that L2-normalization onto the hypersphere is often
sufficient in preserving delicate differences even in relatively high dimensional
data while maintaining computational efficiency. Subsequently, we present HS-
SNE (HyperSphere-SNE), a hypersphere-representation-system-based augmenta-
tion to t-SNE, which effectively addresses the intricacy of high-dimensional data
visualization and similarity measurement. Our results show that this hypersphere
representation system has improved resolution to identify more subtle differences
in high-dimensional data, while balancing information preservation and computa-
tional efficiency.

1 INTRODUCTION

Similarity measurement is a fundamental problem in unsupervised learning, particularly in man-
ifold learning and high-dimensional data visualization. Without labels, similarity measurements
serve as the primary apparatus to establish the underlying latent structure between observations.
Existing similarity metrics, like Euclidean distance, commonly rely on Euclidean space and L1-
normalization preprocessing, which preserve progressively less information as the dimension rises,
thus falling victim of “the curse of dimensionality” (Köppen, 2000; Kiselev et al., 2019). In general,
it is advised to avoid directly applying unsupervised learning with high-dimensional data. In tasks
such as single-cell RNA sequencing analysis, high-dimensional cell-gene expression data are often
visualized in 2-dimensional embeddings to explore the cell differentiation structure (Moon et al.,
2019) or identifying new cell subtype.

It is common in a dataset that observations differ only in scale but not in feature compositions.
This could be a result of technical effects or simply intrinsic data heterogeneity. A widely-adopted
strategy is to first eliminate scale differences with normalization. This is especially critical when
feature composition is the primary interest of investigation. Among all normalization schemes, L1-
normalization is perhaps the most prevalent so far, especially in Bioinformatics (Dillies et al., 2013;
Townes et al., 2019), Information Retrieval (Qaiser & Ali, 2018) and Topic Modeling (Blei et al.,
2003). In these tasks, each data point typically corresponds to a random observation sampled from
a latent multinomial distribution. It is often overlooked, however, that L1-normalization essentially
projects each data point onto a simplex geometry, which gradually succumbs to the curse of dimen-
sionality as the dimensionality rises.
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The information of Euclidean distance after L1-normalization unfortunately shrinks as the dimen-
sion increases. As the dimension rises further, observations begin to cramp to an increasingly small
proximity on the manifold, losing the ability to distinguish observations (Köppen, 2000). Such
loss of information negatively impact the downstream analysis. For instance, in t-SNE, a popular
inter-point-distance based manifold learning algorithm (Van der Maaten & Hinton, 2008), as the
dimensionality grows, distances between individual observations gradually gravitate towards an in-
creasingly sharper Gaussian distribution, leading to their eventual portraiture as a single Gaussian
cloud in the low-dimensional embedding.

Here, we question the necessity of using Euclidean distance after L1-normalization as the primary
distance metric and normalization scheme. In particular, we consider the plausibility of adopting
Lp-normalization and geodesic distance as a replacement metric. Specifically, we propose project-
ing observations to a

∑
i |xi|p = C curvature instead of a

∑
i xi = C simplex (with C being a

constant) and use the geodesic distance on the curvature as the similarity measurement. In addi-
tion, to balance performance and efficiency, we investigate whether the computationally friendly
L2-normalization, which projects observations to a hypersphere, is sufficient at information preser-
vation in high-dimensional space while also leveraging the fact that its geodesic distance is simply
the angular distance between two observations. Our contributions are the following.

• We systematically demonstrate and evaluates the capability of information preservation
with Lp-normalization with regard to different dimensionalities. Specifically, we provide
mathematical foundation that elucidates the futility of Euclidean distance after L1-norm at
discriminating data points of various degrees of affinity.

• We demonstrate that while being not the most information-captive normalization scheme,
L2-normalization and geodesic distance are often sufficient at preserving inter-observation
differences, with diminishing returns with higher p in p-norm.

• We introduce HS-SNE (HyperSphere-SNE), an augmented t-SNE visualization scheme
that projects observations to a hypersphere and uses geodesic distances as the distance met-
ric. HS-SNE achieves good performance in producing clearer boundaries between clusters
in visualization while paying only a fraction of the computational cost in real single cell
RNA-seq datasets, validating the effectiveness of L2-normalization and geodesic distance
system.

2 PROBLEM FORMULATION AND METHODS

In manifold learning, the principal objective is to learn a low-dimensional representation of the
observations that retains sufficient information in demonstrating the relative similarity between ob-
servations in the high-dimensional space. Similarity measurement thus is at the center of manifold
learning. Owing to the wide dynamic range of scale differences among observations due to technical
factors, such as different total mRNA abundance between cells stemming from varying sequencing
depths, data normalization has become an essential step in data preprocessing. Despite its impor-
tance, downstream effects of poorly-chosen normalization schemes to the learning outcome have,
in our humble opinion, not been given sufficient attention. This is critical since normalization it-
self assumes an implicit similarity measurement framework as it in-effect projects the observations
to a presumed manifold, where distance should be measured in a geodesic fashion accordingly (Li
& Dunson, 2019). In an ideal case, post-normalization data points should preserve as much use-
ful information as possible, as opposed to squeezing observations to a progressively cramped finite
domain.

A straightforward and natural method for normalization is L1-normalization, also known as total
count normalization (Evans et al., 2018), a technique widely employed in the field of single-cell an-
alytics (Hao et al., 2021; Wolf et al., 2018). The fundamental principle of this approach is to equalize
the sum of all features between data points in order to erase technical differences among observa-
tions. Geometrically, L1-normalization is equivalent to projecting N -dimensional observations to
an (N − 1)-dimensional hypersimplex, representing a hyperplane in an Euclidean space (Rispoli,
2008). L1-normalization is a member of the more generic Lp-normalization family, defined as:

xLp normalized
(i) =

x(i)

p
√∑

i |x(i)|p
,
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with p dictating the choice of the projection manifold. What is less investigated, is the information
preservation capability of different p.

To elucidate the somewhat ambiguous concept of “information”, we introduce the Information of
Distance Distribution (IDD) metric for information preservation measurement. The derivation of
IDD is grounded in the concept of entropy from Information Theory. Given a distance distribution
Dist, the IDD is defined as follows:

IDD(Dist) = −
0.995∑
x=0

Pr(x) logPr(x),

where Pr(x) denotes the distribution of the Min-max normalized inter-point distance. A larger
IDD indicates greater complexity and variability of the inter-point distances, hence a greater res-
olution and diversity in the post-normalization data. Conversely, a lower IDD indicates a more
concentrated inter-point distribution, where observations become equally distant and the sense of
similarity differences is lost.

T-distributed stochastic neighbor embedding (t-SNE) (Van der Maaten & Hinton, 2008) and Uni-
form Manifold Approximation and Projection (UMAP) (McInnes et al., 2018) are two widely-used
manifold learning visualization tools that learn from the pairwise distances within a dataset. They
share a similar key idea: reconstruct the high-dimensional pairwise distance distribution in a low-
dimensional space such that relative similarities between observations is preserved. Below is a brief
introduction of t-SNE here, with UMAP follow suit.

Given a set of N high dimensional L1-normalized data points x1, . . . ,xN with xi ∈ Rn, it is
assumed that the distance distribution follows a Gaussian distribution and the conditional probability
of xi relative to xj (i ̸= j) can be computed as:

pj|i =
exp

(
−∥xi − xj∥2/2σ2

i

)∑
k ̸=i exp

(
−∥xi − xk∥2 /2σ2

i

) . (1)

In this process, Euclidean distance is used for the similarity measurement ∥xi − xj∥ in the high-
dimensional space. σi is a hyper-parameter that regulates the item-wise Gaussian kernel standard
deviation width. To create a symmetrical distance between i and j, pj|i and pi|j are merged into pij
via

pij =
pj|i + pi|j

2N
,

with
∑

i,j pij = 1. For the embedding space of d dimensions (d << N ), let y1, . . . ,yN ∈ Rd

denote the corresponding low-dimensional embedding. t-SNE learns a mapping between x and y
such that the inter-point distances between x and y are aligned from an information perspective.
Specifically, it forces the inter-point distances in the d-dimensional space to follow item-wise t-
distributions. The information distance qij between i and j is then computed as follows:

qij =

(
1 + ∥yi − yj∥2

)−1

∑
k

∑
l ̸=k

(
1 + ∥yk − yl∥2

)−1

Ultimately, t-SNE employs Kullback-Leibler divergence (KL divergence) as a measurement of dis-
crepancies between the two distributions in the high-dimensional and low-dimensional spaces and
set off to minimize the KL divergence through gradient decent.

KL(P∥Q) =
∑
i ̸=j

pij log
pij
qij

UMAP essentially follows the same philosophy but slightly deviates from t-SNE in distribution and
loss designs.

While much focus has been spent on distribution and loss designs, it is often overlooked that a poor
choice of normalization scheme could devastate the learning outcome. Employing a normalization
scheme with a low IDD blurs the differences between observations, often leading to a false percep-
tion of data points being randomly dispersed in a wide dynamic range while overriding any of the
inherent structures between observations, such as clustering behaviors, as depicted in Figure 1.
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Figure 1: Low IDD implies that the pairwise distances between high-dimensional points are nearly
identical, leaving no effective patterns for manifold learning methods to learn. This results in am-
biguous and seemingly random visualizations in low-dimensional embeddings.

Lp-normalization with higher p values can map points more uniformly, thereby intuitively ensuring
that the distances do not fall into a very narrow interval, as illustrated in Figure 2a. However, for
p > 2, the geodesic distance does not have a closed-form solution according to existing literature
(Kiryati & Székely, 1993; Davis et al., 2017; Li & Dunson, 2019; Fontenot et al., 2022). In the
case of L1-normalization, the geodesic distance coincides with the Euclidean distance. For L2-
normalization, the manifold constitutes a hypersphere; hence, the geodesic distance is the shortest
arc-length between two points, also referred to as the great circle distance or angular distance, which
can be represented as:

∥xi − xj∥geo = arccos (xi · xj).

Figure 2: a. Illustration of L1 and L2 normalization in the 2-dimensional case. The distribution of
L1-normalized points is denser than that of L2-normalized points, forming a sharp peak. b. Heatmap
of 3-dimensional case point probability density. c. Illustration of Lp-normalization and the geodesic
distance between two normalized points in 2-dimensional space for varying values of p.

In 2-dimensional case, since the manifold of the Lp-normalized points is just xp
(1) + xp

(2) = 1,
where x(i) represents the ith feature of data point x, like what is shown in Figure 2c, we can still
use line integral to calculate the geodesic distance between x and y (assuming that y(1) ≥ x(1)) in
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closed-form, ∫ y(1)

x(1)

√
1 + (

dy

dx
)2dx

where dy
dx = −xp−1(1− xp)1/p−1 for p-norm normalization.

To investigate the geodesic distance in Lp-normalization for p > 2 and more than 2-dimensional, we
introduce an estimation method, inspired from Isomap (Tenenbaum et al., 2000). This method lever-
ages the approximation of Euclidean distance to any distances within a localized structure. Initially,
we randomly sample n points m1,m2, . . . ,mn on the Lp-normalization manifold and subsequently
construct a k-NN graph G for these points. The geodesic distance can then be estimated as the sum
of the shortest path on the k-NN graph between the two sampling points mi, mj nearest to the target
points xi, xj , plus the double-ended Euclidean distances, as expressed in the equation:

∥xi − xj∥geo = ∥xi −mi∥+ d(G,mi,mj) + ∥xj −mj∥.

However, the accuracy of this estimation greatly depends on the sample size n and the dimension-
ality D. Employing Dijkstra’s algorithm, the time complexity for finding the shortest path between
two sampling points is O(n2), and n ∝ cD to maintain a consistent sampling density c across
varying dimensionalities. Consequently, this complexity can escalate rapidly, rendering the method
intractable for high-dimensional data.

Moreover, the loss of information becomes increasingly significant with the rise in dimensionality
due to the “curse of dimensionality” (Köppen, 2000), as depicted in Figure 3a, where we uniformly
generated 100, 000 pairs of points in a D-dimensional hypercube space to show the distance dis-
tribution change versus dimensionality increasing. Figure 3b clearly show the IDD change versus
dimensionality increasing, the decline of IDD for geodesic distance after L2 normalization is much
slower than Euclidean distance after L1 normalization. Not only uniformly distributed point pairs,
the point pairs sampled from a normal distribution and Dirichlet-multinomial (DirMult) distribu-
tion (Sun et al., 2018) also validated this property, which are common in real data.

Figure 3: a. As dimensionality increases, Euclidean distances under L1-normalization quickly con-
verge to a small interval, forming a sharp peak, whereas those under L2-normalization and geodesic
metrics remain distinguishable. b. For points sampled from different distributions, L2-normalization
consistently outperforms L1-normalization in preserving IDD. c. L2-normalization strikes an ef-
fective balance between enhancing IDD and maintaining computability, proving to be sufficiently
good compared to other p-norms.

From the perspective of enhancing IDD, the marginal benefit of increasing p diminishes rapidly as
shown in Figure 3c. The setting of p = 2 already achieves substantial improvement compared to p =
1. Given that the geodesic distance in L2-normalization has a closed-form solution, resulting in O(1)
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time complexity, L2-normalization strikes an effective balance between information preservation
and computational efficiency.

The manifold formed by L2-normalization is a hypersphere, which introduces another challenge
when applying it to t-SNE. In t-SNE, distances are transformed into conditional probabilities us-
ing a Gaussian distribution kernel (Van der Maaten & Hinton, 2008); however, this distribution is
only appropriate for modeling random distances in Euclidean space. In a spherical space, the ap-
propriate distribution for modeling arc-length, while retaining Normal properties, is the von-Mises
distribution, given by:

f(x;µ, κ) =
1

2πI0(κ)
exp (κ cos(x− µ)),

where I0(κ) is the modified Bessel function making the distribution sum to 1, µ is the mean direction
and κ is the concentration parameter (Watson, 1982). We can get a kernel function derived from the
von-Mises distribution, which is

exp (κ cos(∥xi − xj∥geo)− κ).

We add a “−κ” term in the exponential function to make sure that the kernel returns 1 when xi is
equal to xj exactly. Therefore, the conditional probability of xi to xj is

pj|i =
exp (κ cos(∥xi − xj∥geo)− κ)∑
k ̸=i exp (κ cos(∥xi − xj∥geo)− κ)

We propose replacing the Gaussian distribution kernel in Equation 1 with this von-Mises distribution
kernel when using t-SNE with L2-normalization and geodesic distance. We refer to this adaptation
as HS-SNE, serving as a validation for our L2 Hypersphere normalization and distance metric sys-
tem.

3 EXPERIMENTAL RESULTS

Figure 4: HS-SNE improves clustering per-
formance on low-dimensional embeddings
compared t-SNE with other distance metrics.

To assess the efficacy of our methods, we will con-
duct simulation experiments with known ground
truth labels. We will test clustering as a downstream
task on low-dimensional embeddings obtained from
both t-SNE and HS-SNE. Subsequently, we will em-
ploy real single-cell RNA sequencing data, which is
inherently high-dimensional and intricate, as a test-
ing ground for our visualization techniques.

To further validate our approach, a k-NN graph
on the low-dimensional embeddings will be con-
structed, and the accuracy with which neighbors are
classified as belonging to the same cluster will serve
as a performance metric. This will offer insight into
the granularity and correctness of the cluster forma-
tions yielded by our methodology.

In addition to this, we will explore the application of
the L2-normalization hypersphere system to UMAP,
aiming to demonstrate its potential to enhance all
manifold learning algorithms based on distance re-
lationships. Our endeavor is to validate that L2-
normalization method is not only a substantial im-
provement for t-SNE but also a useful tool that can
be adapted to a variety of manifold learning tech-
niques, thereby broadening its applicability and im-
pact in the field.

3.1 HS-SNE VISUALIZATION IMPROVES CLUSTERING ON SIMULATION DATA

Clustering is a fundamental downstream task closely associated with dimensionality reduction. To
address the curse of dimensionality, clustering is typically performed on lower-dimensional em-
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beddings. In this study, we generated labeled high-dimensional data and utilized t-SNE with L1-
normalization and various commonly used distance metrics, and HS-SNE, to visualize the data in a
2-dimensional space. Subsequently, we used K-Means clustering to assess the differences in perfor-
mance.

We employed the Dirichlet-multinomial Mixture Model for data generation, a well-established
model for fitting single-cell sequencing biological data (Sun et al., 2018). Using this model, we
created data in 2, 000 dimensions, consisting of three distinct types, with each type consisting of
300 instances. During the data generation process, 25 features between each pair of types were sub-
jected to varying parameters α within the model to introduce diversity. The expected result was to
ensure the preservation of variance between data points of different types in the lower-dimensional
embedding, thereby yielding distinguishable clustering results.

Subsequently, K-Means clustering was applied to each of the derived low-dimensional embeddings,
with the number of clusters set to 3. To quantify the clustering performance, we employed the
Adjusted Rand Index (ARI). After conducting the experiment across 100 iterations, the results in
Figure 4 indicate that HS-SNE surpasses t-SNE, regardless of whether the Euclidean, Manhattan, or
Chebyshev distance metric is applied within t-SNE.

3.2 HS-SNE PRODUCE CLEARER VISUALIZATION AND MORE ACCURATE EMBEDDING
K-NN GRAPH IN REAL BIOLOGICAL DATA

Figure 5: HS-SNE shows better 2-dimensional visualization results with clearer boundaries between
clusters than t-SNE due to the informative L2-normalization and geodesic distance.

Single-cell RNA sequencing is a popular field where biologists need to visualize high-dimensional
cell-gene expression data to 2-d embeddings to identify cell types (Cakir et al., 2020). We uti-
lized real biological datasets related to the tumor micro-environment, derived from single-cell RNA
sequencing studies on lung cells (Guo et al., 2020), melanoma cells (Li et al., 2020), and kidney
cells (Zhang et al., 2021), to evaluate HS-SNE. These datasets were obtained from the TISCH
project (Sun et al., 2021; Han et al., 2023), and we select some biological meaningful cell types
in each dataset to demonstrate the results. Figure 5 illustrates the comparison between HS-SNE and
t-SNE, depicting that the clusters in HS-SNE are more concentrated as anticipated, which is vital
for identifying cell types and subtypes.
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The scaled data points pairwise distance distribution derived from the lung cells dataset in Figure 6
substantiates our assertion that L2-normalization on the hypersphere coupled with geodesic distance
can yield more informative distances. The distances from HS-SNE have two clear peaks indicating
inter-cell type and intra-cell type distances, thus leading to visualization with clearer boundaries
between clusters. The Euclidean distance in t-SNE, when accompanied by L1-normalization on the
hypersimplex, falls into a very small interval, manifesting as only one sharp peak.

Figure 6: Scaled distance distribution in real lung cells scRNA-seq dataset shows that HS-SNE can
better preserve distinguishable information than t-SNE. The k-Nearest Neighbor Accuracy on low-
dimensional embeddings also shows that HS-SNE outperform t-SNE visualization in terms of local
structure preservation.

In methods grounded on SNE, a crucial step involves the construction of the k-Nearest Neighbor (k-
NN) graph. The precision with which the nearest neighbors of a data point are classified as belonging
to the same type serves as a indicator of the quality of the constructed k-NN graph. To evaluate this,
we computed the accuracy of the k-Nearest Neighbors in the 2-dimensional embeddings of the lung
cells dataset, with k ranging from 1 to 75, considering the smallest category in this dataset comprises
75 examples. The results in Figure 6 illustrate that HS-SNE consistently outperforms t-SNE in
k-nearest neighbor accuracy. This suggests that, in comparison to traditional t-SNE employing
Euclidean distance, HS-SNE holds the capacity to generate a more accurate k-NN graph in low-
dimensional embedding, thereby enhancing the reliability of downstream analysis.

3.3 L2-NORMALIZATION AND GEODESIC DISTANCE ALSO BENEFITS UMAP

Figure 7: L2-normalization and geodesic distance are also
applicable for improving other distance-based manifold
learning such as UMAP as shown in the lung cells dataset.

Uniform Manifold Approximation
and Projection (UMAP) is another
dimensionality reduction technique
that is particularly effective for vi-
sualizing high-dimensional data in
lower-dimensional space, with bet-
ter ability to preserve both local
and global structures of the data.
Like t-SNE, UMAP is also based
on distance measures, so that L2-
normalization and geodesic distances
can be employed to enhance the gran-
ularity of the resulting projections.
We applied UMAP and a variant, Hy-
persphere UMAP, which integrates
L2-normalization and geodesic dis-
tances, to visualize the lung cells data
above. The results demonstrate a sig-
nificant improvement in the preserva-
tion of clusters structure of lung cell clusters, thereby underscoring the potential of L2-normalization
and geodesic distances in unraveling intricate data relationships in the high-dimensional dataset.
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4 DISCUSSION

In this paper, our primary focus has been on the simple Lp-normalization. We propose that Lp-
normalization is general with extensive application across various fields. Given the widespread us-
age of L1-normalization, we advocate for the adoption of the similarly structured L2-normalization
for manifold learning in high-dimensional data. This alternative approach not only enhances per-
formance but also requires minimal alterations to the existing model. Furthermore, the underlying
methodology of geodesic distance in L2-normalization resembles angular distance or cosine dis-
tance, providing a theoretical foundation for choosing these measures over the Euclidean distance.
In all, this report provides the theoretical underpinnings of these alternative distance metrics, rein-
forcing their utility in analyzing high-dimensional data by manifold learning.

5 CONCLUSION

In conclusion, we explored the impact of various Lp-normalization and geodesic distance on man-
ifold learning visualization. We showed that higher Lp-normalization can preserve more distin-
guishable distance information. However, estimating the geodesic distance for p > 2, which lacks
a closed-form solution, incurs a significantly large time complexity, rendering it impractical for
high-dimensional data. We illustrated that the marginal benefits of information preservation di-
minish as p increases. Through extensive experiments, L2-normalization exhibited commendable
capability in preserving information, while maintaining a balance with computational efficiency. To
validate the advantages of the L2-normalization hypersphere system compared to t-SNE with L1-
normalization and Euclidean distance, we developed HS-SNE, which produced clearer visualization
results in both simulated datasets and real biological datasets, and improving the downstream clus-
tering tasks, helping identifying important cell types. Consequently, we advocate for the utilization
of L2-normalization and geodesic distance in manifold learning to mitigate scale differences and
preserve the distinguishable distance information inherent in high-dimensional data.
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A APPENDIX

A.1 ILLUSTRATIVE EXAMPLE SETTINGS IN FIGURE 2

The illustrative scenario involving a random n-dimensional observation, denoted as x ∈ Rn, com-
prising n features, with x(i) representing the ith feature. Assume that each feature follows a uniform
distribution ranging from 0 to 1, satisfying ∀i, 0 ≤ x(i) ≤ 1. In this setting, the sample space of x,
labeled as S, corresponds to an n-dimensional hypercube. For instance, if n = 2, then S would be a
2-dimensional hypercube, essentially forming a square.

Denote the sample spaces of Lp-normalized points as SLp, and let PDF (d) be the probability
density of normalized points positioned at distance d from the point (0, 1). PDFSL1

and PDFSL1

are as follows.

PDFSL1
(d) =

{
1√

2(
√
2−d)2

, d ∈ [0,
√
2
2 )

1√
2d2

, d ∈ [
√
2
2 ,

√
2]

, PDFSL2
(d) =

{
1

2 cos2 (d) , d ∈ [0, π
4 )

1
2 cos2 (π

2 −d) , d ∈ [π4 ,
π
2 )

.

We scale all PDF to align the domain with x ∈ [0, 1]. This scaling process is denoted as

Pr(x) = µ · PDF (µ · x),

where µ = max(d). The graph of Pr(x) is depicted in Figure 2a, revealing that the probability den-
sity of L2-normalized points on sphere appears smoother, while the L1-normalized points exhibits a
steeper shape akin to a sharper peak. Furthermore, we present a heatmap showing normalized points
density in a 3-dimensional setting in Figure 2b. Importantly, this distinction in sharpness becomes
increasingly pronounced as dimensionality grows.
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