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ABSTRACT

Direct Alignment Algorithms (DAAs) simplify LLM alignment by directly opti-
mizing policies, bypassing reward modeling and RL. While DAAs differ in their
use of SFT (one-stage vs. two-stage) and the scalar score they optimize (likeli-
hood vs. odds ratios), the key performance drivers remain underexplored. We
present a systematic comparison and analyze a previously overlooked axis - the
ranking objective (pairwise vs. pointwise). To isolate this factor, we propose
a unified training framework across DAAs by (i) converting one-stage methods
(ORPO, ASFT) into a two-stage pipeline with an explicit SFT phase and (ii) in-
troducing a β parameter that places all methods in the same hyperparameter space
and improves the quality of odds-ratio DAAs (ORPO, ASFT). Under this setup,
the ranking objective emerges as the primary determinant of alignment quality,
whereas the particular scalar score (policy–reference ratio vs. odds ratio) is sec-
ondary. We corroborate this on instruction-following tasks and further confirm it
on math-reasoning benchmarks across model scales. Evidence suggests that this
stems from how these objectives interact with prompt-specific biases, supported
both by strictly controlled experiments and by observations on real data. Our
findings underscore the need for nuanced evaluations in DAA research to avoid
oversimplified claims of superiority.

1 INTRODUCTION

Direct Preference Optimization (DPO) (Rafailov et al., 2023), rooted in RLHF Ouyang et al. (2022);
Stiennon et al. (2020), has led to a proliferation of Direct Alignment Algorithms (DAAs) (Meng
et al., 2024; Azar et al., 2024; Chen et al., 2024). These methods differ in design: most adopt DPO’s
two-stage paradigm, modifying the loss function and retaining a policy, reference ratio and temper-
ature parameter β (Xiao et al., 2024; D’Oosterlinck et al., 2025), while others, such as ORPO and
ASFT (Hong et al., 2024; Wang et al., 2024), unify alignment and supervised fine-tuning (SFT) in
a single stage using an odds-ratio objective without a reference policy. This variety has resulted in
a fragmented literature, making it difficult to isolate which design choices actually drive improve-
ments in alignment quality.

In this work, to enable controlled comparison of algorithmic factors, we restrict our analysis to the
offline setting with static datasets of binary preferences, avoiding confounding effects from online
data collection or more complex feedback structures. We systematically analyze one-stage DAAs
and provide a detailed motivation for converting them into a two-stage pipeline with an explicit
SFT phase. Crucially, we show that introducing a β parameter, typically absent in one-stage odds-
ratio methods, serves as an effective tempering mechanism and is essential for unlocking their full
performance. By unifying all methods under this protocol, we place single- and two-stage DAAs
in a common hyperparameter space and enable controlled comparison. Within this framework, we
conduct comprehensive empirical studies on instruction-following and math-reasoning benchmarks
using Llama 3 (3B, 8B) and Qwen 2.5 (7B, 14B) models, and systematically examine the data
efficiency of DAAs with respect to SFT data volume.

Our main contributions are: (i) We establish a unified training protocol for DAAs, demonstrating
that moving the SFT term out of originally one-stage losses into a separate SFT phase and using an
alignment-only loss with a proposed β parameter is essential for maximizing performance, even for
odds-ratio objectives. (ii) Within this unified setting, we find that previously reported advantages
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Figure 1: Overview of our work and main finding. Left: Existing DAA methods differ in use of
SFT and β. Center: Our unified protocol makes SFT and β explicit for all, bringing ORPO/ASFT
into the same framework. Right: We compare DAAs along two axes (scalar score type and ranking
type) and find that ranking type (pairwise, green vs. pointwise, red) is the main determinant of
alignment quality after unification.

of various DAAs often disappear: after tuning, all methods perform similarly or worse than DPO.
Our results indicate that ranking type (pairwise vs. pointwise), rather than scalar-score choice or
heuristic loss design, is the primary determinant of alignment quality, with both score types yielding
comparable results. (iii) We provide evidence that observed performance gaps arise from the inter-
action between each objective and prompt-specific data biases, explaining why differences among
DAAs emerge primarily at intermediate task difficulty; outside this regime, the distinctions between
DAAs is a blur.

Among our findings, we observe that most methods are highly data-efficient: with 5–10% SFT,
models reach ≥95% of their full-data score. Our findings challenge claims of algorithmic superiority
in the DAA literature and underscore the importance of systematic, controlled evaluation.

2 PRELIMINARIES

2.1 MODELING SEQUENCES

Given a sequence y of length |y|, the log-probability can be written as log p(y) =
∑|y|
i=1 log p(yi |

y<i), which may also be conditioned on another sequence x. In practice, optimizing normalized
log-probability 1

|y| log p(y) = log
(
p(y)

1
|y|

)
often improves numerical stability and leads to better

training. However, once normalized, the resulting quantity is no longer a strict probability mea-
sure. Throughout this paper, whenever we write p(y), we refer to this normalized version p(y)

1
|y| .

Whenever a method does not apply this normalization, we indicate it explicitly.

Welleck et al. (2019) introduced a log-unlikelihood term that reduces the probability of certain unde-
sirable tokens: log

(
1−p(c|y<i)

)
for c ∈ C. It can be extended to an entire sequence as log

(
1−p(y)

)
.

2.2 REINFORCEMENT LEARNING FROM HUMAN FEEDBACK

Reinforcement Learning from Human Feedback (RLHF) (Ouyang et al., 2022; Stiennon et al., 2020)
is a prominent approach to aligning language models. It generally has three stages:

• Supervised Fine-Tuning (SFT). During the SFT stage, the model πθ is trained to follow in-
structions by maximizing the probability of correct output y given input x. For a single training
pair (x, y), we define the per-sample SFT loss as LSFT(πθ, x, y) = − log πθ(y | x). During
fine-tuning, we minimize the expectation of this per-sample loss over the training dataset D:
E(x,y)∼D

[
LSFT(πθ, x, y)

]
.

• Reward Modeling (RM). A reward model rψ(x, y) produces a satisfaction score. It is trained
on preference pairs using the Bradley-Terry model (Bradley & Terry, 1952): LRM(rψ) =
−E(x,yw,yl)∼D

[
log σ

(
rψ(x, yw) − rψ(x, yl)

)]
, where yw is the preferred response and yl is the

less preferred one.

• Reward Maximization. The objective is to generate responses that maximize the learned re-
ward, with a KL penalty to prevent reward hacking: maxπθ

Ex∼D, y∼πθ(y|x)
[
rϕ(x, y)

]
−

2
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β DKL
[
πθ(x, y) ∥πref(x, y)

]
. Reinforcement learning (RL) algorithms are commonly used to op-

timize this objective (Schulman et al., 2017; Ouyang et al., 2022).

2.3 DIRECT ALIGNMENT ALGORITHMS

Direct alignment algorithms replace the reward modeling and RL stages (but keep the SFT phase)
with a single alignment step. Various preference-optimization loss functions have been proposed,
employing these core components:

• rrefθ (y, x) = log
( πθ(y|x)
πref (y|x)

)
from DPO (Rafailov et al., 2023), which acts as an implicit reward

β rrefθ . No length normalization is used.

• roddsθ (y, x) = log
( πθ(y|x)
1−πθ(y|x)

)
utilized in ORPO (Hong et al., 2024), representing the odds of

generating y versus not generating it. While not directly derived from an RL objective in the
same way as rrefθ , its empirical success in methods like ORPO and ASFT motivates its inclusion
in our comparative analysis.

Several Direct Alignment Algorithms use these notations. Information on sequence probabil-
ity normalization for these methods is presented in Appendix A.1. Direct Preference Opti-
mization (DPO) (Rafailov et al., 2023): LDPO = − log σ

(
β rrefθ (yw, x) − β rrefθ (yl, x)

)
(this

method does not normalize probabilities by length);2 Identity Preference Optimization (IPO)
(Azar et al., 2024): LIPO =

(
rrefθ (yw, x) − rrefθ (yl, x) − 1

2β

)2
; Simple Preference Optimiza-

tion (SimPO) (Meng et al., 2024): LSimPO = − log σ
(
β log πθ(yw, x) − β log πθ(yl, x) − γ

)
;

Noise Contrastive Alignment (NCA) (Chen et al., 2024): LNCA = − log σ
(
β rrefθ (yw, x)

)
−

0.5 log σ
(
−β rrefθ (yw, x)

)
− 0.5 log σ

(
−β rrefθ (yl, x)

)
; Calibrated Direct Preference Optimiza-

tion (Cal-DPO) (Xiao et al., 2024): LCal−DPO = − log σ
(
rrefθ (yw, x)−rrefθ (yl, x)

)
+
(
rrefθ (yw, x)−

1
2β

)2
+
(
rrefθ (yl, x)+

1
2β

)2
; Anchored Preference Optimization Zero (APO-Zero) (D’Oosterlinck

et al., 2025): LAPO−Zero = −σ
(
β rrefθ (yw, x)

)
+ σ

(
β rrefθ (yl, x)

)
.

2.4 ONE-STAGE ALIGNMENT METHODS

One-stage alignment (as a subset of DAA methods) merges SFT and direct alignment in one step by
adding their losses: LSingle(πθ) = E(x,yw,yl)∼D

[
LSFT(πθ, x, yw)+λLAlign(πθ, x, yw, yl)

]
, where

λ is a hyperparameter, and no reference policy πref is required.

One-stage methods using odds ratios include:

Odds Ratio Preference Optimization (ORPO) (Hong et al., 2024) is defined as: LORPO =
− log πθ(yw|x)− λ log σ

(
roddsθ (yw, x)− roddsθ (yl, x)

)︸ ︷︷ ︸
−LORPOAlign

.

Aligned Supervised Fine-Tuning (ASFT) (Wang et al., 2024) is defined as: LASFT =

− log πθ(yw|x)− λ
(
log σ

(
roddsθ (yw, x)

)
+ log σ

(
−roddsθ (yl, x)

)︸ ︷︷ ︸
−LASFTAlign

)
.

3 METHOD

3.1 GENERALIZING ASFT AND ORPO

Our goal in this paper is to characterize the differences among various DAAs. Before proceeding,
we summarize the objectives of ASFT and ORPO. These approaches are referred to as one-stage
methods because they perform alignment immediately after the base model is obtained, in contrast
to methods that insert a separate SFT stage before alignment. Consequently, ASFT and ORPO omit
the parameter β; as one-stage methods, the distance to a reference policy is not required. At first

2Unless otherwise noted, the expectation over (x, yw, yl) ∼ D is taken.
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glance, it may seem unnecessary to introduce β into one-stage methods, yet we will demonstrate
that neither the one-stage design nor the absence of β is mandatory for ASFT and ORPO.

3.1.1 ORPO AND ASFT CAN OPERATE WITHOUT THE SFT LOSS TERM AND AS TWO-STAGE
METHODS

First, note that LASFTAlign
= − log πθ(yw|x) − log

(
1 − πθ(yl|x)

)
, and thus LASFT = −(1 +

λ) log πθ(yw|x) − λ log
(
1 − πθ(yl|x)

)
; see Appendix C for a proof. Second, LORPO = LASFT +

λ log
(
πθ(yw|x)(1− πθ(yl|x)) + πθ(yl|x)(1− πθ(yw|x))

)
; see Appendix D for details.

From these equations it follows that LORPO ≤ LASFT and LORPOAlign
≤ LASFTAlign

(see Ap-
pendix D.2).

These results lead to three observations: (i) LASFT upper-bounds LORPO; therefore, minimizing
the former automatically minimizes the latter. (ii) LASFTAlign

can be regarded as the simplest DAA
loss, mirroring the structure of BCE (see Appendix C.3); (iii) Most importantly, the alignment terms
of ORPO and ASFT already include the NLL component (− log πθ(yw|x)), making the additional
LSFT term in one-stage formulations potentially redundant. Thus, we hypothesize that removing
the explicit LSFT term and instead using a separate SFT stage followed by alignment will improve
performance, motivating our RQ1: ”Does converting ORPO and ASFT to a two-stage pipeline
improve alignment quality?” and experiments in Section 5.1, where we compare ASFT and ORPO
both in their original one-stage form and in a two-stage variant that follows an explicit SFT phase.

3.1.2 TEMPERING ASFT AND ORPO

We now revisit the original one-stage methods from Section 2.4 and examine how the alignment
terms LORPOAlign

and LASFTAlign
compare. These terms optimize preferences and, depending on

the coefficient λ, can dominate or have a smaller impact on the final loss.

While LASFTAlign
and LORPOAlign

use roddsθ , many DAAs incorporate a scaling parameter β. To
enable a unified comparison and investigate the role of β, we introduce it to scale roddsθ :

LβASFTAlign
= − log σ(βroddsθ (yw, x))− log σ(−βroddsθ (yl, x)), (1)

LβORPOAlign
= − log σ(βroddsθ (yw, x)− βroddsθ (yl, x)). (2)

Both LβASFT and LβORPO generalize their vanilla counterparts (recovering them when β = 1). As
in DPO, β can be viewed as a temperature or scaling parameter that regulates the intensity of the
preference for “good” odds. See Appendix E for gradient formulations and more details on these
methods.

This unification (introduced not as a proposal of new standalone methods, but to enable consistent
evaluation) raises RQ2: ”Does the tempering factor enhance the alignment quality of ASFT and
ORPO?” in Section 5.2 and enables a direct comparison of all methods across different setups.

3.2 ON THE DIFFERENCE BETWEEN DIRECT ALIGNMENT ALGORITHMS

By unifying ORPO and ASFT within a common two-stage framework parameterized by β, we
place all DAAs on comparable footing. In this view, two axes of variation become explicit: (i) the
scalar score used in the objective (rrefθ

1 vs. roddsθ ), and (ii) whether the loss is defined over pairwise
preferences or pointwise scores. The first axis follows directly from how existing losses are written,
but the second has rarely been highlighted in prior work despite being a fundamental design choice.

The distinction between rrefθ and roddsθ is structural. rrefθ originates in RLHF, whereas the roddsθ
is derived from odds-ratio objective. Empirical evidence comparing these scores in a standardized
setting is, to our knowledge, still scarce. In contrast, the difference between pointwise and pairwise
methods is functional: pairwise methods (DPO, IPO, SimPO, ORPO) depend on relative reward dif-
ferences between candidate texts, whereas pointwise methods (APO-Zero, NCA, Cal-DPO, ASFT)

1SimPO does not explicitly use a reference policy, but can be treated similarly if a uniform reference policy
is assumed.
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maximize the probability of chosen sequences and minimize that of rejected ones independently of
their mutual gap. This echoes empirical findings in learning-to-rank (Liu et al., 2009; Burges et al.,
2005; Li, 2011; Melnikov et al., 2016), where pairwise objectives often yield more robust ranking
signals than pointwise ones, though the precise reasons and applicability to LLM alignment remain
under active investigation.

The experiments reported in Section 5.3 examine our RQ3: ”What factors of DAAs affect alignment
quality?” – the scalar score (rrefθ vs. roddsθ ) or the ranking type (pairwise vs. pointwise) – has the
greatest impact on DAA performance.

4 EXPERIMENTAL SETUP

We systematically compare and evaluate DAA methods using a standard training and instruction-
following evaluation framework Tunstall et al. (2023); Meng et al. (2024); Gorbatovski et al. (2024).
Our main experiments use the Llama 3.1 8B model AI@Meta (2024), trained on the UltraChat Ding
et al. (2023) and UltraFeedback (UF) Cui et al. (2023) datasets, and evaluated on the AlpacaEval 2
Dubois et al. (2024); Li et al. (2023) and ArenaHard Li et al. (2024b) benchmarks. For the Reddit
TL;DR Stiennon et al. (2020) task, we employ the Llama 3.2 3B model, comparing it side by side
with the “golden” validation split Rafailov et al. (2023; 2024) using the prompt in Appendix K.

4.1 BASE VS SFT-INITIALIZED MODELS.

To investigate the impact of SFT and the applicability of one-stage loss LAlign component, we use
the UF dataset for SFT (avoiding additional knowledge from UltraChat), and for pairwise preference
optimization. We carefully tuned the hyperparameters to optimize each method’s performance.

For the Base-initialized setup, we perform a grid search over learning rates {6×10−6, 8×10−6, 1×
10−5}, inspired by values suggested in ORPO and ASFT, and explore λ ∈ {0.1, 0.2, 0.5, 1.0} for
1 and 2 training epochs keeping a similar budget to compare with the SFT-initialized setup.

In the SFT-initialized setup, we experiment with both LORPOAlign
and LASFTAlign

alone, as well as
in combination with LSFT, following the original methods. We tune the learning rates {5×10−7, 7×
10−7, 1× 10−6} for one epoch, starting from an SFT model trained for 1 epoch at 6× 10−6.

4.2 β SENSITIVITY.

Following the adaptation of ASFT and ORPO to include a β parameter (Section 3.1.2), all DAAs
under consideration can now be compared on a more consistent basis. We conduct a comprehensive
β-sensitivity analysis to (i) evaluate the impact of the β parameter on the performance of ORPO and
ASFT, and (ii) determine the peak alignment capabilities and relative performance of each method.
We consider three scenarios:

Llama 3.2 3B TL;DR. A relatively simpler Reddit TL;DR summarization task, evaluated via GPT
side-by-side comparison on 500 samples from the “golden” validation split Rafailov et al. (2023;
2024).

Llama 3.2 3B UF. The UltraChat and UF datasets serve as more challenging alignment settings due
to their coverage of diverse and complex tasks, including instruction following, code generation,
creative writing, common sense reasoning, mathematical problem-solving, and general knowledge.

Llama 3.1 8B UF. A larger, more capable model on the same UltraChat and UF datasets, allowing
us to assess how increased model capacity influences β-sensitivity in these diverse tasks.

For the UF-based experiments, we measure quality using AlpacaEval 2 Length-Controlled (LC)
Win-Rate and ArenaHard (AH) WR; for TL;DR, we rely on GPT-4o (2024-08-06) preference judg-
ments. In each scenario, we sweep at least six β values and four learning rates {1 × 10−6, 7 ×
10−7, 5 × 10−7, 3 × 10−7} to determine peak alignment capabilities and relative performance.
As an auxiliary diagnostic, we report KL divergence to a reference model and plot quality–KL
Pareto fronts. For RQ3, we also test DAA peak-performance generalization on math reasoning with
Qwen 2.5 (7B/14B) Yang et al. (2024) (Appendix B.1). Further implementation details, including
training procedures and generation hyperparameters, are provided in Appendix A.
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Figure 2: Impact of the β Parameter on ASFT and ORPO Alignment Quality. The plot shows
how tuning β (Section 3.1.2) affects both ASFT and ORPO performance. Results are reported for
GPT-4 Win Rate in the Llama 3.2 3B TL;DR setup and for AlpacaEval 2 LC Win Rate in the Llama
3.1 8B UF scenario. All other hyperparameters (e.g., learning rates) are selected via grid search,
using each method’s best configuration at β = 1 as the baseline. See Section 5.2 for more details.

4.3 SFT DATA QUANTITY.

Our findings in Section 5.1 show that introducing an explicit SFT phase improves alignment quality
- even for originally one-stage methods such as ORPO and ASFT. This enables a unified two-stage
setup across all DAAs, where alignment begins from an SFT-initialized model. Given prior work on
instruction tuning data efficiency Zhou et al. (2024) and distribution shift problem Xu et al. (2024),
we prepare ablation study on sensitive different DAAs to SFT data volume.

We prepared seven SFT checkpoints by training Llama 3.1 8B Base on 1%, 3%, 5%, 10%, 25%,
50%, and 100% of the UltraChat dataset (ranging from 2,079 to 207,865 records) using our SFT-
initialized setup. We then applied each alignment method – using optimal hyperparameters from
our β-sensitivity experiments (Appendix Table 8) – to these seven SFT checkpoints and the original
base model. Finally, we used AlpacaEval 2 LC to assess how model performance varies with the
amount of SFT data used.

5 RESULTS

5.1 RQ1: DOES CONVERTING ORPO AND ASFT TO A TWO-STAGE PIPELINE IMPROVE
ALIGNMENT QUALITY?

Init Method LC% (std) WR% (std) AH% (CI)

Base SFT 6.7 (0.43) 4.5 (0.63) 3.5 (-0.7, 0.8)

SFT ORPO 24.1 (0.84) 17.8 (1.17) 15.3 (-1.6, 1.8)

SFT ASFT 16.4 (0.72) 11.9 (0.99) 10.6 (-1.2, 1.3)

Base ORPO† 14.8 (0.71) 10.3 (0.95) 8.4 (-1.3, 1.3)

Base ASFT† 14.5 (0.73) 10.2 (0.94) 7.5 (-1.1, 1.2)

SFT ORPO† 13.4 (0.69) 9.3 (0.91) 7.7 (-0.9, 1.1)

SFT ASFT† 11.4 (0.63) 7.5 (0.83) 7.5 (-1.1, 1.1)

SFT DPO 23.4 (0.85) 20.0 (1.18) 17.5 (-1.8, 1.8)

Table 1: Base and SFT-initialized alignment meth-
ods on the Llama 3.1 8B model with the UF
dataset. SFT-initialized methods demonstrate better
performance compared to their traditional formulations
without LSFT. Results marked with † correspond to
training with LSFT, using the best hyperparameters:
lr = 1 × 10−6 for ORPO and lr = 7 × 10−7 for
ASFT. For other setups, the best hyperparameters are:
lr = 5 × 10−7 for standard SFT ORPO/ASFT, and
lr = 1× 10−5/6× 10−6 for Base ORPO/ASFT.

As shown in Table 1, the performance of
ORPO and ASFT methods improves sig-
nificantly when the alignment loss LAlign

is applied after a preceding SFT stage. In
particular, ORPO achieves results compa-
rable to classical DPO in both LC Win
Rate and AH WR metrics. In contrast,
ASFT shows notable gains in AH WR
after the SFT stage, although it still un-
derperforms compared to ORPO or DPO.
This performance difference aligns with
our theoretical insights (Corollary D.2), as
optimizing the ASFT objective, an upper
bound on ORPO, appears less effective.

For one-stage methods, the use of λ = 1
provides the best results within the ex-
plored grid of λ ∈ {0.1, 0.2, 0.5, 1.0},
especially after two epochs of training.
However, combining LSFT and LAlign in a
one-stage setup leads to suboptimal results
compared to explicitly separating these
phases, even when starting from an SFT-
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trained model. Incorporating an explicit SFT stage improves overall performance for ORPO and
ASFT methods. Therefore, all further experiments focus on applying the LAlign components of
ORPO and ASFT on top of an SFT-trained model.

5.2 RQ2: DOES THE TEMPERING FACTOR ENHANCE THE ALIGNMENT QUALITY OF ASFT
AND ORPO?

Figure 2 illustrates that introducing the β parameter (as described in Section 3.1.2) improves the
performance of both ASFT and ORPO LAlign in our tested scenarios. For a fair comparison, we
used the best-performing learning rate for each baseline (LASFTAlign

and LORPOAlign
) while fixing

β = 1. In the Llama 3.2 3B TL;DR experiment, these adjustments led to an improvement of +7.0
for ORPO and +43.4 for ASFT in GPT-4 WR. In the Llama 3.1 8B UF setup, tuning β provided
additional gains of +3.46 for ORPO and +8.27 for ASFT on the AlpacaEval 2 LC WR.

5.3 RQ3: WHAT FACTORS OF DAAS AFFECT ALIGNMENT QUALITY?
Win % Tie % Lose %

SFT 35.6 4.8 59.6
DPO 91.2 1.0 7.8
IPO 91.4 0.4 8.2

SimPO 91.6 0.2 8.2
ORPO 90.2 0.6 9.2

APO Zero 92.6 0.6 6.8
NCA 91.8 1.0 7.2

Cal-DPO 91.4 0.4 8.2
ASFT 87.2 1.0 11.8

Table 2: GPT-4 Evaluation of Llama 3.2 3B
TL;DR setup. The comparison shows mul-
tiple alignment methods (rows) using their
best hyperparameters. Most methods exceed
90% Win Rate; ASFT achieves 87.2%, main-
taining robust summarization performance.
See Section 5.3 for more details.

Following the setup and evaluation scenarios de-
scribed in Section 4.2, we assess the peak per-
formance and KL divergence of each DAA un-
der consideration, including the unified LβASFTAlign

and LβORPOAlign
, under a common hyperparameter

search space and two-stage training setup. Our anal-
ysis emphasizes how differences in scalar score (rrefθ
vs. roddsθ ) and objective formulation (pairwise vs.
pointwise) affect alignment quality.

Llama 3.2 3B TL;DR: Table 2 presents a com-
parison of all methods on the Reddit TL;DR val-
idation subset, using their best hyperparameters.
Most methods achieve a GPT-4 Win Rate exceed-
ing 90%, indicating robust summarization perfor-
mance on this relatively straightforward task. ASFT
is slightly lower at 87.2% Win Rate, but still demon-
strates strong overall results.

Llama 3.2 3B UF and Llama 3.1 8B UF: Table 3 summarizes the results for both Llama 3.2
3B UF and Llama 3.1 8B UF setups. For the smaller 3B model, the methods perform similarly
on LC WR, with slight differences emerging on AH. Although these differences align with the
pairwise vs. pointwise distinction (e.g., DPO, IPO, ORPO, SimPO vs. APO-Zero, NCA, Cal-
DPO, ASFT), no single approach consistently dominates across metrics. The overlap in confidence
intervals further indicates that the results for these methods are statistically similar in this setup, with
no clear separation.

Figure 3: Pareto front for alignment quality
and KL divergence. Results for Llama 3.1 8B
UF on AlpacaEval 2 LC. Methods are grouped
into pairwise and pointwise categories, with pair-
wise achieving higher LC values while remaining
within overlapping confidence intervals.

In contrast, the 8B model more clearly dif-
ferentiates performance by ranking type: pair-
wise methods generally achieve higher peak
scores on AlpacaEval 2 and ArenaHard, with
ORPO best overall. On Qwen 2.5 7B/14B Math
CoT, pairwise DAAs similarly match or exceed
pointwise ones, while scalar score type (rrefθ vs.
roddsθ ) yields no consistent performance differ-
ences (Appendix B.3). Note that roddsθ -based
methods do not start from KL ≈ 0 at high β
since there is no explicit constraint toward πref;
gradient scaling via β still implicitly limits up-
date magnitude (see Appendix E). Pareto fronts
for the remaining setups are provided in Ap-
pendix H. For completeness, see Appendix I for
results with varying lr/β ratios.
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Method
Llama 3.2 3B UF Llama 3.1 8B UF

AlpacaEval 2 ArenaHard AlpacaEval 2 ArenaHard

LC% (std) WR% (std) WR% (CI) LC% (std) WR% (std) WR% (CI)

SFT 5.02 (0.34) 3.21 (0.55) 1.4 (-0.4, 0.4) 10.27 (0.54) 5.44 (0.70) 2.6 (-0.5, 0.6)

DPO 11.43 (0.58) 11.79 (0.99) 6.8 (-1.0, 0.9) 26.82 (0.77) 23.69 (1.25) 19.0 (-1.9, 1.8)
IPO 11.24 (0.60) 11.67 (1.01) 6.8 (-1.0, 1.1) 28.18 (0.83) 24.43 (1.26) 19.1 (-1.6, 1.5)

SimPO 10.56 (0.44) 11.94 (0.95) 6.4 (-1.0, 1.1) 27.65 (0.77) 25.62 (1.29) 21.5 (-1.9, 1.9)
ORPO 10.67 (0.50) 12.23 (0.97) 6.6 (-1.0, 1.1) 28.25 (0.71) 28.59 (1.33) 20.9 (-2.0, 2.0)

APO Zero 10.36 (0.53) 11.22 (0.98) 6.0 (-1.0, 0.9) 23.15 (0.76) 19.03 (1.18) 17.3 (-1.8, 1.8)
NCA 10.33 (0.53) 11.02 (0.97) 5.1 (-0.7, 0.8) 23.21 (0.80) 18.67 (1.17) 15.1 (-1.5, 1.6)

Cal-DPO 10.62 (0.57) 10.15 (0.94) 4.8 (-0.9, 0.9) 23.19 (0.82) 18.85 (1.18) 15.2 (-1.5, 1.6)
ASFT 10.63 (0.55) 9.21 (0.88) 5.1 (-0.9, 0.9) 20.82 (0.79) 16.34 (1.13) 13.5 (-1.6, 1.5)

Table 3: AlpacaEval 2 and ArenaHard Results for Llama 3.2 3B and Llama 3.1 8B UF. The
SFT model was trained on the UltraChat dataset. The best hyperparameters for each method were
selected according to Section 4.2. Bold values indicate the best performance for each benchmark,
while underlined values represent the second-best performance. See Section 5.3 for more details.

5.4 ABLATION STUDY ON SFT DATA VOLUME SENSITIVITY

Transforming ORPO and ASFT into two-stage methods enables a direct ablation on SFT data vol-
ume. Figures 4a and 4b show that all methods tend to saturate around 10% of UltraChat, reaching
≥ 95% of their full-data performance. Pairwise methods generally achieve higher alignment quality
than pointwise ones once the data exceeds 5%.

In the low-data regime (1-5%), DPO and IPO - both using a reference policy perform better. In-
terestingly, at 3% SFT, ASFT surpasses all other pointwise methods and some pairwise ones (e.g.,
ORPO, SimPO), while remaining behind DPO and IPO. These trends suggest nuanced dynamics
worth further investigation and research. Nonetheless, the overall conclusion is clear - all DAAs
benefit from SFT and require only 5-10% of the data to realize most of their alignment potential,
regardless of their pairwise or pointwise formulation.
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Figure 4: Impact of SFT Dataset Size on Alignment Quality. Performance of the pairwise (a) and
pointwise (b) alignment methods on AlpacaEval 2 (LC WR metric) when the SFT policy is trained
on different fractions of the UltraChat dataset. Even a small fraction of SFT data (e.g., 5-10%) yields
substantial gains over starting from the raw base model. See Section 5.4 for more details.

6 DISCUSSION

Having combined all the results, one key question remains: Why do pairwise objectives outperform
pointwise ones? First, assume that tasks may vary in difficulty depending on both the dataset and
the model size. At the two extremes – very easy (simple datasets and large models) or very hard
(difficult datasets and small models) – we observe (Llama 3.2 3B TL;DR/UF setups), little difference
in quality between pointwise and pairwise approaches. For tasks of intermediate difficulty, however,
pairwise methods consistently outperform pointwise ones (Llama 3.1 8B UF).
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To understand why, observe that both rref
θ and rodds

θ can be written using a single scoring function
rθ(x, y) defined over prompt-completion pairs. This allows us to define the marginalized score
Ey[rθ(x, y)], which reflects how high or low will the average score be across all y for a fixed x. Any
dataset (and therefore any model trained on it) inherits a bias that mirrors bθ(x) := Ey[rθ(x, y)].

We hypothesise that observed performance gap stems from how each objective interacts with this
bias, as formalized in Appendix G. This analysis assumes offline, static preference data, consistent
with the scope of our experiments, and our conclusions do not automatically carry over to online or
iterative preference optimization (e.g., Online DPO) settings. Once a model has learned part of the
ranking among continuations for a prompt x, further optimization can move along two qualitatively
different directions: (i) improving the ranking on harder or mis-ranked examples by changing the
gaps rθ(x, yw)− rθ(x, yl), and (ii) shifting all scores for that prompt in roughly the same direction,
thereby modifying the marginalized score bθ(x) while largely preserving the order. In the notation
of Appendix G, pointwise objectives generically induce a non-zero total score gradient Gθ(x) and
thus explicitly incentivize updates of type (ii), whereas pairwise objectives satisfy Gθ(x) = 0 and
are structurally indifferent to such uniform shifts.

Intuitively, pointwise methods keep pushing rθ(x, yw) upward and rθ(x, yl) downward even on
already-easy pairs, implementing a form of bias unlearning on bθ(x) that consumes capacity which
could otherwise be spent on harder examples.

Pairwise training, by contrast, only requires that yw score higher than yl with strength controlled by
β. Compared to pointwise losses, such pairwise updates structurally offer fewer direct avenues for
reshaping the marginalized score Ey[rθ(x, y)] itself. Refining previously learned examples therefore
consumes little extra capacity, allowing the model to focus on harder cases. Thus, for hard tasks
there is insufficient capacity for the unlearning step, so both objectives perform similarly. For easy
tasks, unlearning does not exhaust capacity, enabling pointwise methods to catch up. In the inter-
mediate regime, capacity is sufficient to unlearn bias in pointwise methods, but not address harder
examples, leading to a misalignment that makes pointwise objectives less efficient.

We ran additional experiments to test this hypothesis; the results appear in Appendix F. Previously,
distinctions between DAA objectives were unclear, but our findings show that they differ in how
they handle dataset-induced biases; whether bias removal is beneficial remains an open question.
Beyond the rref

θ and rodds
θ parameterizations, we also test (Appendix B.4) two scalar score families

from recent work, AlphaPO (Gupta et al.) (rα) and the Forward-KL variant of f-DPO (Wang et al.),
in our Qwen2.5–7B and 14B Math-CoT setup. In both cases, pairwise objectives again outperform
their pointwise counterparts, further supporting our main findings in the static binary-preference
regime of this paper.

7 RELATED WORK

Our work connects to several active research directions in preference optimization.

Unifying frameworks for DAAs. Recent works have developed increasingly general formu-
lations of direct alignment objectives—spanning convex formulations (Tang et al., 2024b), f -
divergences (Han et al., 2024; Wang et al.), mutual information views (Tutnov et al., 2025), and
modular analyses of DPO variants via reward shaping or margins (Sun et al., 2025; Zhao et al., 2024;
Gupta et al.; Wu et al.; Zhou et al., 2025). These advances focus primarily on the pairwise DPO-
style family, exploring alternative score parameterizations and divergence measures while keeping
the ranking objective itself fixed. In contrast, we establish a common ground for comparing across
different algorithmic families (pairwise vs. pointwise; odds-ratio vs. policy–reference–ratio scores)
that were previously incomparable due to disparate training protocols. Our unified perspective re-
veals that, across a broad range of score parameterizations (including AlphaPO-style rewards and
the fKL variant of f-DPO), the choice of ranking objective is the main structural factor underlying
DAA performance, with score parameterization playing only a secondary role.

Beyond binary pairwise preferences. Other studies investigate specific directions beyond the stan-
dard pairwise setup. Liu et al. (2025) frame alignment as listwise ranking, while methods like
TriplePO and TreePO (Saeidi et al., 2025; Liao et al., 2024) leverage richer supervision signals (e.g.,
gold trajectories or multi-branch preference trees). These approaches, though promising, require

9
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data formats beyond standard binary preferences and thus fall outside the scope of our controlled
comparison of offline DAAs on static preference pairs.

Online vs offline optimization. Another direction compares offline DPO and RLHF, exposing
DAAs’ limits (Xu et al., 2024; Chu et al., 2025; Tang et al., 2024a), while Calandriello et al. (2024)
study online preference optimization across contrastive vs. non-contrastive objectives Our work
complements these by systematically isolating the impact of the ranking objective in the offline
setting, a factor previously underexplored despite its fundamental role.

8 CONCLUSION

DAA research is fragmented, with many methods claiming superiority based on marginal differ-
ences. We provide the first unified framework that places all DAAs we study, including ORPO and
ASFT, on equal footing by (i) reorganizing the explicit SFT term into a two-stage formulation and
(ii) introducing a β parameter. Within this setup, the previously under-explored ranking objective
(pairwise vs. pointwise) emerges in our experiments as the primary driver of alignment quality, with
differences in scalar score playing only a secondary role. Theoretical analysis, together with con-
trolled experiments, links this effect to how objectives interact with prompt-specific bias, explaining
why performance gaps appear mainly at intermediate task difficulty and model scale. Practically,
we show that odds-ratio DAAs also benefit from SFT and β, and that most alignment gains can be
achieved with only 5–10% of SFT data. This finding clarifies why previous claims of ”best” DAA
Meng et al. (2024); Xiao et al. (2024); Wang et al. (2024) often depend on underexplored details of
setup and bias.

Limitations & Future Work. Our analysis is intentionally focused on the off-policy, SFT-based
alignment setting, in order to disentangle conflicting claims among DAAs under controlled condi-
tions. While our instruction-following results rely on GPT-based evaluation, we mitigate this by
validating findings on specific task with verifiable metrics up to the 14B scale. Extending the uni-
fied framework to on-policy preference optimization remains an important direction, complementing
prior online studies (Calandriello et al., 2024; Hanning Zhang, 2025). Our bias–capacity trade-off is
supported by both toy experiments and ICC analysis on real data. Future work could formalize this
mechanism and study its predictive power in broader alignment settings.

ETHICS STATEMENT

This work complies with the ICLR Code of Ethics. All datasets used in our experiments are pub-
licly available and widely adopted in the alignment and language modeling community. No human
subjects, private, or sensitive data were used. We discuss fairness, bias, and the implications of
prompt-specific biases in Section 6, and believe our findings do not pose immediate risks of misuse
or harm. All code will be released for reproducibility and community benefit.

REPRODUCIBILITY STATEMENT

To ensure reproducibility, we provide a detailed description of all methods and experimental pro-
tocols in Sections 2–4 and Appendix A. Hyperparameters, model checkpoints, and data splits are
specified in the appendix and supplementary materials. Anonymized code for all experiments will
be made available as part of the submission. Detailed proofs, derivations, and all additional results
are included in the appendix.
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A IMPLEMENTATION DETAILS

A.1 PROBABILITY NORMALIZATION

Method Use normalization
DPO (Rafailov et al., 2023) ✗
IPO (Azar et al., 2024) ✗
SimPO (Meng et al., 2024) ✓
NCA (Chen et al., 2024) ✗
Cal-DPO (Xiao et al., 2024) ✗
APO-Zero (D’Oosterlinck et al., 2025) ✗
ORPO (Hong et al., 2024) ✓
ASFT (Wang et al., 2024) ✓

Table 4: Methods that include (✓) or omit (✗) length-based probability normalization in their origi-
nal formulation.
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As discussed in Section 2.1, not all DAAs incorporate length-based probability normalization by
default. In this paper, however, we apply such normalization only in cases where it was used in the
original methods involving probabilities. This choice avoids introducing extra notation and reduces
the cognitive load on the reader. Table 4 summarizes the methods that originally include length-
based normalization.

A.2 TRAINING DETAILS

Our experiments were conducted using the Llama 3.2 3B and Llama 3.1 8B Base models AI@Meta
(2024). The training setup, datasets, and hyperparameters were designed to ensure reproducibil-
ity and consistency. Unless otherwise noted, the hyperparameters in Table 5 were used across all
experiments.

Training was performed on 8 NVIDIA A100 GPUs with 80GB memory each. Depending on the
number of epochs, training for each configuration took between 3 to 6 hours. The total compute
used across all experiments amounted to approximately 651 GPU-days.

Hyperparameter Value
Max Tokens Length 1024 (TL;DR setup), 4096 (UF setup)
Epochs 1 (or 2 when specified)
Learning Rate (SFT) 6.0× 10−6

Learning Rate (Base Init.) {6.0× 10−6, 8.0× 10−6, 1.0× 10−5}
Learning Rate (Alignment) {3.0× 10−7, 5.0× 10−7, 7.0× 10−7, 1.0× 10−6}
Optimizer Adam (Kingma & Ba, 2014)
Adam β1 0.9
Adam β2 0.95
Batch Size 128
Learning Schedule Linear Decay
Warm-up Ratio 0.03
Max Gradient Norm 2
Memory Optimization DeepSpeed (Rasley et al., 2020)
Attention Mechanism Flash Attention 2 (Dao, 2023)

Table 5: Representative training hyperparameters for Llama 3.2 3B and Llama 3.1 8B models.

A.2.1 DATASETS.

Dataset Training Examples Validation Examples
UltraChat 207,865 23,110
UltraFeedback 61,135 2,000
Reddit TL;DR (SFT) 41,947 11,941
Reddit TL;DR (Preference) 73,396 21,198

Table 6: Summary of dataset sizes used for training and validation.

We used two primary datasets:

• Reddit TL;DR (Bai et al., 2022): used to train the initial SFT model in β-sensitivity experiments
with Llama 3.2 3B model.

• UltraChat (Ding et al., 2023): used to train the initial SFT model in β-sensitivity experiments
with Llama 3.2 3B and Llama 3.1 8B models.

• UltraFeedback (Cui et al., 2023): used for both SFT (in the Base vs. SFT-initialized comparison,
where we selected chosen subset from preference pairs) and for pairwise preference optimization
in all DAA methods.
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Dataset sizes are summarized in Table 6. For Base vs. SFT-initialized setups, only UltraFeedback
was used. For the β-sensitivity experiments, the models were first trained on UltraChat for SFT and
subsequently fine-tuned on UltraFeedback. The Reddit TL;DR dataset was deduplicated, retaining
only uniquely preferred summaries for SFT.

A.2.2 β-SENSITIVITY EXPERIMENTS.

We conducted a comprehensive analysis of the sensitivity of DAA methods to β, examining peak
performance and the trade-offs between model quality and regularization strength (as reflected in KL
divergence). Each method was trained with six or more distinct β values to identify configurations
that achieve stable and effective performance. The specific β values tested for each method are
shown in Table 7.

Method β Values Tested
DPO {0.001, 0.003, 0.005, 0.01, 0.05, 0.1}
IPO {0.0007, 0.001, 0.005, 0.01, 0.05, 0.1}
SimPO {0.05, 0.1, 0.2, 0.5, 1.0, 2.0, 5.0}
ORPO {0.05, 0.1, 0.2, 0.5, 1.0, 2.0}
ASFT {0.05, 0.1, 0.2, 0.5, 1.0, 2.0}
APO-Zero {0.001, 0.003, 0.005, 0.01, 0.05, 0.1, 0.2}
Cal-DPO {0.00005, 0.0001, 0.0003, 0.0005, 0.001, 0.003}
NCA {0.0001, 0.0003, 0.0005, 0.001, 0.005, 0.007, 0.01, 0.03, 0.05}

Table 7: Range of β values tested for each DAA method on all Llama setups.

For each β, we tested four learning rates (3.0×10−7, 5.0×10−7, 7.0×10−7, 1.0×10−6), training
on the UltraFeedback dataset. All runs began from an SFT-initialized model trained on UltraChat
(lr = 6.0× 10−6, 1 epoch). The best-performing learning rate for each β was selected to construct
Pareto fronts, balancing quality (measured via AlpacaEval 2 LC Win-Rate) and KL divergence.

For SimPO in the Llama 3.1 8B UF setup, the ratio γ
β = 0.5 was kept fixed as recommended by

Meng et al. (2024). Additionally, a single learning rate (lr = 6.0 × 10−7) was tested across all β
values for this method, as the same datasets and model scale were used. For Llama 3.2 TL;DR and
UF setups, we tested four learning rates similar to other DAAs.

For DPO and IPO, the 3.0 × 10−7 learning rate was not considered, as performance consistently
deteriorated from 1.0 × 10−6 to 5.0 × 10−7, indicating that lower learning rates were unlikely to
yield improvements.

Beyond the standard β values described in Table 7, additional values were explored for specific con-
figurations to reach the extreme points of the Pareto front. For example: - {0.00001, 0.00003}
for Cal-DPO in Llama 3.2 3B TL;DR and UF setups, - {0.00001, 0.00003, 0.00005} for
NCA in Llama 3.2 3B TL;DR, - {0.0003, 0.0005} for APO-Zero in Llama 3.2 3B TL;DR, -
{0.0003, 0.0005, 0.001, 0.003, 0.005} for ASFT in Llama 3.2 3B TL;DR.

The hyperparameters resulting in the best performance are presented in Table 8.

A.3 GENERATION DETAILS

We evaluated model performance on AlpacaEval 2 and ArenaHard for UltraFeedback setups, while
for the Reddit TL;DR setup, we used side-by-side comparisons with GPT-4o on a curated golden
validation subset of 500 samples. Additionally, KL divergence was measured on the validation
subset for all setups using the generation hyperparameters listed in Table 9. For ArenaHard, the
temperature was set to 0 to adhere to the original benchmark configuration.
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Method
Llama 3.2 3B TL;DR Llama 3.2 3B UF Llama 3.1 8B UF

Learning Rate β Learning Rate β Learning Rate β

DPO 7.0× 10−7 0.05 1.0× 10−6 0.01 1.0× 10−6 0.003

IPO 1.0× 10−6 0.005 7.0× 10−7 0.001 1.0× 10−6 0.001

SimPO 3.0× 10−7 0.5 7.0× 10−7 1.0 6.0× 10−7 1.0

ORPO 3.0× 10−7 0.5 5.0× 10−7 0.2 5.0× 10−7 0.5

ASFT 3.0× 10−7 0.001 1.0× 10−6 0.2 7.0× 10−7 0.1

APO Zero 3.0× 10−7 0.001 3.0× 10−7 0.005 3.0× 10−7 0.003

NCA 3.0× 10−7 0.0001 3.0× 10−7 0.0005 3.0× 10−7 0.0003

Cal-DPO 3.0× 10−7 0.00003 5.0× 10−7 0.0003 3.0× 10−7 0.0003

Table 8: Best hyperparameters for each DAA method across Llama setups.

Hyperparameter Value
Temperature 0.9
Top-k 40
Top-p 1.0
Max New Tokens 256 (TL;DR setup), 4096 (UF setup)

Table 9: Generation hyperparameters for Llama 3.1 8B and Llama 3.2 3B models.

B MATH REASONING EXPERIMENTS WITH QWEN2.5

To evaluate the generality of our findings for RQ3, we additionally consider mathematical reasoning
tasks and a different model family (Qwen2.5), providing a judge-free evaluation environment that
we assess at two scales, 7B and 14B.

B.1 SETUP DETAILS

Dataset. We use the Math CoT subset of the UltraInteract dataset Yuan et al. (2024), also employed
in the NCA work Chen et al. (2024). The training split contains 78,080 examples with 266 valida-
tion samples for SFT, and 52,864 preference pairs with 279 validation pairs for alignment. Follow-
ing standard practice, we prepend the following system prompt to all inputs: "Please reason
step by step, and put your final answer within \boxed{}."
Models. Experiments are conducted with Qwen2.5-7B and Qwen2.5-14B Yang et al. (2024).

Method β Values Tested
DPO {0.001, 0.005, 0.01, 0.05, 0.1, 0.2}
IPO {0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, 0.2}
SimPO {0.1, 0.2, 0.3, 0.5, 0.7, 1.0, 2.0, 5.0, 10.0, 15.0, 20.0}
ORPO {0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, 0.2, 0.5, 1.0, 1.2, 2.0, 5.0, 10.0}
ASFT {0.01, 0.05, 0.1, 0.2, 0.5, 1.0, 2.0, 3.0, 5.0}
APO-Zero {0.0001, 0.0005, 0.001, 0.003, 0.01, 0.05, 0.1}
Cal-DPO {0.00001, 0.00003, 0.00005, 0.0001, 0.0003, 0.0005, 0.001, 0.003, 0.01, 0.05, 0.1}
NCA {0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1}

Table 10: Range of β values tested for each DAA method on Qwen2.5 setups.

Evaluation. Performance is measured exclusively with verifiable metrics to avoid judge-model bias:
GSM8K Cobbe et al. (2021), MATH500 Lightman et al. (2023), AMC23 Li et al. (2024a), Miner-
vaMath Lewkowycz et al. (2022), and AIME24/25 Li et al. (2024a). We report average success rate
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@k (avg@k) across 4 random seeds, with decoding hyperparameters max new tokens=4096
and temperature=1.0.

Training configuration. The training protocol mirrors Section A, with four candidate learning rates
{3.0×10−7, 5.0×10−7, 7.0×10−7, 1.0×10−6}. For Qwen2.5-7B, a full sweep over learning rates
and β values was conducted. For Qwen2.5-14B, the best learning rates from the 7B experiments
were reused, while a full β sweep was performed for each method. The ranges are reported in
Table 10. For SimPO, we additionally swept the γ

β ratio in {0.1, 0.2, 0.3, 0.5, 0.8, 1.0}. At 14B
scale, an extended sweep including smaller values {0.001, 0.01, 0.03, 0.05} was also performed.

B.2 BEST HYPERPARAMETERS

Table 11 summarizes the best learning rates and β values identified for each method.

Method Qwen2.5-7B Qwen2.5-14B

Learning Rate β Learning Rate β

DPO 5.0× 10−7 0.1 5.0× 10−7 0.2

IPO 1.0× 10−6 0.05 1.0× 10−6 0.01

ORPO 3.0× 10−7 0.001 3.0× 10−7 0.005

SimPO 3.0× 10−7 20.0 3.0× 10−7 20.0

APO-Zero 1.0× 10−6 0.01 1.0× 10−6 0.0005

Cal-DPO 1.0× 10−6 0.0003 1.0× 10−6 0.003

NCA 1.0× 10−6 0.001 1.0× 10−6 0.005

ASFT 3.0× 10−7 0.1 3.0× 10−7 1.0

Table 11: Best hyperparameters for Qwen2.5-7B and Qwen2.5-14B on Math CoT (SimPO: best γβ
was 0.8 for 7B and 0.05 for 14B).

B.3 RESULTS

Tables 12 and 13 present the math benchmark results for Qwen2.5-7B and Qwen2.5-14B, respec-
tively. For all datasets except AIME24 and AIME25, we report avg@8; for AIME24 and AIME25,
we report avg@32 to better reflect performance due to their small question size. All results are
averaged over 4 random seeds, with the corresponding standard deviations (computed across seeds)
shown in parentheses.

At the 7B scale, pairwise and pointwise objectives perform comparably. At the 14B scale, however,
a clear separation emerges: pairwise methods consistently outperform pointwise ones, whereas the
scalar score axis (rrefθ vs. roddsθ ) yields no systematic differences. This replication of scale-dependent
performance across instruction-following and mathematical reasoning strongly supports the gener-
ality of our main findings.

B.4 ADDITIONAL SCALAR SCORE FAMILIES: ALPHAPO AND F-DPO (FORWARD-KL)

To test the robustness of our “ranking dominates” conclusion to changes in the scalar score fam-
ily, we experimented with two alternative parameterizations drawn from recent work: the Al-
phaPO (Gupta et al.) reward rα and the Forward-KL (fKL) score from f-DPO (Wang et al.), within
the same static binary-preference setup.

AlphaPO Scalar Score rα. We adopt the scalar score

rα(y;x) =
β

α

(
1− πθ(y | x)−α/|y|

)
,

exactly as defined in AlphaPO, and plug it into two objectives: (i) a pairwise Bradley–Terry loss
Lpair = − log σ

(
rα(x, yw)− rα(x, yl)

)
,
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and (ii) a pointwise ASFT-style loss

Lpoint = − log σ
(
rα(x, yw)

)
− log σ

(
− rα(x, yl)

)
.

In both cases, the scalar score rα is identical; only the way it enters the loss (difference vs. separate
terms) is changed.

Mean Avg@K GSM8K MATH500 AMC23 Minerva AIME24 AIME25

Base 0.1344
(0.0024)

0.2233
(0.0012)

0.2876
(0.0067)

0.1805
(0.0248)

0.0679
(0.0045)

0.0292
(0.0035)

0.0177
(0.0043)

SFT 0.2216
(0.0019)

0.6677
(0.0012)

0.3671
(0.0026)

0.1711
(0.0143)

0.1135
(0.0055)

0.0076
(0.0016)

0.0029
(0.0010)

DPO 0.3017
(0.0033)

0.8295
(0.0015)

0.5011
(0.0080)

0.2641
(0.0174)

0.1966
(0.0050)

0.0107
(0.0033)

0.0081
(0.0025)

IPO 0.2996
(0.0035)

0.8236
(0.0020)

0.4866
(0.0055)

0.2664
(0.0121)

0.2007
(0.0027)

0.0128
(0.0035)

0.0078
(0.0013)

SimPO 0.2892
(0.0039)

0.7893
(0.0026)

0.4837
(0.0037)

0.2523
(0.0190)

0.1898
(0.0014)

0.0125
(0.0037)

0.0073
(0.0026)

ORPO 0.2966
(0.0010)

0.8303
(0.0026)

0.4882
(0.0046)

0.2641
(0.0116)

0.1759
(0.0047)

0.0117
(0.0064)

0.0094
(0.0039)

AlphaPO Pair 0.2945
(0.0020)

0.8147
(0.0014)

0.4872
(0.0027)

0.2578
(0.0141)

0.1849
(0.0010)

0.0143
(0.0021)

0.0083
(0.0015)

APO-Zero 0.2837
(0.0020)

0.8071
(0.0030)

0.4586
(0.0050)

0.2352
(0.0069)

0.1807
(0.0102)

0.0115
(0.0031)

0.0091
(0.0034)

NCA 0.2861
(0.0027)

0.7909
(0.0015)

0.4715
(0.0026)

0.2461
(0.0145)

0.1922
(0.0017)

0.0109
(0.0051)

0.0047
(0.0010)

Cal-DPO 0.2936
(0.0044)

0.8272
(0.0014)

0.4694
(0.0053)

0.2531
(0.0209)

0.1931
(0.0070)

0.0109
(0.0028)

0.0081
(0.0018)

ASFT 0.2903
(0.0033)

0.8132
(0.0020)

0.4785
(0.0064)

0.2437
(0.0149)

0.1876
(0.0009)

0.0130
(0.0028)

0.0057
(0.0013)

AlphaPO Point 0.2922
(0.0027)

0.8233
(0.0012)

0.4753
(0.0085)

0.2539
(0.0074)

0.1820
(0.0074)

0.0122
(0.0021)

0.0063
(0.0009)

fKL Pair 0.2673
(0.0041)

0.7825
(0.0031)

0.4403
(0.0059)

0.2141
(0.0195)

0.1535
(0.0067)

0.0073
(0.0017)

0.0060
(0.0010)

fKL Point 0.2643
(0.0020)

0.7750
(0.0014)

0.4363
(0.0032)

0.2094
(0.0068)

0.1521
(0.0033)

0.0078
(0.0028)

0.0052
(0.0019)

Table 12: Math benchmark results for Qwen2.5-7B. Reported values are avg@8 (except
AIME24/25: avg@32), averaged across 4 seeds; standard deviation across seeds is shown in paren-
theses.

We reuse the Math-CoT setup from Section B.1. For Qwen2.5–7B we perform a grid search over
β ∈ {0.1, 0.5, 0.7, 1.0, 2.5, 5.0, 10.0, 20.0, 25.0} and α ∈ {−0.5,−0.1, 0.0, 0.1, 0.25, 0.5, 1.0, 2.0},
and then refine α ∈ {2.5, 3.0, 5.0} around the best β ∈ {0.5, 0.7, 1.0}. For Qwen2.5–14B we reuse
the best learning rate from the 7B experiments and sweep α ∈ {0.5, 1.0, 1.5, 2.0, 2.5} for the same
three β values. In all runs we fix the learning rate at 3×10−7, which is the best-performing value for
SimPO in this math setup. The best configurations are (β = 0.5, α = 2.0) and (β = 0.5, α = 1.0)
for pairwise/pointwise on Qwen2.5–7B, and (β = 0.5, α = 2.0) and (β = 0.5, α = 0.5) for
pairwise/pointwise on Qwen2.5–14B.

The corresponding results are included in Tables 12 and 13. On both 7B and 14B, the AlphaPO-
Pair variant lies in the same performance band as the other pairwise DAAs (DPO, IPO, SimPO,
ORPO), while AlphaPO-Point tracks the pointwise cluster and is consistently slightly weaker than
its pairwise counterpart. This mirrors the behavior observed for rref

θ and rodds
θ .

f-DPO Forward-KL score. For the f-DPO (Wang et al.) family we focus on the Forward-KL
endpoint, which is known to underperform DPO overall, and study it under our unified protocol. We
use the scalar score

rfKL
θ (x, y) = −β

πref(y | x)
πθ(y | x)

,
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corresponding to the α = 1 case in the α-divergence parameterization of f-DPO. As with rα, we
keep rfKL

θ fixed and compare a pairwise Bradley–Terry loss to a pointwise ASFT-style loss:

Lpair = − log σ
(
rfKL
θ (x, yw)−rfKL

θ (x, yl)
)
, Lpoint = − log σ

(
rfKL
θ (x, yw)

)
−log σ

(
−rfKL

θ (x, yl)
)
.

Mean Avg@K GSM8K MATH500 AMC23 Minerva AIME24 AIME25

Base 0.1937
(0.0065)

0.5343
(0.0064)

0.3177
(0.0048)

0.1773
(0.0259)

0.1002
(0.0069)

0.0188
(0.0043)

0.0138
(0.0054)

SFT 0.2399
(0.0013)

0.7162
(0.0018)

0.4006
(0.0105)

0.1719
(0.0186)

0.1351
(0.0052)

0.0115
(0.0049)

0.0039
(0.0013)

DPO 0.3202
(0.0030)

0.8509
(0.0013)

0.5279
(0.0080)

0.2773
(0.0166)

0.2341
(0.0085)

0.0221
(0.0013)

0.0089
(0.0045)

IPO 0.3146
(0.0014)

0.8584
(0.0009)

0.5150
(0.0031)

0.2594
(0.0068)

0.2336
(0.0067)

0.0164
(0.0040)

0.0047
(0.0018)

SimPO 0.3148
(0.0008)

0.8585
(0.0035)

0.5446
(0.0039)

0.2773
(0.0053)

0.1823
(0.0015)

0.0161
(0.0047)

0.0099
(0.0036)

ORPO 0.3277
(0.0066)

0.8690
(0.0009)

0.5503
(0.0049)

0.2883
(0.0273)

0.2232
(0.0062)

0.0219
(0.0050)

0.0135
(0.0054)

AlphaPO Pair 0.3158
(0.0019)

0.8693
(0.0010)

0.5277
(0.0128)

0.2695
(0.0064)

0.1930
(0.0034)

0.0234
(0.0025)

0.0117
(0.0037)

APO-Zero 0.3081
(0.0012)

0.8717
(0.0018)

0.5052
(0.0028)

0.2461
(0.0053)

0.1965
(0.0069)

0.0211
(0.0032)

0.0078
(0.0044)

NCA 0.2979
(0.0031)

0.8340
(0.0034)

0.5058
(0.0052)

0.2250
(0.0238)

0.1983
(0.0071)

0.0195
(0.0021)

0.0049
(0.0016)

Cal-DPO 0.2943
(0.0013)

0.8334
(0.0008)

0.4946
(0.0065)

0.2289
(0.0097)

0.1916
(0.0059)

0.0148
(0.0027)

0.0026
(0.0010)

ASFT 0.3030
(0.0042)

0.8330
(0.0010)

0.5004
(0.0040)

0.2492
(0.0154)

0.2075
(0.0051)

0.0216
(0.0090)

0.0060
(0.0031)

AlphaPO Point 0.2923
(0.0018)

0.8172
(0.0017)

0.5032
(0.0079)

0.2336
(0.0208)

0.1766
(0.0056)

0.0180
(0.0035)

0.0049
(0.0021)

fKL Pair 0.2839
(0.0029)

0.8215
(0.0012)

0.4724
(0.0027)

0.2125
(0.0133)

0.1759
(0.0064)

0.0169
(0.0032)

0.0039
(0.0029)

fKL Point 0.2750
(0.0036)

0.8125
(0.0017)

0.4663
(0.0017)

0.1852
(0.0121)

0.1638
(0.0067)

0.0164
(0.0005)

0.0055
(0.0010)

Table 13: Math benchmark results for Qwen2.5-14B. Reported values are avg@8 (except
AIME24/25: avg@32), averaged across 4 seeds; standard deviation across seeds is shown in paren-
theses.

On Qwen2.5–7B we sweep learning rates {3 × 10−7, 5 × 10−7} and β ∈
{0.001, 0.005, 0.01, 0.05, 0.1, 0.2} for both pairwise and pointwise formulations. On Qwen2.5–14B
we reuse the best learning rate from 7B (5× 10−7) and sweep the same β values. The best β
values are 0.005 and 0.001 (pairwise/pointwise) for Qwen2.5–7B, and 0.005 for both pairwise
and pointwise on Qwen2.5–14B. The resulting scores are reported alongside the other methods in
Tables 12 and 13.

As expected from the original f-DPO results, the Forward-KL parameterization yields lower absolute
performance than DPO / reverse-KL. However, the structural pattern is unchanged: in both 7B and
14B settings the fKL pairwise objective consistently outperforms its fKL pointwise counterpart, and
the gap becomes more pronounced at 14B. This behavior matches what we observe for the other
scalar score families considered in this paper and further supports our conclusion that, in the static
binary-preference regime we study, the pairwise vs. pointwise ranking structure is the dominant
driver of performance.

C EQUIVALENCE OF LASFTAlign
AND BINARY CROSS-ENTROPY LOSS

Lemma C.1.
log σ(roddsθ (y, x)) = log πθ(y|x)
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Proof.

log σ(roddsθ (y, x)) = log σ(log
πθ(y|x)

1− πθ(y|x)
) = log

1

1 + elog(1−πθ(y|x))−log(πθ(y|x))

= log
1

1 + 1−πθ(y|x)
πθ(y|x)

= − log
(
1 +

1− πθ(y|x)
πθ(y|x)

)
= − log

πθ(y|x) + 1− πθ(y|x)
πθ(y|x)

= log πθ(y|x).

Lemma C.2.
log σ(−roddsθ (y, x)) = log

(
1− πθ(y|x)

)
Proof.

log σ(−roddsθ (y, x)) = log σ(− log
πθ(y|x)

1− πθ(y|x)
) = log

1

1 + elog(πθ(y|x))−log(1−πθ(y|x))
=

log
1

1 + πθ(y|x)
1−πθ(y|x)

= − log
(
1 +

πθ(y|x)
1− πθ(y|x)

)
= − log

1− πθ(y|x) + πθ(y|x)
1− πθ(y|x)

= log(1− πθ(y|x)).

Theorem C.3. LASFTAlign
decomposes into likelihood and unlikelihood terms, corresponding ex-

actly to the sum of binary cross-entropy (BCE) losses evaluated independently on the positive and
negative samples:

LASFTAlign
= − log πθ(yw|x)− log

(
1− πθ(yl|x)

)
.

Proof. To explicitly demonstrate this decomposition, we start from the definition of the ASFT loss:

LASFT = − log πθ(yw|x)− λ log σ(roddsθ (yw, x))− λ log σ(−roddsθ (yl, x)),

where the odds ratio is defined as:

roddsθ (y, x) =
πθ(y|x)

1− πθ(y|x)
.

Applying Lemma C.1 and Lemma C.2, we rewrite this as:

LASFTAlign
= − log πθ(yw|x)− log

(
1− πθ(yl|x)

)
,

LASFT = −(1 + λ) log πθ(yw|x)− λ log
(
1− πθ(yl|x)

)
.

To illustrate the connection with the binary cross-entropy (BCE) loss explicitly, consider the BCE
defined for an example (x, y) with binary label z ∈ {0, 1}:

LBCE(y, z|x) = −z log πθ(y|x)− (1− z) log(1− πθ(y|x)).

Evaluating BCE independently at the chosen example yw (positive, z = 1) and rejected example yl
(negative, z = 0), we have:

LBCE(yw, 1|x) = − log πθ(yw|x),

LBCE(yl, 0|x) = − log
(
1− πθ(yl|x)

)
.

Summing these two BCE terms yields exactly:

LBCE(yw, 1|x) + LBCE(yl, 0|x) = − log πθ(yw|x)− log
(
1− πθ(yl|x)

)
,

which matches precisely the alignment loss LASFTAlign
.

Thus LASFTAlign
decomposes into two independent BCE terms, each representing likelihood and

unlikelihood modeling separately.
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D RELATIONSHIP BETWEEN ORPO AND ASFT LOSS FUNCTIONS

Theorem D.1. LORPO can be expressed as:

LORPO = LASFT + λ log
(
πθ(yw|x)(1− πθ(yl|x)) + πθ(yl|x)(1− πθ(yw|x))

)
.

Proof. We start by defining the ORPO loss:

LORPO = − log πθ(yw|x)− λ log σ

(
log

π(yw|x)
1− π(yw|x)

− log
π(yl|x)

1− π(yl|x)

)
.

Expanding the second term using the identity log σ(x) = x− log(ex + 1), we get:

− log σ

(
log

πθ(yw|x)
1− πθ(yw|x)

− log
πθ(yl|x)

1− πθ(yl|x)

)
= log

1− πθ(yw|x)
πθ(yw|x)

+ log
πθ(yl|x)

1− πθ(yl|x)
+ log

(
πθ(yw|x)(1− πθ(yl|x))
πθ(yl|x)(1− πθ(yw|x))

+ 1

)
= log

1− πθ(yw|x)
πθ(yw|x)

+ log
πθ(yl|x)

1− πθ(yl|x)
+ log

(
πθ(yw|x)− 2πθ(yw|x)πθ(yl|x) + πθ(yl|x)

πθ(yl|x)(1− πθ(yw|x))

)
= − log πθ(yw|x)− log(1− πθ(yl|x)) + log

(
πθ(yw|x)− 2πθ(yw|x)πθ(yl|x) + πθ(yl|x)

)︸ ︷︷ ︸
ORPOAlign

.

Combining all terms, we obtain:

LORPO =− (1 + λ) log πθ(yw|x)− λ log(1− πθ(yl|x))+
λ log

(
πθ(yw|x)(1− πθ(yl|x)) + πθ(yl|x)(1− πθ(yw|x))

)
=LASFT + λ log

(
πθ(yw|x)(1− πθ(yl|x)) + πθ(yl|x)(1− πθ(yw|x))

)
Corollary D.2. LORPO ≤ LASFT and LORPOAlign

≤ LASFTAlign
.

This follows from the fact that the additional term in LORPO is non-positive when πθ(yw|x) and
πθ(yl|x) lie in [0, 1], and πθ(yw|x) + πθ(yl|x) ≤ 1.

E UNDERSTANDING TEMPERED ASFT AND ORPO

Consider gradients of ∇θLβASFTAlign
and ∇θLβORPOAlign

:

∇θLβASFTAlign
= −β

[(
1− σ(βroddsθ (yw, x))

)
∇θr

odds
θ (yw, x) + σ(βroddsθ (yl, x))∇θr

odds
θ (yl, x)

]
,

∇θLβORPOAlign
= −β

[(
∇θr

odds
θ (yw, x)−∇θr

odds
θ (yl, x)

)
×
(
1−σ

(
βroddsθ (yw, x)−βroddsθ (yl, x)

))]
,

where ∇θr
odds
θ (y, x) = ∇θ log πθ(y|x)

1−πθ(y|x) .

When β → 0, σ(β · · · ) ≈ 1
2 , both methods aggressively improve the odds ratio (increasing for yw

and decreasing for yl). As β increases, the updates become bounded by the factor σ(β · · · ) (similar
to a reward threshold in DPO). Hence, once the model improves, further updates are limited, either
individually for LβASFTAlign

or by pairwise ranking in LβORPOAlign
.

F EXPERIMENT ON PROMPT BIAS

To further investigate our hypothesis from Section 6 regarding how pairwise and pointwise objec-
tives interact with prompt-specific biases, we designed a controlled toy experiment. The goal is to
simulate the essential mechanics of DAA training and observe the behavior of different objectives
under conditions with and without an artificially introduced prompt-specific bias.
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Figure 5: Toy experiment: effect of model capacity (h = 1, 2, 3, 4) on accuracy and
prompt bias (ICC1). Pairwise (solid) and pointwise (dashed) objectives compared under unbiased
(bias strength = 0.0, left) and biased (bias strength = 0.9, right) conditions. Results averaged
over 1000 seeds; 95% CI shown. See Section 6 for details.

Experimental Setup. For each run, we generate a dataset of N = 2000 samples. Each sample
consists of a scalar prompt x ∼ U(0, 1) and two scalar responses s1,base, s2,base ∼ U(0, 1), repre-
senting the underlying ”base quality” of the responses for that prompt.

Before introducing any bias, we center the base scores for each prompt:

s̃1,base = s1,base −
1

2
(s1,base + s2,base), s̃2,base = s2,base −

1

2
(s1,base + s2,base)

so that s̃1,base + s̃2,base = 0 for every prompt. This ensures that, in the absence of further modifica-
tions, there is no prompt-specific baseline in the response scores.

Next, we introduce prompt-specific bias by adding bx = bias strength × I(x < bias threshold)
to both centered scores, with bias threshold = 0.5 and bias strength set to 0.0 (unbiased) or 0.9
(biased). The observed scores are therefore:

y1 = s̃1,base + bx, y2 = s̃2,base + bx

For each prompt, the preferred (yw) and dispreferred (yl) observed scores are determined by apply-
ing the Bradley-Terry model (Bradley & Terry, 1952) to (y1, y2) with a low temperature (10−6),
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making the assignment nearly deterministic: the higher of y1 or y2 is almost always selected as yw,
and the lower as yl.
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Figure 6: Toy experiment: effect of model capacity (h = 5, 6, 8) on accuracy and prompt
bias (ICC1). Pairwise (solid) and pointwise (dashed) objectives compared under unbiased
(bias strength = 0.0, left) and biased (bias strength = 0.9, right) conditions. Results averaged
over 1000 seeds; 95% CI shown. See Section 6 for details.

Model and Training. The model is a simple Multi-Layer Perceptron (MLP) with a single hidden
layer and ReLU activation. It takes a 2-dimensional input (concatenation of the scalar prompt x and
scalar candidate response score y) and outputs a scalar score rθ(x, y). We experiment with varying
hidden layer sizes h ∈ {1, 2, 3, 4, 5, 6, 8} to test different model capacities.

Since we focus solely on the bias-specific dependencies of each DAA objective, we do not inves-
tigate the differences between rrefθ and roddsθ , operating exclusively with the scalar form rθ(x, y).
As a result, some of the loss functions discussed in Section 2 become equivalent in this context
(for instance, DPO, SimPO, and ORPO) which we collectively refer to in this section as ”DPO”
for convenience. Other losses, such as APO-Zero, NCA, Cal-DPO, and ASFT, retain their distinct
formulations involving rθ(x, y), and are therefore referred to by their original names.

We fix β = 1 throughout, so that the scale of the loss does not confound the comparison of objec-
tives; tuning β merely regularizes the strength of preference optimization. This allows any differ-
ences in alignment to be attributed to the structural properties of the objectives.

Each configuration (objective, hidden size h, bias regime) is trained for 100 epochs, using 80%
of the data for training and 20% for testing. For each configuration, the learning rate is selected
by hyperparameter search over {0.3, 0.1, 0.05, 0.03, 0.01, 0.005, 0.003} to maximize test alignment
accuracy. All reported results are averaged over 1000 independent runs (with distinct random seeds
for both data generation and model initialization). Confidence intervals are reported as ±1.96SE,
where SE is the standard error across runs.

We report two metrics on the test set: (i) accuracy, defined as the fraction of test pairs for which
rθ(x, yw) > rθ(x, yl); and (ii) the Intraclass Correlation Coefficient (ICC1) Bartko (1966), which
quantifies prompt-specific bias in the model’s learned scores (see Appendix J for details).
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(a) Llama 3.1 8B UF
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Figure 7: ICC1 on real data. ICC1 computed on the training and validation splits for the best model
from each method, across Llama 3.1 8B UF, Llama 3.2 3B UF, and Llama 3.2 3B TL;DR setups.
Error bars show 95% confidence intervals. See Section 6 for details.

Results. Figures 5 and 6 present the results of the toy experiment, reporting test accuracy
and ICC1 across a range of model capacities (hidden dimension h), both for the unbiased
(bias strength = 0.0) and biased (bias strength = 0.9) regimes.

In the unbiased condition (left panels), where the data contain no prompt-specific bias, all objectives
– pairwise (DPO, IPO) and pointwise (ASFT, NCA, Cal-DPO, APO-Zero) – achieve identical ac-
curacy for all h, and ICC1 converges toward −1 as capacity increases. This confirms that when the
underlying data are unbiased, neither class of objectives induces spurious prompt bias, and both are
able to learn the quality structure of responses equally well.
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In the biased condition (right panels), where prompt-specific bias is present in the data, the results
partially mirror what we observe on real data. Examining ICC1, we see that our hypothesis is
confirmed: pointwise methods reduce prompt bias, as indicated by lower ICC1, while for pairwise
methods, ICC1 plateaus at a higher value. When comparing pointwise objective with h = 1 and
h = 3, for h = 3 the reduction in ICC1 is more pronounced than for h = 1, indicating that a model
with greater capacity is better able to reduce prompt bias.

If we examine the standard errors of accuracy, for h = 1 (which is most analogous to the Llama
3.2 3B UF setup), there is substantial overlap in the SE intervals across all methods. This closely
resembles the trends observed in the ArenaHard column of Table 3, where IPO, DPO, SimPO,
ORPO, and APO-Zero tend to achieve higher mean performance, while ASFT, NCA, and Cal-DPO
are lower on average; however, the confidence intervals for many methods overlap, indicating that
the differences are not always statistically significant in this lower-capacity regime. For h = 3,
where in the pointwise case the model has more capacity to ”spend” on removing bias, the gap
between pairwise and pointwise objectives becomes more evident, mirroring the situation seen in
Llama 3.1 8B UF. When h > 4, the task becomes trivial for the model, and the available capacity
suffices both to minimize prompt bias and to achieve high ranking accuracy for all objectives; as a
result, the performance of all methods converges. This parallels what we observe in the Llama 3.2
3B TL;DR setup.

These results are consistent with our hypothesis and provide strong evidence for why pairwise meth-
ods work better in certain regimes often encountered in real data - specifically, when the task is chal-
lenging enough that the model’s capacity is insufficient to completely remove prompt bias. In such
cases, differences between objectives are pronounced; for both very high and very low capacity,
these differences vanish.

Additionally, Figure 7 reports ICC1 with 95% confidence intervals, computed for the best-trained
model of each method (hyperparameters in Table 8) on the training and validation splits (the large
CI on the UF validation split is due to the small data size; see Table 6). Here, r refers to rref

θ and
rodds
θ as appropriate for each method. These results also support our findings from the toy example

and the hypothesis stated in Section 6: in Llama 3.1 8B UF, ICC1 is higher for pairwise methods,
while for Llama 3.2 UF and TL;DR the results are mixed.

G THEORETICAL ANALYSIS OF PROMPT-SPECIFIC BIAS AND RANKING
OBJECTIVES

In Section 6, we attribute the performance gap between pairwise and pointwise methods to how they
interact with prompt-specific biases, specifically, that pointwise methods expend model capacity
“unlearning” biases that pairwise methods naturally ignore. In this appendix, we formalize this
mechanism. We define the marginalized score (prompt bias) for a general class of scalar score
functions and analyze the gradient dynamics of pairwise and pointwise objectives with respect to
this quantity.

G.1 GENERAL SETUP AND DEFINITIONS

Consider a conditional language model parameterized by θ, denoting the probability of a response y
given prompt x as πθ(y|x). Let D be a dataset of preference pairs (x, yw, yl).

Definition G.1 (Scalar Score Family). We assume the scalar score used for alignment takes the
general form:

rθ(x, y) = F
(
πθ(y | x), C(x, y)

)
where F : [0, 1] × Z → R is differentiable with respect to its first argument (the probability
πθ(y | x)). The term C(x, y) represents fixed context-dependent quantities (e.g., reference model
probabilities πref(y | x), sequence lengths |y|) that are independent of θ. The dependence on θ oc-
curs only through πθ(y | x). For notational convenience, when C(x, y) is fixed we will sometimes
write F (πθ(y | x)) and leave the second argument implicit. This formulation covers rref, rodds and
rα by Gupta et al. DAA families used in our experiments.
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Definition G.2 (Marginalized Score / Prompt Bias). For a fixed prompt x, let qx(y) be the empirical
marginal distribution of candidate responses appearing in the dataset for that prompt (i.e., the set of
all yw and yl associated with x). We define the marginalized score (or prompt-specific bias) as:

bθ(x) := Ey∼qx [rθ(x, y)] =
∑
y∈Yx

qx(y)F
(
πθ(y | x)

)
.

By construction, qx is a probability distribution over Yx, so
∑
y∈Yx

qx(y) = 1, and it is entirely
determined by the dataset (hence independent of θ).

G.2 GRADIENT SENSITIVITY OF THE MARGINALIZED SCORE

First, we must establish that bθ(x) is indeed sensitive to model parameters. If ∇θbθ(x) = 0 every-
where, the distinction between objectives would be moot.

Let z(x) denote the vector of unnormalized logits for the candidate set Yx = {y1, . . . , yK} such
that πθ(yk|x) = softmax(z(x))k = ezk∑

j e
zj .

Lemma G.3 (Gradient of Marginalized Score w.r.t logits). The gradient of the prompt bias bθ(x)
with respect to the logit zm of a specific candidate ym is:

∂bθ(x)

∂zm
= πθ(ym|x)

qx(ym)F ′(πm)−
∑
y∈Yx

qx(y)F
′(πy)πθ(y|x)


where πk ≡ πθ(yk|x) and F ′(p) = ∂F

∂p .

Proof. Using the chain rule: ∂bθ
∂zm

=
∑
k qx(yk)F

′(πk)
∂πk

∂zm
. Recall the softmax derivative ∂πk

∂zm
=

πk(δkm − πm). Substituting this:

∂bθ
∂zm

=
∑
k

qx(yk)F
′(πk)[πk(δkm − πm)]

= qx(ym)F ′(πm)πm − πm
∑
k

qx(yk)F
′(πk)πk.

This completes the proof.

Assumption G.4 (Non-Degeneracy). We assume the score function F and the data distribution qx
are such that ∂bθ(x)∂z ̸= 0.

Remark: This holds generically. From Lemma G.3, for the gradient to vanish for a fixed prompt x
and all logits zm we would need

qx(ym)F ′(πθ(ym | x)
)

= const for all ym ∈ Yx.

In other words, qx(ym) would have to be exactly proportional to 1/F ′(πm), which imposes a highly
specific compatibility between the fixed data distribution qx and the evolving model distribution
πθ(· | x). Since qx is θ-independent while πθ changes throughout training, this condition defines at
most a measure-zero set of parameter values and is not satisfied in generic training dynamics.

Corollary G.5. The prompt bias bθ(x) is a learnable functional of the model parameters. The model
can adjust it. The question is: do the objectives ask the model to adjust it?
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G.3 GRADIENT SIGNAL FOR BIAS UPDATE

We define a general preference loss over a dataset D as L(θ) = E(x,yw,yl)∼D[ℓ(rw, rl)], where rw, rl
are the scalar scores for yw, yl.

We can analyze how the loss generates gradient signals to update the prompt bias. Let gθ(x, y) =
∂L

∂rθ(x,y)
be the backpropagated gradient signal w.r.t the score of a specific response y.

We define the total score gradient for prompt x as:

Gθ(x) :=
∑
y∈Yx

gθ(x, y) =
∑
y∈Yx

∂L

∂rθ(x, y)
.

Theorem G.6 (Gradient Signal for Bias). The total score gradient Gθ(x) =
∑
y∈Yx

gθ(x, y) quan-
tifies the sensitivity of the loss L to a hypothetical uniform shift in the scores for prompt x. Specif-
ically, if it were possible to independently add a small constant ε to rθ(x, y) for all y ∈ Yx, the
first-order change in the loss would be δL = ε ·Gθ(x).
This makes Gθ(x) a direct measure of the objective’s incentive to alter the prompt bias bθ(x). A
non-zero Gθ(x) implies that the loss function, in isolation, generates a gradient signal that would
drive such a uniform shift, and thus a change in the bias. Whether the model can perfectly satisfy
this incentive depends on its parameterization and capacity.

Proof. Consider a uniform shift δr = ε applied to the scores of all responses y ∈ Yx. The induced
change in the loss L is, to first order:

δL =
∑
y∈Yx

∂L

∂rθ(x, y)
· δr = ε ·

∑
y∈Yx

gθ(x, y) = ε ·Gθ(x).

This shows that Gθ(x) is the derivative of L with respect to a uniform shift in the scores for prompt
x.

Now, note that a uniform shift δr = ε for all y ∈ Yx will change the prompt bias bθ(x) by ε,
because:

δbθ(x) =
∑
y∈Yx

qx(y) · δr = ε ·
∑
y∈Yx

qx(y) = ε.

Therefore, the gradient of L with respect to a change in the bias bθ(x) (via a uniform shift) is
exactly Gθ(x). Hence, Gθ(x) ̸= 0 implies that the objective function, in isolation, generates a
gradient signal that would drive such a uniform shift, and thus a change in the bias. We emphasize
that this argument considers a hypothetical perturbation in the space of scalar scores rθ(x, y): it
characterizes the structural sensitivity of the loss to per-prompt shifts, independently of whether the
model parameterization allows implementing an exact uniform shift in score space.

G.4 INVARIANCE OF PAIRWISE OBJECTIVES

We now prove that pairwise objectives are structurally invariant to prompt bias.

Definition G.7 (Pairwise Objective). A pairwise objective is defined as ℓpair(rw, rl) = ϕ(rw − rl),
for some differentiable ϕ : R → R. Examples include DPO (ϕ(u) = − log σ(βu)), IPO, SimPO,
and ORPO (in the two-stage formulation).

Theorem G.8 (Pairwise Invariance). For any pairwise objective ℓpair, the total score gradientGθ(x)
is zero for every prompt x:

Gθ(x) =
∑
y∈Yx

gθ(x, y) = 0 ∀x.

Consequently, pairwise objectives do not generate a gradient signal for uniform shifts in scores (i.e.,
they are invariant to prompt bias).
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Proof. Consider the set of pairs Px = {(y(i)w , y
(i)
l )} for prompt x. The total loss is Lx =∑

i ϕ(rw,i − rl,i). The derivative w.r.t. the score of a generic candidate y is:

gθ(x, y) =
∑

i:y
(i)
w =y

ϕ′(∆i) +
∑

i:y
(i)
l =y

(−ϕ′(∆i))

where ∆i = rw,i − rl,i. The total score gradient is:

Gθ(x) =
∑
y∈Yx

gθ(x, y)

=
∑
y∈Yx

 ∑
i:y

(i)
w =y

ϕ′(∆i)−
∑

i:y
(i)
l =y

ϕ′(∆i)


=

∑
i

ϕ′(∆i)−
∑
i

ϕ′(∆i) = 0.

This completes the proof.

G.5 COUPLING OF POINTWISE OBJECTIVES

Definition G.9 (Pointwise Objective). A pointwise objective decomposes into separate terms for
winners and losers:

ℓpoint(rw, rl) = ψ+(rw) + ψ−(rl).

Examples include NCA, Cal-DPO, and ASFT.

Theorem G.10 (Pointwise Coupling). For pointwise objectives of the form ℓpoint(rw, rl) =
ψ+(rw) + ψ−(rl), the total score gradient Gθ(x) is:

Gθ(x) =
∑
i

[
ψ′
+(rw,i) + ψ′

−(rl,i)
]
,

where the sum is over all preference pairs (y(i)w , y
(i)
l ) for prompt x.

This sum is not constrained to be zero by the structure of the loss. For any individual pair, the
condition for zero contribution, ψ′

+(rw) + ψ′
−(rl) = 0, imposes a specific relationship between rw

and rl; requiring this to hold simultaneously for all pairs defines a non-generic equilibrium. Hence,
for generic score configurations (rw,i, rl,i), pointwise objectives generate a non-zero gradient signal
Gθ(x), explicitly incentivizing the model to change the prompt bias bθ(x).

Proof. The total score gradient is derived as follows. For a pointwise objective, the loss for a single
pair is ℓ = ψ+(rw) + ψ−(rl). The gradients with respect to the scores are:

∂ℓ

∂rw
= ψ′

+(rw),

∂ℓ

∂rl
= ψ′

−(rl).

Summing over all pairs for prompt x, we obtain:

Gθ(x) =
∑
i

[
ψ′
+(rw,i) + ψ′

−(rl,i)
]
.

This sum is not structurally constrained to be zero. For example, ASFT with ψ+(r) = − log σ(r)
and ψ−(r) = − log σ(−r), we have ψ′

+(r) = σ(r) − 1 and ψ′
−(r) = σ(r), giving a sum of

σ(rw)− 1 + σ(rl) which is zero only when σ(rw) + σ(rl) = 1.
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G.6 SUMMARY

This analysis shows that pairwise objectives are invariant, at the loss level, to uniform shifts
in the scalar scores for a given prompt: their total score gradient satisfies Gθ(x) = 0, so they
do not create a first-order incentive to change bθ(x) as such. Throughout this appendix, we work
in the standard offline alignment setting with static binary preference data, matching the scope of
our experiments in the main paper; our conclusions are not claimed to automatically extend to
online or iterative preference optimization regimes. Any evolution of the marginalized score under
pairwise training arises only as a side effect of updates that modify score differences, i.e., the ranking
structure.

In contrast, pointwise objectives are structurally sensitive to such shifts: for generic score con-
figurations they yield Gθ(x) ̸= 0 and therefore explicitly encourage the model to adjust not only
relative scores but also their absolute level for each prompt. In capacity-limited regimes, this ad-
ditional requirement to manipulate the prompt bias bθ(x) competes with the primary ranking task,
providing a mechanistic explanation for the performance gap we observe between pointwise and
pairwise methods in our experiments. Finally, we note that this argument is formulated in terms
of first-order gradient signals in score space: a sufficiently expressive model could still realize bias
removal under pairwise training as a side effect, but the loss itself provides no direct incentive to do
so, which is the key distinction we draw here.

H PARETO FRONTS FOR LLAMA 3.2 SETUPS

The results presented in this section correspond to the best hyperparameter configurations identified
during the hyperparameter search described in Section 4.2, including the optimal learning rate for
each method. This ensures that the Pareto fronts reflect the upper performance limits for alignment
quality.

(a) Llama 3.2 3B TL;DR (b) Llama 3.2 3B UF

Figure 8: Pareto front for alignment quality and KL divergence. Results for Llama 3.2 3B
TL;DR and UF setups on GPT-4 Win Rate vs. ”golden” validation subset and AlpacaEval 2 LC
respectively with different β values. Methods are grouped into pairwise and pointwise categories.
For the summarization task (Llama 3.2 3B TL;DR), both pointwise and pairwise methods achieve
strong overall results. For the UF setup, methods also perform similarly within overlapping confi-
dence intervals, indicating no clear separation.

I LEARNING-RATE–TO–β RATIO FOR DIFFERENT MODEL SIZES

Figure 9 shows that the relationship between alignment quality and the lr/β ratio remains consistent
across Llama 3B and 8B model scales for each method, despite minor shifts along the x-axis. The
only noticeable trend is that rrefθ -based methods are generally more stable and less prone to qual-
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(a) Llama 3.1 8B UF
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(b) Llama 3.2 3B UF

Figure 9: Alignment quality versus lr
β . Each point is a single run from the grid described in

Section 4.2. The x-axis shows the ratio lr/β; the y-axis is AlpacaEval 2 LC WR.

ity degradation due to the presence of a reference policy, but this does not affect the peak quality
achievable by each method (see Table 3).

J INTRACLASS CORRELATION COEFFICIENT (ICC1) IN THE TOY
EXPERIMENT

The Intraclass Correlation Coefficient (ICC1) Bartko (1966); Shrout & Fleiss (1979) is a statistical
measure used to quantify how much of the total variance in a set of observations is attributable to
differences between groups (here, values of the context variable x), as opposed to random variation
within each group (here, pairs of candidate scores for the same x).

Purpose in Our Setting. In our toy experiment, the goal is to assess the extent to which the
model’s learned scoring function rθ(x, r) exhibits prompt-specific bias: that is, systematic differ-
ences in the average score assigned to different contexts x, independent of differences between
candidate completions for the same x.

Mathematical Formulation. Given that for each value of x we have two completions with model
scores rθ(x, rw) and rθ(x, rl), we define the prompt-specific baseline as the average score for x:

b̂(x) =
rθ(x, rw) + rθ(x, rl)

2
.
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We are interested in the variance of b̂(x) across contexts, Varx[b̂(x)], which captures how much the
model’s scores ”shift” between different values of x. The total variance in the model’s scores is
Varx,y[rθ(x, r)], computed over all context-candidate pairs.

For the case of k = 2 candidates per context, the ICC1 is given by:

ICC1 = 2 ·
Varx

[
b̂(x)

]
Varx,y

[
rθ(x, r)

] − 1

This is a standard algebraic form of the one-way random effects ICC estimator for the case of k = 2
repeated measurements per group, as detailed in Shrout & Fleiss (1979); McGraw & Wong (1996);
Searle et al. (2009).

Interpretation. ICC1 ≈ −1: Virtually all variance is within each context (i.e., between the two
candidate scores for the same x), and the model assigns no systematic bias per context. In our
unbiased data condition, where the true input baseline is zero, a well-trained model should yield
ICC1 close to −1.

ICC1 ≈ 0: About half the variance is due to differences between contexts, and half is within con-
texts.

ICC1 → 1: Most of the variance is between contexts, i.e., the model’s output scores strongly reflect
context-specific bias.

Connection to Data Generation and Model Behavior. In our experiment, the input scores to the
model are centered so that (in the absence of injected bias) the true baseline for each context x is
zero. When a context bias is present in the data (nonzero bx), a model that captures this bias will
have Varx[b̂(x)] > 0, yielding a higher ICC1. If the learning objective (e.g., pointwise) suppresses
or removes this context bias, Varx[b̂(x)] will decrease, and ICC1 will approach −1.

Conversely, pairwise objectives, which focus only on differences between candidates for the same
context, do not penalize nor remove such baseline shifts, and thus tend to preserve the bias structure
of the data.

Thus, ICC1 is a direct measure of whether the model’s learned scores have inherited context-specific
bias (structure) from the training data, or have been actively normalized to remove such bias. This
distinction is crucial for demonstrating how pairwise and pointwise objectives interact differently
with data-induced biases in our toy experiment.

K GPT-4 SIDE-BY-SIDE EVALUATION PROMPT

For our Side-By-Side evaluations with GPT-4o, we designed a prompt tailored to the Reddit TL;DR
dataset to assess accuracy, completeness, relevance, and conciseness. The full prompt used in our
experiments is detailed below.

Act as an impartial judge and evaluate the quality of the summaries provided
by two AI assistants for the text displayed below. Your evaluation should
consider accuracy, completeness, relevance, and conciseness.

You will be given a text, Assistant A’s summary, and Assistant B’s summary.
Your job is to evaluate which assistant’s summary is better based on the
text provided.

Begin your evaluation by comparing both assistants’ summaries with the
original text. Identify and correct any inaccuracies.
Ensure the summaries are complete, capturing all essential information
from the text without introducing fabricated details.
Assess the relevance of the information each assistant chose to include
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in their summary, ensuring it reflects the core message of the text.
Evaluate the conciseness of the summaries, favoring those that efficiently
convey the necessary information without unnecessary verbosity.
Avoid any position biases and ensure the order in which the summaries
were presented does not influence your decision.
Do not allow the length of the summaries to influence your evaluation,
except in the context of conciseness and efficiency.
Do not favor certain names of the assistants.
Be as objective as possible.
You should only evaluate the summaries provided by both assistants
and NOT the original text itself.
If both summaries are irrelevant, contain hallucinations, or are
inconsistent with the original text, mark the comparison as inconclusive
and choose option "C".

After providing your explanation, output your final verdict by strictly
following this format:

"""
Comparison: <One-sentence comparison>
Winner: <A if assistant A is better, B if assistant B is better, and C for a tie.>
"""
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