

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 THE DIFFERENCES BETWEEN DIRECT ALIGNMENT ALGORITHMS ARE A BLUR

Anonymous authors

Paper under double-blind review

ABSTRACT

Direct Alignment Algorithms (DAAs) simplify LLM alignment by directly optimizing policies, bypassing reward modeling and RL. While DAAs differ in their use of SFT (one-stage vs. two-stage) and the scalar score they optimize (likelihood vs. odds ratios), the key performance drivers remain underexplored. We present a systematic comparison and analyze a previously overlooked axis - the ranking objective (pairwise vs. pointwise). To isolate this factor, we propose a unified training framework across DAAs by (i) converting one-stage methods (ORPO, ASFT) into a two-stage pipeline with an explicit SFT phase and (ii) introducing a β parameter that places all methods in the same hyperparameter space and improves the quality of odds-ratio DAAs (ORPO, ASFT). Under this setup, the ranking objective emerges as the primary determinant of alignment quality, whereas the particular scalar score (policy-reference ratio vs. odds ratio) is secondary. We corroborate this on instruction-following tasks and further confirm it on math-reasoning benchmarks across model scales. Evidence suggests that this stems from how these objectives interact with prompt-specific biases, supported both by strictly controlled experiments and by observations on real data. Our findings underscore the need for nuanced evaluations in DAA research to avoid oversimplified claims of superiority.

1 INTRODUCTION

Direct Preference Optimization (DPO) (Rafailov et al., 2023), rooted in RLHF Ouyang et al. (2022); Stiennon et al. (2020), has led to a proliferation of Direct Alignment Algorithms (DAAs) (Meng et al., 2024; Azar et al., 2024; Chen et al., 2024). These methods differ in design: most adopt DPO’s two-stage paradigm, modifying the loss function and retaining a policy, reference ratio and temperature parameter β (Xiao et al., 2024; D’Oosterlinck et al., 2025), while others, such as ORPO and ASFT (Hong et al., 2024; Wang et al., 2024), unify alignment and supervised fine-tuning (SFT) in a single stage using an odds-ratio objective without a reference policy. This variety has resulted in a fragmented literature, making it difficult to isolate which design choices actually drive improvements in alignment quality.

In this work, to enable controlled comparison of algorithmic factors, we restrict our analysis to the offline setting with static datasets of binary preferences, avoiding confounding effects from online data collection or more complex feedback structures. We systematically analyze one-stage DAAs and provide a detailed motivation for converting them into a two-stage pipeline with an explicit SFT phase. Crucially, we show that introducing a β parameter, typically absent in one-stage odds-ratio methods, serves as an effective tempering mechanism and is essential for unlocking their full performance. By unifying all methods under this protocol, we place single- and two-stage DAAs in a common hyperparameter space and enable controlled comparison. Within this framework, we conduct comprehensive empirical studies on instruction-following and math-reasoning benchmarks using Llama 3 (3B, 8B) and Qwen 2.5 (7B, 14B) models, and systematically examine the data efficiency of DAAs with respect to SFT data volume.

Our main contributions are: (i) We establish a unified training protocol for DAAs, demonstrating that moving the SFT term out of originally one-stage losses into a separate SFT phase and using an alignment-only loss with a proposed β parameter is essential for maximizing performance, even for odds-ratio objectives. (ii) Within this unified setting, we find that previously reported advantages

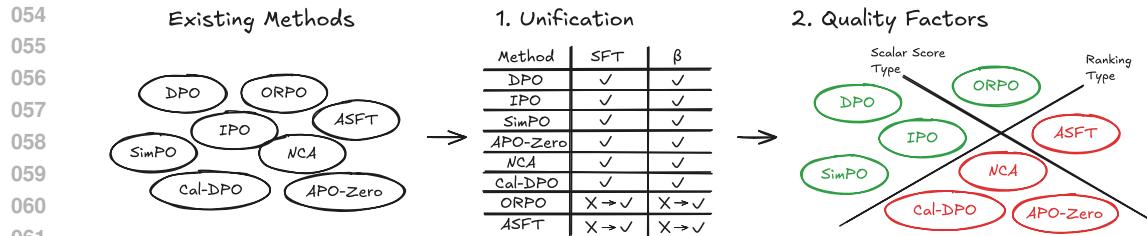


Figure 1: **Overview of our work and main finding.** **Left:** Existing DAA methods differ in use of SFT and β . **Center:** Our unified protocol makes SFT and β explicit for all, bringing ORPO/ASFT into the same framework. **Right:** We compare DAs along two axes (*scalar score type* and *ranking type*) and find that **ranking type** (pairwise, green vs. pointwise, red) is the main determinant of alignment quality after unification.

of various DAs often disappear: after tuning, all methods perform similarly or worse than DPO. Our results indicate that *ranking type* (pairwise vs. pointwise), rather than scalar-score choice or heuristic loss design, is the primary determinant of alignment quality, with both score types yielding comparable results. (iii) We provide evidence that observed performance gaps arise from the interaction between each objective and prompt-specific data biases, explaining why differences among DAs emerge primarily at intermediate task difficulty; outside this regime, the distinctions between DAs is a *blur*.

Among our findings, we observe that most methods are highly data-efficient: with 5–10% SFT, models reach $\geq 95\%$ of their full-data score. Our findings challenge claims of algorithmic superiority in the DAA literature and underscore the importance of systematic, controlled evaluation.

2 PRELIMINARIES

2.1 MODELING SEQUENCES

Given a sequence y of length $|y|$, the log-probability can be written as $\log p(y) = \sum_{i=1}^{|y|} \log p(y_i \mid y_{<i})$, which may also be conditioned on another sequence x . In practice, optimizing normalized log-probability $\frac{1}{|y|} \log p(y) = \log(p(y)^{\frac{1}{|y|}})$ often improves numerical stability and leads to better training. However, once normalized, the resulting quantity is no longer a strict probability measure. Throughout this paper, whenever we write $p(y)$, we refer to this normalized version $p(y)^{\frac{1}{|y|}}$. Whenever a method does not apply this normalization, we indicate it explicitly.

Welleck et al. (2019) introduced a log-unlikelihood term that reduces the probability of certain undesirable tokens: $\log(1 - p(c \mid y_{<i}))$ for $c \in \mathcal{C}$. It can be extended to an entire sequence as $\log(1 - p(y))$.

2.2 REINFORCEMENT LEARNING FROM HUMAN FEEDBACK

Reinforcement Learning from Human Feedback (RLHF) (Ouyang et al., 2022; Stiennon et al., 2020) is a prominent approach to aligning language models. It generally has three stages:

- **Supervised Fine-Tuning (SFT).** During the SFT stage, the model π_θ is trained to follow instructions by maximizing the probability of correct output y given input x . For a single training pair (x, y) , we define the per-sample SFT loss as $\mathcal{L}_{\text{SFT}}(\pi_\theta, x, y) = -\log \pi_\theta(y \mid x)$. During fine-tuning, we minimize the expectation of this per-sample loss over the training dataset \mathcal{D} : $\mathbb{E}_{(x, y) \sim \mathcal{D}} [\mathcal{L}_{\text{SFT}}(\pi_\theta, x, y)]$.
- **Reward Modeling (RM).** A reward model $r_\psi(x, y)$ produces a satisfaction score. It is trained on preference pairs using the Bradley-Terry model (Bradley & Terry, 1952): $\mathcal{L}_{\text{RM}}(r_\psi) = -\mathbb{E}_{(x, y_w, y_l) \sim \mathcal{D}} [\log \sigma(r_\psi(x, y_w) - r_\psi(x, y_l))]$, where y_w is the preferred response and y_l is the less preferred one.
- **Reward Maximization.** The objective is to generate responses that maximize the learned reward, with a KL penalty to prevent reward hacking: $\max_{\pi_\theta} \mathbb{E}_{x \sim \mathcal{D}, y \sim \pi_\theta(y \mid x)} [r_\phi(x, y)] -$

108 $\beta \mathbb{D}_{\text{KL}}[\pi_\theta(x, y) \parallel \pi_{\text{ref}}(x, y)]$. Reinforcement learning (RL) algorithms are commonly used to op-
 109 timize this objective (Schulman et al., 2017; Ouyang et al., 2022).
 110

111 **2.3 DIRECT ALIGNMENT ALGORITHMS**
 112

113 Direct alignment algorithms replace the reward modeling and RL stages (but keep the SFT phase)
 114 with a single alignment step. Various preference-optimization loss functions have been proposed,
 115 employing these core components:

116 • $r_\theta^{\text{ref}}(y, x) = \log\left(\frac{\pi_\theta(y|x)}{\pi_{\text{ref}}(y|x)}\right)$ from DPO (Rafailov et al., 2023), which acts as an implicit reward
 117 $\beta r_\theta^{\text{ref}}$. No length normalization is used.
 118

119 • $r_\theta^{\text{odds}}(y, x) = \log\left(\frac{\pi_\theta(y|x)}{1 - \pi_\theta(y|x)}\right)$ utilized in ORPO (Hong et al., 2024), representing the odds of
 120 generating y versus not generating it. While not directly derived from an RL objective in the
 121 same way as r_θ^{ref} , its empirical success in methods like ORPO and ASFT motivates its inclusion
 122 in our comparative analysis.
 123

124 Several Direct Alignment Algorithms use these notations. Information on sequence probabili-
 125 ty normalization for these methods is presented in Appendix A.1. **Direct Preference Opti-**
 126 **mization (DPO)** (Rafailov et al., 2023): $\mathcal{L}_{\text{DPO}} = -\log \sigma(\beta r_\theta^{\text{ref}}(y_w, x) - \beta r_\theta^{\text{ref}}(y_l, x))$ (this
 127 method does not normalize probabilities by length);² **Identity Preference Optimization (IPO)**
 128 (Azar et al., 2024): $\mathcal{L}_{\text{IPO}} = (r_\theta^{\text{ref}}(y_w, x) - r_\theta^{\text{ref}}(y_l, x) - \frac{1}{2\beta})^2$; **Simple Preference Opti-**
 129 **mization (SimPO)** (Meng et al., 2024): $\mathcal{L}_{\text{SimPO}} = -\log \sigma(\beta \log \pi_\theta(y_w, x) - \beta \log \pi_\theta(y_l, x) - \gamma)$;
 130 **Noise Contrastive Alignment (NCA)** (Chen et al., 2024): $\mathcal{L}_{\text{NCA}} = -\log \sigma(\beta r_\theta^{\text{ref}}(y_w, x)) -$
 131 $0.5 \log \sigma(-\beta r_\theta^{\text{ref}}(y_w, x)) - 0.5 \log \sigma(-\beta r_\theta^{\text{ref}}(y_l, x))$; **Calibrated Direct Preference Opti-**
 132 **mization (Cal-DPO)** (Xiao et al., 2024): $\mathcal{L}_{\text{Cal-DPO}} = -\log \sigma(r_\theta^{\text{ref}}(y_w, x) - r_\theta^{\text{ref}}(y_l, x)) + (r_\theta^{\text{ref}}(y_w, x) -$
 133 $\frac{1}{2\beta})^2 + (r_\theta^{\text{ref}}(y_l, x) + \frac{1}{2\beta})^2$; **Anchored Preference Optimization Zero (APO-Zero)** (D’Oosterlinck
 134 et al., 2025): $\mathcal{L}_{\text{APO-Zero}} = -\sigma(\beta r_\theta^{\text{ref}}(y_w, x)) + \sigma(\beta r_\theta^{\text{ref}}(y_l, x))$.
 135

136 **2.4 ONE-STAGE ALIGNMENT METHODS**
 137

138 One-stage alignment (as a subset of DAA methods) merges SFT and direct alignment in one step by
 139 adding their losses: $\mathcal{L}_{\text{Single}}(\pi_\theta) = \mathbb{E}_{(x, y_w, y_l) \sim \mathcal{D}} [\mathcal{L}_{\text{SFT}}(\pi_\theta, x, y_w) + \lambda \mathcal{L}_{\text{Align}}(\pi_\theta, x, y_w, y_l)]$, where
 140 λ is a hyperparameter, and no reference policy π_{ref} is required.
 141

142 One-stage methods using odds ratios include:
 143

144 **Odds Ratio Preference Optimization (ORPO)** (Hong et al., 2024) is defined as: $\mathcal{L}_{\text{ORPO}} =$
 145 $-\log \pi_\theta(y_w|x) - \lambda \underbrace{\log \sigma(r_\theta^{\text{odds}}(y_w, x) - r_\theta^{\text{odds}}(y_l, x))}_{-\mathcal{L}_{\text{ORPO Align}}}$.
 146

147 **Aligned Supervised Fine-Tuning (ASFT)** (Wang et al., 2024) is defined as: $\mathcal{L}_{\text{ASFT}} =$
 148 $-\log \pi_\theta(y_w|x) - \lambda \underbrace{\left(\log \sigma(r_\theta^{\text{odds}}(y_w, x)) + \log \sigma(-r_\theta^{\text{odds}}(y_l, x)) \right)}_{-\mathcal{L}_{\text{ASFT Align}}}$.
 149

150 **3 METHOD**
 151

152 **3.1 GENERALIZING ASFT AND ORPO**
 153

154 Our goal in this paper is to characterize the differences among various DAAs. Before proceeding,
 155 we summarize the objectives of ASFT and ORPO. These approaches are referred to as *one-stage*
 156 methods because they perform alignment immediately after the base model is obtained, in contrast
 157 to methods that insert a separate SFT stage before alignment. Consequently, ASFT and ORPO omit
 158 the parameter β ; as one-stage methods, the distance to a reference policy is not required. At first
 159

160 ²Unless otherwise noted, the expectation over $(x, y_w, y_l) \sim \mathcal{D}$ is taken.
 161

162 glance, it may seem unnecessary to introduce β into one-stage methods, yet we will demonstrate
 163 that neither the one-stage design nor the absence of β is mandatory for ASFT and ORPO.
 164

165 **3.1.1 ORPO AND ASFT CAN OPERATE WITHOUT THE SFT LOSS TERM AND AS TWO-STAGE
 166 METHODS**

167 First, note that $\mathcal{L}_{\text{ASFT}_{\text{Align}}} = -\log \pi_\theta(y_w|x) - \log(1 - \pi_\theta(y_l|x))$, and thus $\mathcal{L}_{\text{ASFT}} = -(1 +$
 168 $\lambda) \log \pi_\theta(y_w|x) - \lambda \log(1 - \pi_\theta(y_l|x))$; see Appendix C for a proof. Second, $\mathcal{L}_{\text{ORPO}} = \mathcal{L}_{\text{ASFT}} +$
 169 $\lambda \log(\pi_\theta(y_w|x)(1 - \pi_\theta(y_l|x)) + \pi_\theta(y_l|x)(1 - \pi_\theta(y_w|x)))$; see Appendix D for details.

170 From these equations it follows that $\mathcal{L}_{\text{ORPO}} \leq \mathcal{L}_{\text{ASFT}}$ and $\mathcal{L}_{\text{ORPO}_{\text{Align}}} \leq \mathcal{L}_{\text{ASFT}_{\text{Align}}}$ (see Ap-
 171 pendix D.2).

172 These results lead to three observations: (i) $\mathcal{L}_{\text{ASFT}}$ upper-bounds $\mathcal{L}_{\text{ORPO}}$; therefore, minimizing
 173 the former automatically minimizes the latter. (ii) $\mathcal{L}_{\text{ASFT}_{\text{Align}}}$ can be regarded as the simplest DAA
 174 loss, mirroring the structure of BCE (see Appendix C.3); (iii) Most importantly, the alignment terms
 175 of ORPO and ASFT already include the NLL component ($-\log \pi_\theta(y_w|x)$), making the additional
 176 \mathcal{L}_{SFT} term in one-stage formulations potentially redundant. Thus, we hypothesize that removing
 177 the explicit \mathcal{L}_{SFT} term and instead using a separate SFT stage followed by alignment will improve
 178 performance, motivating our **RQ1**: *“Does converting ORPO and ASFT to a two-stage pipeline
 179 improve alignment quality?”* and experiments in Section 5.1, where we compare ASFT and ORPO
 180 both in their original one-stage form and in a two-stage variant that follows an explicit SFT phase.
 181

182 **3.1.2 TEMPERING ASFT AND ORPO**

183 We now revisit the original one-stage methods from Section 2.4 and examine how the alignment
 184 terms $\mathcal{L}_{\text{ORPO}_{\text{Align}}}$ and $\mathcal{L}_{\text{ASFT}_{\text{Align}}}$ compare. These terms optimize preferences and, depending on
 185 the coefficient λ , can dominate or have a smaller impact on the final loss.

186 While $\mathcal{L}_{\text{ASFT}_{\text{Align}}}$ and $\mathcal{L}_{\text{ORPO}_{\text{Align}}}$ use r_θ^{odds} , many DAAs incorporate a scaling parameter β . To
 187 enable a unified comparison and investigate the role of β , we introduce it to scale r_θ^{odds} :

$$\mathcal{L}_{\text{ASFT}_{\text{Align}}}^\beta = -\log \sigma(\beta r_\theta^{\text{odds}}(y_w, x)) - \log \sigma(-\beta r_\theta^{\text{odds}}(y_l, x)), \quad (1)$$

$$\mathcal{L}_{\text{ORPO}_{\text{Align}}}^\beta = -\log \sigma(\beta r_\theta^{\text{odds}}(y_w, x) - \beta r_\theta^{\text{odds}}(y_l, x)). \quad (2)$$

188 Both $\mathcal{L}_{\text{ASFT}}^\beta$ and $\mathcal{L}_{\text{ORPO}}^\beta$ generalize their vanilla counterparts (recovering them when $\beta = 1$). As
 189 in DPO, β can be viewed as a *temperature* or *scaling* parameter that regulates the intensity of the
 190 preference for “good” odds. See Appendix E for gradient formulations and more details on these
 191 methods.

192 This unification (introduced not as a proposal of new standalone methods, but to enable consistent
 193 evaluation) raises **RQ2**: *“Does the tempering factor enhance the alignment quality of ASFT and
 194 ORPO?”* in Section 5.2 and enables a direct comparison of all methods across different setups.

195 **3.2 ON THE DIFFERENCE BETWEEN DIRECT ALIGNMENT ALGORITHMS**

196 By unifying ORPO and ASFT within a common two-stage framework parameterized by β , we
 197 place all DAAs on comparable footing. In this view, two axes of variation become explicit: (i) the
 198 scalar score used in the objective (r_θ^{ref} vs. r_θ^{odds}), and (ii) whether the loss is defined over pairwise
 199 preferences or pointwise scores. The first axis follows directly from how existing losses are written,
 200 but the second has rarely been highlighted in prior work despite being a fundamental design choice.

201 The distinction between r_θ^{ref} and r_θ^{odds} is structural. r_θ^{ref} originates in RLHF, whereas the r_θ^{odds}
 202 is derived from odds-ratio objective. Empirical evidence comparing these scores in a standardized
 203 setting is, to our knowledge, still scarce. In contrast, the difference between pointwise and pairwise
 204 methods is functional: pairwise methods (DPO, IPO, SimPO, ORPO) depend on relative reward dif-
 205 ferences between candidate texts, whereas pointwise methods (APO-Zero, NCA, Cal-DPO, ASFT)

206 ¹SimPO does not explicitly use a reference policy, but can be treated similarly if a uniform reference policy
 207 is assumed.

216 maximize the probability of chosen sequences and minimize that of rejected ones independently of
 217 their mutual gap. This echoes empirical findings in learning-to-rank (Liu et al., 2009; Burges et al.,
 218 2005; Li, 2011; Melnikov et al., 2016), where pairwise objectives often yield more robust ranking
 219 signals than pointwise ones, though the precise reasons and applicability to LLM alignment remain
 220 under active investigation.

221 The experiments reported in Section 5.3 examine our **RQ3**: *“What factors of DAAs affect alignment*
 222 *quality?”* – the scalar score (r_θ^{ref} vs. r_θ^{odds}) or the ranking type (pairwise vs. pointwise) – has the
 223 greatest impact on DAA performance.

225 4 EXPERIMENTAL SETUP

226 We systematically compare and evaluate DAA methods using a standard training and instruction-
 227 following evaluation framework Tunstall et al. (2023); Meng et al. (2024); Gorbatovski et al. (2024).
 228 Our main experiments use the Llama 3.1 8B model AI@Meta (2024), trained on the UltraChat Ding
 229 et al. (2023) and UltraFeedback (UF) Cui et al. (2023) datasets, and evaluated on the AlpacaEval 2
 230 Dubois et al. (2024); Li et al. (2023) and ArenaHard Li et al. (2024b) benchmarks. For the Reddit
 231 TL;DR Stiennon et al. (2020) task, we employ the Llama 3.2 3B model, comparing it side by side
 232 with the “golden” validation split Rafailov et al. (2023; 2024) using the prompt in Appendix K.

235 4.1 BASE VS SFT-INITIALIZED MODELS.

236 To investigate the impact of SFT and the applicability of one-stage loss $\mathcal{L}_{\text{Align}}$ component, we use
 237 the UF dataset for SFT (avoiding additional knowledge from UltraChat), and for pairwise preference
 238 optimization. We carefully tuned the hyperparameters to optimize each method’s performance.

239 For the *Base-initialized* setup, we perform a grid search over learning rates $\{6 \times 10^{-6}, 8 \times 10^{-6}, 1 \times$
 240 $10^{-5}\}$, inspired by values suggested in ORPO and ASFT, and explore $\lambda \in \{0.1, 0.2, 0.5, 1.0\}$ for
 241 1 and 2 training epochs keeping a similar budget to compare with the *SFT-initialized* setup.

242 In the *SFT-initialized* setup, we experiment with both $\mathcal{L}_{\text{ORPOAlign}}$ and $\mathcal{L}_{\text{ASFTAlign}}$ alone, as well as
 243 in combination with \mathcal{L}_{SFT} , following the original methods. We tune the learning rates $\{5 \times 10^{-7}, 7 \times$
 244 $10^{-7}, 1 \times 10^{-6}\}$ for one epoch, starting from an SFT model trained for 1 epoch at 6×10^{-6} .

247 4.2 β SENSITIVITY.

248 Following the adaptation of ASFT and ORPO to include a β parameter (Section 3.1.2), all DAAs
 249 under consideration can now be compared on a more consistent basis. We conduct a comprehensive
 250 β -sensitivity analysis to (i) evaluate the impact of the β parameter on the performance of ORPO and
 251 ASFT, and (ii) determine the peak alignment capabilities and relative performance of each method.
 252 We consider three scenarios:

253 **Llama 3.2 3B TL;DR.** A relatively simpler Reddit TL;DR summarization task, evaluated via GPT
 254 side-by-side comparison on 500 samples from the “golden” validation split Rafailov et al. (2023;
 255 2024).

256 **Llama 3.2 3B UF.** The UltraChat and UF datasets serve as more challenging alignment settings due
 257 to their coverage of diverse and complex tasks, including instruction following, code generation,
 258 creative writing, common sense reasoning, mathematical problem-solving, and general knowledge.

259 **Llama 3.1 8B UF.** A larger, more capable model on the same UltraChat and UF datasets, allowing
 260 us to assess how increased model capacity influences β -sensitivity in these diverse tasks.

261 For the UF-based experiments, we measure quality using AlpacaEval 2 Length-Controlled (LC)
 262 Win-Rate and ArenaHard (AH) WR; for TL;DR, we rely on GPT-4o (2024-08-06) preference judgments.
 263 In each scenario, we sweep at least six β values and four learning rates $\{1 \times 10^{-6}, 7 \times$
 264 $10^{-7}, 5 \times 10^{-7}, 3 \times 10^{-7}\}$ to determine peak alignment capabilities and relative performance.
 265 As an auxiliary diagnostic, we report KL divergence to a reference model and plot quality–KL
 266 Pareto fronts. For *RQ3*, we also test DAA peak-performance generalization on math reasoning with
 267 Qwen 2.5 (7B/14B) Yang et al. (2024) (Appendix B.1). Further implementation details, including
 268 training procedures and generation hyperparameters, are provided in Appendix A.

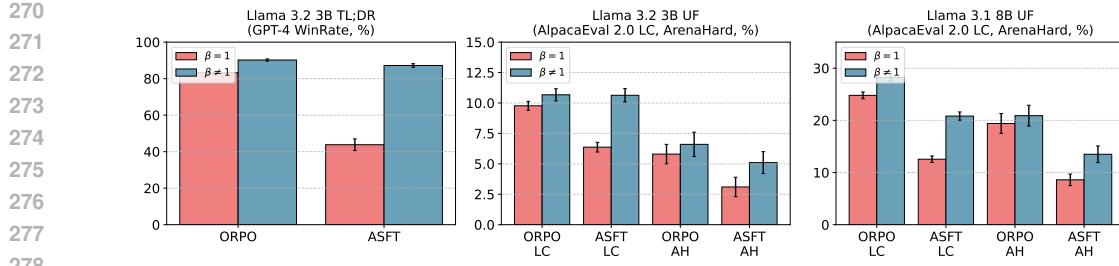


Figure 2: **Impact of the β Parameter on ASFT and ORPO Alignment Quality.** The plot shows how tuning β (Section 3.1.2) affects both ASFT and ORPO performance. Results are reported for GPT-4 Win Rate in the Llama 3.2 3B TL;DR setup and for AlpacaEval 2 LC Win Rate in the Llama 3.1 8B UF scenario. All other hyperparameters (e.g., learning rates) are selected via grid search, using each method’s best configuration at $\beta = 1$ as the baseline. See Section 5.2 for more details.

4.3 SFT DATA QUANTITY.

Our findings in Section 5.1 show that introducing an explicit SFT phase improves alignment quality - even for originally one-stage methods such as ORPO and ASFT. This enables a unified two-stage setup across all DAAs, where alignment begins from an SFT-initialized model. Given prior work on instruction tuning data efficiency Zhou et al. (2024) and distribution shift problem Xu et al. (2024), we prepare ablation study on sensitive different DAAs to SFT data volume.

We prepared seven SFT checkpoints by training Llama 3.1 8B Base on 1%, 3%, 5%, 10%, 25%, 50%, and 100% of the UltraChat dataset (ranging from 2,079 to 207,865 records) using our *SFT-initialized* setup. We then applied each alignment method – using *optimal hyperparameters* from our β -sensitivity experiments (Appendix Table 8) – to these seven SFT checkpoints and the original base model. Finally, we used AlpacaEval 2 LC to assess how model performance varies with the amount of SFT data used.

5 RESULTS

5.1 RQ1: DOES CONVERTING ORPO AND ASFT TO A TWO-STAGE PIPELINE IMPROVE ALIGNMENT QUALITY?

As shown in Table 1, the performance of ORPO and ASFT methods improves significantly when the alignment loss $\mathcal{L}_{\text{Align}}$ is applied after a preceding SFT stage. In particular, ORPO achieves results comparable to classical DPO in both LC Win Rate and AH WR metrics. In contrast, ASFT shows notable gains in AH WR after the SFT stage, although it still underperforms compared to ORPO or DPO. This performance difference aligns with our theoretical insights (Corollary D.2), as optimizing the ASFT objective, an upper bound on ORPO, appears less effective.

For one-stage methods, the use of $\lambda = 1$ provides the best results within the explored grid of $\lambda \in \{0.1, 0.2, 0.5, 1.0\}$, especially after two epochs of training. However, combining \mathcal{L}_{SFT} and $\mathcal{L}_{\text{Align}}$ in a one-stage setup leads to suboptimal results compared to explicitly separating these phases, even when starting from an SFT-

Init	Method	LC% (std)	WR% (std)	AH% (CI)
Base	SFT	6.7 (0.43)	4.5 (0.63)	3.5 (-0.7, 0.8)
SFT	ORPO	24.1 (0.84)	<u>17.8</u> (1.17)	<u>15.3</u> (-1.6, 1.8)
SFT	ASFT	16.4 (0.72)	11.9 (0.99)	10.6 (-1.2, 1.3)
Base	ORPO [†]	14.8 (0.71)	10.3 (0.95)	8.4 (-1.3, 1.3)
Base	ASFT [†]	14.5 (0.73)	10.2 (0.94)	7.5 (-1.1, 1.2)
SFT	ORPO [†]	13.4 (0.69)	9.3 (0.91)	7.7 (-0.9, 1.1)
SFT	ASFT [†]	11.4 (0.63)	7.5 (0.83)	7.5 (-1.1, 1.1)
SFT	DPO	23.4 (0.85)	20.0 (1.18)	17.5 (-1.8, 1.8)

Table 1: **Base and SFT-initialized alignment methods on the Llama 3.1 8B model with the UF dataset.** SFT-initialized methods demonstrate better performance compared to their traditional formulations without \mathcal{L}_{SFT} . Results marked with [†] correspond to training with \mathcal{L}_{SFT} , using the best hyperparameters: $\text{lr} = 1 \times 10^{-6}$ for ORPO and $\text{lr} = 7 \times 10^{-7}$ for ASFT. For other setups, the best hyperparameters are: $\text{lr} = 5 \times 10^{-7}$ for standard SFT ORPO/ASFT, and $\text{lr} = 1 \times 10^{-5}/6 \times 10^{-6}$ for Base ORPO/ASFT.

324 trained model. Incorporating an explicit SFT stage improves overall performance for ORPO and
 325 ASFT methods. Therefore, all further experiments focus on applying the $\mathcal{L}_{\text{Align}}$ components of
 326 ORPO and ASFT on top of an SFT-trained model.
 327

328 5.2 RQ2: DOES THE TEMPERING FACTOR ENHANCE THE ALIGNMENT QUALITY OF ASFT 329 AND ORPO?

330 Figure 2 illustrates that introducing the β parameter (as described in Section 3.1.2) improves the
 331 performance of both ASFT and ORPO $\mathcal{L}_{\text{Align}}$ in our tested scenarios. For a fair comparison, we
 332 used the best-performing learning rate for each baseline ($\mathcal{L}_{\text{ASFTAlign}}$ and $\mathcal{L}_{\text{ORPOAlign}}$) while fixing
 333 $\beta = 1$. In the Llama 3.2 3B TL;DR experiment, these adjustments led to an improvement of +7.0
 334 for ORPO and +43.4 for ASFT in GPT-4 WR. In the Llama 3.1 8B UF setup, tuning β provided
 335 additional gains of +3.46 for ORPO and +8.27 for ASFT on the AlpacaEval 2 LC WR.
 336

337 5.3 RQ3: WHAT FACTORS OF DAAS AFFECT ALIGNMENT QUALITY?

338 Following the setup and evaluation scenarios de-
 339 scribed in Section 4.2, we assess the peak per-
 340 formance and KL divergence of each DAA un-
 341 der consideration, including the unified $\mathcal{L}_{\text{ASFTAlign}}^{\beta}$
 342 and $\mathcal{L}_{\text{ORPOAlign}}^{\beta}$, under a common hyperparameter
 343 search space and two-stage training setup. Our
 344 analysis emphasizes how differences in scalar score (r_{θ}^{ref}
 345 vs. r_{θ}^{odds}) and objective formulation (pairwise vs.
 346 pointwise) affect alignment quality.
 347

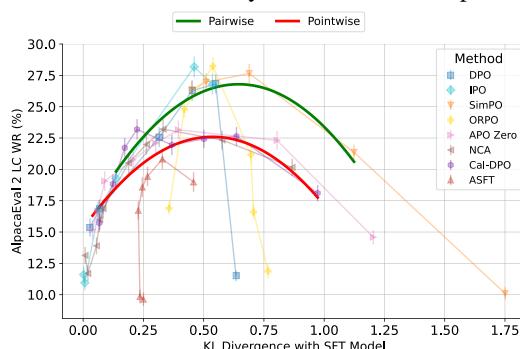
348 **Llama 3.2 3B TL;DR:** Table 2 presents a com-
 349 parison of all methods on the Reddit TL;DR val-
 350 idation subset, using their best hyperparameters.
 351 Most methods achieve a GPT-4 Win Rate exceed-
 352 ing 90%, indicating robust summarization per-
 353 formance on this relatively straightforward task. ASFT
 354 is slightly lower at 87.2% Win Rate, but still demon-
 355 strates strong overall results.
 356

357 **Llama 3.2 3B UF and Llama 3.1 8B UF:** Table 3 summarizes the results for both Llama 3.2
 358 3B UF and Llama 3.1 8B UF setups. For the smaller 3B model, the methods perform similarly
 359 on LC WR, with slight differences emerging on AH. Although these differences align with the
 360 pairwise vs. pointwise distinction (e.g., DPO, IPO, ORPO, SimPO vs. APO-Zero, NCA, Cal-
 361 DPO, ASFT), no single approach consistently dominates across metrics. The overlap in confidence
 362 intervals further indicates that the results for these methods are statistically similar in this setup, with
 363 no clear separation.
 364

365 In contrast, the 8B model more clearly dif-
 366 ferentiates performance by ranking type: pair-
 367 wise methods generally achieve higher peak
 368 scores on AlpacaEval 2 and ArenaHard, with
 369 ORPO best overall. On Qwen 2.5 7B/14B Math
 370 CoT, pairwise DAAs similarly match or exceed
 371 pointwise ones, while scalar score type (r_{θ}^{ref} vs.
 372 r_{θ}^{odds}) yields no consistent performance differ-
 373 ences (Appendix B.3). Note that r_{θ}^{odds} -based
 374 methods do not start from $\text{KL} \approx 0$ at high β
 375 since there is no explicit constraint toward π_{ref} ;
 376 gradient scaling via β still implicitly limits up-
 377 date magnitude (see Appendix E). Pareto fronts
 378 for the remaining setups are provided in Ap-
 379 pendix H. For completeness, see Appendix I for
 380 results with varying lr/β ratios.
 381

	Win %	Tie %	Lose %
SFT	35.6	4.8	59.6
DPO	91.2	1.0	7.8
IPO	91.4	0.4	8.2
SimPO	91.6	0.2	8.2
ORPO	90.2	0.6	9.2
APO Zero	92.6	0.6	6.8
NCA	91.8	1.0	7.2
Cal-DPO	91.4	0.4	8.2
ASFT	87.2	1.0	11.8

382 Table 2: **GPT-4 Evaluation of Llama 3.2 3B**
 383 **TL;DR setup.** The comparison shows mul-
 384 tiple alignment methods (rows) using their
 385 best hyperparameters. Most methods exceed
 386 90% Win Rate; ASFT achieves 87.2%, main-
 387 taining robust summarization performance.
 388 See Section 5.3 for more details.
 389



390 **Figure 3: Pareto front for alignment quality**
 391 **and KL divergence.** Results for Llama 3.1 8B
 392 UF on AlpacaEval 2 LC. Methods are grouped
 393 into pairwise and pointwise categories, with pair-
 394 wise achieving higher LC values while remaining
 395 within overlapping confidence intervals.
 396

Method	Llama 3.2 3B UF			Llama 3.1 8B UF		
	AlpacaEval 2		ArenaHard	AlpacaEval 2		ArenaHard
	LC% (std)	WR% (std)	WR% (CI)	LC% (std)	WR% (std)	WR% (CI)
SFT	5.02 (0.34)	3.21 (0.55)	1.4 (-0.4, 0.4)	10.27 (0.54)	5.44 (0.70)	2.6 (-0.5, 0.6)
DPO	11.43 (0.58)	11.79 (0.99)	6.8 (-1.0, 0.9)	26.82 (0.77)	23.69 (1.25)	19.0 (-1.9, 1.8)
IPO	<u>11.24</u> (0.60)	11.67 (1.01)	6.8 (-1.0, 1.1)	<u>28.18</u> (0.83)	24.43 (1.26)	19.1 (-1.6, 1.5)
SimPO	10.56 (0.44)	<u>11.94</u> (0.95)	6.4 (-1.0, 1.1)	27.65 (0.77)	<u>25.62</u> (1.29)	21.5 (-1.9, 1.9)
ORPO	10.67 (0.50)	12.23 (0.97)	6.6 (-1.0, 1.1)	28.25 (0.71)	28.59 (1.33)	<u>20.9</u> (-2.0, 2.0)
APO Zero	10.36 (0.53)	11.22 (0.98)	6.0 (-1.0, 0.9)	23.15 (0.76)	19.03 (1.18)	17.3 (-1.8, 1.8)
NCA	10.33 (0.53)	11.02 (0.97)	5.1 (-0.7, 0.8)	23.21 (0.80)	18.67 (1.17)	15.1 (-1.5, 1.6)
Cal-DPO	10.62 (0.57)	10.15 (0.94)	4.8 (-0.9, 0.9)	23.19 (0.82)	18.85 (1.18)	15.2 (-1.5, 1.6)
ASFT	10.63 (0.55)	9.21 (0.88)	5.1 (-0.9, 0.9)	20.82 (0.79)	16.34 (1.13)	13.5 (-1.6, 1.5)

Table 3: **AlpacaEval 2 and ArenaHard Results for Llama 3.2 3B and Llama 3.1 8B UF.** The SFT model was trained on the UltraChat dataset. The best hyperparameters for each method were selected according to Section 4.2. Bold values indicate the best performance for each benchmark, while underlined values represent the second-best performance. See Section 5.3 for more details.

5.4 ABLATION STUDY ON SFT DATA VOLUME SENSITIVITY

Transforming ORPO and ASFT into two-stage methods enables a direct ablation on SFT data volume. Figures 4a and 4b show that all methods tend to saturate around 10% of UltraChat, reaching $\geq 95\%$ of their full-data performance. Pairwise methods generally achieve higher alignment quality than pointwise ones once the data exceeds 5%.

In the low-data regime (1-5%), DPO and IPO - both using a reference policy perform better. Interestingly, at 3% SFT, ASFT surpasses all other pointwise methods and some pairwise ones (e.g., ORPO, SimPO), while remaining behind DPO and IPO. These trends suggest nuanced dynamics worth further investigation and research. Nonetheless, the overall conclusion is clear - all DAAs benefit from SFT and require only 5-10% of the data to realize most of their alignment potential, regardless of their pairwise or pointwise formulation.

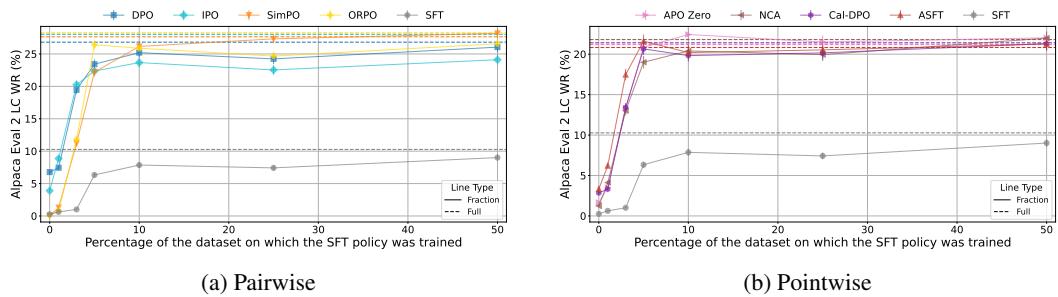


Figure 4: **Impact of SFT Dataset Size on Alignment Quality.** Performance of the pairwise (a) and pointwise (b) alignment methods on AlpacaEval 2 (LC WR metric) when the SFT policy is trained on different fractions of the UltraChat dataset. Even a small fraction of SFT data (e.g., 5-10%) yields substantial gains over starting from the raw base model. See Section 5.4 for more details.

6 DISCUSSION

Having combined all the results, one key question remains: *Why do pairwise objectives outperform pointwise ones?* First, assume that tasks may vary in difficulty depending on both the dataset and the model size. At the two extremes – very easy (simple datasets and large models) or very hard (difficult datasets and small models) – we observe (Llama 3.2 3B TL;DR/UF setups), little difference in quality between pairwise and pairwise approaches. For tasks of intermediate difficulty, however, pairwise methods consistently outperform pointwise ones (Llama 3.1 8B UF).

To understand why, observe that both r_θ^{ref} and r_θ^{odds} can be written using a single scoring function $r_\theta(x, y)$ defined over prompt-completion pairs. This allows us to define the marginalized score $\mathbb{E}_y[r_\theta(x, y)]$, which reflects how high or low will the average score be across all y for a fixed x . Any dataset (and therefore any model trained on it) inherits a bias that mirrors $b_\theta(x) := \mathbb{E}_y[r_\theta(x, y)]$.

We hypothesize that observed performance gap stems from how each objective interacts with this bias, as formalized in Appendix G. This analysis assumes offline, static preference data, consistent with the scope of our experiments, and our conclusions do not automatically carry over to online or iterative preference optimization (e.g., Online DPO) settings. Once a model has learned part of the ranking among continuations for a prompt x , further optimization can move along two qualitatively different directions: (i) improving the ranking on harder or mis-ranked examples by changing the gaps $r_\theta(x, y_w) - r_\theta(x, y_l)$, and (ii) shifting all scores for that prompt in roughly the same direction, thereby modifying the marginalized score $b_\theta(x)$ while largely preserving the order. In the notation of Appendix G, pointwise objectives generically induce a non-zero total score gradient $G_\theta(x)$ and thus explicitly incentivize updates of type (ii), whereas pairwise objectives satisfy $G_\theta(x) = 0$ and are structurally indifferent to such uniform shifts.

Intuitively, pointwise methods keep pushing $r_\theta(x, y_w)$ upward and $r_\theta(x, y_l)$ downward even on already-easy pairs, implementing a form of bias *unlearning* on $b_\theta(x)$ that consumes capacity which could otherwise be spent on harder examples.

Pairwise training, by contrast, only requires that y_w score higher than y_l with strength controlled by β . Compared to pointwise losses, such pairwise updates structurally offer fewer direct avenues for reshaping the marginalized score $\mathbb{E}_y[r_\theta(x, y)]$ itself. Refining previously learned examples therefore consumes little extra capacity, allowing the model to focus on harder cases. Thus, for *hard* tasks there is insufficient capacity for the unlearning step, so both objectives perform similarly. For *easy* tasks, unlearning does not exhaust capacity, enabling pointwise methods to catch up. In the *intermediate* regime, capacity is sufficient to unlearn bias in pointwise methods, *but not* address harder examples, leading to a misalignment that makes pointwise objectives less efficient.

We ran additional experiments to test this hypothesis; the results appear in Appendix F. Previously, distinctions between DAA objectives were unclear, but our findings show that **they differ in how they handle dataset-induced biases**; whether bias removal is beneficial remains an open question. Beyond the r_θ^{ref} and r_θ^{odds} parameterizations, we also test (Appendix B.4) two scalar score families from recent work, AlphaPO (Gupta et al.) (r_α) and the Forward-KL variant of f-DPO (Wang et al.), in our Qwen2.5–7B and 14B Math-CoT setup. In both cases, pairwise objectives again outperform their pointwise counterparts, further supporting our main findings in the static binary-preference regime of this paper.

7 RELATED WORK

Our work connects to several active research directions in preference optimization.

Unifying frameworks for DAAs. Recent works have developed increasingly general formulations of direct alignment objectives—spanning convex formulations (Tang et al., 2024b), f -divergences (Han et al., 2024; Wang et al.), mutual information views (Tutnov et al., 2025), and modular analyses of DPO variants via reward shaping or margins (Sun et al., 2025; Zhao et al., 2024; Gupta et al.; Wu et al.; Zhou et al., 2025). These advances focus primarily on the *pairwise* DPO-style family, exploring alternative score parameterizations and divergence measures while keeping the ranking objective itself fixed. In contrast, we establish a common ground for comparing *across* different algorithmic families (pairwise vs. pointwise; odds-ratio vs. policy–reference–ratio scores) that were previously incomparable due to disparate training protocols. Our unified perspective reveals that, across a broad range of score parameterizations (including AlphaPO-style rewards and the FKL variant of f-DPO), the choice of ranking objective is the main structural factor underlying DAA performance, with score parameterization playing only a secondary role.

Beyond binary pairwise preferences. Other studies investigate specific directions beyond the standard pairwise setup. Liu et al. (2025) frame alignment as listwise ranking, while methods like TriplePO and TreePO (Saeidi et al., 2025; Liao et al., 2024) leverage richer supervision signals (e.g., gold trajectories or multi-branch preference trees). These approaches, though promising, require

486 data formats beyond standard binary preferences and thus fall outside the scope of our controlled
 487 comparison of offline DAAs on static preference pairs.
 488

489 **Online vs offline optimization.** Another direction compares offline DPO and RLHF, exposing
 490 DAAs’ limits (Xu et al., 2024; Chu et al., 2025; Tang et al., 2024a), while Calandriello et al. (2024)
 491 study online preference optimization across contrastive vs. non-contrastive objectives. Our work
 492 complements these by systematically isolating the impact of the ranking objective in the offline
 493 setting, a factor previously underexplored despite its fundamental role.
 494

495 8 CONCLUSION

496 DAA research is fragmented, with many methods claiming superiority based on marginal differences.
 497 We provide the first unified framework that places all DAAs **we study**, including ORPO and
 498 ASFT, on equal footing by (i) reorganizing the explicit SFT term into a two-stage formulation and
 499 (ii) introducing a β parameter. Within this setup, the previously under-explored ranking objective
 500 (pairwise vs. pointwise) emerges **in our experiments** as the primary driver of alignment quality, with
 501 differences in scalar score playing only a secondary role. **Theoretical analysis, together with controlled experiments, links** this effect to how objectives interact with prompt-specific bias, explaining
 502 why performance gaps appear mainly at intermediate task difficulty and model scale. Practically,
 503 we show that odds-ratio DAAs also benefit from SFT and β , and that most alignment gains can be
 504 achieved with only 5–10% of SFT data. This finding clarifies why previous claims of “best” DAA
 505 Meng et al. (2024); Xiao et al. (2024); Wang et al. (2024) often depend on underexplored details of
 506 setup and bias.
 507

508 **Limitations & Future Work.** Our analysis is intentionally focused on the off-policy, SFT-based
 509 alignment setting, in order to disentangle conflicting claims among DAAs under controlled conditions.
 510 While our instruction-following results rely on GPT-based evaluation, we mitigate this by
 511 validating findings on specific task with verifiable metrics up to the 14B scale. Extending the unified
 512 framework to on-policy preference optimization remains an important direction, complementing
 513 prior online studies (Calandriello et al., 2024; Hanning Zhang, 2025). Our bias–capacity trade-off is
 514 supported by both toy experiments and ICC analysis on real data. Future work could formalize this
 515 mechanism and study its predictive power in broader alignment settings.
 516

517 ETHICS STATEMENT

518 This work complies with the ICLR Code of Ethics. All datasets used in our experiments are pub-
 519 licly available and widely adopted in the alignment and language modeling community. No human
 520 subjects, private, or sensitive data were used. We discuss fairness, bias, and the implications of
 521 prompt-specific biases in Section 6, and believe our findings do not pose immediate risks of misuse
 522 or harm. All code will be released for reproducibility and community benefit.
 523

525 REPRODUCIBILITY STATEMENT

526 To ensure reproducibility, we provide a detailed description of all methods and experimental pro-
 527 tocols in Sections 2–4 and Appendix A. Hyperparameters, model checkpoints, and data splits are
 528 specified in the appendix and supplementary materials. Anonymized code for all experiments will
 529 be made available as part of the submission. Detailed proofs, derivations, and all additional results
 530 are included in the appendix.
 531

533 REFERENCES

534 AI@Meta. Llama 3 model card. 2024. URL https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md.
 535
 536 Mohammad Gheshlaghi Azar, Zhaoan Daniel Guo, Bilal Piot, Remi Munos, Mark Rowland,
 537 Michal Valko, and Daniele Calandriello. A general theoretical paradigm to understand learn-
 538 ing from human preferences. In *International Conference on Artificial Intelligence and Statistics*,
 539 pp. 4447–4455. PMLR, 2024.

540 Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma, Dawn
 541 Drain, Stanislav Fort, Deep Ganguli, T. J. Henighan, Nicholas Joseph, Saurav Kadavath, John
 542 Kernion, Tom Conerly, Sheer El-Showk, Nelson Elhage, Zac Hatfield-Dodds, Danny Hernandez,
 543 Tristan Hume, Scott Johnston, Shauna Kravec, Liane Lovitt, Neel Nanda, Catherine Olsson, Dario
 544 Amodei, Tom B. Brown, Jack Clark, Sam McCandlish, Christopher Olah, Benjamin Mann, and
 545 Jared Kaplan. Training a helpful and harmless assistant with reinforcement learning from human
 546 feedback. *ArXiv*, abs/2204.05862, 2022. URL <https://api.semanticscholar.org/CorpusID:248118878>.

548 John J Bartko. The intraclass correlation coefficient as a measure of reliability. *Psychological
 549 reports*, 19(1):3–11, 1966.

550

551 Ralph Allan Bradley and Milton E. Terry. Rank Analysis of Incomplete Block Design: The Method
 552 of Paired Comparisons. *Biometrika*, 39(3-4):324–345, 12 1952. ISSN 0006-3444. doi: 10.1093/
 553 biomet/39.3-4.324. URL <https://doi.org/10.1093/biomet/39.3-4.324>.

554

555 Chris Burges, Tal Shaked, Erin Renshaw, Ari Lazier, Matt Deeds, Nicole Hamilton, and Greg Hul-
 556 lender. Learning to rank using gradient descent. In *Proceedings of the 22nd international confer-
 557 ence on Machine learning*, pp. 89–96, 2005.

558

559 Daniele Calandriello, Daniel Guo, Remi Munos, Mark Rowland, Yunhao Tang, Bernardo Avila
 560 Pires, Pierre Harvey Richemond, Charline Le Lan, Michal Valko, Tianqi Liu, et al. Human
 561 alignment of large language models through online preference optimisation. *arXiv preprint
 arXiv:2403.08635*, 2024.

562

563 Huayu Chen, Guande He, Lifan Yuan, Ganqu Cui, Hang Su, and Jun Zhu. Noise contrastive align-
 564 ment of language models with explicit rewards. *Advances in Neural Information Processing
 565 Systems*, 37:117784–117812, 2024.

566

567 Tianzhe Chu, Yuexiang Zhai, Jihan Yang, Shengbang Tong, Saining Xie, Dale Schuurmans, Quoc V
 568 Le, Sergey Levine, and Yi Ma. Sft memorizes, rl generalizes: A comparative study of foundation
 569 model post-training. *arXiv preprint arXiv:2501.17161*, 2025.

570

571 Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
 572 Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
 573 solve math word problems. *arXiv preprint arXiv:2110.14168*, 2021.

574

575 Ganqu Cui, Lifan Yuan, Ning Ding, Guanming Yao, Wei Zhu, Yuan Ni, Guotong Xie, Zhiyuan Liu,
 576 and Maosong Sun. Ultrafeedback: Boosting language models with high-quality feedback, 2023.

577

578 Tri Dao. Flashattention-2: Faster attention with better parallelism and work partitioning. *arXiv
 579 preprint arXiv:2307.08691*, 2023.

580

581 Ning Ding, Yulin Chen, Bokai Xu, Yujia Qin, Shengding Hu, Zhiyuan Liu, Maosong Sun, and
 582 Bowen Zhou. Enhancing chat language models by scaling high-quality instructional conversa-
 583 tions. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), *Proceedings of the 2023 Conference
 584 on Empirical Methods in Natural Language Processing*, pp. 3029–3051, Singapore, December
 585 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.emnlp-main.183. URL
 586 <https://aclanthology.org/2023.emnlp-main.183>.

587

588 Karel D’Oosterlinck, Winnie Xu, Chris Develder, Thomas Demeester, Amanpreet Singh, Christo-
 589 pher Potts, Douwe Kiela, and Shikib Mehri. Anchored preference optimization and contrastive
 590 revisions: Addressing underspecification in alignment. *Transactions of the Association for Com-
 591 putational Linguistics*, 13:442–460, 2025.

592

593 Yann Dubois, Balázs Galambosi, Percy Liang, and Tatsunori B Hashimoto. Length-controlled al-
 594 pacaeval: A simple way to debias automatic evaluators. *arXiv preprint arXiv:2404.04475*, 2024.

595

596 Alexey Gorbatovski, Boris Shaposhnikov, Alexey Malakhov, Nikita Surnachev, Yaroslav Aksenov,
 597 Ian Maksimov, Nikita Balagansky, and Daniil Gavrilov. Learn your reference model for real good
 598 alignment. *arXiv preprint arXiv:2404.09656*, 2024.

594 Aman Gupta, Shao Tang, Qingquan Song, Sirou Zhu, Jiwoo Hong, Ankan Saha, Viral Gupta, Noah
 595 Lee, Eunki Kim, Siyu Zhu, et al. Alphapo: Reward shape matters for llm alignment. In *Forty-*
 596 *second International Conference on Machine Learning*.

597 Jiaqi Han, Mingjian Jiang, Yuxuan Song, Stefano Ermon, and Minkai Xu. f -po: Generalizing
 598 preference optimization with f -divergence minimization. *arXiv preprint arXiv:2410.21662*, 2024.

600 Chenlu Ye Wei Xiong Tong Zhang Hanning Zhang, Jiarui Yao. Online-dpo-r1: Unlocking effective
 601 reasoning without the ppo overhead, 2025.

603 Jiwoo Hong, Noah Lee, and James Thorne. Orpo: Monolithic preference optimization without
 604 reference model, 2024. URL <https://arxiv.org/abs/2403.07691>.

605 Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
 606 *CoRR*, abs/1412.6980, 2014. URL <https://api.semanticscholar.org/CorpusID:6628106>.

609 Aitor Lewkowycz, Anders Andreassen, David Dohan, Ethan Dyer, Henryk Michalewski, Vinay Ra-
 610 masesh, Ambrose Sloane, Cem Anil, Imanol Schlag, Theo Gutman-Solo, et al. Solving quantitative
 611 reasoning problems with language models. *Advances in neural information processing systems*,
 612 35:3843–3857, 2022.

613 Hang Li. A short introduction to learning to rank. *IEICE TRANSACTIONS on Information and
 614 Systems*, 94(10):1854–1862, 2011.

616 Jia Li, Edward Beeching, Lewis Tunstall, Ben Lipkin, Roman Soletskyi, Shengyi Huang, Kashif
 617 Rasul, Longhui Yu, Albert Q Jiang, Ziju Shen, et al. Numinamath: The largest public dataset in
 618 ai4maths with 860k pairs of competition math problems and solutions. *Hugging Face repository*,
 619 13(9):9, 2024a.

620 Tianle Li, Wei-Lin Chiang, Evan Frick, Lisa Dunlap, Tianhao Wu, Banghua Zhu, Joseph E. Gon-
 621 zalez, and Ion Stoica. From crowdsourced data to high-quality benchmarks: Arena-hard and
 622 benchbuilder pipeline, 2024b.

624 Xuechen Li, Tianyi Zhang, Yann Dubois, Rohan Taori, Ishaan Gulrajani, Carlos Guestrin, Percy
 625 Liang, and Tatsunori B. Hashimoto. Alpacaeval: An automatic evaluator of instruction-following
 626 models. https://github.com/tatsu-lab/alpaca_eval, 5 2023.

627 Weibin Liao, Xu Chu, and Yasha Wang. Tpo: Aligning large language models with multi-branch &
 628 multi-step preference trees. *arXiv preprint arXiv:2410.12854*, 2024.

630 Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan
 631 Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let's verify step by step. In *The Twelfth
 632 International Conference on Learning Representations*, 2023.

633 Tianqi Liu, Zhen Qin, Junru Wu, Jiaming Shen, Misha Khalman, Rishabh Joshi, Yao Zhao, Moham-
 634 mad Saleh, Simon Baumgartner, Jialu Liu, et al. Lipo: Listwise preference optimization through
 635 learning-to-rank. In *Proceedings of the 2025 Conference of the Nations of the Americas Chapter
 636 of the Association for Computational Linguistics: Human Language Technologies (Volume 1:
 637 Long Papers)*, pp. 2404–2420, 2025.

638 Tie-Yan Liu et al. Learning to rank for information retrieval. *Foundations and Trends® in Informa-
 639 tion Retrieval*, 3(3):225–331, 2009.

641 Kenneth O McGraw and Seok P Wong. Forming inferences about some intraclass correlation coef-
 642 ficients. *Psychological methods*, 1(1):30, 1996.

643 Vitalik Melnikov, Eyke Hüllermeier, Daniel Kaimann, Bernd Frick, and Pritha Gupta. Pairwise
 644 versus pointwise ranking: A case study. *Schedae Informaticae*, pp. 73–83, 2016.

646 Yu Meng, Mengzhou Xia, and Danqi Chen. Simpo: Simple preference optimization with a
 647 reference-free reward. *Advances in Neural Information Processing Systems*, 37:124198–124235,
 2024.

648 Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
 649 Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kel-
 650 ton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul F Christiano, Jan Leike,
 651 and Ryan Lowe. Training language models to follow instructions with human feedback. In
 652 S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), *Advances in Neural*
 653 *Information Processing Systems*, volume 35, pp. 27730–27744. Curran Associates, Inc., 2022.

654 Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
 655 Finn. Direct preference optimization: Your language model is secretly a reward model. In *Thirty-*
 656 *seventh Conference on Neural Information Processing Systems*, 2023. URL <https://arxiv.org/abs/2305.18290>.

657 Rafael Rafailov, Yaswanth Chittepu, Ryan Park, Harshit Sushil Sikchi, Joey Hejna, Brad Knox,
 658 Chelsea Finn, and Scott Niekum. Scaling laws for reward model overoptimization in direct align-
 659 ment algorithms. *Advances in Neural Information Processing Systems*, 37:126207–126242, 2024.

660 Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase, and Yuxiong He. Deepspeed: System opti-
 661 mizations enable training deep learning models with over 100 billion parameters. In *Proceedings*
 662 *of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining*,
 663 pp. 3505–3506, 2020.

664 Amir Saeidi, Shivanshu Verma, Aswin RRV, Kashif Rasul, and Chitta Baral. Triple preference
 665 optimization: Achieving better alignment using a single step optimization, 2025. URL <https://arxiv.org/abs/2405.16681>.

666 John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
 667 optimization algorithms. *arXiv preprint arXiv:1707.06347*, 2017.

668 Shayle R Searle, George Casella, and Charles E McCulloch. *Variance components*. John Wiley &
 669 Sons, 2009.

670 Patrick E Shrout and Joseph L Fleiss. Intraclass correlations: uses in assessing rater reliability.
 671 *Psychological bulletin*, 86(2):420, 1979.

672 Nisan Stiennon, Long Ouyang, Jeff Wu, Daniel M. Ziegler, Ryan Lowe, Chelsea Voss, Alec Radford,
 673 Dario Amodei, and Paul Christiano. Learning to summarize from human feedback. In *NeurIPS*,
 674 2020.

675 Shengyang Sun, Yian Zhang, Alexander Bukharin, David Mosallanezhad, Jiaqi Zeng, Soumye Sing-
 676 hal, Gerald Shen, Adithya Renduchintala, Tugrul Konuk, Yi Dong, et al. Reward-aware pref-
 677 erence optimization: A unified mathematical framework for model alignment. *arXiv preprint*
 678 *arXiv:2502.00203*, 2025.

679 Yunhao Tang, Daniel Zhaohan Guo, Zeyu Zheng, Daniele Calandriello, Yuan Cao, Eugene Tarassov,
 680 Rémi Munos, Bernardo Ávila Pires, Michal Valko, Yong Cheng, et al. Understanding the perfor-
 681 mance gap between online and offline alignment algorithms. *arXiv preprint arXiv:2405.08448*,
 682 2024a.

683 Yunhao Tang, Zhaohan Daniel Guo, Zeyu Zheng, Daniele Calandriello, Rémi Munos, Mark Row-
 684 land, Pierre Harvey Richemond, Michal Valko, Bernardo Ávila Pires, and Bilal Piot. Gen-
 685 eralized preference optimization: A unified approach to offline alignment. *arXiv preprint*
 686 *arXiv:2402.05749*, 2024b.

687 Lewis Tunstall, Edward Beeching, Nathan Lambert, Nazneen Rajani, Kashif Rasul, Younes Belkada,
 688 Shengyi Huang, Leandro von Werra, Clémentine Fourrier, Nathan Habib, et al. Zephyr: Direct
 689 distillation of lm alignment. *arXiv preprint arXiv:2310.16944*, 2023.

690 Rasul Tutnov, Antoine Grosnit, and Haitham Bou-Ammar. Many of your dpos are secretly one:
 691 Attempting unification through mutual information. *arXiv preprint arXiv:2501.01544*, 2025.

692 Chaoqi Wang, Yibo Jiang, Chenghao Yang, Han Liu, and Yuxin Chen. Beyond reverse kl: General-
 693 izing direct preference optimization with diverse divergence constraints. In *The Twelfth Interna-
 694 tional Conference on Learning Representations*.

702 Ruoyu Wang, Jiachen Sun, Shaowei Hua, and Quan Fang. Asft: Aligned supervised fine-tuning
 703 through absolute likelihood, 2024. URL <https://arxiv.org/abs/2409.10571>.

704

705 Sean Welleck, Ilia Kulikov, Stephen Roller, Emily Dinan, Kyunghyun Cho, and Jason Weston.
 706 Neural text generation with unlikelihood training. *arXiv preprint arXiv:1908.04319*, 2019.

707

708 Junkang Wu, Xue Wang, Zhengyi Yang, Jiancan Wu, Jinyang Gao, Bolin Ding, Xiang Wang, and
 709 Xiangnan He. Alphadpo: Adaptive reward margin for direct preference optimization. In *Forty-*
 710 *second International Conference on Machine Learning*.

711

712 Teng Xiao, Yige Yuan, Huaisheng Zhu, Mingxiao Li, and Vasant G Honavar. Cal-dpo: Calibrated
 713 direct preference optimization for language model alignment. *Advances in Neural Information
 714 Processing Systems*, 37:114289–114320, 2024.

715

716 Shusheng Xu, Wei Fu, Jiaxuan Gao, Wenjie Ye, Weilin Liu, Zhiyu Mei, Guangju Wang, Chao Yu,
 717 and Yi Wu. Is dpo superior to ppo for llm alignment? a comprehensive study. *arXiv preprint
 718 arXiv:2404.10719*, 2024.

719

720 An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
 721 Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang,
 722 Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin
 723 Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li,
 724 Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan,
 Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report. *arXiv preprint
 725 arXiv:2412.15115*, 2024.

726

727 Lifan Yuan, Ganqu Cui, Hanbin Wang, Ning Ding, Xingyao Wang, Jia Deng, Boji Shan, Huimin
 728 Chen, Ruobing Xie, Yankai Lin, et al. Advancing llm reasoning generalists with preference trees.
 729 *arXiv preprint arXiv:2404.02078*, 2024.

730

731 Hanyang Zhao, Genta Indra Winata, Anirban Das, Shi-Xiong Zhang, David D Yao, Wenpin Tang,
 732 and Sambit Sahu. Rainbowpo: A unified framework for combining improvements in preference
 733 optimization. *arXiv preprint arXiv:2410.04203*, 2024.

734

735 Chunting Zhou, Pengfei Liu, Puxin Xu, Srinivasan Iyer, Jiao Sun, Yuning Mao, Xuezhe Ma, Avia
 736 Efrat, Ping Yu, Lili Yu, et al. Lima: Less is more for alignment. *Advances in Neural Information
 737 Processing Systems*, 36, 2024.

738

739 Wenxuan Zhou, Shujian Zhang, Brice Magdalou, John Lambert, Ehsan Amid, Richard Nock,
 740 and Andrew Hard. Principled foundations for preference optimization. *arXiv preprint
 741 arXiv:2507.07855*, 2025.

742

743

A IMPLEMENTATION DETAILS

A.1 PROBABILITY NORMALIZATION

744 Method	745 Use normalization
746 DPO (Rafailov et al., 2023)	747 ✗
747 IPO (Azar et al., 2024)	748 ✗
748 SimPO (Meng et al., 2024)	749 ✓
749 NCA (Chen et al., 2024)	750 ✗
750 Cal-DPO (Xiao et al., 2024)	751 ✗
751 APO-Zero (D’Oosterlinck et al., 2025)	752 ✗
752 ORPO (Hong et al., 2024)	753 ✓
753 ASFT (Wang et al., 2024)	

754 Table 4: Methods that include (✓) or omit (✗) length-based probability normalization in their origi-
 755 nal formulation.

As discussed in Section 2.1, not all DAAs incorporate length-based probability normalization by default. In this paper, however, we apply such normalization only in cases where it was used in the original methods involving probabilities. This choice avoids introducing extra notation and reduces the cognitive load on the reader. Table 4 summarizes the methods that originally include length-based normalization.

A.2 TRAINING DETAILS

Our experiments were conducted using the Llama 3.2 3B and Llama 3.1 8B Base models AI@Meta (2024). The training setup, datasets, and hyperparameters were designed to ensure reproducibility and consistency. Unless otherwise noted, the hyperparameters in Table 5 were used across all experiments.

Training was performed on 8 NVIDIA A100 GPUs with 80GB memory each. Depending on the number of epochs, training for each configuration took between 3 to 6 hours. The total compute used across all experiments amounted to approximately 651 GPU-days.

Hyperparameter	Value
Max Tokens Length	1024 (TL;DR setup), 4096 (UF setup)
Epochs	1 (<i>or 2 when specified</i>)
Learning Rate (SFT)	6.0×10^{-6}
Learning Rate (Base Init.)	$\{6.0 \times 10^{-6}, 8.0 \times 10^{-6}, 1.0 \times 10^{-5}\}$
Learning Rate (Alignment)	$\{3.0 \times 10^{-7}, 5.0 \times 10^{-7}, 7.0 \times 10^{-7}, 1.0 \times 10^{-6}\}$
Optimizer	Adam (Kingma & Ba, 2014)
Adam β_1	0.9
Adam β_2	0.95
Batch Size	128
Learning Schedule	Linear Decay
Warm-up Ratio	0.03
Max Gradient Norm	2
Memory Optimization	DeepSpeed (Rasley et al., 2020)
Attention Mechanism	Flash Attention 2 (Dao, 2023)

Table 5: Representative training hyperparameters for Llama 3.2 3B and Llama 3.1 8B models.

A.2.1 DATASETS.

Dataset	Training Examples	Validation Examples
UltraChat	207,865	23,110
UltraFeedback	61,135	2,000
Reddit TL;DR (SFT)	41,947	11,941
Reddit TL;DR (Preference)	73,396	21,198

Table 6: Summary of dataset sizes used for training and validation.

We used two primary datasets:

- **Reddit TL;DR** (Bai et al., 2022): used to train the initial SFT model in β -sensitivity experiments with Llama 3.2 3B model.
- **UltraChat** (Ding et al., 2023): used to train the initial SFT model in β -sensitivity experiments with Llama 3.2 3B and Llama 3.1 8B models.
- **UltraFeedback** (Cui et al., 2023): used for both SFT (in the *Base vs. SFT-initialized* comparison, where we selected chosen subset from preference pairs) and for pairwise preference optimization in all DAA methods.

810 Dataset sizes are summarized in Table 6. For *Base* vs. *SFT-initialized* setups, only UltraFeedback
 811 was used. For the β -sensitivity experiments, the models were first trained on UltraChat for SFT and
 812 subsequently fine-tuned on UltraFeedback. The Reddit TL;DR dataset was deduplicated, retaining
 813 only uniquely preferred summaries for SFT.

816 A.2.2 β -SENSITIVITY EXPERIMENTS.

818 We conducted a comprehensive analysis of the sensitivity of DAA methods to β , examining peak
 819 performance and the trade-offs between model quality and regularization strength (as reflected in KL
 820 divergence). Each method was trained with six or more distinct β values to identify configurations
 821 that achieve stable and effective performance. The specific β values tested for each method are
 822 shown in Table 7.

Method	β Values Tested
DPO	{0.001, 0.003, 0.005, 0.01, 0.05, 0.1}
IPO	{0.0007, 0.001, 0.005, 0.01, 0.05, 0.1}
SimPO	{0.05, 0.1, 0.2, 0.5, 1.0, 2.0, 5.0}
ORPO	{0.05, 0.1, 0.2, 0.5, 1.0, 2.0}
ASFT	{0.05, 0.1, 0.2, 0.5, 1.0, 2.0}
APO-Zero	{0.001, 0.003, 0.005, 0.01, 0.05, 0.1, 0.2}
Cal-DPO	{0.00005, 0.0001, 0.0003, 0.0005, 0.001, 0.003}
NCA	{0.0001, 0.0003, 0.0005, 0.001, 0.005, 0.007, 0.01, 0.03, 0.05}

834 Table 7: Range of β values tested for each DAA method on all Llama setups.

838 For each β , we tested four learning rates (3.0×10^{-7} , 5.0×10^{-7} , 7.0×10^{-7} , 1.0×10^{-6}), training
 839 on the UltraFeedback dataset. All runs began from an SFT-initialized model trained on UltraChat
 840 ($lr = 6.0 \times 10^{-6}$, 1 epoch). The best-performing learning rate for each β was selected to construct
 841 Pareto fronts, balancing quality (measured via AlpacaEval 2 LC Win-Rate) and KL divergence.

842 For SimPO in the Llama 3.1 8B UF setup, the ratio $\frac{\gamma}{\beta} = 0.5$ was kept fixed as recommended by
 843 Meng et al. (2024). Additionally, a single learning rate ($lr = 6.0 \times 10^{-7}$) was tested across all β
 844 values for this method, as the same datasets and model scale were used. For Llama 3.2 TL;DR and
 845 UF setups, we tested four learning rates similar to other DAAs.

846 For DPO and IPO, the 3.0×10^{-7} learning rate was not considered, as performance consistently
 847 deteriorated from 1.0×10^{-6} to 5.0×10^{-7} , indicating that lower learning rates were unlikely to
 848 yield improvements.

849 Beyond the standard β values described in Table 7, additional values were explored for specific con-
 850 figurations to reach the extreme points of the Pareto front. For example: - {0.00001, 0.00003}
 851 for Cal-DPO in Llama 3.2 3B TL;DR and UF setups, - {0.00001, 0.00003, 0.00005} for
 852 NCA in Llama 3.2 3B TL;DR, - {0.0003, 0.0005} for APO-Zero in Llama 3.2 3B TL;DR, -
 853 {0.0003, 0.0005, 0.001, 0.003, 0.005} for ASFT in Llama 3.2 3B TL;DR.

854 The hyperparameters resulting in the best performance are presented in Table 8.

855 A.3 GENERATION DETAILS

860 We evaluated model performance on AlpacaEval 2 and ArenaHard for UltraFeedback setups, while
 861 for the Reddit TL;DR setup, we used side-by-side comparisons with GPT-4o on a curated golden
 862 validation subset of 500 samples. Additionally, KL divergence was measured on the validation
 863 subset for all setups using the generation hyperparameters listed in Table 9. For ArenaHard, the
 temperature was set to 0 to adhere to the original benchmark configuration.

Method	Llama 3.2 3B TL;DR		Llama 3.2 3B UF		Llama 3.1 8B UF	
	Learning Rate	β	Learning Rate	β	Learning Rate	β
DPO	7.0×10^{-7}	0.05	1.0×10^{-6}	0.01	1.0×10^{-6}	0.003
IPO	1.0×10^{-6}	0.005	7.0×10^{-7}	0.001	1.0×10^{-6}	0.001
SimPO	3.0×10^{-7}	0.5	7.0×10^{-7}	1.0	6.0×10^{-7}	1.0
ORPO	3.0×10^{-7}	0.5	5.0×10^{-7}	0.2	5.0×10^{-7}	0.5
ASFT	3.0×10^{-7}	0.001	1.0×10^{-6}	0.2	7.0×10^{-7}	0.1
APO Zero	3.0×10^{-7}	0.001	3.0×10^{-7}	0.005	3.0×10^{-7}	0.003
NCA	3.0×10^{-7}	0.0001	3.0×10^{-7}	0.0005	3.0×10^{-7}	0.0003
Cal-DPO	3.0×10^{-7}	0.00003	5.0×10^{-7}	0.0003	3.0×10^{-7}	0.0003

Table 8: Best hyperparameters for each DAA method across Llama setups.

Hyperparameter	Value
Temperature	0.9
Top-k	40
Top-p	1.0
Max New Tokens	256 (TL;DR setup), 4096 (UF setup)

Table 9: Generation hyperparameters for Llama 3.1 8B and Llama 3.2 3B models.

B MATH REASONING EXPERIMENTS WITH QWEN2.5

To evaluate the generality of our findings for **RQ3**, we additionally consider mathematical reasoning tasks and a different model family (Qwen2.5), providing a judge-free evaluation environment that we assess at two scales, 7B and 14B.

B.1 SETUP DETAILS

Dataset. We use the Math_CoT subset of the UltraInteract dataset Yuan et al. (2024), also employed in the NCA work Chen et al. (2024). The training split contains 78,080 examples with 266 validation samples for SFT, and 52,864 preference pairs with 279 validation pairs for alignment. Following standard practice, we prepend the following system prompt to all inputs: "Please reason step by step, and put your final answer within \boxed{}."

Models. Experiments are conducted with Qwen2.5-7B and Qwen2.5-14B Yang et al. (2024).

Method	β Values Tested
DPO	{0.001, 0.005, 0.01, 0.05, 0.1, 0.2}
IPO	{0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, 0.2}
SimPO	{0.1, 0.2, 0.3, 0.5, 0.7, 1.0, 2.0, 5.0, 10.0, 15.0, 20.0}
ORPO	{0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, 0.2, 0.5, 1.0, 1.2, 2.0, 5.0, 10.0}
ASFT	{0.01, 0.05, 0.1, 0.2, 0.5, 1.0, 2.0, 3.0, 5.0}
APO-Zero	{0.0001, 0.0005, 0.001, 0.003, 0.01, 0.05, 0.1}
Cal-DPO	{0.00001, 0.00003, 0.00005, 0.0001, 0.0003, 0.0005, 0.001, 0.003, 0.01, 0.05, 0.1}
NCA	{0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1}

Table 10: Range of β values tested for each DAA method on Qwen2.5 setups.

Evaluation. Performance is measured exclusively with verifiable metrics to avoid judge-model bias: GSM8K Cobbe et al. (2021), MATH500 Lightman et al. (2023), AMC23 Li et al. (2024a), Miner-vaMath Lewkowycz et al. (2022), and AIME24/25 Li et al. (2024a). We report average success rate

918 @k (avg@k) across 4 random seeds, with decoding hyperparameters `max_new_tokens=4096`
 919 and `temperature=1.0`.
 920

921 **Training configuration.** The training protocol mirrors Section A, with four candidate learning rates
 922 $\{3.0 \times 10^{-7}, 5.0 \times 10^{-7}, 7.0 \times 10^{-7}, 1.0 \times 10^{-6}\}$. For Qwen2.5-7B, a full sweep over learning rates
 923 and β values was conducted. For Qwen2.5-14B, the best learning rates from the 7B experiments
 924 were reused, while a full β sweep was performed for each method. The ranges are reported in
 925 Table 10. For SimPO, we additionally swept the $\frac{\gamma}{\beta}$ ratio in $\{0.1, 0.2, 0.3, 0.5, 0.8, 1.0\}$. At 14B
 926 scale, an extended sweep including smaller values $\{0.001, 0.01, 0.03, 0.05\}$ was also performed.
 927

928 B.2 BEST HYPERPARAMETERS

929 Table 11 summarizes the best learning rates and β values identified for each method.
 930

931 Method	932 Qwen2.5-7B		933 Qwen2.5-14B	
	934 Learning Rate	935 β	936 Learning Rate	937 β
DPO	5.0×10^{-7}	0.1	5.0×10^{-7}	0.2
IPO	1.0×10^{-6}	0.05	1.0×10^{-6}	0.01
ORPO	3.0×10^{-7}	0.001	3.0×10^{-7}	0.005
SimPO	3.0×10^{-7}	20.0	3.0×10^{-7}	20.0
APO-Zero	1.0×10^{-6}	0.01	1.0×10^{-6}	0.0005
Cal-DPO	1.0×10^{-6}	0.0003	1.0×10^{-6}	0.003
NCA	1.0×10^{-6}	0.001	1.0×10^{-6}	0.005
ASFT	3.0×10^{-7}	0.1	3.0×10^{-7}	1.0

944 Table 11: Best hyperparameters for Qwen2.5-7B and Qwen2.5-14B on Math_CoT (SimPO: best $\frac{\gamma}{\beta}$
 945 was 0.8 for 7B and 0.05 for 14B).
 946

948 B.3 RESULTS

949 Tables 12 and 13 present the math benchmark results for Qwen2.5-7B and Qwen2.5-14B, respectively.
 950 For all datasets except AIME24 and AIME25, we report avg@8; for AIME24 and AIME25,
 951 we report avg@32 to better reflect performance due to their small question size. All results are
 952 averaged over 4 random seeds, with the corresponding standard deviations (computed across seeds)
 953 shown in parentheses.
 954

955 At the 7B scale, pairwise and pointwise objectives perform comparably. At the 14B scale, however,
 956 a clear separation emerges: pairwise methods consistently outperform pointwise ones, whereas the
 957 scalar score axis (r_θ^{ref} vs. r_θ^{odds}) yields no systematic differences. This replication of scale-dependent
 958 performance across instruction-following and mathematical reasoning strongly supports the gener-
 959 ality of our main findings.
 960

961 B.4 ADDITIONAL SCALAR SCORE FAMILIES: ALPHAPO AND F-DPO (FORWARD-KL)

962 To test the robustness of our “ranking dominates” conclusion to changes in the scalar score fam-
 963 ily, we experimented with two alternative parameterizations drawn from recent work: the Al-
 964 phaPO (Gupta et al.) reward r_α and the Forward-KL (fKL) score from f-DPO (Wang et al.), within
 965 the same static binary-preference setup.
 966

967 **AlphaPO Scalar Score r_α .** We adopt the scalar score

$$968 \quad r_\alpha(y; x) = \frac{\beta}{\alpha} \left(1 - \pi_\theta(y | x)^{-\alpha/|y|} \right),$$

969 exactly as defined in AlphaPO, and plug it into two objectives: (i) a pairwise Bradley–Terry loss
 970

$$971 \quad L_{\text{pair}} = -\log \sigma(r_\alpha(x, y_w) - r_\alpha(x, y_l)),$$

972 and (ii) a pointwise ASFT-style loss
 973
 974

$$L_{\text{point}} = -\log \sigma(r_\alpha(x, y_w)) - \log \sigma(-r_\alpha(x, y_l)).$$

975 In both cases, the scalar score r_α is identical; only the way it enters the loss (difference vs. separate
 976 terms) is changed.

	Mean Avg@K	GSM8K	MATH500	AMC23	Minerva	AIME24	AIME25
Base	0.1344 (0.0024)	0.2233 (0.0012)	0.2876 (0.0067)	0.1805 (0.0248)	0.0679 (0.0045)	0.0292 (0.0035)	0.0177 (0.0043)
SFT	0.2216 (0.0019)	0.6677 (0.0012)	0.3671 (0.0026)	0.1711 (0.0143)	0.1135 (0.0055)	0.0076 (0.0016)	0.0029 (0.0010)
DPO	0.3017 (0.0033)	0.8295 (0.0015)	0.5011 (0.0080)	0.2641 (0.0174)	0.1966 (0.0050)	0.0107 (0.0033)	0.0081 (0.0025)
IPO	0.2996 (0.0035)	0.8236 (0.0020)	0.4866 (0.0055)	0.2664 (0.0121)	0.2007 (0.0027)	0.0128 (0.0035)	0.0078 (0.0013)
SimPO	0.2892 (0.0039)	0.7893 (0.0026)	0.4837 (0.0037)	0.2523 (0.0190)	0.1898 (0.0014)	0.0125 (0.0037)	0.0073 (0.0026)
ORPO	0.2966 (0.0010)	0.8303 (0.0026)	0.4882 (0.0046)	0.2641 (0.0116)	0.1759 (0.0047)	0.0117 (0.0064)	0.0094 (0.0039)
AlphaPO Pair	0.2945 (0.0020)	0.8147 (0.0014)	0.4872 (0.0027)	0.2578 (0.0141)	0.1849 (0.0010)	0.0143 (0.0021)	0.0083 (0.0015)
APO-Zero	0.2837 (0.0020)	0.8071 (0.0030)	0.4586 (0.0050)	0.2352 (0.0069)	0.1807 (0.0102)	0.0115 (0.0031)	0.0091 (0.0034)
NCA	0.2861 (0.0027)	0.7909 (0.0015)	0.4715 (0.0026)	0.2461 (0.0145)	0.1922 (0.0017)	0.0109 (0.0051)	0.0047 (0.0010)
Cal-DPO	0.2936 (0.0044)	0.8272 (0.0014)	0.4694 (0.0053)	0.2531 (0.0209)	0.1931 (0.0070)	0.0109 (0.0028)	0.0081 (0.0018)
ASFT	0.2903 (0.0033)	0.8132 (0.0020)	0.4785 (0.0064)	0.2437 (0.0149)	0.1876 (0.0009)	0.0130 (0.0028)	0.0057 (0.0013)
AlphaPO Point	0.2922 (0.0027)	0.8233 (0.0012)	0.4753 (0.0085)	0.2539 (0.0074)	0.1820 (0.0074)	0.0122 (0.0021)	0.0063 (0.0009)
fKL Pair	0.2673 (0.0041)	0.7825 (0.0031)	0.4403 (0.0059)	0.2141 (0.0195)	0.1535 (0.0067)	0.0073 (0.0017)	0.0060 (0.0010)
fKL Point	0.2643 (0.0020)	0.7750 (0.0014)	0.4363 (0.0032)	0.2094 (0.0068)	0.1521 (0.0033)	0.0078 (0.0028)	0.0052 (0.0019)

1006 Table 12: Math benchmark results for Qwen2.5-7B. Reported values are avg@8 (except
 1007 AIME24/25: avg@32), averaged across 4 seeds; standard deviation across seeds is shown in paren-
 1008 theses.

1009
 1010 We reuse the Math-CoT setup from Section B.1. For Qwen2.5-7B we perform a grid search over
 1011 $\beta \in \{0.1, 0.5, 0.7, 1.0, 2.5, 5.0, 10.0, 20.0, 25.0\}$ and $\alpha \in \{-0.5, -0.1, 0.0, 0.1, 0.25, 0.5, 1.0, 2.0\}$,
 1012 and then refine $\alpha \in \{2.5, 3.0, 5.0\}$ around the best $\beta \in \{0.5, 0.7, 1.0\}$. For Qwen2.5-14B we reuse
 1013 the best learning rate from the 7B experiments and sweep $\alpha \in \{0.5, 1.0, 1.5, 2.0, 2.5\}$ for the same
 1014 three β values. In all runs we fix the learning rate at 3×10^{-7} , which is the best-performing value for
 1015 SimPO in this math setup. The best configurations are $(\beta = 0.5, \alpha = 2.0)$ and $(\beta = 0.5, \alpha = 1.0)$
 1016 for pairwise/pointwise on Qwen2.5-7B, and $(\beta = 0.5, \alpha = 2.0)$ and $(\beta = 0.5, \alpha = 0.5)$ for
 1017 pairwise/pointwise on Qwen2.5-14B.

1018 The corresponding results are included in Tables 12 and 13. On both 7B and 14B, the AlphaPO-
 1019 Pair variant lies in the same performance band as the other pairwise DAAs (DPO, IPO, SimPO,
 1020 ORPO), while AlphaPO-Point tracks the pointwise cluster and is consistently slightly weaker than
 1021 its pairwise counterpart. This mirrors the behavior observed for r_θ^{ref} and r_θ^{odds} .

1022 **f-DPO Forward-KL score.** For the f-DPO (Wang et al.) family we focus on the Forward-KL
 1023 endpoint, which is known to underperform DPO overall, and study it under our unified protocol. We
 1024 use the scalar score

$$r_\theta^{\text{fKL}}(x, y) = -\beta \frac{\pi_{\text{ref}}(y | x)}{\pi_\theta(y | x)},$$

1026 corresponding to the $\alpha = 1$ case in the α -divergence parameterization of f-DPO. As with r_α , we
 1027 keep r_θ^{fKL} fixed and compare a pairwise Bradley–Terry loss to a pointwise ASFT-style loss:
 1028 $L_{\text{pair}} = -\log \sigma(r_\theta^{\text{fKL}}(x, y_w) - r_\theta^{\text{fKL}}(x, y_l))$, $L_{\text{point}} = -\log \sigma(r_\theta^{\text{fKL}}(x, y_w)) - \log \sigma(-r_\theta^{\text{fKL}}(x, y_l))$.
 1029

	Mean Avg@K	GSM8K	MATH500	AMC23	Minerva	AIME24	AIME25
Base	0.1937 (0.0065)	0.5343 (0.0064)	0.3177 (0.0048)	0.1773 (0.0259)	0.1002 (0.0069)	0.0188 (0.0043)	0.0138 (0.0054)
SFT	0.2399 (0.0013)	0.7162 (0.0018)	0.4006 (0.0105)	0.1719 (0.0186)	0.1351 (0.0052)	0.0115 (0.0049)	0.0039 (0.0013)
DPO	0.3202 (0.0030)	0.8509 (0.0013)	0.5279 (0.0080)	0.2773 (0.0166)	0.2341 (0.0085)	0.0221 (0.0013)	0.0089 (0.0045)
IPO	0.3146 (0.0014)	0.8584 (0.0009)	0.5150 (0.0031)	0.2594 (0.0068)	0.2336 (0.0067)	0.0164 (0.0040)	0.0047 (0.0018)
SimPO	0.3148 (0.0008)	0.8585 (0.0035)	0.5446 (0.0039)	0.2773 (0.0053)	0.1823 (0.0015)	0.0161 (0.0047)	0.0099 (0.0036)
ORPO	0.3277 (0.0066)	0.8690 (0.0009)	0.5503 (0.0049)	0.2883 (0.0273)	0.2232 (0.0062)	0.0219 (0.0050)	0.0135 (0.0054)
AlphaPO Pair	0.3158 (0.0019)	0.8693 (0.0010)	0.5277 (0.0128)	0.2695 (0.0064)	0.1930 (0.0034)	0.0234 (0.0025)	0.0117 (0.0037)
APO-Zero	0.3081 (0.0012)	0.8717 (0.0018)	0.5052 (0.0028)	0.2461 (0.0053)	0.1965 (0.0069)	0.0211 (0.0032)	0.0078 (0.0044)
NCA	0.2979 (0.0031)	0.8340 (0.0034)	0.5058 (0.0052)	0.2250 (0.0238)	0.1983 (0.0071)	0.0195 (0.0021)	0.0049 (0.0016)
Cal-DPO	0.2943 (0.0013)	0.8334 (0.0008)	0.4946 (0.0065)	0.2289 (0.0097)	0.1916 (0.0059)	0.0148 (0.0027)	0.0026 (0.0010)
ASFT	0.3030 (0.0042)	0.8330 (0.0010)	0.5004 (0.0040)	0.2492 (0.0154)	0.2075 (0.0051)	0.0216 (0.0090)	0.0060 (0.0031)
AlphaPO Point	0.2923 (0.0018)	0.8172 (0.0017)	0.5032 (0.0079)	0.2336 (0.0208)	0.1766 (0.0056)	0.0180 (0.0035)	0.0049 (0.0021)
fKL Pair	0.2839 (0.0029)	0.8215 (0.0012)	0.4724 (0.0027)	0.2125 (0.0133)	0.1759 (0.0064)	0.0169 (0.0032)	0.0039 (0.0029)
fKL Point	0.2750 (0.0036)	0.8125 (0.0017)	0.4663 (0.0017)	0.1852 (0.0121)	0.1638 (0.0067)	0.0164 (0.0005)	0.0055 (0.0010)

1059 Table 13: Math benchmark results for Qwen2.5-14B. Reported values are avg@8 (except
 1060 AIME24/25: avg@32), averaged across 4 seeds; standard deviation across seeds is shown in paren-
 1061 theses.

1062
 1063 On Qwen2.5–7B we sweep learning rates $\{3 \times 10^{-7}, 5 \times 10^{-7}\}$ and $\beta \in$
 1064 $\{0.001, 0.005, 0.01, 0.05, 0.1, 0.2\}$ for both pairwise and pointwise formulations. On Qwen2.5–14B
 1065 we reuse the best learning rate from 7B (5×10^{-7}) and sweep the same β values. The best β
 1066 values are 0.005 and 0.001 (pairwise/pointwise) for Qwen2.5–7B, and 0.005 for both pairwise
 1067 and pointwise on Qwen2.5–14B. The resulting scores are reported alongside the other methods in
 1068 Tables 12 and 13.

1069 As expected from the original f-DPO results, the Forward-KL parameterization yields lower absolute
 1070 performance than DPO / reverse-KL. However, the structural pattern is unchanged: in both 7B and
 1071 14B settings the fKL pairwise objective consistently outperforms its fKL pointwise counterpart, and
 1072 the gap becomes more pronounced at 14B. This behavior matches what we observe for the other
 1073 scalar score families considered in this paper and further supports our conclusion that, in the static
 1074 binary-preference regime we study, the pairwise vs. pointwise ranking structure is the dominant
 1075 driver of performance.

C EQUIVALENCE OF $\mathcal{L}_{\text{ASFT Align}}$ AND BINARY CROSS-ENTROPY LOSS

Lemma C.1.

$$\log \sigma(r_\theta^{\text{odds}}(y, x)) = \log \pi_\theta(y|x)$$

1080 *Proof.*

$$\begin{aligned}
 1082 \quad & \log \sigma(r_\theta^{\text{odds}}(y, x)) = \log \sigma(\log \frac{\pi_\theta(y|x)}{1 - \pi_\theta(y|x)}) = \log \frac{1}{1 + e^{\log(1 - \pi_\theta(y|x)) - \log(\pi_\theta(y|x))}} \\
 1083 \quad & = \log \frac{1}{1 + \frac{1 - \pi_\theta(y|x)}{\pi_\theta(y|x)}} = -\log \left(1 + \frac{1 - \pi_\theta(y|x)}{\pi_\theta(y|x)}\right) = -\log \frac{\pi_\theta(y|x) + 1 - \pi_\theta(y|x)}{\pi_\theta(y|x)} = \log \pi_\theta(y|x).
 \end{aligned}$$

1087 \square

1088 **Lemma C.2.**

$$1089 \quad \log \sigma(-r_\theta^{\text{odds}}(y, x)) = \log(1 - \pi_\theta(y|x))$$

1090 *Proof.*

$$\begin{aligned}
 1093 \quad & \log \sigma(-r_\theta^{\text{odds}}(y, x)) = \log \sigma(-\log \frac{\pi_\theta(y|x)}{1 - \pi_\theta(y|x)}) = \log \frac{1}{1 + e^{\log(\pi_\theta(y|x)) - \log(1 - \pi_\theta(y|x))}} = \\
 1094 \quad & \log \frac{1}{1 + \frac{\pi_\theta(y|x)}{1 - \pi_\theta(y|x)}} = -\log \left(1 + \frac{\pi_\theta(y|x)}{1 - \pi_\theta(y|x)}\right) = -\log \frac{1 - \pi_\theta(y|x) + \pi_\theta(y|x)}{1 - \pi_\theta(y|x)} = \log(1 - \pi_\theta(y|x)).
 \end{aligned}$$

1095 \square

1100 **Theorem C.3.** $\mathcal{L}_{\text{ASFT}_{\text{Align}}}$ decomposes into likelihood and unlikelihood terms, corresponding exactly to the sum of binary cross-entropy (BCE) losses evaluated independently on the positive and negative samples:

$$1103 \quad \mathcal{L}_{\text{ASFT}_{\text{Align}}} = -\log \pi_\theta(y_w|x) - \log(1 - \pi_\theta(y_l|x)).$$

1104 *Proof.* To explicitly demonstrate this decomposition, we start from the definition of the ASFT loss:

$$1106 \quad \mathcal{L}_{\text{ASFT}} = -\log \pi_\theta(y_w|x) - \lambda \log \sigma(r_\theta^{\text{odds}}(y_w, x)) - \lambda \log \sigma(-r_\theta^{\text{odds}}(y_l, x)),$$

1108 where the odds ratio is defined as:

$$1109 \quad r_\theta^{\text{odds}}(y, x) = \frac{\pi_\theta(y|x)}{1 - \pi_\theta(y|x)}.$$

1112 Applying Lemma C.1 and Lemma C.2, we rewrite this as:

$$\begin{aligned}
 1114 \quad & \mathcal{L}_{\text{ASFT}_{\text{Align}}} = -\log \pi_\theta(y_w|x) - \log(1 - \pi_\theta(y_l|x)), \\
 1115 \quad & \mathcal{L}_{\text{ASFT}} = -(1 + \lambda) \log \pi_\theta(y_w|x) - \lambda \log(1 - \pi_\theta(y_l|x)).
 \end{aligned}$$

1117 To illustrate the connection with the binary cross-entropy (BCE) loss explicitly, consider the BCE defined for an example (x, y) with binary label $z \in \{0, 1\}$:

$$1120 \quad \mathcal{L}_{\text{BCE}}(y, z|x) = -z \log \pi_\theta(y|x) - (1 - z) \log(1 - \pi_\theta(y|x)).$$

1122 Evaluating BCE independently at the chosen example y_w (positive, $z = 1$) and rejected example y_l (negative, $z = 0$), we have:

$$\begin{aligned}
 1124 \quad & \mathcal{L}_{\text{BCE}}(y_w, 1|x) = -\log \pi_\theta(y_w|x), \\
 1125 \quad & \mathcal{L}_{\text{BCE}}(y_l, 0|x) = -\log(1 - \pi_\theta(y_l|x)).
 \end{aligned}$$

1127 Summing these two BCE terms yields exactly:

$$1129 \quad \mathcal{L}_{\text{BCE}}(y_w, 1|x) + \mathcal{L}_{\text{BCE}}(y_l, 0|x) = -\log \pi_\theta(y_w|x) - \log(1 - \pi_\theta(y_l|x)),$$

1131 which matches precisely the alignment loss $\mathcal{L}_{\text{ASFT}_{\text{Align}}}$.

1133 Thus $\mathcal{L}_{\text{ASFT}_{\text{Align}}}$ decomposes into two independent BCE terms, each representing likelihood and unlikelihood modeling separately. \square

1134 **D RELATIONSHIP BETWEEN ORPO AND ASFT LOSS FUNCTIONS**
 1135

1136 **Theorem D.1.** $\mathcal{L}_{\text{ORPO}}$ can be expressed as:

1137
$$\mathcal{L}_{\text{ORPO}} = \mathcal{L}_{\text{ASFT}} + \lambda \log (\pi_\theta(y_w|x)(1 - \pi_\theta(y_l|x)) + \pi_\theta(y_l|x)(1 - \pi_\theta(y_w|x))).$$

1139 *Proof.* We start by defining the ORPO loss:

1141
$$\mathcal{L}_{\text{ORPO}} = -\log \pi_\theta(y_w|x) - \lambda \log \sigma \left(\log \frac{\pi(y_w|x)}{1 - \pi(y_w|x)} - \log \frac{\pi(y_l|x)}{1 - \pi(y_l|x)} \right).$$

1144 Expanding the second term using the identity $\log \sigma(x) = x - \log(e^x + 1)$, we get:

1145
$$\begin{aligned} & -\log \sigma \left(\log \frac{\pi_\theta(y_w|x)}{1 - \pi_\theta(y_w|x)} - \log \frac{\pi_\theta(y_l|x)}{1 - \pi_\theta(y_l|x)} \right) \\ & = \log \frac{1 - \pi_\theta(y_w|x)}{\pi_\theta(y_w|x)} + \log \frac{\pi_\theta(y_l|x)}{1 - \pi_\theta(y_l|x)} + \log \left(\frac{\pi_\theta(y_w|x)(1 - \pi_\theta(y_l|x))}{\pi_\theta(y_l|x)(1 - \pi_\theta(y_w|x))} + 1 \right) \\ & = \log \frac{1 - \pi_\theta(y_w|x)}{\pi_\theta(y_w|x)} + \log \frac{\pi_\theta(y_l|x)}{1 - \pi_\theta(y_l|x)} + \log \left(\frac{\pi_\theta(y_w|x) - 2\pi_\theta(y_w|x)\pi_\theta(y_l|x) + \pi_\theta(y_l|x)}{\pi_\theta(y_l|x)(1 - \pi_\theta(y_w|x))} \right) \\ & = \underbrace{-\log \pi_\theta(y_w|x) - \log(1 - \pi_\theta(y_l|x)) + \log \left(\pi_\theta(y_w|x) - 2\pi_\theta(y_w|x)\pi_\theta(y_l|x) + \pi_\theta(y_l|x) \right)}_{\text{ORPO}_{\text{Align}}}. \end{aligned}$$

1155 Combining all terms, we obtain:

1157
$$\begin{aligned} \mathcal{L}_{\text{ORPO}} & = -(1 + \lambda) \log \pi_\theta(y_w|x) - \lambda \log(1 - \pi_\theta(y_l|x)) + \\ & \quad \lambda \log (\pi_\theta(y_w|x)(1 - \pi_\theta(y_l|x)) + \pi_\theta(y_l|x)(1 - \pi_\theta(y_w|x))) \\ & = \mathcal{L}_{\text{ASFT}} + \lambda \log (\pi_\theta(y_w|x)(1 - \pi_\theta(y_l|x)) + \pi_\theta(y_l|x)(1 - \pi_\theta(y_w|x))) \end{aligned}$$

1161 **Corollary D.2.** $\mathcal{L}_{\text{ORPO}} \leq \mathcal{L}_{\text{ASFT}}$ and $\mathcal{L}_{\text{ORPO}_{\text{Align}}} \leq \mathcal{L}_{\text{ASFT}_{\text{Align}}}.$

1163 This follows from the fact that the additional term in $\mathcal{L}_{\text{ORPO}}$ is non-positive when $\pi_\theta(y_w|x)$ and
 1164 $\pi_\theta(y_l|x)$ lie in $[0, 1]$, and $\pi_\theta(y_w|x) + \pi_\theta(y_l|x) \leq 1$.

1165 \square

1167 **E UNDERSTANDING TEMPERED ASFT AND ORPO**
 1168

1169 Consider gradients of $\nabla_\theta \mathcal{L}_{\text{ASFT}_{\text{Align}}}^\beta$ and $\nabla_\theta \mathcal{L}_{\text{ORPO}_{\text{Align}}}^\beta$:

1172
$$\nabla_\theta \mathcal{L}_{\text{ASFT}_{\text{Align}}}^\beta = -\beta \left[(1 - \sigma(\beta r_\theta^{\text{odds}}(y_w, x))) \nabla_\theta r_\theta^{\text{odds}}(y_w, x) + \sigma(\beta r_\theta^{\text{odds}}(y_l, x)) \nabla_\theta r_\theta^{\text{odds}}(y_l, x) \right],$$

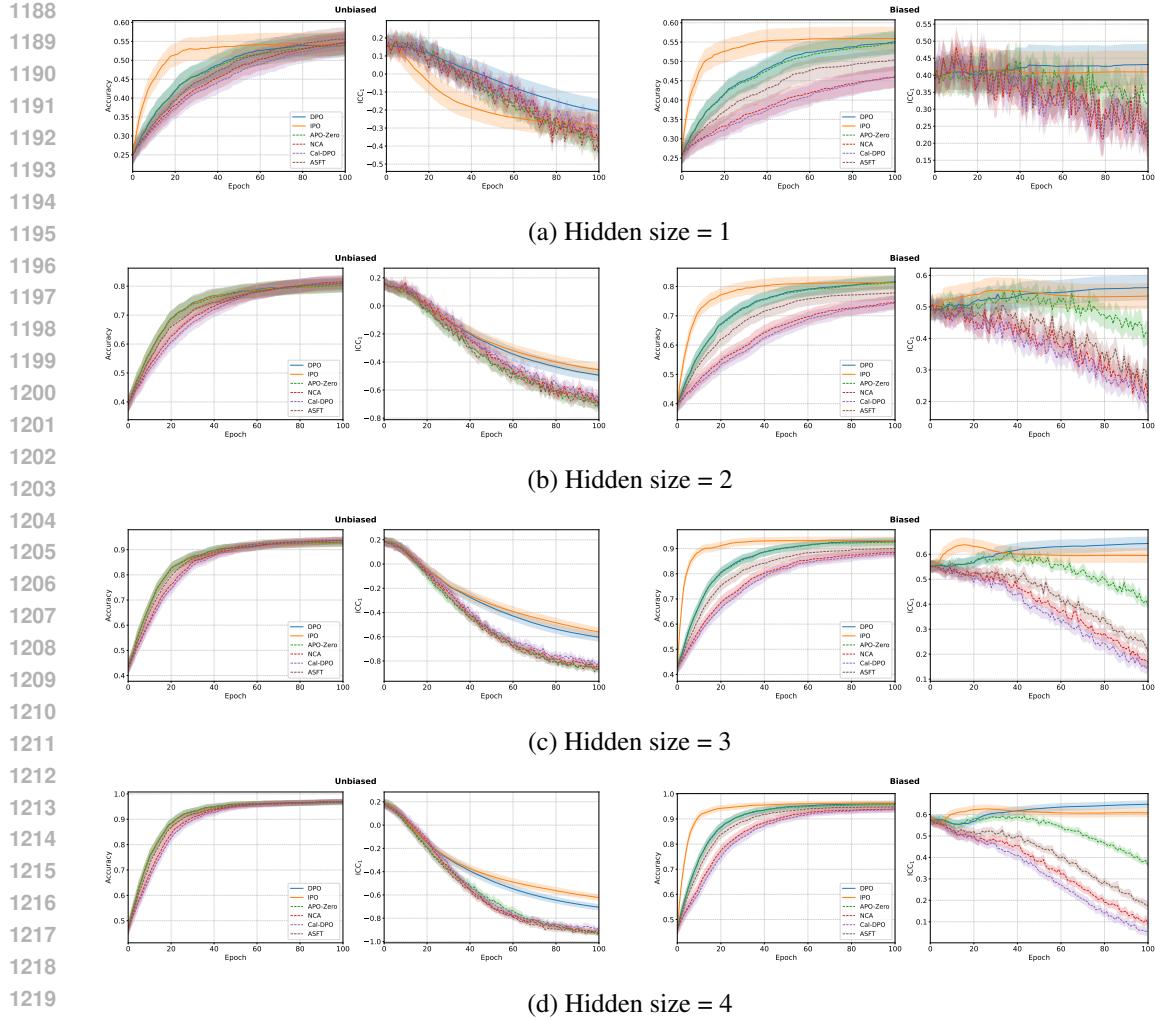
1174
$$\nabla_\theta \mathcal{L}_{\text{ORPO}_{\text{Align}}}^\beta = -\beta \left[(\nabla_\theta r_\theta^{\text{odds}}(y_w, x) - \nabla_\theta r_\theta^{\text{odds}}(y_l, x)) \times \left(1 - \sigma(\beta r_\theta^{\text{odds}}(y_w, x) - \beta r_\theta^{\text{odds}}(y_l, x)) \right) \right],$$

1176 where $\nabla_\theta r_\theta^{\text{odds}}(y, x) = \frac{\nabla_\theta \log \pi_\theta(y|x)}{1 - \pi_\theta(y|x)}.$

1178 When $\beta \rightarrow 0$, $\sigma(\beta \dots) \approx \frac{1}{2}$, both methods aggressively improve the odds ratio (increasing for y_w
 1179 and decreasing for y_l). As β increases, the updates become bounded by the factor $\sigma(\beta \dots)$ (similar
 1180 to a reward threshold in DPO). Hence, once the model improves, further updates are limited, either
 1181 individually for $\mathcal{L}_{\text{ASFT}_{\text{Align}}}^\beta$ or by pairwise ranking in $\mathcal{L}_{\text{ORPO}_{\text{Align}}}^\beta$.

1183 **F EXPERIMENT ON PROMPT BIAS**
 1184

1185 To further investigate our hypothesis from Section 6 regarding how pairwise and pointwise objec-
 1186 tives interact with prompt-specific biases, we designed a controlled toy experiment. The goal is to
 1187 simulate the essential mechanics of DAA training and observe the behavior of different objectives
 under conditions with and without an artificially introduced prompt-specific bias.



1221 **Figure 5: Toy experiment: effect of model capacity ($h = 1, 2, 3, 4$) on accuracy and
1222 prompt bias (ICC_1).** Pairwise (solid) and pointwise (dashed) objectives compared under unbiased
1223 (bias_strength = 0.0, left) and biased (bias_strength = 0.9, right) conditions. Results averaged
1224 over 1000 seeds; 95% CI shown. See Section 6 for details.

1225
1226 **Experimental Setup.** For each run, we generate a dataset of $N = 2000$ samples. Each sample
1227 consists of a scalar prompt $x \sim \text{U}(0, 1)$ and two scalar responses $s_{1,\text{base}}, s_{2,\text{base}} \sim \text{U}(0, 1)$, repre-
1228 senting the underlying "base quality" of the responses for that prompt.

1229 Before introducing any bias, we center the base scores for each prompt:

$$\tilde{s}_{1,\text{base}} = s_{1,\text{base}} - \frac{1}{2}(s_{1,\text{base}} + s_{2,\text{base}}), \quad \tilde{s}_{2,\text{base}} = s_{2,\text{base}} - \frac{1}{2}(s_{1,\text{base}} + s_{2,\text{base}})$$

1230 so that $\tilde{s}_{1,\text{base}} + \tilde{s}_{2,\text{base}} = 0$ for every prompt. This ensures that, in the absence of further modifica-
1231 tions, there is no prompt-specific baseline in the response scores.

1232 Next, we introduce prompt-specific bias by adding $b_x = \text{bias_strength} \times \mathbb{I}(x < \text{bias_threshold})$
1233 to both centered scores, with $\text{bias_threshold} = 0.5$ and bias_strength set to 0.0 (unbiased) or 0.9
1234 (biased). The observed scores are therefore:

$$y_1 = \tilde{s}_{1,\text{base}} + b_x, \quad y_2 = \tilde{s}_{2,\text{base}} + b_x$$

1235 For each prompt, the preferred (y_w) and dispreferred (y_l) observed scores are determined by apply-
1236 ing the Bradley-Terry model (Bradley & Terry, 1952) to (y_1, y_2) with a low temperature (10^{-6}),

making the assignment nearly deterministic: the higher of y_1 or y_2 is almost always selected as y_w , and the lower as y_l .

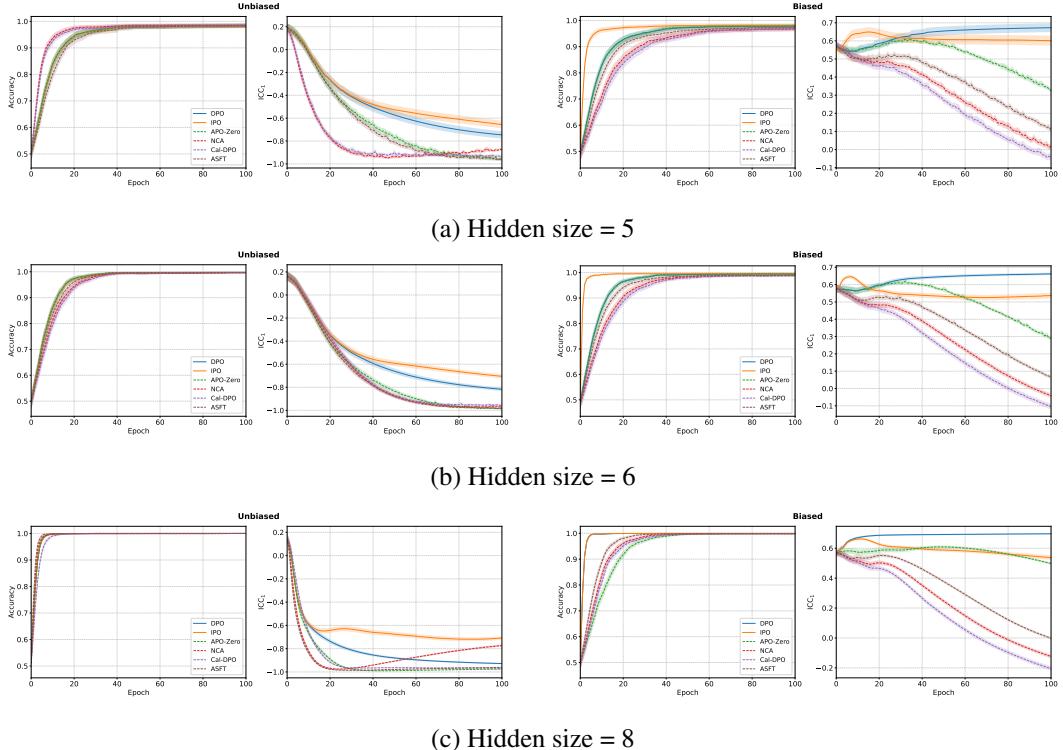


Figure 6: **Toy experiment: effect of model capacity ($h = 5, 6, 8$) on accuracy and prompt bias (ICC_1).** Pairwise (solid) and pointwise (dashed) objectives compared under unbiased (bias_strength = 0.0, left) and biased (bias_strength = 0.9, right) conditions. Results averaged over 1000 seeds; 95% CI shown. See Section 6 for details.

Model and Training. The model is a simple Multi-Layer Perceptron (MLP) with a single hidden layer and ReLU activation. It takes a 2-dimensional input (concatenation of the scalar prompt x and scalar candidate response score y) and outputs a scalar score $r_\theta(x, y)$. We experiment with varying hidden layer sizes $h \in \{1, 2, 3, 4, 5, 6, 8\}$ to test different model capacities.

Since we focus solely on the bias-specific dependencies of each DAA objective, we do not investigate the differences between r_θ^{ref} and r_θ^{odds} , operating exclusively with the scalar form $r_\theta(x, y)$. As a result, some of the loss functions discussed in Section 2 become equivalent in this context (for instance, DPO, SimPO, and ORPO) which we collectively refer to in this section as "DPO" for convenience. Other losses, such as APO-Zero, NCA, Cal-DPO, and ASFT, retain their distinct formulations involving $r_\theta(x, y)$, and are therefore referred to by their original names.

We fix $\beta = 1$ throughout, so that the scale of the loss does not confound the comparison of objectives; tuning β merely regularizes the strength of preference optimization. This allows any differences in alignment to be attributed to the structural properties of the objectives.

Each configuration (objective, hidden size h , bias regime) is trained for 100 epochs, using 80% of the data for training and 20% for testing. For each configuration, the learning rate is selected by hyperparameter search over $\{0.3, 0.1, 0.05, 0.03, 0.01, 0.005, 0.003\}$ to maximize test alignment accuracy. All reported results are averaged over 1000 independent runs (with distinct random seeds for both data generation and model initialization). Confidence intervals are reported as ± 1.96 SE, where SE is the standard error across runs.

We report two metrics on the test set: (i) accuracy, defined as the fraction of test pairs for which $r_\theta(x, y_w) > r_\theta(x, y_l)$; and (ii) the Intraclass Correlation Coefficient (ICC_1) Bartko (1966), which quantifies prompt-specific bias in the model's learned scores (see Appendix J for details).



Figure 7: **ICC₁ on real data.** ICC₁ computed on the training and validation splits for the best model from each method, across **Llama 3.1 8B UF**, **Llama 3.2 3B UF**, and **Llama 3.2 3B TL;DR** setups. Error bars show 95% confidence intervals. See Section 6 for details.

Results. Figures 5 and 6 present the results of the toy experiment, reporting test accuracy and ICC₁ across a range of model capacities (hidden dimension h), both for the unbiased (bias_strength = 0.0) and biased (bias_strength = 0.9) regimes.

In the unbiased condition (left panels), where the data contain no prompt-specific bias, all objectives – pairwise (DPO, IPO) and pointwise (ASFT, NCA, Cal-DPO, APO-Zero) – achieve identical accuracy for all h , and ICC₁ converges toward -1 as capacity increases. This confirms that when the underlying data are unbiased, neither class of objectives induces spurious prompt bias, and both are able to learn the quality structure of responses equally well.

1350 In the biased condition (right panels), where prompt-specific bias is present in the data, the results
 1351 partially mirror what we observe on real data. Examining ICC_1 , we see that our hypothesis is
 1352 confirmed: pointwise methods reduce prompt bias, as indicated by lower ICC_1 , while for pairwise
 1353 methods, ICC_1 plateaus at a higher value. When comparing pointwise objective with $h = 1$ and
 1354 $h = 3$, for $h = 3$ the reduction in ICC_1 is more pronounced than for $h = 1$, indicating that a model
 1355 with greater capacity is better able to reduce prompt bias.

1356 If we examine the standard errors of accuracy, for $h = 1$ (which is most analogous to the Llama
 1357 3.2 3B UF setup), there is substantial overlap in the SE intervals across all methods. This closely
 1358 resembles the trends observed in the ArenaHard column of Table 3, where IPO, DPO, SimPO,
 1359 ORPO, and APO-Zero tend to achieve higher mean performance, while ASFT, NCA, and Cal-DPO
 1360 are lower on average; however, the confidence intervals for many methods overlap, indicating that
 1361 the differences are not always statistically significant in this lower-capacity regime. For $h = 3$,
 1362 where in the pointwise case the model has more capacity to "spend" on removing bias, the gap
 1363 between pairwise and pointwise objectives becomes more evident, mirroring the situation seen in
 1364 Llama 3.1 8B UF. When $h > 4$, the task becomes trivial for the model, and the available capacity
 1365 suffices both to minimize prompt bias and to achieve high ranking accuracy for all objectives; as a
 1366 result, the performance of all methods converges. This parallels what we observe in the Llama 3.2
 1367 3B TL;DR setup.

1368 These results are consistent with our hypothesis and provide strong evidence for why pairwise meth-
 1369 ods work better in certain regimes often encountered in real data - specifically, when the task is chal-
 1370 lenging enough that the model's capacity is insufficient to completely remove prompt bias. In such
 1371 cases, differences between objectives are pronounced; for both very high and very low capacity,
 1372 these differences vanish.

1373 Additionally, Figure 7 reports ICC_1 with 95% confidence intervals, computed for the best-trained
 1374 model of each method (hyperparameters in Table 8) on the training and validation splits (the large
 1375 CI on the UF validation split is due to the small data size; see Table 6). Here, r refers to r_θ^{ref} and
 1376 r_θ^{odds} as appropriate for each method. These results also support our findings from the toy example
 1377 and the hypothesis stated in Section 6: in Llama 3.1 8B UF, ICC_1 is higher for pairwise methods,
 1378 while for Llama 3.2 UF and TL;DR the results are mixed.

1380 G THEORETICAL ANALYSIS OF PROMPT-SPECIFIC BIAS AND RANKING 1381 OBJECTIVES

1383 In Section 6, we attribute the performance gap between pairwise and pointwise methods to how they
 1384 interact with prompt-specific biases, specifically, that pointwise methods expend model capacity
 1385 "unlearning" biases that pairwise methods naturally ignore. In this appendix, we formalize this
 1386 mechanism. We define the *marginalized score* (prompt bias) for a general class of scalar score
 1387 functions and analyze the gradient dynamics of pairwise and pointwise objectives with respect to
 1388 this quantity.

1390 G.1 GENERAL SETUP AND DEFINITIONS

1392 Consider a conditional language model parameterized by θ , denoting the probability of a response y
 1393 given prompt x as $\pi_\theta(y|x)$. Let \mathcal{D} be a dataset of preference pairs (x, y_w, y_l) .

1395 **Definition G.1** (Scalar Score Family). We assume the scalar score used for alignment takes the
 1396 general form:

$$1398 r_\theta(x, y) = F(\pi_\theta(y|x), \mathcal{C}(x, y))$$

1399 where $F : [0, 1] \times \mathcal{Z} \rightarrow \mathbb{R}$ is differentiable with respect to its first argument (the probability
 1400 $\pi_\theta(y|x)$). The term $\mathcal{C}(x, y)$ represents fixed context-dependent quantities (e.g., reference model
 1401 probabilities $\pi_{\text{ref}}(y|x)$, sequence lengths $|y|$) that are independent of θ . The dependence on θ oc-
 1402 curs only through $\pi_\theta(y|x)$. For notational convenience, when $\mathcal{C}(x, y)$ is fixed we will sometimes
 1403 write $F(\pi_\theta(y|x))$ and leave the second argument implicit. This formulation covers r_{ref} , r_{odds} and
 1404 r_α by Gupta et al. DAA families used in our experiments.

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

Definition G.2 (Marginalized Score / Prompt Bias). For a fixed prompt x , let $q_x(y)$ be the empirical marginal distribution of candidate responses appearing in the dataset for that prompt (i.e., the set of all y_w and y_l associated with x). We define the **marginalized score** (or prompt-specific bias) as:

$$b_\theta(x) := \mathbb{E}_{y \sim q_x}[r_\theta(x, y)] = \sum_{y \in \mathcal{Y}_x} q_x(y) F(\pi_\theta(y | x)).$$

By construction, q_x is a probability distribution over \mathcal{Y}_x , so $\sum_{y \in \mathcal{Y}_x} q_x(y) = 1$, and it is entirely determined by the dataset (hence independent of θ).

G.2 GRADIENT SENSITIVITY OF THE MARGINALIZED SCORE

First, we must establish that $b_\theta(x)$ is indeed sensitive to model parameters. If $\nabla_\theta b_\theta(x) = 0$ everywhere, the distinction between objectives would be moot.

Let $z(x)$ denote the vector of unnormalized logits for the candidate set $\mathcal{Y}_x = \{y_1, \dots, y_K\}$ such that $\pi_\theta(y_k | x) = \text{softmax}(z(x))_k = \frac{e^{z_k}}{\sum_j e^{z_j}}$.

Lemma G.3 (Gradient of Marginalized Score w.r.t logits). *The gradient of the prompt bias $b_\theta(x)$ with respect to the logit z_m of a specific candidate y_m is:*

$$\frac{\partial b_\theta(x)}{\partial z_m} = \pi_\theta(y_m | x) \left[q_x(y_m) F'(\pi_m) - \sum_{y \in \mathcal{Y}_x} q_x(y) F'(\pi_y) \pi_\theta(y | x) \right]$$

where $\pi_k \equiv \pi_\theta(y_k | x)$ and $F'(p) = \frac{\partial F}{\partial p}$.

Proof. Using the chain rule: $\frac{\partial b_\theta}{\partial z_m} = \sum_k q_x(y_k) F'(\pi_k) \frac{\partial \pi_k}{\partial z_m}$. Recall the softmax derivative $\frac{\partial \pi_k}{\partial z_m} = \pi_k(\delta_{km} - \pi_m)$. Substituting this:

$$\begin{aligned} \frac{\partial b_\theta}{\partial z_m} &= \sum_k q_x(y_k) F'(\pi_k) [\pi_k(\delta_{km} - \pi_m)] \\ &= q_x(y_m) F'(\pi_m) \pi_m - \pi_m \sum_k q_x(y_k) F'(\pi_k) \pi_k. \end{aligned}$$

This completes the proof. □

Assumption G.4 (Non-Degeneracy). We assume the score function F and the data distribution q_x are such that $\frac{\partial b_\theta(x)}{\partial z} \neq 0$.

Remark: This holds generically. From Lemma G.3, for the gradient to vanish for a fixed prompt x and all logits z_m we would need

$$q_x(y_m) F'(\pi_\theta(y_m | x)) = \text{const} \quad \text{for all } y_m \in \mathcal{Y}_x.$$

In other words, $q_x(y_m)$ would have to be exactly proportional to $1/F'(\pi_m)$, which imposes a highly specific compatibility between the fixed data distribution q_x and the evolving model distribution $\pi_\theta(\cdot | x)$. Since q_x is θ -independent while π_θ changes throughout training, this condition defines at most a measure-zero set of parameter values and is not satisfied in generic training dynamics.

Corollary G.5. *The prompt bias $b_\theta(x)$ is a learnable functional of the model parameters. The model can adjust it. The question is: do the objectives ask the model to adjust it?*

1458 G.3 GRADIENT SIGNAL FOR BIAS UPDATE
14591460 We define a general preference loss over a dataset \mathcal{D} as $L(\theta) = \mathbb{E}_{(x, y_w, y_l) \sim \mathcal{D}} [\ell(r_w, r_l)]$, where r_w, r_l
1461 are the scalar scores for y_w, y_l .1462 We can analyze how the loss generates gradient signals to update the prompt bias. Let $g_\theta(x, y) =$
1463 $\frac{\partial L}{\partial r_\theta(x, y)}$ be the backpropagated gradient signal w.r.t the score of a specific response y .
14641465 We define the **total score gradient** for prompt x as:

1466
$$G_\theta(x) := \sum_{y \in \mathcal{Y}_x} g_\theta(x, y) = \sum_{y \in \mathcal{Y}_x} \frac{\partial L}{\partial r_\theta(x, y)}.$$

1467
1468

1469
1470 **Theorem G.6** (Gradient Signal for Bias). *The total score gradient $G_\theta(x) = \sum_{y \in \mathcal{Y}_x} g_\theta(x, y)$ quantifies the sensitivity of the loss L to a hypothetical uniform shift in the scores for prompt x . Specifically, if it were possible to independently add a small constant ε to $r_\theta(x, y)$ for all $y \in \mathcal{Y}_x$, the first-order change in the loss would be $\delta L = \varepsilon \cdot G_\theta(x)$.*
1471
1472
14731474 This makes $G_\theta(x)$ a direct measure of the objective's incentive to alter the prompt bias $b_\theta(x)$. A
1475 non-zero $G_\theta(x)$ implies that the loss function, in isolation, generates a gradient signal that would
1476 drive such a uniform shift, and thus a change in the bias. Whether the model can perfectly satisfy
1477 this incentive depends on its parameterization and capacity.1478
1479 *Proof.* Consider a uniform shift $\delta r = \varepsilon$ applied to the scores of all responses $y \in \mathcal{Y}_x$. The induced
1480 change in the loss L is, to first order:

1481
$$\delta L = \sum_{y \in \mathcal{Y}_x} \frac{\partial L}{\partial r_\theta(x, y)} \cdot \delta r = \varepsilon \cdot \sum_{y \in \mathcal{Y}_x} g_\theta(x, y) = \varepsilon \cdot G_\theta(x).$$

1482
1483

1484
1485 This shows that $G_\theta(x)$ is the derivative of L with respect to a uniform shift in the scores for prompt
1486 x .1487 Now, note that a uniform shift $\delta r = \varepsilon$ for all $y \in \mathcal{Y}_x$ will change the prompt bias $b_\theta(x)$ by ε ,
1488 because:

1489
$$\delta b_\theta(x) = \sum_{y \in \mathcal{Y}_x} q_x(y) \cdot \delta r = \varepsilon \cdot \sum_{y \in \mathcal{Y}_x} q_x(y) = \varepsilon.$$

1490

1491 Therefore, the gradient of L with respect to a change in the bias $b_\theta(x)$ (via a uniform shift) is
1492 exactly $G_\theta(x)$. Hence, $G_\theta(x) \neq 0$ implies that the objective function, in isolation, generates a
1493 gradient signal that would drive such a uniform shift, and thus a change in the bias. We emphasize
1494 that this argument considers a *hypothetical* perturbation in the space of scalar scores $r_\theta(x, y)$: it
1495 characterizes the structural sensitivity of the loss to per-prompt shifts, independently of whether the
1496 model parameterization allows implementing an exact uniform shift in score space. \square
14971498 G.4 INVARIANCE OF PAIRWISE OBJECTIVES
14991500 We now prove that pairwise objectives are structurally invariant to prompt bias.
15011502 **Definition G.7** (Pairwise Objective). A pairwise objective is defined as $\ell_{\text{pair}}(r_w, r_l) = \phi(r_w - r_l)$,
1503 for some differentiable $\phi : \mathbb{R} \rightarrow \mathbb{R}$. Examples include DPO ($\phi(u) = -\log \sigma(\beta u)$), IPO, SimPO,
1504 and ORPO (in the two-stage formulation).1505
1506 **Theorem G.8** (Pairwise Invariance). *For any pairwise objective ℓ_{pair} , the total score gradient $G_\theta(x)$
1507 is zero for every prompt x :*

1508
$$G_\theta(x) = \sum_{y \in \mathcal{Y}_x} g_\theta(x, y) = 0 \quad \forall x.$$

1509
1510

1511 *Consequently, pairwise objectives do not generate a gradient signal for uniform shifts in scores (i.e.,
they are invariant to prompt bias).*

1512

1513

1514 *Proof.* Consider the set of pairs $\mathcal{P}_x = \{(y_w^{(i)}, y_l^{(i)})\}$ for prompt x . The total loss is $L_x =$
 1515 $\sum_i \phi(r_{w,i} - r_{l,i})$. The derivative w.r.t. the score of a generic candidate y is:

$$1517 \quad g_\theta(x, y) = \sum_{i: y_w^{(i)}=y} \phi'(\Delta_i) + \sum_{i: y_l^{(i)}=y} (-\phi'(\Delta_i))$$

1519

1520 where $\Delta_i = r_{w,i} - r_{l,i}$. The total score gradient is:

$$1521 \quad G_\theta(x) = \sum_{y \in \mathcal{Y}_x} g_\theta(x, y)$$

$$1522 \quad = \sum_{y \in \mathcal{Y}_x} \left(\sum_{i: y_w^{(i)}=y} \phi'(\Delta_i) - \sum_{i: y_l^{(i)}=y} \phi'(\Delta_i) \right)$$

$$1524 \quad = \sum_i \phi'(\Delta_i) - \sum_i \phi'(\Delta_i) = 0.$$

1529

1530 This completes the proof. □

1531

1532

G.5 COUPLING OF POINTWISE OBJECTIVES

1533

1534

1535 **Definition G.9** (Pointwise Objective). A pointwise objective decomposes into separate terms for
 1536 winners and losers:

$$1537 \quad \ell_{\text{point}}(r_w, r_l) = \psi_+(r_w) + \psi_-(r_l).$$

1538

1539 Examples include NCA, Cal-DPO, and ASFT.

1540

1541 **Theorem G.10** (Pointwise Coupling). *For pointwise objectives of the form $\ell_{\text{point}}(r_w, r_l) = \psi_+(r_w) + \psi_-(r_l)$, the total score gradient $G_\theta(x)$ is:*

1542

1543

$$G_\theta(x) = \sum_i [\psi'_+(r_{w,i}) + \psi'_-(r_{l,i})],$$

1544

1545 where the sum is over all preference pairs $(y_w^{(i)}, y_l^{(i)})$ for prompt x .

1546

1547 This sum is not constrained to be zero by the structure of the loss. For any individual pair, the
 1548 condition for zero contribution, $\psi'_+(r_w) + \psi'_-(r_l) = 0$, imposes a specific relationship between r_w
 1549 and r_l ; requiring this to hold simultaneously for all pairs defines a non-generic equilibrium. Hence,
 1550 for generic score configurations $(r_{w,i}, r_{l,i})$, pointwise objectives generate a non-zero gradient signal
 1551 $G_\theta(x)$, explicitly incentivizing the model to change the prompt bias $b_\theta(x)$.

1551

1552

1553 *Proof.* The total score gradient is derived as follows. For a pointwise objective, the loss for a single
 1554 pair is $\ell = \psi_+(r_w) + \psi_-(r_l)$. The gradients with respect to the scores are:

1555

1556

$$\frac{\partial \ell}{\partial r_w} = \psi'_+(r_w),$$

1557

$$\frac{\partial \ell}{\partial r_l} = \psi'_-(r_l).$$

1558

1559 Summing over all pairs for prompt x , we obtain:

1560

1561

$$G_\theta(x) = \sum_i [\psi'_+(r_{w,i}) + \psi'_-(r_{l,i})].$$

1562

1563

1564 This sum is not structurally constrained to be zero. For example, ASFT with $\psi_+(r) = -\log \sigma(r)$
 1565 and $\psi_-(r) = -\log \sigma(-r)$, we have $\psi'_+(r) = \sigma(r) - 1$ and $\psi'_-(r) = \sigma(r)$, giving a sum of
 $\sigma(r_w) - 1 + \sigma(r_l)$ which is zero only when $\sigma(r_w) + \sigma(r_l) = 1$. □

1566
1567

G.6 SUMMARY

1568
1569
1570
1571
1572
1573
1574
1575

This analysis shows that **pairwise objectives are invariant, at the loss level, to uniform shifts in the scalar scores** for a given prompt: their total score gradient satisfies $G_\theta(x) = 0$, so they do not create a first-order incentive to change $b_\theta(x)$ as such. Throughout this appendix, we work in the standard offline alignment setting with static binary preference data, matching the scope of our experiments in the main paper; our conclusions are not claimed to automatically extend to online or iterative preference optimization regimes. Any evolution of the marginalized score under pairwise training arises only as a side effect of updates that modify score *differences*, i.e., the ranking structure.

1576
1577
1578
1579
1580
1581
1582
1583
1584

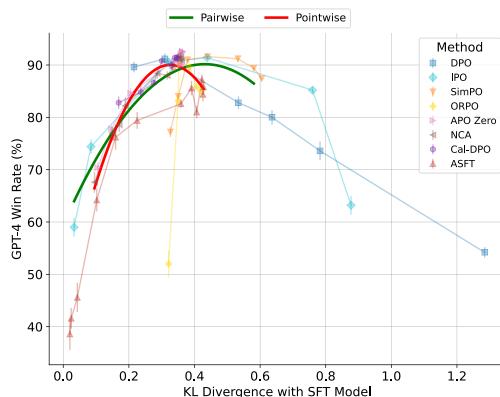
In contrast, **pointwise objectives are structurally sensitive to such shifts**: for generic score configurations they yield $G_\theta(x) \neq 0$ and therefore explicitly encourage the model to adjust not only relative scores but also their absolute level for each prompt. In capacity-limited regimes, this additional requirement to manipulate the prompt bias $b_\theta(x)$ competes with the primary ranking task, providing a mechanistic explanation for the performance gap we observe between pointwise and pairwise methods in our experiments. Finally, we note that this argument is formulated in terms of first-order gradient signals in score space: a sufficiently expressive model could still realize bias removal under pairwise training as a side effect, but the loss itself provides no direct incentive to do so, which is the key distinction we draw here.

1585
1586
1587

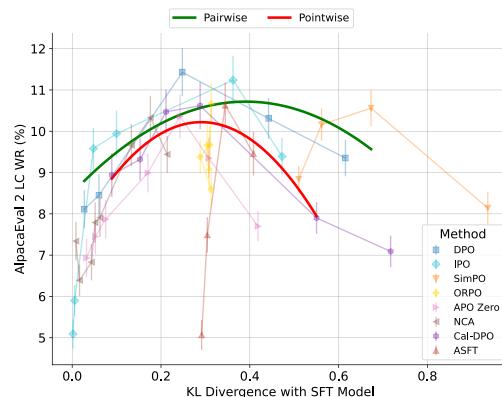
H PARETO FRONTS FOR LLAMA 3.2 SETUPS

1588
1589
1590
1591

The results presented in this section correspond to the best hyperparameter configurations identified during the hyperparameter search described in Section 4.2, including the optimal learning rate for each method. This ensures that the Pareto fronts reflect the upper performance limits for alignment quality.

1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606

(a) Llama 3.2 3B TL;DR



(b) Llama 3.2 3B UF

1607
1608
1609
1610
1611
1612
1613
1614

Figure 8: **Pareto front for alignment quality and KL divergence.** Results for Llama 3.2 3B TL;DR and UF setups on GPT-4 Win Rate vs. “golden” validation subset and AlpacaEval 2 LC respectively with different β values. Methods are grouped into pairwise and pointwise categories. For the summarization task (Llama 3.2 3B TL;DR), both pointwise and pairwise methods achieve strong overall results. For the UF setup, methods also perform similarly within overlapping confidence intervals, indicating no clear separation.

1615
1616
1617I LEARNING-RATE-TO- β RATIO FOR DIFFERENT MODEL SIZES1618
1619

Figure 9 shows that the relationship between alignment quality and the lr/β ratio remains consistent across Llama 3B and 8B model scales for each method, despite minor shifts along the x -axis. The only noticeable trend is that r_θ^{ref} -based methods are generally more stable and less prone to qual-

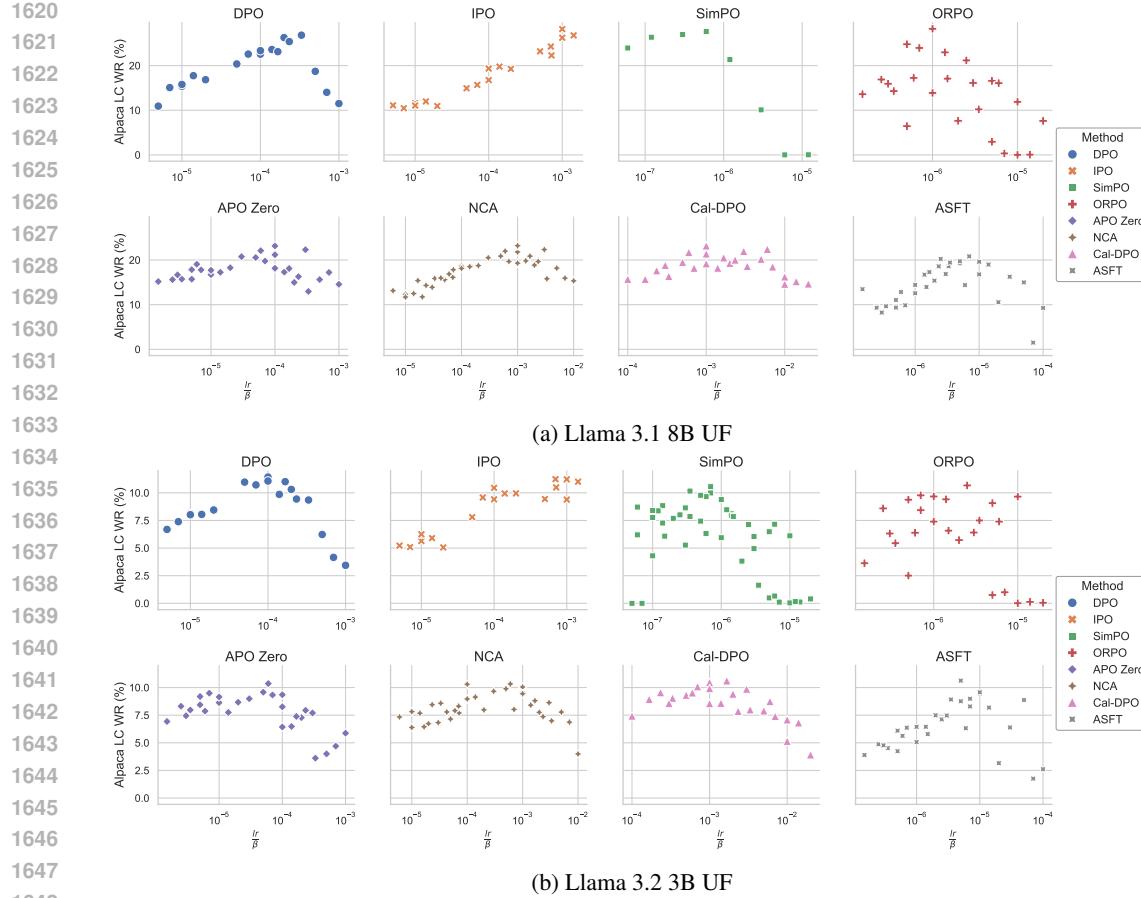


Figure 9: **Alignment quality versus lr/β .** Each point is a single run from the grid described in Section 4.2. The x -axis shows the ratio lr/β ; the y -axis is AlpacaEval 2 LC WR.

ity degradation due to the presence of a reference policy, but this does not affect the peak quality achievable by each method (see Table 3).

J INTRACLASS CORRELATION COEFFICIENT (ICC_1) IN THE TOY EXPERIMENT

The Intraclass Correlation Coefficient (ICC_1) Bartko (1966); Shrout & Fleiss (1979) is a statistical measure used to quantify how much of the total variance in a set of observations is attributable to differences between groups (here, values of the context variable x), as opposed to random variation within each group (here, pairs of candidate scores for the same x).

Purpose in Our Setting. In our toy experiment, the goal is to assess the extent to which the model’s learned scoring function $r_\theta(x, r)$ exhibits prompt-specific bias: that is, systematic differences in the average score assigned to different contexts x , independent of differences between candidate completions for the same x .

Mathematical Formulation. Given that for each value of x we have two completions with model scores $r_\theta(x, r_w)$ and $r_\theta(x, r_l)$, we define the prompt-specific baseline as the average score for x :

$$\hat{b}(x) = \frac{r_\theta(x, r_w) + r_\theta(x, r_l)}{2}.$$

We are interested in the variance of $\hat{b}(x)$ across contexts, $\text{Var}_x[\hat{b}(x)]$, which captures how much the model’s scores “shift” between different values of x . The total variance in the model’s scores is $\text{Var}_{x,y}[r_\theta(x, r)]$, computed over all context-candidate pairs.

For the case of $k = 2$ candidates per context, the ICC_1 is given by:

$$\text{ICC}_1 = 2 \cdot \frac{\text{Var}_x[\hat{b}(x)]}{\text{Var}_{x,y}[r_\theta(x, r)]} - 1$$

This is a standard algebraic form of the one-way random effects ICC estimator for the case of $k = 2$ repeated measurements per group, as detailed in Shrout & Fleiss (1979); McGraw & Wong (1996); Searle et al. (2009).

Interpretation. $\text{ICC}_1 \approx -1$: Virtually all variance is within each context (i.e., between the two candidate scores for the same x), and the model assigns no systematic bias per context. In our unbiased data condition, where the true input baseline is zero, a well-trained model should yield ICC_1 close to -1 .

$\text{ICC}_1 \approx 0$: About half the variance is due to differences between contexts, and half is within contexts.

$\text{ICC}_1 \rightarrow 1$: Most of the variance is between contexts, i.e., the model’s output scores strongly reflect context-specific bias.

Connection to Data Generation and Model Behavior. In our experiment, the input scores to the model are centered so that (in the absence of injected bias) the true baseline for each context x is zero. When a context bias is present in the data (nonzero b_x), a model that captures this bias will have $\text{Var}_x[\hat{b}(x)] > 0$, yielding a higher ICC_1 . If the learning objective (e.g., pointwise) suppresses or removes this context bias, $\text{Var}_x[\hat{b}(x)]$ will decrease, and ICC_1 will approach -1 .

Conversely, pairwise objectives, which focus only on differences between candidates for the same context, do not penalize nor remove such baseline shifts, and thus tend to preserve the bias structure of the data.

Thus, ICC_1 is a direct measure of whether the model’s learned scores have inherited context-specific bias (structure) from the training data, or have been actively normalized to remove such bias. This distinction is crucial for demonstrating how pairwise and pointwise objectives interact differently with data-induced biases in our toy experiment.

K GPT-4 SIDE-BY-SIDE EVALUATION PROMPT

For our Side-By-Side evaluations with GPT-4, we designed a prompt tailored to the Reddit TL;DR dataset to assess *accuracy*, *completeness*, *relevance*, and *conciseness*. The full prompt used in our experiments is detailed below.

Act as an impartial judge and evaluate the quality of the summaries provided by two AI assistants for the text displayed below. Your evaluation should consider accuracy, completeness, relevance, and conciseness.

You will be given a text, Assistant A’s summary, and Assistant B’s summary. Your job is to evaluate which assistant’s summary is better based on the text provided.

Begin your evaluation by comparing both assistants’ summaries with the original text. Identify and correct any inaccuracies.

Ensure the summaries are complete, capturing all essential information from the text without introducing fabricated details.

Assess the relevance of the information each assistant chose to include

1728 in their summary, ensuring it reflects the core message of the text.
1729 Evaluate the conciseness of the summaries, favoring those that efficiently
1730 convey the necessary information without unnecessary verbosity.
1731 Avoid any position biases and ensure the order in which the summaries
1732 were presented does not influence your decision.
1733 Do not allow the length of the summaries to influence your evaluation,
1734 except in the context of conciseness and efficiency.
1735 Do not favor certain names of the assistants.
1736 Be as objective as possible.
1737 You should only evaluate the summaries provided by both assistants
1738 and NOT the original text itself.
1739 If both summaries are irrelevant, contain hallucinations, or are
1740 inconsistent with the original text, mark the comparison as inconclusive
1741 and choose option "C".
1742 After providing your explanation, output your final verdict by strictly
1743 following this format:
1744
1745 """
1746 Comparison: <One-sentence comparison>
1747 Winner: <A if assistant A is better, B if assistant B is better, and C for a tie.>
1748 """
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781